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Abstract— Increasingly used in online auctions, buyout prices allow
bidders to instantly purchase an item listed. We distinguish between two
types of buyout options: atemporary option that disappears if a bid above
the reserve price is made and apermanent option that stays throughout
the auction or until it is exercised. In order to develop a methodology
for finding temporary and permanent buyout prices that maximize the
seller’s discounted revenue, and to examine the relative benefit of using
each type of option in various environments, we formulate a model
featuring time-sensitive bidders with uniform valuations and Poisson
arrivals (but endogenous bidding times). We characterize equilibrium
bidder strategies in both cases and then solve the problem ofmaximizing
seller’s utility by simulation. Our numerical experiments suggest that
a seller can increase his revenue significantly by introducing a buyout
option. Additionally, while a temporary buyout option prom otes early
bidding, a permanent option gives an incentive to the bidders to bid late,
thus leading to concentrated bids near the end of the auction.

Index Terms— buyout option, online auction, Nash equilibrium

I. I NTRODUCTION

I N 2003, the total items listed onebay were around 973 million
leading to gross merchandise sales of $24 billion. Althoughhugely

popular, online auctions are typically beset by the problemof large
waiting times. An online auction onebay, for example, can last
anywhere from one to ten days thus potentially driving away time-
sensitive bidders to posted price mechanisms or electroniccatalogues.
In order to make online auctions more attractive to such bidders,
auctioneers have introduced buyout options which offer anypotential
bidder the opportunity to get the item immediately at the posted
price. Equipped with this option an online auction becomes ahybrid
between an electronic catalogue and a traditional auction.

Such buyout options are widely used in online auctions. In fact,
in the fourth quarter of 2003, fixed income trading (primarily
from the “Buy It Now” option) contributed $2.0 billion or 28%
of ebay’s gross annual merchandise sale during the quarter (url:
http://investor.ebay.com/). Other examples of buyout options are
Yahoo’s “buy now”, Amazon’s “Take-It” and ubid’s “uBuy it!”.

Depending on how long the option is available, a buyout option
is classified as temporary or permanent. A temporary buyout option
disappears as soon as a bid above the reserve price is made while
a permanent option is available through out the auction. While
ebay’s “Buy It Now” is a temporary buyout option,Yahoo’s “buy-
now”, ubid’s “uBuy it!” and Amazon’s “Take-It” belong to the latter
category.

The presence of two different types of buyout prices motivates the
following research questions that we seek to answer: Why does ebay
use a temporary buyout option whileYahoo and Amazon prefer the
permanent one? From the seller’s perspective, does one option always
outperform the other? If not, when should the seller prefer one over
the another? What is the seller’s relative benefit of introducing a
buyout option be it temporary or permanent? How does the bidder
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behavior change when such options are introduced in an online
auction? What is an equilibrium bidder strategy in such a case?

The remainder of the paper is organized as follows. A literature
survey on the topic is presented in§2. In §3, we describe the
model used in this paper along with a discussion on its validity. An
equilibrium bidder strategy for a temporary buyout option is derived
in §4.1. The seller’s problem is formulated in§4.2 and is solved for
a particular case of impatient bidders. The permanent buyout case
is analyzed in§5. An equilibrium bidder strategy is derived in§5.1.
The seller’s problem is discussed in§5.2. In §6 we run numerical
simulations to determine the relative profit of using a buyout option
and address the research questions posed earlier. Concluding remarks
are offered in§7. All proofs not included in the main text can be
found in the appendix.

II. L ITERATURE SURVEY

While auctions have been extensively studied since the seminal
work in auction theory by Vickrey [1], the research work on buyout
prices is limited and very recent. Indeed the comprehensivesurvey
on auction literature by Klemperer [2] makes no mention of buyout
prices. Furthermore, while Lucking-Reiley [3] does observe the use of
buyout prices, he points out that he is “not aware of any theoretical
literature which examines the effect of such a buyout price in an
auction.”

We first review papers that, for tractability purposes, study mod-
els with two bidder and/or two valuations framework. Budishand
Takeyama [4] show, in such a model, that augmenting an English
auction with a buy-price can improve the seller’s profit by reducing
the risk for some risk averse bidders. Reynolds and Wooders [5]
show that when bidders are risk neutral, an auction with a buyout
option (temporary or permanent) with a high enough buyout price
is equivalent in revenue to the standard English ascending auction.
However, when bidders are risk averse, a seller can raise more
revenue than the ascending bid auction by introducing a buyout
option with an appropriately chosen buyout price. In their model,
a permanent buyout price raises more revenue than a temporary one
but the bidder utility is same in both cases.

Recently several studies of more general models, with an arbitrary
number of bidders, have been conducted. Focusing on a temporary
buyout option Mathews [6] and Mathews [7] show that a risk averse
or a time impatient seller facing risk neutral buyers will choose
a buyout price low enough so that the buyout option is exercised
with positive probability. The result also holds if the buyers are risk
averse. Mathews [8] compares the welfare of bidders in an auction
with a buyout option to a traditional auction with no buyout option.
Compared to a traditional auction it is shown that, depending on the
distribution of the valuation, either all bidders are weakly better off
or bidders with a “relatively” high valuation have a lesser utility.

General models of permanent buyout prices include Kirkegaard and
Overgaard [9], who offer justification for use of permanent buyout
prices when similar products are offered in a sequence of auctions.
They show that, when bidders desire multiple objects, it is profitable
for an early seller to introduce a permanent buyout option ifsimilar
products are offered later on by other sellers. For the case of a single
seller running multiple auctions, they show that the seller’s total
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revenue increases if the buyers expect the seller to use the buyout
option in the future auctions.

Studying an auction withN bidders having continuously dis-
tributed private valuations, Hidvégi et al [10] conclude that, when
seller or bidders are risk averse, a permanent buyout price can
increase the expected total utility. It is shown that, at equilibrium,
bidders with valuation much higher than the buyout price will
unconditionally bid the buyout price. All other bidders follow a
threshold strategy, i.e. they exercise the buyout price if the current
high bid reaches a particular threshold. However, they do not consider
time-sensitive bidders and, in addition, do not differentiate bidders
based on their arrival time.

Finally a paper very closely related to ours is Caldentey and
Vulcano [11]. As in our paper, they assume a dynamic market
environment where bidders with independent private valuations arrive
as a Poisson process. They consider a seller managing a multi-unit
auction with a permanent buyout option. In their model, as inours,
the equilibrium participation strategy of the bidders is a threshold
strategy. There are important differences between their work and ours,
however,: The model in [11] assumes that when bidders arriveat a
multi-unit auction they are informed only about the initialnumber
of units and not the number of units remaining. In a single-unit
auction, this would correspond to bidders not knowing whether the
item listed is available or not. In addition, bidders are assumed to
act immediately (bid or buyout) when they arrive to the auction
site. In contrast, we assume a more realistic information structure
- an arriving bidder not only knows whether the auction is running
or not but also the second highest bid at that instant. Also, in our
model, bidding times are endogenous. Finally, we analyze, in parallel,
temporary and permanent buyout prices.

III. M ODEL

In this section, we first describe our model and then discuss its
realism relative to real world online auctions. The model description
is divided into two sections - market environment and auction
mechanism. We first describe the market environment.

A. Market Environment

We model the bidder arrival process as a Poisson process witha
constant rateλ which is exogenously defined. Bidders have indepen-
dent private valuations which are distributed, with cdfF , over the
support [v, v̄] (define m = v̄ − v). The arrival rateλ, distribution
function F and the reserve pricev are assumed to be common
knowledge.

We assume rational risk-neutral bidders who seek to maximize their
expected utility from participating in the auction. A bidder, arriving
at timet, with valuationv who gets the item at timeτ at pricex, is
assumed to have the following utility:

U(v, t, τ ) = e
−β(τ−t)(v − x) (1)

while a losing bidder is assumed to have zero utility from theauction.
As evident from the above expression, bidders have a discount factor
of β (assumeβ > 0). Similarly the seller, earning revenueR at time
t has utility:

US(R, t) = e
−αt

R (2)

whereα (assumeα > 0) is the seller’s discounting factor. We next
describe the auction mechanism.

B. Auction Mechanism

We model an online auction as a second-price single item English
auction where the bidder with the highest bid wins the auction but
pays the second highest bid price. The auction is assumed to have
a reserve pricev, i.e. if the highest bid does not exceed the reserve
price, the item is not sold. We can thus restrict our attention to bidders
that have a valuation greater thanv. Additionally, in case there is
only one bidder with a valuation above the reserve price, he wins the
auction and pays the reserve price for the item. The auction runs forT
units of time and has a hard deadline, meaning that the auction ends
at a prefixed deadline (likeebay) rather than have a floating deadline
(like an auction onamazon.com where the deadline is automatically
extended if a late bid arrives).

When a bidder arrives to the auction site, he is assumed to receive
information It which is the second highest proxy bid at timet.
Assume thatIt = 0 indicates that no bid has been placed up to
time t. If there is one bid up to timet thenIt = v, the reserve price.
A bidder decides whether to bid in the auction (either immediately
or at any later time in the auction) or exercise the buyout option (if
available) based on his valuation, arrival time and the information he
receives when he arrives to the auction site. Alternativelythe bidder
may decide to wait before making a decision.

C. Discussion

An online auction is a complex, dynamic and interactive process;
thus while our model effectively captures some of the key features
of such an interaction, there are some others it does not model so
well.

Actual online auctions are a first-price mechanism where the
highest bidder wins and pays his bid. However, auction sitestypically
feature “proxy bidding” systems which work as follows, [12],: bidders
enter the maximum amount they are willing to pay for the item.The
system then bids on behalf of the bidder, using as much of his bid
as is necessary, to maintain his position as the highest bidder. If the
bidder has the highest maximum, he wins and pays an amount equal
to the second highest maximum; otherwise he is outbid and loses the
auction. As observed by Lucking-Reiley [3], an online auction with
a proxy bidding system can be effectively modeled by a second-price
English auction.

In addition, though our model assumes a constant exogenously
defined bidder arrival process, bidders may wait and so the arrival
process of bids is endogenous. In practice, it has been observed that
bids tend to surge near the end of the auction (see Roth and Ockenfels
[13] for an empirical study on this trend). As will become clear from
our analysis, our model does, capture this phenomenon. Also, the
upper bound on the valuation̄v can be justified as the posted price
at which the same item is available elsewhere.

The assumption on the information structure is what differentiates
our model from most of the other research work done in modeling
buyout prices. In an online auction, an arriving bidder is informed
about the status of the auction and the second highest bid price,
which closely matches our assumption on the information received
by a bidder when he arrives to the auction site. Furthermore,while
we assume bidders to be risk neutral, they do have a non-zero
time-discounting factor. Since waiting, in an online auction, leads
to increased risk for a bidder, the time-discounting factorof a bidder
can be used as a proxy for his risk aversion. In figure 1, a snapshot
of the main webpage of an online auction is shown along with its
connection with our model.

A limitation of our model is the assumption of a monopolistic
seller, thus not accounting for the effect of other auctionsoffering
the same item simultaneously. Usually, as there are many such
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Fig. 1. Snapshot of anebay online auction webpage

simultaneous auctions (even on the same website), the arrival rate
of bidders is not exogenous but endogenous, as defined by factors
such as presence of a reserve price, the current bid price, advertising
etc. Additionally, the presence of other auctions for the same item
may prevent bidders from committing to an auction early and thus
promote late bidding. Another factor not captured by our model is
the effect of network congestion, whereby bids near the end of the
auction may not pass through, leading to an inefficient auction. This
leads to a decrease in utility for the bidders and the seller.Also,
while we assume that the reserve pricev is common knowledge this
is usually not true in practice. For example onebay, although the
bidders know whether the auction has a reserve price or not, the
exact reserve price is not known. Furthermore, we assume that the
reserve price is fixed while, in practice, it is usually negotiable in the
sense that if the highest bid is below the reserve price, the seller can
negotiate with the highest bidder.

In summary, while we attempt to model an online auction as closely
as possible, there are several features of an actual auctionthat our
model does not capture. Thus our results should be interpreted with
caution, in light of the assumptions made.

IV. T EMPORARYBUYOUT OPTION

We now look at the temporary buyout option case with a buy-price
P ∈ [v, v̄]. As previously discussed, a temporary option disappears
once a bid is made.

A. Bidder Participation Strategy

Suppose that any bidder, with valuationv, who arrives at timet
and receives informationIt uses a bidding strategy belonging to the
following family of threshold strategiesT S :

T S(v, t, It) :





Buyout Immediately if buyout option available

andv > v1
th(t, It);

Bid v immediately if buyout option available

andv ≤ v1
th(t, It);

Bid v otherwise,

wherev1
th(t, It) : [0, T ]×{0}∪[v, v̄] → [v, v̄] is a threshold valuation

function. Recall thatIt is the second highest bid at timet. While
v1

th(t, It) is a function of the buy-priceP , the dependence will not
be shown explicitly asP remains constant throughout the analysis.

Assuming other bidders follow a threshold strategy, we willprove
that the best response is indeed a threshold strategy and then
characterize the threshold function by imposing the Nash equilibrium
requirements.

Consider a bidder, sayA, with valuationv and arriving at timet.
Assume that all bidders except him follow the strategyT S. We now
derive the best response strategy for the bidderA.

Suppose thatA is not the first bidder. Then, the first bidder would
have acted immediately (strategyT S) and so bidderA will not see
the buyout option. Hence his weakly dominant strategy is, asshown
in [1], to bid his true valuation.

Note that the buyout option is available at timet only if no bidders
arrive in the interval(0, t). In that case, no bids are placed in the
interval(0, t) andIt = 0. Thus the threshold function is defined only
whenIt = 0 and so, in the remaining analysis, we drop the explicit
dependence of the threshold valuation onIt. Also if It > 0 then, by
definition, a bid has been placed in the auction. Hence, the buyout
option is not available and, as argued above, the weakly dominant
strategy is to bid the true valuation which is independent ofIt. Thus
the strategyT S is independent ofIt and we drop that dependence.

Suppose now thatA is indeed the first bidder and so he sees the
buyout option. He has three options:

1) Bid in the auction immediately
2) Buyout immediately
3) Wait before making a decision
If the bidder A chooses to bid immediately, the buyout option

disappears. Since all other bidders follow the strategyT S, they
will bid their true valuation. So, if there areN − 1 more arrivals
(whereN is Poisson with parameterλ(T − t)), it can be shown that,
E[UBid(v, t|N)], the expected utility of the first bidder from bidding
is:

E[UBid(v, t|N)] = e
−β(T−t) (v − v)

N

(
v − v

m

)N−1

Taking the expectation overN , we get the expected utility of bidding
as:

E[UBid(v, t)] = e
−β(T−t) m · e−λ(T−t)

λ(T − t)

(
e

λ(T−t)(v−v)
m − 1

)
(3)

The utility from exercising the buyout option immediately is:

UBuy(v) = v − P (4)

Thus if the bidder decides to act immediately (i.e. chooses between
option (1) or (2)) his expected utility from the auction,E[U(v, t)],
is max

{
E[UBid(v, t)], UBuy(v)

}
.

We now rule out the third option by proving the following lemma.
Lemma 1: When other bidders follow a threshold strategyT S,

the first bidder cannot increase his utility by waiting before making
a decision.

The intuition behind the result is that, assuming bidders follow
strategyT S, the utility from bidding depends only on the initial
arrival time of the bidder and not the time of the bid. The utility
from buying out, however, decreases if the first bidder waitsand thus
his utility from the auction (which is maximum of the two utilities)
if he waits is at most equal to the utility from acting immediately .

Thus bidderA must choose between either bidding immediately
or buying out immediately. Define excess utility as the difference
betweenUBid andUBuy . We have

e(v, t, P ) = v−P−e
−β(T−t) m · e−λ(T−t)

λ(T − t)

(
e

λ(T−t)(v−v)
m −1

)
(5)

A utility maximizing bidder will choose to buyout if and onlyif
the utility from buying out is more than the utility from bidding, i.e.
e(v, t, P ) ≥ 0. To characterize the optimal policy, firstly notice that
e(v, t, P ) is strictly increasing inv for v ∈ [v, v̄] for t ∈ (0, T ) since

∂e(v, t, P )

∂v
= 1 − e

(
−β−

λ(v̄−v)
m

)(
T−t

)
> 0

for all v ∈ [v, v̄] and t ∈ (0, T )
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Since e(v, t, P ) is increasing inv and e(v, t, P ) ≤ 0, for all
t ∈ (0, T ) there either exists a uniquev∗(t) ∈ [v, v̄] such that
e(v∗(t), t, P ) = 0 or e(v̄, t, P ) < 0. Define the threshold valuation
v′

th(t) as:

v
′
th(t) =

{
v∗(t) if ∃ v∗(t) ∈ [v, v̄] such thate(v∗(t), t, P ) = 0

v̄ otherwise

Thus the best response strategy for bidderA is a threshold strategy
of the following form:

B(T S)(v, t) :





Buyout immediately if buyout option available

andv > v′
th(t)

Bid v immediately if buyout option available

andv ≤ v′
th(t)

Bid v otherwise

Now for T S to be an equilibrium strategy, the best response to
T S(v, t) must be the strategy itself. Note thatB(T S) andT S have
the same form and for the two to be equal, we require:

v
′
th(t) = v

1
th(t)

This leads us to the following equilibrium strategy.
Theorem 1: In an English auction with a temporary buyout option,

the threshold strategyT S(v, t) is a Nash equilibrium, where the
threshold valuation functionv1

th(t) is defined as:

v
1
th(t) =

{
v∗(t) if ∃ v∗(t) ∈ [v, v̄] such thate(v∗(t), t, P ) = 0

v̄ otherwise
The solution to the equatione(v∗(t), t, P ) = 0 is given by:

v
∗(t) = P −

m

λ(T − t)

(
LambertW

(
− e

−e−(λ+β)(T−t)

× e
(P−v)λ(T−t)

m
−(λ+β)(T−t)

)
+ e

−(λ+β)(T−t)
)

whereLambertW is Lambert’s W function1 .
We will now formulate the seller’s optimization problem andsolve

it for a particular case of impatient bidders.

B. Seller’s Optimization Problem

The seller seeks to maximize his utility from the auction by
optimally pricing the buyout option. The parametersλ, α, β andv̄ are
assumed to be known whilev andT are assumed to be exogenously
defined. Notice that we do not optimize overT since, in practice, the
seller has a very limited choice in selecting the auction length.

By conditioning onS1, the arrival time of the first bidder, the
expected discounted utility from the auction can be writtenas:

E[US(P )] =

∫ T

0

e
−αT

E[Rev|S1 = t ∩ Bid]Pr(Bid|S1 = t)fS1(t)dt

+

∫ T

0

e
−αt

E[Rev|S1 = t ∩ Buyout]Pr(Buyout|S1 = t)fS1(t)dt

(6)

whereE[Rev|S1 = t∩Bid] is the expected revenue given that the first
bidder arrives at timet and bids in the auction. The revenue earned
if the buyout option is exercised,E[Rev|S1 = t ∩ Buyout], is the
buy-priceP . Assuming that bidders follow the equilibrium strategy
T S(v, t), we have:

Pr(Buyout|S1 = t) = 1 − F
(
v
1
th(t)

)
(7)

whereF is the uniform cumulative distribution function.

1Lambert’s W function, also called the Omega function, is theinverse
function of f(w) = w.ew

Substituting (7) in the expression for seller’s discountedexpected
utility, we get:

E[US(P )] =

∫ T

0

e
−αt

P
(
1 − F

(
v
1
th(t)

))
fS1(t)dt

+

∫ T

0

e
−αT

E[Rev|S1 = t ∩ No Buyout]F
(
v
1
th(t)

)
fS1(t)dt (8)

The seller’s problem of maximizing his utility from the auction
given that the bidders follow the equilibrium strategyT S derived
earlier, can be written mathematically as:

max
P

E[US(P )]

subject to e(v1
th(t), t, P ) = 0

Here the equality constraint incorporates the fact that thebidders
follow the equilibrium strategy.

Unfortunately, we cannot solve the optimization problem analyt-
ically for the general case. We now look at the case of impatient
bidders where we can derive an approximate optimal buy-price.
Impatient bidders (β → ∞)

If the participating bidders are very time-sensitive, i.e.β → ∞,
the excess utility function becomes

e(v, t, P ) = v − P

Thus the optimal strategy for the first bidder is to buyout if his
valuation is aboveP and bid otherwise.

To calculate the optimal buy-price we need to approximate
E[Rev|S1 = t ∩ No Buyout], the expected revenue given the first
bidder arrives at timet and does not exercise the buyout option by
E[Rev|S1 = t], the expected revenue given that the first bidder arrives
at time t (thus ignoring the information that his valuationv is less
than the threshold valuationv1

th(t)).
The approximate seller’s utility,E[ŨS(P )], can then be deter-

mined, using equation (8), as:

E[ŨS(P )] =
P (v̄ − P )

m

λ

λ + α
(1 − e

−(λ+α)T ) + α
T (P − v)

m
R(T )

where R(T ) is the expected revenue from an English auction
(without a buy-price) with the same parameters(λ, v, v̄, T ) which
is given as following

R(T ) = v̄(1 − e
−λT ) −

2m

λT

(
1 − e

−λT − λTe
−λT

)

Proposition 1: The optimal buy-price in an auction with a tempo-
rary buyout option, and with bidder time-sensitivityβ → ∞, lies in
the interval[v, v̄].

Proof: The threshold valuation in this case isv1
th(t) = P . Thus

if the buyout priceP ≥ v̄ no bidder will exercise it. Hence setting a
buyout price greater than̄v is equivalent to setting it equal tōv. If
P = v then the first bidder will exercise the option with probability
1 (ignoring the zero probability event that the bidder has a valuation
equal tov). Thus setting the buyout price belowv will only decrease
the revenue from the auction without changing the probability of
buyout.

It can be shown thatE[ŨS(P )] is concave inP and the uncon-
strained maximum occurs at:

P
∗ =

v̄

2
+

αT R(T )
2λ

λ+α

(
1 − e−(λ+α)T

)

Thus P̃opt, the approximate optimal buy-price is:

P̃opt =






v P ∗ < v

P ∗ v ≤ P ∗ ≤ v̄

v̄ P ∗ > v̄

(9)
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In the numerical results section, we examine the performance of
this buyout price in an auction with bidders who have a finite time
sensitivity.

V. PERMANENT BUYOUT OPTION

We now consider a permanent buyout option with buyout price
P ∈ [v, v̄]. In this case the option is available through out the auction
or until it is exercised. We derive the bidder participationassuming
a generic valuation distributionF (·) over the interval[v, v̄].

A. Bidder Participation Strategy

Let v2
th(t, It) : [0, T ] × {0} ∪ [v, v̄] → [v, v̄] be a continuous

function in t andIt. We assume that the threshold is increasing int

but decreasing inIt. The intuition behind why the threshold should
be decreasing inIt is that an arriving bidder will be willing to pay
higher for the buyout option, if he sees a higher second highest bid.
Thus if It is higher, he will have a lower threshold valuation.

Recall, that we assume thatIt = 0 indicates that no bid has been
made up to timet. If there is one bid till timet then It = v, the
reserve price. Thust ∈ (0, T ] while It ∈ [v, v̄] ∪ {0}. Again notice
that we do not show the explicit dependence ofv2

th(t, It) on buy-
price P .

Consider a family of threshold strategiesPS of the following form:

PS(v, τ, Iτ ) :

{
Bid true valuation atT if v ≤ v2

th(τ, Iτ )

Buyout immediately ifv > v2
th(τ, Iτ )

whereτ is the arrival time of the bidder. By “bidding at timeT ”,
we mean that the bidder will bid right at the end of the auction- too
late for other bidders to respond to his bid.

We will show that the best response strategy toPS is a threshold
strategy of the same form asPS. We then characterize a threshold
valuation such that the best response to a profile where all bidders
play the corresponding threshold strategy is the strategy itself.

Consider a bidder, call himA, with valuationv arriving at timet

and receiving informationIt. We first show, in Lemma 2, that if the
bidderA decides to bid he must bid at timeT , and next rule out the
option of waiting in Lemma 3. Subsequently we show, in Lemma 4
and Lemma 5, that the best response is indeed a threshold strategy and
then combine the above results to derive the best response strategy in
Theorem 2. The threshold valuation, such thatPS is an equilibrium
strategy, is determined by equating the best response strategy to the
strategyPS. The proof is then completed by showing, in Lemma
7 that the threshold function, as obtained above, indeed satisfies the
assumptions made initially.

We will first derive bidderA’s utility if he bids at timeT . Then
since all bidders bid at timeT , we have

Iτ = 0 ∀τ ∈ [0, T )

Suppose that there arek bidders in(0, t) and l bidders in(t, T ] and
they arrive at time0 < t11 < t12 < .. < t1k < t and t < t21 <

t22 < .. < t2l ≤ T respectively. Denote this as eventE . Now, A wins
the auction if no bidder exercises the buyout option and if every
bidder has a valuation less thanA′s valuation, i.e. every bidder has
a valuation less thanmin(v2

th(τ, Iτ ), v) whereτ is the arrival time
of the bidder. Since the auction is still running at timet, all bidders
arriving beforet have their valuation less than the threshold valuation.
Then probability thatA wins the auction is:

Pr(A wins|E) =

∏k

i=1 F
(
min(v2

th(t1i , 0), v)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×
l∏

i=1

F
(
min(v2

th(t2i , 0), v)
)

The first term of the product is the probability that all bidders that
have arrived have a valuation less thanmin(v2

th(τ, Iτ ), v) given their
valuation is less than the threshold. The second term is the probability
that all future bidders have a valuation less thanmin(v2

th(τ, Iτ ), v).
Here, and in the remainder of the paper, we assume that ifk = 0
then

∏k

i=1(·) = 1. Now, given the bidderA wins the auction, the
distribution of the highest bid among the other bidders is:

Fmax|E,A wins(x) =

∏k

i=1 F
(
min(v2

th(t1i , 0), x)
)

∏k

j=1 F
(
min(v2

th(t1j , 0), v)
)

×

∏l

i=1 F
(
min(v2

th(t2i , 0), x)
)

∏l

j=1 F
(
min(v2

th(t2j , 0), v)
) ∀x ∈ [0, v]

Thus the expected highest bid, among the other bidders, is:

E[Max|A wins & E ] =

∫ v

0

(
1 − Fmax|E,A wins(x)

)
dx

= v −

∫ v

v

Fmax|E,A wins(x)dx

where the second equality follows sinceFmax|E,A wins(x) = 0 for all
x < v. If A loses the auction, his utility from the auction is zero. Thus
the expected discounted utility from bidding at timeT for bidderA
is:

E[UBid(v, t, It = 0)|E ] = e
−β(T−t)

( ∫ v

v

Fmax|E(x)dx)
)
Pr(A wins)

which on simplification yields:

E[UBid(v, t, It = 0)|E ] = e
−β(T−t)

( ∫ v

v

∏k

i=1 F
(
min(v2

th(t1i , 0), x)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×
l∏

j=1

F
(
min(v2

th(t2j , 0), x)
)
dx

)
(10)

The unconditional expected utility is obtained by taking expecta-
tion of the expression in (10) overK, T 1

1 , T 1
2 , .., T 1

K , L, T 2
1 , T 2

2 , .., T 2
L

which are the random variables corresponding to the realizations
k, t11, t

1
2, .., t

1
k, l, t21, t

2
2, .., t

2
l respectively.

We now show that the bidderA will neither bid immediately nor
wait before making a decision.

Lemma 2: When faced with bidders playing the strategyPS, if a
bidder decides to bid he must do so only at timeT .

The intuition behind the lemma is that while bidding earlierdoes
not increase the utility of a bidder it reveals information about his
valuation to other bidders, who can use it this information their
advantage. We next address the issue of waiting before making a
decision.

Lemma 3: When facing bidders who follow strategyPS, a bidder
is weakly better off making a decision immediately i.e. as soon as
he first arrives to the auction site.

Proof: Here we give an intuitive argument. A formal proof can
be constructed on the lines of the proof of Lemma 1. Suppose the
bidderA decides to wait until timeτ > t before making a decision.
Then, since no one else bids in the auction, the information available
at τ will be the same as that at timet, i.e. It = Iτ . Thus the bidder
will not gain information by waiting and so his expected utility from
bidding will depend only ont the time he first arrived at the auction
site. Hence waiting does not change the utility from bidding.

Additionally since the buyout price remains constant throughout
the auction, waiting decreases the bidder’s utility from buying out
because of his time-discounting factor. Thus while the utility from
waiting remains constant, the utility from exercising the buying option
decreases and so a bidder cannot increase his utility by waiting.
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Thus we have shown, Lemma 2 and Lemma 3, that the bidderA

must either bid at timeT or exercise the buyout option immediately.
We now show that the optimal strategy is in fact a threshold strategy.
For proving that we first show the following lemma.

Lemma 4: When bidders follow strategyPS, the expected utility
from bidding,E[UBid(v, t, It = 0)], is a non-decreasing function of
bidder valuation with a slope less than 1 fort ∈ (0, T ).

It implies that, asv increases, the utility from buying out increases
more rapidly than utility from bidding.

Recall that the utility from exercising the buyout option is:

UBuy(v) = v − P

Note that ∂
∂v

(
UBuy(v)

)
= 1. Combining Lemma 2 with the fact

that for valuationv, bidding is more attractive, we can prove the
following.

Lemma 5: For bidderA, facing bidders following the strategyPS,
there exists a unique valuationv∗(t) such that both the options: bid
or buyout are equally attractive.

Notice thatv∗(t) may be greater than the upper supportv̄, in which
case, since the bidder has a valuation less thanv∗(t), he will bid in
the auction.

Combining the above results, we get the following best response
strategy for bidderA.

Theorem 2: The best response to strategyPS, B(PS) is:

B(PS)(v, t, It = 0) :

{
Bid true valuation atT if v ≤ v∗(t)

Buyout immediately ifv > v∗(t)

wherev∗(t) is such that

UBuy(v∗(t)) = E[UBid(v∗(t), t, 0)]

Proof: We have shown in Lemma 3 that a bidder is weakly
better off making a decision immediately. Now by Lemma 4 and 5,

UBuy(v) ≤ E[UBid(v, t, It = 0)] if v ≤ v
∗(t)

Hence a utility maximizing bidder with valuationv ≤ v∗(t) will
choose to bid. Since this is a second-price auction, a weaklydominant
strategy is to bid one’s true valuation. We have already argued in
Lemma 2 that if a bidder decides to bid in the auction, he must do
so only at timeT .

For v > v∗(t):

E[UBid(v, t, It = 0)] < UBuy(v)

and thus it is profitable to buyout.
For the strategyPS to be an equilibrium strategy, the best response

to the strategy must be the same strategy, i.e.B(PS)(v, t, It = 0) =
PS(v, t, It = 0). Both the strategies have the same form and thus
for the two to be same, we must have that

v
∗(t) = v

2
th(t, It = 0)

Combining this with the fact that UBuy(v∗(t)) =
E[UBid(v∗(t), t, 0)], we get the following equation for the
threshold function

v
2
th(t, 0) − P = E

[
e
−β(T−t)

( ∫ v2
th(t,0)

v

∏k

i=1 F
(
min(v2

th(t1i , 0), x)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×
l∏

j=1

F
(
min(v2

th(t2j , 0), x)
)
dx

)]
(11)

where the expectation is overK, T 1
1 , T 1

2 , .., T 1
K , L, T 2

1 , T 2
2 , .., T 2

L.
Thus if the threshold function satisfies equation (11) then the

corresponding strategyPS is indeed an equilibrium strategy. We must

now show that the threshold function is indeed non-decreasing in t.
For that we first need the following result.

Lemma 6: Assuming bidders follow the strategyPS, the utility
from bidding is higher for a bidder arriving later in the auction, i.e.
E[UBid(v, t′, 0)] > E[UBid(v, t, 0)] for t′ > t.

The reason why Lemma 6 holds, is that a bidder arriving later
in the auction has a smaller waiting cost. Additionally, an arriving
bidder receives information that all bidders arriving before him have
a valuation less than the threshold. This leads to a higher non-
discounted utility from bidding for a bidder arriving laterin the
auction as compared to one arriving earlier. Combining the two effects
gives the desired result.

We now use Lemma 6 to show the following result.
Lemma 7: The threshold function, satisfying equation (11) is non-

decreasing int.
We have thus shown that the strategyPS is an equilibrium strategy

where the threshold function satisfies:

v
2
th(t)−P = E

[
e
−β(T−t)

( ∫ v2
th(t)

v

∏k

i=1 F
(
min(v2

th(t1i ), x)
)

∏k

i=1 F
(
v2

th(t1i )
) F (x)l

dx
)]

(12)
Since no bidder bids early in the auction the information at any instant
t, It, is zero and so we drop that explicit dependence for the sake of
brevity. Also, sincev2

th(t) is non-decreasing function int, we have

min(v2
th(t2j), x) = x, if x ∈ [v, v

2
th(t)],∀j = 1, ..., l

sincet2j > t,∀j = 1, .., l.
Notice that we can equivalently set the threshold to be

min(v2
th(t), v̄) since no bidder has valuation greater thanv̄.

The expression in equation (12) involves taking expectation over
arrival times in a non-homogeneous Poisson process which can be
potentially tricky. Hence we now state and prove the following propo-
sition that gives a differential equation for the thresholdfunction.

Proposition 2: Assuming that the bidder valuations are uniformly
distributed, the threshold functionv2

th(t), defined in (12), satisfies the
differential equation:

dv2
th(t)

dt
=

(
β + λ

(
1 − F

(
v2

th(t)
)))(

v2
th(t) − P

)

1 − e
−

(
β+λ

(
1−F

(
v2

th
(t)

)))(
T−t

) (13)

along with the initial value

v
2
th(0) = P −

m

λT

(
LambertW

(
− e

−(β+λ)T

× e
−

−(P−v)λT+me−(β+λ)T

m

)
+ e

−(β+λ)T
)

(14)

B. Seller’s Optimization Problem

As before, the seller maximizes his utility from the auctionby
optimizing over the buyout priceP . The nonlinear optimization
problem so obtained cannot be solved analytically and so we perform
the optimization using a simulation-based line search method. The
threshold valuation is determined by numerically solving the differ-
ential equation, derived in Proposition (2), and is used to characterize
bidder behavior. The results of this optimization along with the results
from the temporary buyout case are presented in the next section.

VI. N UMERICAL RESULTS

We calculate, by simulation, the optimal temporary and permanent
buyout price and the corresponding benefit of using such an option.
Furthermore we examine the dependence of the optimal buyoutprice
and the corresponding additional profit, obtained by introducing a
buyout option, on the average number of bidders in the auction and
the time sensitivity of the seller and buyers.
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An online auction is simulated as follows: Time-sensitive bidders
with uniformly distributed random valuations in the interval [50, 500]
arrive according to a Poisson process of rateλ and play the equi-
librium strategy described in§4 and§5 when faced with temporary
and permanent buyout option case respectively. The seller’s utility
from the auction is calculated by discounting the second highest
valuation (or the buyout price, in case the option is exercised) by
an appropriate discounting factor depending on the time of sale of
the item. The seller’s utility is then maximized, and the corresponding
optimal buyout price determined, by running a simulation-based line
search over the buyout priceP .

The auction is assumed to run for a length ofT = 16 units.
The auction is simulated for different values ofλ, α and β. The
simulations were run long enough to ensure that the95% confidence
interval width is within1% of the plotted and tabulated values.

A. Performance of P̃opt

In an auction with a temporary buyout price and with bidders
having a finite time-sensitivityβ, we propose using the approximate
optimal price,P̃opt, as derived in equation (9) and assess its sub-
optimality. DefineE

S[US(P̃opt)] and E
S[US(Popt)] to be the sim-

ulated expected utility of the seller if he sets the buyout price to be
P̃opt andPopt respectively andES [US ] to be the simulated expected
utility without a buyout price.

In Table 1, we compare∆US[(Popt)]
(

=
E

S [US(Popt)]−E
S [US ]

ES [US ]
×

100
)

and∆US [(P̃opt)]
(

=
E

S [US(P̃opt)]−E
S [US ]

ES [US ]
×100

)
, the percent

increase in seller’s utility (over an auction without a buyout price),
achieved by using̃Popt and Popt, for different arrival ratesλ and
buyer time sensitivityβ (with α = 0.03).

λT β ∆US [(Popt)] ∆US [(P̃opt)]

2
0.01 10.81% 2.05%
0.03 16.03% 10.5%
0.05 19.66% 16.31%

4
0.01 11.21 % 9.19 %
0.03 13.12% 11.77%
0.05 14.63% 13.79%

8
0.01 10.18% 9.88%
0.03 10.38% 10.17%
0.05 10.42% 10.26%

TABLE I
PERCENT UTILITY INCREASE ACHIEVED BY THE OPTIMAL AND

APPROXIMATE BUYOUT PRICE

From the table, it is evident that̃Popt performs well if the average
number of bidders in the auction (λT ) is high. However for low
values ofλT the increase in seller’s utility achieved by using the
approximate buyout price is significantly lower than the maximum
achievable.

B. Variation of optimal buyout price with auction parameters

The simulated optimal temporary buyout price is plotted as a
function of seller sensitivityα in figure 2(a) (with β = 0.03).
The optimal buyout price decreases with an increasing seller time
sensitivity (i.e. increasingα) as a more time-sensitive seller will
prefer selling the product at a lower price early in the auction rather
than waiting for the auction to end. In figure 2(b), the simulated
optimal temporary buyout price is plotted as a function of bidder
sensitivity β (with α = 0.03). The buyout price increases withβ,
since a more time-sensitive bidder will be willing to pay a higher
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Fig. 2. Variation of simulated optimal buyout price with seller and bidder
time sensitivity

price for getting the product earlier. Figure 2 (both (a) and(b)) also
show the obvious fact that the seller will set a higher buyoutprice
if there are more bidders. The simulated optimal permanent buyout
price follows similar patterns as the temporary.

C. Variation of seller’s utility with auction parameters

We next look at the additional benefit of introducing a buyout
option. The percent increase in seller’s simulated utilityover an
auction without a buyout price, for both temporary and permanent
case, is plotted as a function of seller’s time-sensitivityα in figure
3 (with β = 0.03). As seller’s time-sensitivity increases (i.e.α

increases), the increase in utility, for both cases, is higher since a
seller with a higher time-sensitivity finds it more advantageous to
sell the product earlier.
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Fig. 3. Variation of seller’s utility increase with seller time sensitivity

Figure 4 plots percent increase in seller’s simulated utility, for both
cases, as a function ofβ, bidder time sensitivity (withα = 0.03). The
increase in utility is higher for more time-sensitive bidders since such
bidders will be willing to pay more for getting the product earlier.
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Fig. 4. Variation of seller’s utility increase with bidder time sensitivity

As evident from figure 3(a) and figure 4(a) the percent increase
in seller’s utility, for the temporary case, decreases as the average
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number of bidders increase. However this effect is reversedfor the
permanent buyout option case. This is due to the fact that while the
temporary option is available only to the first bidder, all arriving
bidders see the option in the permanent case.

From the simulation results it can be concluded that, in casethe
bidders/seller is time-sensitive, the seller can substantially (by as
much as 60%) increase his utility from the auction by introducing
a buyout option. The increase in utility obtained by introducing a
temporary buyout option is significant (as high as 20%) when there
are lesser number of bidders in the auction, but decreases asthe
number of bidders in the auction increases. The permanent buyout
option, on the other hand, not only outperforms the temporary option
in every scenario, but also leads to a higher increase in utility as the
number of bidders increase.

However, as suggested by the equilibrium strategy, when a per-
manent buyout option is used, all bids are concentrated nearthe
end of the auction. This is generally undesirable for various reasons
not captured by our model. Firstly, because of network congestion,
some bids may not pass through and the actual revenue of the seller
may be lesser than the theoretically predicted values. Secondly, since
bidders don’t need to commit themselves to this auction, they may
choose other simultaneously running auctions, for a similar item, thus
leading to a loss in revenue. Thus, in cases when the revenue with a
permanent option is not significantly better than the temporary case,
it may be better to use a temporary option.

VII. C ONCLUDING REMARKS

We analyze the strategy of rational time-sensitive biddersin an
auction with a buyout option and show that, when bidders seekto
maximize their expected discounted utility, a threshold strategy is
an equilibrium for both the temporary and permanent buyout option
case. However, while bidders may bid early in an auction witha
temporary buyout option, they will necessarily bid just at the end in
the permanent case. Thus there is a surge of bids near the end of an
auction with a permanent buyout option.

Assuming that bidders follow the equilibrium strategies, as derived
before, the seller’s problem of maximizing utility is solved using
simulation. Additionally, for the case of impatient bidders, in an
auction with a temporary buyout price, the approximate optimal
buyout price is determined analytically.

The simulation results show that, when any of the auction agents
is time-sensitive, the seller can increase his utility fromthe auction
significantly by introducing a buyout option. Introducing atemporary
buyout option in an online auction can increases the seller’s utility
by as much as 20% in some cases. More importantly such an option
gives the first bidder an incentive to bid early by giving him ahuge
advantage over the other bidders - he can either exercise thebuyout
option or make it unavailable for other bidders by bidding first.
Some auction sites,Amazon for example, offer the first bidder a 10%
discount for achieving the same effect.

In case the number of bidders in the auction is high, the permanent
buyout option can increase the seller’s utility by as much as60%,
thus making it very attractive in such cases. However, by penalizing
early bidding, such an option promotes late bidding which may lead
to undesirable effects like network congestion or bidders choosing
a different auction. These effects, not captured by our model, can
decrease the seller’s utility significantly.

It must be mentioned that all our conclusions must be interpreted
keeping in mind in light of the limitations of the model. While
the model incorporates many features of an actual online auction,
there are several that are not captured accurately. Consequently, it is
important to validate our model predictions with empiricaldata and
we are currently working on it.

Our current research focuses on analyzing the permanent buyout
option in multi-unit auctions. We are also looking at a buyout option
whose price varies dynamically as the auction progresses. Both these
auction features are not widespread in practice and we hope that
our research in this area will aid auctioneers who are considering to
implement such auctions.
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APPENDIX

Proof of Lemma 1
Proof: Suppose the bidder waits till timeτ (τ > t) before

deciding. Since the bidder is time-sensitive, he will discount his utility
at timeτ by the factore−β(τ−t).

Let E be the event that no bidder arrives in the interval(t, τ ).
In this case the buyout option is available to bidderA. The bidder
A is effectively the first bidder (arriving at timeτ ) except that he
has waited for(τ − t) time . Let E[UBid(v, t)|E ] be the expected
utility from bidding given eventE happens. The expression for
E[UBid(v, t)] is

E[UBid(v, t)] = e
−β(T−t) m · e−λ(T−t)

λ(T − t)

(
e

λ(T−t)(v−v)
m − 1

)

(A.15)
ThenE[UBid(v, t)|E ] can be obtained by replacingt by τ in (A.15).
Similarly the utility from buying out isv − P . The complementary
eventĒ is the event that one or more arrivals occurred in the interval
(t, τ ). In this case the buyout option is no longer available. Let
E[UBid(v, t)|Ē ] be the expected utility from bidding if event̄E
happens. Then the expected utility of the bidderA, if he waits till
time τ (τ > t), is

E[Uτ (v, t)] = e
−β(τ−t)

(
max

{
v − P,E[UBid(v, τ )]

}
· Pr(E)

+ E[UBid(v, t)|Ē ] · Pr(Ē)
)

(A.16)
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The discounting factore−β(τ−t) incorporates the waiting cost. As
argued earlier,E[UBid(v, t)|E ] = E[UBid(v, τ )]. Notice that the
event Ē also includes the event that another bidder buys out. In that
case the auction is closed and the utility from bidding is zero.

Using the law of conditional expectation, we also have:

E[UBid(v, t)] = e
−β(τ−t)

(
E[UBid(v, t)|E ] · Pr(E)

+ E[UBid(v, t)|Ē ] · Pr(Ē)
)

(A.17)

Notice that the time-discounting factor incorporates the accumulated
waiting cost.

Using (A.15), it can be verified that

e
−β(τ−t)

E[UBid(v, τ )] ≥ E[UBid(v, t)] (A.18)

This coupled with equation (A.17) implies that

e
−β(τ−t)

E[UBid(v, t)|Ē ] ≤ E[UBid(v, t)] (A.19)

(notice thatPr(E) ∈ (0, 1)).
Using the above result, we now show that the expected utility

of bidder A at τ is almost equal to the expected utility obtained
from acting immediately, i.e.E[Uτ (v, t)] ≤ E[U(v, t)]. Consider
the following two cases:

• Case 1:v − P ≤ E[UBid(v, τ )]
In this case (A.16) becomes

E[Uτ (v, t)] = e
−β(τ−t)

(
max

{
v − P,E[UBid(v, τ )]

}
· Pr(E)

+ E[UBid(v, t)|Ē ] · Pr(Ē)
)

= e
−β(τ−t)

(
E[UBid(v, τ )] · Pr(E)

+ E[UBid(v, t)|Ē ] · Pr(Ē)
)

= e
−β(τ−t)

(
E[UBid(v, t)|E ] · Pr(E)

+ E[UBid(v, t)|Ē ] · Pr(Ē)
)

= E[UBid(v, t)]

≤ max
(
E[UBid(v, t)], UBuy(v)

)
= E[U(v, t)]

The third equality follows from the fact thatE[UBid(v, t)|E ] =
E[UBid(v, τ )] while the fourth equality follows from (A.17).

• Case 2:v − P > E[UBid(v, τ )]
In this case (A.16) becomes

E[Uτ (v, t)] = e
−β(τ−t)

(
(v − P ) · Pr(E)

+ E[UBid(v, t)|Ē ] · Pr(Ē)
)

Now notice that

e
−β(τ−t)(v − P ) > e

−β(τ−t)
E[UBid(v, τ )]

≥ E[UBid(v, t)]

≥ e
−β(τ−t)

E[UBid(v, t)|Ē ] (A.20)

The second and third inequality follow from (A.18) and (A.19)
respectively.
Using (A.20) we get

E[Uτ (v, t)] = e
−β(τ−t)

(
(v − P ) · Pr(E)

+ E[UBid(v, t)|Ē ] · Pr(Ē)
)

< e
−β(τ−t)

(
(v − P ) · Pr(E) + (v − P ) · Pr(Ē)

)

= e
−β(τ−t)(v − P )

< (v − P ) ≤ max
(
E[UBid(v, t)], UBuy(v)

)

= E[U(v, t)]

Thus in both casesE[Uτ (v, t)] ≤ E[U(v, t)] and so the bidderA
should not wait.

Proof of Lemma 2
Proof: Suppose the bidderA bids immediately. This reveals

information about his valuation to bidders arriving after him. Since
he bids in the auction at timet and all other bidders bid at timeT ,
we haveIτ = v for τ ∈ (t, T ).

In this case, the probability that bidderA wins the auction is:

Pr(t)(A wins|E) =

∏k

i=1 F
(
min(v2

th(t1i , 0), v)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×
l∏

i=1

F
(
min(v2

th(t2i , It2
i
), v)

)

And the discounted expected utility is:

E[UBid(t)(v, t, 0)|E ] =e
−β(T−t)

( ∫ v

v

∏k

i=1 F
(
min(v2

th(t1i , 0), x)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×
l∏

j=1

F
(
min(v2

th(t2j , v), x)
)
dx

)

(A.21)

By assumption, the threshold function is a decreasing function of
It. Thus, we have:

F
(
min(v2

th(t2j , v), x)
)
≤ F

(
min(v2

th(t2j , 0), x)
)

∀j = 1, 2, .., l

Thus comparing equation (A.21) with equation (10) we get:

E[UBid(t)(v, t, It = 0)|E ] ≤ E[UBid(v, t, It = 0)|E ]

This is true for the eventE and in fact for any realization of
the random bidder arrival process. Thus, taking the expectation over
K, T 1

1 , T 1
2 , .., T 1

K , L, T 2
1 , T 2

2 , .., T 2
L, we have

E[UBid(t)(v, t, It = 0)] ≤ E[UBid(v, t, It = 0)]

Hence the expected utility if the bidder bids immediately isless
than or equal to his utility if he bids at timeT .

Proof of Lemma 4
Proof: Differentiating the conditional utility from bidding,

E[UBid(v, t, It = 0)|E ], with respect to bidder valuationv, we get:

∂

∂v
E[UBid(v, t, It = 0)|E ] = e

−β(T−t)
(∏k

i=1 F
(
min(v2

th(t1i , 0), v)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×
l∏

j=1

F
(
min(v2

th(t2j , 0), v)
))

(A.22)

Thus 0 ≤ ∂
∂v

E[UBid(v, t, It = 0)|E ] < 1 for all v ≥ v and
t ∈ (0, T ). Since the derivative exists and is finite for allt1i , i =
1, .., k, t2j , j = 1, .., l, k, l, we have

∂

∂v
E[UBid(v, t, It = 0)] = E

[
∂

∂v
E[UBid(v, t, It = 0)|E ]

]

where the outer expectation in the right term is overT 1
i , i =

1, .., K and T 2
j , j = 1, .., L. Using equation (A.22), we have0 ≤

∂
∂v

E[UBid(v, t, It = 0)] < 1 for all v ≥ v and t ∈ (0, T ).
Proof of Lemma 5

Proof: For valuationv = v, we have:

UBuy(v) = v − P ≤ 0 = E[UBid(v, t, 0)]

In Lemma 4, we have shown that, with increasingv, E[UBid(v, t, 0)]
increases less rapidly thanUBuy , i.e.0 ≤ ∂

∂v
E[UBid(v, t, It = 0)] <

1 = ∂
∂v

(
UBuy(v)

)
. Thus there exists a uniquev∗(t) ≥ v such that:

UBuy(v∗(t)) = E[UBid(v∗(t), t, 0)] (A.23)
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Proof of Lemma 6
Proof: Let us compare the utility from bidding (atT ) for a

bidder if his first arrival time (the first time he visits the auction site)
is t′ (> t) instead oft.

Suppose that there arek bidders in(0, t) and l bidders in(t, T ]
and they arrive at time0 < t11 < t12 < .. < t1k < t and t < t21 <

t22 < .. < t2l < T respectively. Suppose also thatj (0 ≤ j ≤ l)
bidders arrive in the interval(t, t′). Then the bidder arriving att′ has
information aboutk + j bidders and his utility from bidding is

E[UBid(v, t
′
, 0)|k, l, j, t

1
1, .., t

2
1, ..] =

e
−β(T−t′)

( ∫ v

v

∏k

i=1 F
(
min(v2

th(t1i , 0), x)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×

∏j

i=1 F
(
min(v2

th(t2i , 0), x)
)

∏j

i=1 F
(
v2

th(t2i , 0)
)

l∏

i=j+1

F
(
min(v2

th(t2i , 0), x)
)
dx

)

which can be written as

E[UBid(v, t
′
, 0)|k, l, j, t

1
1, .., t

2
1, ..] =

e
−β(T−t′)

( ∫ v

v

∏k

i=1 F
(
min(v2

th(t1i , 0), x)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×

∏l

i=1 F
(
min(v2

th(t2i , 0), x)
)

∏j

i=1 F
(
v2

th(t2i , 0)
)

)

The corresponding expected utility for a bidder arriving att is:

E[UBid(v, t, It = 0)|k, l, t
1
1, .., t

2
1, ..] =

e
−β(T−t)

( ∫ v

v

∏k

i=1 F
(
min(v2

th(t1i , 0), x)
)

∏k

i=1 F
(
v2

th(t1i , 0)
)

×

l∏

i=1

F
(
min(v2

th(t2i , 0), x)
)
dx

)

SinceF (·) ≤ 1 ande−β(T−t′) > e−β(T−t), we have:

E[UBid(v, t
′
, 0)|k, l, j, t

1
1, .., t

2
1, ..] > E[UBid(v, t, 0)|k, l, j, t

1
1, .., t

2
1, ..]

This is true for any sequence of arrivals and hence is true if we
take the expectation over the bidder arrival times. Thus, wehave

E[UBid(v, t
′
, 0)] > E[UBid(v, t, 0)]

Hence the utility from bidding is higher for bidders arriving later in
the auction than for bidders arriving earlier.

Proof of Lemma 7
Proof: By definition of the threshold function, we have

v
2
th(t, 0) − P = E[UBid(v2

th(t, 0), t, 0)] (A.24)

Assume for contradiction thatv2
th(t, 0) < v2

th(t − dt, 0). Thus there
exists adv > 0, such that

v
2
th(t, 0) = v

2
th(t − dt, 0) − dv (A.25)

Using Lemma 6, we have

E[UBid(v2
th(t, 0), t, 0)] ≥ E[UBid(v2

th(t, 0), t − dt, 0)] (A.26)

Substituting equation (A.25) in equation (A.24) and using (A.26), we
get

v
2
th(t − dt, 0) − dv − P = E[UBid(v2

th(t − dt, 0) − dv, t, 0)]

≥ E[UBid(v2
th(t − dt, 0) − dv, t − dt, 0)]

(A.27)

By the definition ofv2
th(t − dt, 0), we have

v
2
th(t − dt, 0) − P = E[UBid(v2

th(t − dt, 0), t − dt, 0)] (A.28)

Using equation (A.28) in (A.27), we get

E[UBid(v2
th(t−dt, 0), t−dt, 0)]−E[UBid(v2

th(t−dt, 0)−dv, t−dt, 0)] ≥ dv

On dividing both sides bydv and taking the limit asdv goes to zero,
we get that ∂

∂v
E[UBid(v, t− dt, 0)] ≥ 1 which is a contradiction to

Lemma 4. Hence the threshold valuationv2
th(t, 0) is a non-decreasing

function of t.
Proof of Proposition 2

Proof: Consider the threshold at timet and t + ∆t. We have

v
2
th(t) − P = E

[
UBid(v2

th(t), t)
]

v
2
th(t + ∆t) − P = E

[
UBid(v2

th(t + ∆t), t + ∆t)
]

To get a differential equation, we first calculate the expected utility
from bidding at timet andt+∆t. We then subtract the two and divide
by ∆t. Taking the limit as∆t approaches zero, we get:

dv2
th(t)

dt
= lim

∆t→0

v2
th(t + ∆t) − v2

th(t)

∆t

= lim
∆t→0

E

[
UBid(v2

th(t + ∆t), t + ∆t)
]
−E

[
UBid(v2

th(t), t)
]

∆t
(A.29)

First consider a bidder, call himA, arriving at timet and having a
valuation equal to the threshold valuationv2

th(t). He has information
about all the bidders arriving before him, i.e. in the interval (0,t). In
particular every bidderi whose arrival timeti ∈ (0, t) has valuation
vi ≤ v2

th(ti). Thus for bidderA the arrival process of other bidders
is:

1) Non-homogeneous Poisson process in (0,t) with arrival rate
λ(τ ) = λF

(
v2

th(τ )
)

2) Homogeneous Poisson process in (t,T] with arrival rateλ.

t+dt

v+dv

v

b
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hr
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ld
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����������������������������������������������������

Fig. 5. Threshold valuation

To calculateE[Ubid(v2
th(t), t)], we will condition on the number

of arrivals in the interval(t, t + ∆t). For notational convenience
let t′ = t + ∆t. Suppose thatk bidders arrived in (0,t) at time
t11, t

1
2, .., t

1
k respectively andL bidders arrive in[t′, T ] whereL is a

Poisson random variable with parameterλ(T − t′).
For the sake of brevity, let

∏
=

∏k

i=1 F
(
min(v2

th(t1i ), x)
)

∏k

i=1 F
(
v2

th(t1i )
)
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Now suppose that there was one arrival in(t, t′). The probability
of this event isλ∆t, since the arrival process is Poisson. The utility
from bidding in this case is:

E[Ubid

(
v
2
th(t), t|Arrival in (t, t′)

)
] =

∞∑

l=0

E

[
e
−β(T−t)

( ∫ v2
th(t)

v

∏
F (x) × F (x)l

dx
)]

× Pr(L = l)

Notice that here we first calculate the expected utility assumingL = l

and then sum over all possible valuesl. The expectationE is over
K, T1, T2, ..., Tk.

If there was no arrival in(t, t′) (probability = 1 − λ∆t), the
expected utility is

E[Ubid(v2
th(t), t| No Arrival in (t, t + ∆t))] =

∞∑

l=0

E

[
e
−β(T−t)

( ∫ v2
th(t)

v

∏
F (x)l

dx
)]

× Pr(L = l)

The probability of more than one arrival in an interval of length
∆t is o(∆t), where o(∆t) indicates any functionf(δ) such that
limδ→0

f(δ)
δ

= 0, and thus when we divide by∆t and take the
limit ∆t → 0 (as in equation A.29) theo(∆t) terms will disappear.
Hence ignoring the terms corresponding to more than one arrival, the
unconditional expected utility is:

E[Ubid(v2
th(t), t)] = E

[
Ubid

(
v
2
th(t), t|Arrival in (t, t′)

)]
×(λ∆t)

+ E

[
Ubid

(
v
2
th(t), t|No Arrival in(t, t′)

)]
× (1 − λ∆t)

Substituting for the terms, we get

E[Ubid(v2
th(t), t)] =

( ∞∑

l=0

E

[
e
−β(T−t)

( ∫ v2
th(t)

v

∏
F (x)l+1

dx
)]

Pr(L = l)
)
(λ∆t)

+
( ∞∑

l=0

E

[
e
−β(T−t)

( ∫ v2
th(t)

v

∏
F (x)l

dx
)]

Pr(L = l)
)
(1−λ∆t)

(A.30)

We now use the same technique to getE[Ubid(v2
th(t′), t′)]. Con-

sider a bidder, call himB, arriving at a timet′ having a valuation
v2

th(t′). He has information about bidders arriving before him, i.e.
in the interval(0, t′). In particular every bidderi whose arrival time
ti ∈ (0, t′) has valuationvi ≤ v2

th(ti). Thus for bidderB the arrival
process of other bidders is:

1) Non-homogeneous Poisson process in(0, t′) with arrival rate
λ(τ ) = λF

(
v2

th(τ )
)

2) Homogeneous Poisson process in(t′, T ] with arrival rateλ.

Now to calculateE[Ubid(v2
th(t′), t′)], we will condition on the

number of arrivals in the interval(t, t′). Suppose thatk bidders
arrived in (0,t] at timet1, t2, .., tk and L bidders arrive in(t′, T ].
Recall thatL is a Poisson random variable with parameterλ(T − t′).

First suppose that there was an arrival atτ ∈ (t, t′). The probability
of this event isλF

(
v2

th(τ )
)
∆t, since the arrival process is a non-

homogeneous Poisson process. Then the utility from biddingis:

E[Ubid(v2
th(t′), t′)|Arrival in (t, t′)] =

∞∑

l=0

E

[
e
−β(T−t′)

( ∫ v2
th(t′)

v

∏ F
(
min(v2

th(τ ), x)
)

F
(
v2

th(τ )
)

× F (x)l
dx

)]
× Pr(L = l)

Now if there was no arrival in(t, t′)
(

probability =
(
1 −

λF (v2
th(τ ))∆t

))
, the expected utility is:

E[Ubid(v2
th(t′), t′)|No Arrival in (t, t′)] =
∞∑

l=0

E

[
e
−β(T−t′)

( ∫ v2
th(t′)

v

∏
F (x)l

dx
)]

Pr(L = l)

Again ignoring the possibility of more than one arrival, theuncon-
ditional expected utility is:

E[Ubid(v2
th(t′), t′)] =

E

[
Ubid(v2

th(t′), t′)|Arrival in (t, t′)
](

λF
(
v
2
th(τ )

)
∆t

)

+E

[
Ubid(v2

th(t′), t′)|No Arrival in (t, t′)
](

1 − λF
(
v
2
th(τ )

)
∆t

)

Substituting for the terms we get:

E[Ubid(v2
th(t′), t′)] =

∞∑

l=0

(
E

[
e
−β(T−t′)

( ∫ v2
th(t′)

v

∏ F
(
min(v2

th(τ ), x)
)

F
(
v2

th(τ )
) F (x)l

dx
)]

×Pr(L = l)
(
λF

(
v
2
th(τ )

)
∆t

))

+

∞∑

l=0

(
E

[
e
−β(T−t′)

( ∫ v2
th(t′)

v

∏
F (x)l

dx
)]

× Pr(L = l)
(
1 − λF

(
v
2
th(τ )

)
∆t

))
(A.31)

To proceed further we need to make the following approximation:
ReplaceF

(
min(v2

th(τ ), x)
)

by F (x) in the first term of the equation
(A.31). The replacement effectively assumes that one bidder has
valuation in the interval[v, v2

th(t′)] instead of[v, v2
th(τ )]. When cal-

culating the maximum valuation among the bidders, this assumption
can lead to an errore which is bounded as follows:

0 ≤ e ≤ v
2
th(t′) − v

2
th(τ ) ≤ v

2
th(t′) − v

2
th(t)

Assuming that dv2
th(t)

dt
is finite, i.e. there exists aC such that∣∣∣ dv2

th(t)

dt

∣∣∣ ≤ C, the errore can be bounded above byC(∆t). Thus
if we let T1 to be the first term in equation (A.31) andT a

1 be the
corresponding approximate expression, we have:

0 ≤ T
a
1 − T1 ≤

∞∑

l=0

(
E

[
e
−β(T−t′)

(
v
2
th(t′) − v

2
th(τ )

)]

× Pr(L = l) ∗ λF
(
v
2
th(τ )

)
∆t

)

≤ e
−β(T−t′)

CλF
(
v
2
th(τ )

)
(∆t)2

Dividing by ∆t and taking the limit∆t → 0, it is seen that the error
goes to zero.

Now getting back to our original derivation. The expressionin
(A.31), after a little simplification, becomes:

E[Ubid(v2
th(t′), t′)] =

∞∑

l=0

E

[
e
−β(T−t′)

( ∫ v2
th(t′)

v

∏
F (x)l+1

dx
)]

Pr(L = l)(λ∆t)

+
∞∑

l=0

(
E

[
e
−β(T−t′)

( ∫ v2
th(t′)

v

∏
F (x)l

dx
)]

× Pr(L = l)
(
1 − λF

(
v
2
th(τ )

)
∆t

))
(A.32)
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Subtracting equation (A.30) from equation (A.32), dividing by ∆t

and taking the limit∆t → 0, we get, after some simplification:

dv2
th(t)

dt
=

(
β + λ

(
1 − F

(
v2

th(t)
)))(

v2
th(t) − P

)

1 − e
−

(
β+λ

(
1−F

(
v2

th
(t)

)))(
T−t

)

As before, we can set the threshold to be min(v2
th(t), v̄). Since we

assume the bidder valuations to be uniformly distributed in[v, v̄],(
1 − F

(
v2

th(t)
))

=
v̄−v2

th(t)

m
for v2

th(t) ∈ [v, v̄].
Substitutingt = 0 in equation (12), we get the initial value for the

above differential equation:

v
2
th(0) = P−

m

λT

(
LambertW

(
− e

−(β+λ)T

× e
−

−(P−v)λT+me−(β+λ)T

m

)
+ e

−(β+λ)T
)


