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Abstract— Increasingly used in online auctions, buyout prices allow
bidders to instantly purchase an item listed. We distinguif between two
types of buyout options: atemporary option that disappears if a bid above
the reserve price is made and germanent option that stays throughout
the auction or until it is exercised. In order to develop a mehodology
for finding temporary and permanent buyout prices that maximize the
seller’s discounted revenue, and to examine the relative befit of using
each type of option in various environments, we formulate a rodel
featuring time-sensitive bidders with uniform valuations and Poisson
arrivals (but endogenous bidding times). We characterize quilibrium
bidder strategies in both cases and then solve the problem ofiaximizing
seller’s utility by simulation. Our numerical experiments suggest that
a seller can increase his revenue significantly by introduaig a buyout
option. Additionally, while a temporary buyout option prom otes early
bidding, a permanent option gives an incentive to the biddes to bid late,
thus leading to concentrated bids near the end of the auctian

Index Terms— buyout option, online auction, Nash equilibrium

I. INTRODUCTION

N 2003, the total items listed oebay were around 973 million

leading to gross merchandise sales of $24 billion. Althcuggely
popular, online auctions are typically beset by the probt#ntarge
waiting times. An online auction ombay, for example, can last
anywhere from one to ten days thus potentially driving aweet
sensitive bidders to posted price mechanisms or electoatédogues.
In order to make online auctions more attractive to such disld
auctioneers have introduced buyout options which offer@otgntial
bidder the opportunity to get the item immediately at theteds
price. Equipped with this option an online auction becoméylaid
between an electronic catalogue and a traditional auction.

behavior change when such options are introduced in an eonlin
auction? What is an equilibrium bidder strategy in such &®as

The remainder of the paper is organized as follows. A literat
survey on the topic is presented {2. In §3, we describe the
model used in this paper along with a discussion on its \glidin
equilibrium bidder strategy for a temporary buyout optierderived
in §4.1. The seller's problem is formulated §4.2 and is solved for
a particular case of impatient bidders. The permanent hHugase
is analyzed in§5. An equilibrium bidder strategy is derived §5.1.
The seller's problem is discussed §5.2. In §6 we run numerical
simulations to determine the relative profit of using a buyaption
and address the research questions posed earlier. Corghaatharks
are offered in§7. All proofs not included in the main text can be
found in the appendix.

Il. LITERATURE SURVEY

While auctions have been extensively studied since thersgmi
work in auction theory by Vickrey [1], the research work orybut
prices is limited and very recent. Indeed the comprehensiveey
on auction literature by Klemperer [2] makes no mention ofdut
prices. Furthermore, while Lucking-Reiley [3] does obsaive use of
buyout prices, he points out that he is “not aware of any szl
literature which examines the effect of such a buyout pritceam
auction.”

We first review papers that, for tractability purposes, gtatbd-
els with two bidder and/or two valuations framework. Budishd
Takeyama [4] show, in such a model, that augmenting an Hnglis
auction with a buy-price can improve the seller's profit bgueing
the risk for some risk averse bidders. Reynolds and Woodgrs [

Such buyout options are widely used in online auctions. b, fa show that when bidders are risk neutral, an auction with aobuy
in the fourth quarter of 2003, fixed income trading (primaril option (temporary or permanent) with a high enough buyoitepr
from the “Buy It Now” option) contributed $2.0 billion or 28% is equivalent in revenue to the standard English ascendiatjoa.
of ebay's gross annual merchandise sale during the quarter (UHowever, when bidders are risk averse, a seller can raise mor
http://investor.ebay.conv). Other examples of buyout options arerevenue than the ascending bid auction by introducing a tiuyo

Yahoo's “buy now”, Amazon's “Take-It" and ubid’s “uBuy it!".

option with an appropriately chosen buyout price. In thewdel,

Depending on how long the option is available, a buyout @ptica permanent buyout price raises more revenue than a tergpamar

is classified as temporary or permanent. A temporary buyptibo

but the bidder utility is same in both cases.

disappears as soon as a bid above the reserve price is malge whiRecently several studies of more general models, with aitramp
a permanent option is available through out the auction. [&Vhinumber of bidders, have been conducted. Focusing on a temypor

ebay's “Buy It Now” is a temporary buyout optionyahoo's “buy-
now”, ubid's “uBuy it!” and Amazon's “Take-It” belong to the latter
category.

The presence of two different types of buyout prices matisdhe
following research questions that we seek to answer: Why elasy
use a temporary buyout option whidahoo and Amazon prefer the
permanent one? From the seller’s perspective, does ormnagitvays
outperform the other? If not, when should the seller prefex over
the another? What is the seller's relative benefit of intohoy a

buyout option Mathews [6] and Mathews [7] show that a riskrege
or a time impatient seller facing risk neutral buyers willooke
a buyout price low enough so that the buyout option is exedcis
with positive probability. The result also holds if the buyare risk
averse. Mathews [8] compares the welfare of bidders in aticuc
with a buyout option to a traditional auction with no buyoution.
Compared to a traditional auction it is shown that, dependin the
distribution of the valuation, either all bidders are weakktter off
or bidders with a “relatively” high valuation have a lesséitity.

buyout option be it temporary or permanent? How does theebidd General models of permanent buyout prices include Kirkebaad
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Overgaard [9], who offer justification for use of permanenydut
prices when similar products are offered in a sequence dicensc
They show that, when bidders desire multiple objects, irddifable
for an early seller to introduce a permanent buyout optiosirifilar
products are offered later on by other sellers. For the chaesimgle
seller running multiple auctions, they show that the swlli¢otal
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revenue increases if the buyers expect the seller to useuywub B. Auction Mechanism

option in the future auctions. We model an online auction as a second-price single itemiging|
Studying an auction withV bidders having continuously dis- auction where the bidder with the highest bid wins the ancbat
tributed private valuations, Hidvégi et al [10] concludeat, when pays the second highest bid price. The auction is assumedv® h
seller or bidders are risk averse, a permanent buyout prge G reserve price, i.e. if the highest bid does not exceed the reserve
increase the expected total utility. It is shown that, atildsium, price, the item is not sold. We can thus restrict our attertiobidders
bidders with valuation much higher than the buyout pricel wikhat have a valuation greater than Additionally, in case there is
unconditionally bid the buyout price. All other bidders It a only one bidder with a valuation above the reserve price, ins the
threshold strategy, i.e. they exercise the buyout pricéef ¢urrent ayction and pays the reserve price for the item. The audtios forT’
high bid reaches a particular threshold. However, they deoesider ynjts of time and has a hard deadline, meaning that the auetids
time-sensitive bidders and, in addition, do not differatetibidders at a prefixed deadline (likebay) rather than have a floating deadline
based on their arrival time. (like an auction oramazon.com where the deadline is automatically
Finally a paper very closely related to ours is Caldentey argktended if a late bid arrives).
WVulcano [11]. As in our paper, they assume a dynamic marketWhen a bidder arrives to the auction site, he is assumed &iveec
environment where bidders with independent private valoatarrive  information I; which is the second highest proxy bid at time
as a Poisson process. They consider a seller managing aunitlti Assume thatl; = 0 indicates that no bid has been placed up to
auction with a permanent buyout option. In their model, asurs, time¢. If there is one bid up to time then; = v, the reserve price.
the equilibrium participation strategy of the bidders ishaeshold A bidder decides whether to bid in the auction (either imratedy
strategy. There are important differences between theik aod ours, or at any later time in the auction) or exercise the buyoutoopif
however,: The model in [11] assumes that when bidders aativ@ available) based on his valuation, arrival time and therinfation he
multi-unit auction they are informed only about the initi@mber receives when he arrives to the auction site. Alternatitietybidder
of units and not the number of units remaining. In a singlé-unmay decide to wait before making a decision.
auction, this would correspond to bidders not knowing waetie
item listed is available or not. In addition, bidders areuassd to
act immediately (bid or buyout) when they arrive to the aurcti
site. In contrast, we assume a more realistic informationceire A online auction is a complex, dynamic and interactive pasc
- an arriving bidder not only knows whether the auction isning thus while our model effectively captures some of the keyuies
or not but also the second highest bid at that instant. Alsaur of such an interaction, there are some others it does not Insade
model, bidding times are endogenous. Finally, we analyeparallel, well.
temporary and permanent buyout prices. Actual online auctions are a first-price mechanism where the
highest bidder wins and pays his bid. However, auction sytgisally
feature “proxy bidding” systems which work as follows, [t2idders
I1l. M ODEL enter the maximum amount they are willing to pay for the itdime
system then bids on behalf of the bidder, using as much of idis b
In this section, we first describe our model and then disctsss &s is necessary, to maintain his position as the highesebidfdthe
realism relative to real world online auctions. The modeadiption  bidder has the highest maximum, he wins and pays an amouat equ
is divided into two sections - market environment and auctioto the second highest maximum; otherwise he is outbid ares |t
mechanism. We first describe the market environment. auction. As observed by Lucking-Reiley [3], an online amictivith
a proxy bidding system can be effectively modeled by a seqoiue
English auction.
A. Market Environment In addition, though our model assumes a constant exogsnousl
defined bidder arrival process, bidders may wait and so theabr
We model the bidder arrival process as a Poisson processawitbrocess of bids is endogenous. In practice, it has been\abénat
constant rate\ which is exogenously defined. Bidders have indepelpids tend to surge near the end of the auction (see Roth anen@dk
dent private valuations which are distributed, with ddf over the [13] for an empirical study on this trend). As will becomeardrom
support[v, o] (definem = v — v). The arrival rate), distribution oyr analysis, our model does, capture this phenomenon., Aeo
function F' and the reserve price are assumed to be commonypper bound on the valuation can be justified as the posted price
knowledge. at which the same item is available elsewhere.
We assume rational risk-neutral bidders who seek to magithizir ~ The assumption on the information structure is what difféates
expected utility from participating in the auction. A biddarriving  our model from most of the other research work done in modelin
at timet¢, with valuationv who gets the item at time at pricez, is  buyout prices. In an online auction, an arriving bidder i®imed

C. Discussion

assumed to have the following utility: about the status of the auction and the second highest bie, pri
_8(r—t) which closely matches our assumption on the informatiorivec
Uv,t,7) =€ (v—2x) (1) by a bidder when he arrives to the auction site. Furthermahile

] ) ) ) N ) we assume bidders to be risk neutral, they do have a non-zero
while a losing bidder is assumed to have zero utility fromahetion. time-discounting factor. Since waiting, in an online aaofi leads

As evident from the above expression, bidders have a diséaator 1 increased risk for a bidder, the time-discounting factoa bidder
of 3 (assumes > 0). Similarly the seller, earning revenueat time  can pe used as a proxy for his risk aversion. In figure 1, a &aps
¢ has utility: of the main webpage of an online auction is shown along wih it
Us(R,t) = e R (2) connection with our model.
A limitation of our model is the assumption of a monopolistic
wherea (assumex > 0) is the seller’s discounting factor. We nextseller, thus not accounting for the effect of other auctioffsring
describe the auction mechanism. the same item simultaneously. Usually, as there are mani suc



Guarnerius Violin, 1735

: Consider a bidder, say, with valuationv and arriving at time.
LOA from Guarneri House

— _ Assume that all bidders except him follow the strat&g§. We now

5 S Py e ff;jfczlfghm derive the best response strategy for the bidder

Information I t Suppose that! is not the first bidder. Then, the first bidder would

| <CTent bid: _US $20250 have acted immediately (strateGyS) and so bidderd will not see

Besurye price the buyout option. Hence his weakly dominant strategy isshasvn

T et in [1], to bid his true valuation.

sung) ™™ Provy bidding Note that the buyout option is available at timenly if no bidders

it e systent arrive in the interval(0,¢). In that case, no bids are placed in the

interval (0, ¢) and; = 0. Thus the threshold function is defined only

whenI; = 0 and so, in the remaining analysis, we drop the explicit

dependence of the threshold valuationlgnAlso if I; > 0 then, by

definition, a bid has been placed in the auction. Hence, tlyeuu

Fig. 1. Snapshot of asbay online auction webpage option is not available and, as argued above, the weakly rmimhi
strategy is to bid the true valuation which is independent;ofThus
the strategyZ S is independent of: and we drop that dependence.

simultaneous auctions (even on the same website), thealardite ~ Suppose now tha# is indeed the first bidder and so he sees the

of bidders is not exogenous but endogenous, as defined hyrdactuyout option. He has three options:

such as presence of a reserve price, the current bid prigertesing 1) Bid in the auction immediately

etc. Additionally, the presence of other auctions for theaatem 2) Buyout immediately

may prevent bidders from committing to an auction early amest  3) Wait before making a decision

promote late bidding. Another factor not captured by our efdsl | the bidder A chooses to bid immediately, the buyout option
the effect of network congestion, whereby bids near the dnithe disappears. Since all other bidders follow the stratdgy, they
auction may not pass through, leading to an inefficient ancfThis  will bid their true valuation. So, if there ar&’ — 1 more arrivals
leads to a decrease in utility for the bidders and the selso, (whereV is Poisson with parametey(T — t)), it can be shown that,

while we assume that the reserve prices common knowledge this E[t/3,,4(v, t|N)], the expected utility of the first bidder from bidding
is usually not true in practice. For example ebay, although the js:

bidders know Wheth_er the auction has a reserve price or het, t E[Upia(v,t|N)] = e~ BTt (v—v) (u)N‘l
exact reserve price is not known. Furthermore, we assumethiba N m

reserve price is fixed while, in practice, it is usually négjote in the Taking the expectation oveY, we get the expected utility of bidding
sense that if the highest bid is below the reserve price,¢lercan as:

negotiate with the_highest bidder. _ _ . T R MTnwoy)

In summary, while we attempt to model an online auction asetio E[Upia(v,t)] = e TNT—t) (e 1) ©)
as possible, there are several features of an actual auti@drour
model does not capture. Thus our results should be intexbneith
caution, in light of the assumptions made. Uuy(v) =v—P 4

IREserve not met,

M Time left

Ends Dec-01-03
Add te Calendar

History 9bids (us $0.99 starting kid)

Auction

High bidder: jimyanq3 ( 105 ﬁ ] Length T
(=3

The utility from exercising the buyout option immediatesy i

Thus if the bidder decides to act immediately (i.e. choosta/den
IV. TEMPORARYBUYOUT OPTION option (1) or (2)) his expected utility from the auctioB{U (v, t)],
We now look at the temporary buyout option case with a bugepri iS max { E[Usia(v, t)], Upuy (v) }.
P € [v,9]. As previously discussed, a temporary option disappears'Ve now rule out the third option by proving the following leram

once a bid is made. Lemma 1. When other bidders follow a threshold strate@ys,
the first bidder cannot increase his utility by waiting befanaking

. o a decision.
A. Bidder Participation Srategy The intuition behind the result is that, assuming bidder&ovio

Suppose that any bidder, with valuation who arrives at timg ~ strategy7 S, the utility from bidding depends only on the initial
and receives informatio, uses a bidding strategy belonging to therrival time of the bidder and not the time of the bid. Theiutil
following family of threshold strategie S: from buying out, however, decreases if the first bidder waitd thus

his utility from the auction (which is maximum of the two uti#s)
Buyout Immediately if buyout option available if he waits is at most equal to the utility from acting immeeis .
andv > v}, (t, I); Thus bidderA must choose between either bidding immediately

TS(v,t,1;) : < Bid v immediately  if buyout option available ©f buying out immediately. Define excess utility as the ddfece
andv < vl (t, I1): betweenUg;q and Ug.,. We have
= Yth\" ’

Bid v otherwise . _—B(T-nMm-€ ( MTot)w=p)
e(v,t,P) =v—P—e NT=h e 1) (5)

A utility maximizing bidder will choose to buyout if and oniy
the utility from buying out is more than the utility from biuofdy, i.e.
e(v,t, P) > 0. To characterize the optimal policy, firstly notice that
e(v, t, P) is strictly increasing i for v € [v, ] for t € (0,T) since

—\(T—t)

wherev}, (¢, I;) : [0, T]x{0}U[v, 7] — [v, 7] is a threshold valuation
function. Recall thatl; is the second highest bid at tinte While
vin(t, I,) is a function of the buy-price?, the dependence will not
be shown explicitly ag”? remains constant throughout the analysis.
Assuming other bidders follow a threshold strategy, we pitive
that the best response is indeed a threshold strategy amd the Oe(v,t, P) _ | _ (-6-2022) (1)
characterize the threshold function by imposing the Nasfilibgum v
requirements. for all v € [v, o] andt € (0,T)



Since e(v, t, P) is increasing inv and e(v,t, P) < 0, for all Substituting (7) in the expression for seller’s discountggected
t € (0,T) there either exists a unique*(t) € [v,?] such that utility, we get:
e(v*(t),t, P) = 0 or e(v,t, P) < 0. Define the threshold valuation T
V() as: E[Us(P)] = / et P(1— F(uh (1)) fs, ()t
0
*(t) if 3v*(t) € [, 8] such thate(v*(t),¢, P) =0 T _
Ly =1V ’ T / *TE[Re\S; = t N No BuyouiF (v, (t t)dt (8
Vi (1) {v otherwise + . e [RevS: uyout F' (vin, () fs, (t) (8)

Thus the best response strategy for biddes a threshold strategy ~1he Seller's problem of maximizing his utility from the aiest
of the following form: given that the bidders follow the equilibrium strate@yS derived

earlier, can be written mathematically as:

Buyout immediately if buyout option available
max E[Us(P)]

andv > vy, (t)

B(TS)(v,t) : < Bid v immediately  if buyout option available subject to e(v{n(t),t,P) =0
andv < vy, (t) Here the equality constraint incorporates the fact that biuelers
Bid v otherwise follow the equilibrium strategy.

Now for 7S to be an equilibrium strategy, the best response to Unfortunately, we cannot solve the optimization probleralyh

TS (v, t) must be the strategy itself. Note th8{7 S) and7 S have Ikg:'zl(ljy for trTe general c(zjase_. We now lO(.)k "i:t thet_cas;ebof Impatie
the same form and for the two to be equal, we require: \aders where we can derive an approximate oplimal buepric
Impatient bidders (3 — o)

vip(t) = vih(t) If the participating bidders are very time-sensitive, jFe— oo,

. . I the excess utility function becomes
This leads us to the following equilibrium strategy. y

Theorem 1: In an English auction with a temporary buyout option, e(v,t,P)=v— P
the threshold strategy S(v,t) is a Nash equilibrium, where the

threshold valuation function’, (¢) is defined as: Thus the optimal strategy for the first bidder is to buyout i§ h

valuation is above® and bid otherwise.

1 v*(t) if 3v*(t) € [u,?] such thate(v*(t),t, P) =0 To calculate the optimal buy-price we need to approximate
vin(t) = z otherwise E[Re\S: = ¢t N No Buyoui, the expected revenue given the first
The solution to the equation(v* (t),t, P) = 0 is given by: bidder arrives at time¢ and does not e_xercise the b_uyou.t option .by
m PSSP, E[R_ev151 =], t_he e>_<pected revenue given that' the flrst_bld_der arrives
v (t)=P— m (LambertW( —e ¢ at timet (thus ignoring the information that his valuatienis less

o than the threshold valuationy), (¢)).
% e‘#*(“ﬂ)@*f)) +e*(*+ﬂ>(T*t>> The approximate seller's utilityE[Us(P)], can then be deter-
mined, using equation (8), as:
where LambertW is Lambert's W function' . ~ P@—P) A (P —)
We will now formulate the seller’s optimization problem aswlve E[Us(P)] = — )\—l——a(l — e (HeTy | aTT—R(T)

it for a particular case of impatient bidders.
where R(T) is the expected revenue from an English auction
(without a buy-price) with the same parametépsv, v, T") which

is given as following
The seller seeks to maximize his utility from the auction by om

optimally pricing the buyout option. The parametarsy, 3 and@ are R(T)=0v(1—e ) — Vi (1 —e M- /\Te’AT>

assumed to be known whikeandT" are assumed to be exogenously . . L . .

defined. Notice that we do not optimize ovErsince, in practice, the Proposition 1:_ The Op“”_‘a' b_uy-prlc_e in an ap_(:t_lon with "’.‘ter.“pc"
seller has a very limited choice in selecting the auctiorgtlen rary buyout option, and with bidder time-sensitivify— oo, lies in

o A . . the interval[v, 9].
By conditioning onS, the arrival time of the first bidder, the S L 7
expected discounted utility from the auction can be writien . Froof: The_ threshczld vaIL_Jatlon n this case (t) = P. Th_us
if the buyout priceP > v no bidder will exercise it. Hence setting a

_ E— _ : : _ buyout price greater than is equivalent to setting it equal to. If
EUs(P)] = /O e " E[ReuS: = ¢ nBid[Pr(Bid|S: =#)fs, (t)dt P = v then the first bidder will exercise the option with probalili
T 1 (ignoring the zero probability event that the bidder has@ation
+ /0 ¢ " E[RevS1 = ¢ N Buyoul Pr(BuyoutSy = t) fs, (t)dt equal tov). Thus setting the buyout price belawwill only decrease
(6) the revenue from the auction without changing the prolghif
uyout. N [ ]
It can be shown thaE[Us(P)] is concave inP and the uncon-
rained maximum occurs at:

B. Sdler’s Optimization Problem

. . )
whereE[ReVS1 = tNBid] is the expected revenue given that the first
bidder arrives at time and bids in the auction. The revenue earneglt
if the buyout option is exercisedE[ReVS; = t N Buyoui, is the

- T
buy-price P. Assuming that bidders follow the equilibrium strategy pr="1 + a R(T)
TS(v,t), we have: 2 L (1-e T
Pr(BuyoutSy =t) =1 — F(v;u(t)) ) Thus P,,:, the approximate optimal buy-price is:
where F' is the uniform cumulative distribution function. v P <uw
Popt =4 P* v<P" <9 ©)

ILambert's W function, also called the Omega function, is theerse
function of f(w) = w.e¥ v P*>0



In the numerical results section, we examine the performaric  The first term of the product is the probability that all bidsléhat
this buyout price in an auction with bidders who have a finitest have arrived have a valuation less thain(v?, (1, I..), v) given their
sensitivity. valuation is less than the threshold. The second term isrtiteapility

that all future bidders have a valuation less tham(v7, (7, I..),v).
V. PERMANENT BUYOUT OPTION Here, and in the remainder of the paper, we assume thiat=if 0

We now consider a permanent buyout option with buyout priagen Hle(.) = 1. Now, given the bidderd wins the auction, the
P € [v,9]. In this case the option is available through out the auctiafistribution of the highest bid among the other bidders is:
or until it is exercised. We derive the bidder participatassuming

[T;—, F(min(v}, (t,0), 2))

a generic valuation distributiof’(-) over the intervalv, 7].
F(min t},0
A. Bidder Participation Strategy [T, F(min(vf, (15, 0). )

2
Let v, (¢,1;) : [0,T] x {0} U [v,5] — [v,7] be a continuous > [T, F (min(vj, (t;’o)’ z)) Yz € [0, v]
function int and I;. We assume that the threshold is increasing in H7 , F(min(vg, (t3,0), )

but decreasing iff;. The intuition behind why the threshold shouldy, ;s the expected highest bid, among the other bidders, is:
be decreasing id; is that an arriving bidder will be willing to pay

Fmaxjs,A wins( )

higher for the buyout option, if he sees a higher second kigbiel. E[Max|/A wins & &] = /v (1 — Finaye Awins(ﬂﬂ))d317
Thus if I, is higher, he will have a lower threshold valuation. 0 ’

Recall, that we assume that = 0 indicates that no bid has been — /v F (z)dx
made up to timet. If there is one bid till timet then I; = v, the maxe.Avins

reserve price. Thus € (0, 7] while I; € [v, 5] U {0}. Again notice
that we do not show the explicit dependenceuvdf(t, I;) on buy-
price P.

Consider a family of threshold strategiPs of the following form:

where the second equality follows siné& e, 4 wins(z) = 0 for all

x < v. If Aloses the auction, his utility from the auction is zero. Thus
the expected discounted utility from bidding at tirfiefor bidder A

is

Bid true valuation afl’ if v < v, (7, I,,)
Buyout immediately ifo > v, (1, I,;)

PS(v,1,1:) : { E[Ugia(v,t, I; = 0)|E] = e*@(Tft)(/ FmMg(m)dm))Pr(A wins)
where 7 is the arrival time of the bidder. By “bidding at tim&”,  \yhich on simplification yields: B
we mean that the bidder will bid right at the end of the auctitomo

late for other bidders to respond to his bid. v 15, F(min(v3,(t},0),2))

We will show that the best response strategyPt8 is a threshold E[Ugia(v,t, Iy = 0)|€] = =
strategy of the same form @8S. We then characterize a threshold
valuation such that the best response to a profile where ddiebs
play the corresponding threshold strategy is the strategyfi

Consider a bidder, call himd, with valuationv arriving at timet¢
and receiving informatior;. We first show, in Lemma 2, that if the ~ The unconditional expected utility is obtained by takingesta-
bidder A decides to bid he must bid at tin#e and next rule out the tion of the expression in (10) ové¢, T}, Ty, .., T, L, TT, T3, .., T}
option of waiting in Lemma 3. Subsequently we show, in Lemma\lllhICh are the random variables corresponding to the reaiizs
and Lemma 5, that the best response is indeed a threshdkbstemd % (1,15, . b, L 81, 83, ., t] respectively.
then combine the above results to derive the best resparagegstin -~ We now show that the bidded will neither bid immediately nor
Theorem 2. The threshold valuation, such tRe is an equilibrium Wait before making a decision.
strategy, is determined by equating the best responsegyran the ~ Lemma 2: When faced with bidders playing the strateBys, if a
strategyPS. The proof is then completed by showing, in Lemmdidder decides to bid he must do so only at tiffie
7 that the threshold function, as obtained above, indedsfisatthe  The intuition behind the lemma is that while bidding earlieres

Hz F ”th( O))
l
H mln vﬁ, (t5 ,0),x))dx> (20)

assumptions made initially. not increase the utility of a bidder it reveals informatidmoat his
We will first derive bidderA’s utility if he bids at time7'. Then valuation to other bidders, who can use it this informatibeirt
since all bidders bid at tim&', we have advantage. We next address the issue of waiting before makin

decision.

Lemma 3: When facing bidders who follow stratedysS, a bidder
Suppose that there akebidders in(0,¢) and! bidders in(¢, 7] and is weakly better off making a decision immediately i.e. asrs@s
they arrive at time0 < ¢} < t3 < .. < t}, < t andt < t7 < he first arrives to the auction site.

12 < .. < t? < T respectively. Denote this as evefit Now, A wins Proof: Here we give an intuitive argument. A formal proof can
the auction if no bidder exercises the buyout option and #rgv be constructed on the lines of the proof of Lemma 1. Suppose th
bidder has a valuation less thatis valuation, i.e. every bidder has bidder A decides to wait until time- > ¢ before making a decision.

a valuation less thamin (v, (7, I-),v) wherer is the arrival time Then, since no one else bids in the auction, the informatiailable

of the bidder. Since the auction is still running at timeall bidders at + will be the same as that at tintgi.e. I; = .. Thus the bidder
arriving beforet have their valuation less than the threshold valuatiomvill not gain information by waiting and so his expected ititifrom

L.=0 Vrel,T)

Then probability thatA wins the auction is: bidding will depend only ort the time he first arrived at the auction
N site. Hence waiting does not change the utility from bidding
r(A Winsi€) = [T, F(min(v7, (t1,0), v)) Additionally since the buyout price remains constant tiglmut
Hizl F(vm( 1,0)) the auction, waiting decreases the bidder’s utility fronyibg out
l because of his time-discounting factor. Thus while theitutirom
x [ F (min(v?,(£,0),0)) waiting remains constant, the utility from exercising theing option

i=1 decreases and so a bidder cannot increase his utility byngaitm



Thus we have shown, Lemma 2 and Lemma 3, that the biddernow show that the threshold function is indeed non-decangasi ¢.
must either bid at tim@" or exercise the buyout option immediately.For that we first need the following result.
We now show that the optimal strategy is in fact a threshatategy. Lemma 6: Assuming bidders follow the strategyS, the utility
For proving that we first show the following lemma. from bidding is higher for a bidder arriving later in the doat i.e.
Lemma 4. When bidders follow strategPS, the expected utility E[Ugiq(v,t’,0)] > E[Ug;a(v,t,0)] for ¢’ > .
from bidding, E[Ug:4(v, t, I; = 0)], is a non-decreasing function of The reason why Lemma 6 holds, is that a bidder arriving later

bidder valuation with a slope less than 1 foe (0,7). in the auction has a smaller waiting cost. Additionally, ariving
It implies that, asy increases, the utility from buying out increasedidder receives information that all bidders arriving befdim have
more rapidly than utility from bidding. a valuation less than the threshold. This leads to a higher no
Recall that the utility from exercising the buyout option is discounted utility from bidding for a bidder arriving latém the
auction as compared to one arriving earlier. Combiningwhedffects
Ubuy(v) =v—P gives the desired result.

We now use Lemma 6 to show the following result.

i _ .. .
Note thaty; _(UB“y(_U))_ - 1 Combining Lgmma 2 with the fact Lemma 7: The threshold function, satisfying equation (11) is non-
that for valuationyv, bidding is more attractive, we can prove thedecreasing in.

following.
Lemma 5: For bidderA, facing bidders following the strate@s,
there exists a unique valuatiari (¢) such that both the options: bid

We have thus shown that the straté@y is an equilibrium strategy
where the threshold function satisfies:

vt T15, F(min(v}, (t)), 2))

or buyout are equally attractive. N _ vfh(t)—P — E[efMTft) (/ i e F(m)ldx)]
Notice thatv™(¢) may be greater than the upper suppgriin which v I, F(Uth(ti ))
case, since the bidder has a valuation less #ign), he will bid in _ _ _ _ ) _ _ _ 12)
the auction. Since no bidder bids early in the auction the informationgtiastant
Combining the above results, we get the following best raspo &> It is zero and so we drop that explicit dependence for the stke o
strategy for bidderA. brevity. Also, sincev?, (t) is non-decreasing function i) we have
Theorem 2: The best response to strate§\s, B(PS) is: min(v?,(£2),z) = =, if z € [u, 05 1), Vj = 1,...,1
Bid true valuation af’ if v < v*(t [ 2 j=1,..,1
B(PS)(v,t,I, = 0) : 1 _V . I I_U—U (*) S|nce1£_]>t,Vj 1t .
Buyout immediately ifv > v*(t) Notice that we can equivalently set the threshold to be
L min(vZ,(t),7) since no bidder has valuation greater than
wherev™(t) is such that The expression in equation (12) involves taking expeatativer

arrival times in a non-homogeneous Poisson process whietbea
otentially tricky. Hence we now state and prove the follagvpropo-
ition that gives a differential equation for the threshfudction.

Proposition 2: Assuming that the bidder valuations are uniformly
Upuy(v) < E[Ugia(v,t, Iy = 0)] if v <v*(t) distributed, the threshold functiarg, (¢), defined in (12), satisfies the
differential equation:

Ubuy(v"(t)) = E[Upia(v"(£),t,0)]
Proof: We have shown in Lemma 3 that a bidder is weaklg
better off making a decision immediately. Now by Lemma 4 and

Hence a utility maximizing bidder with valuation < v*(¢) will

choose to bid. Since this is a second-price auction, a weltkiyinant dv?, (t) (ﬁ + >\<1 - F(”fh(ﬂ))) (U?h(t) - P)
strategy is to bid one’s true valuation. We have already exgin Qb : (13)
Lemma 2 that if a bidder decides to bid in the auction, he most d 1—e (ﬁ“<1*F(”thm))) e

so only at timeT'.

along with the initial value
Forv > v*(t):

: =P- _ o~ B+NT
E[Upia(v,t, It = 0)] < Upuy(v) vin(0) = P T (LambertW( e
—(P—)AT+me~(B+NT
and thus it is profitable to buyout. - o . ) . e_(ﬁH)T) .

For the strategPS to be an equilibrium strategy, the best response
to the strategy must be the same strategy3(@S)(v,t,I: =0) = B. Sdler’s Optimization Problem
PS(v,t, 1 = 0). Both the strategies have the same form and thusAs before, the seller maximizes his utility from the auctibyn
for the two to be same, we must have that optimizing over the buyout price®. The nonlinear optimization

v (t) = v2 (¢, I = 0) problem so obtained cannot be solved analytically and soaesf@im

the optimization using a simulation-based line search otktiThe

Combining this with the fact that Ugyy(v*(t)) = threshold valuation is determined by numerically solvihg differ-
E[Upia(v™(t),t,0)], we get the following equation for the ential equation, derived in Proposition (2), and is usedtaracterize
threshold function bidder behavior. The results of this optimization alongwiite results

w2, (t,0) Hle F(min(vfh(tzl, 0) w)) from the temporary buyout case are presented in the nexpsect

v2,(£,0) — P = E[e*B(Tft) (/

k
v [T, F(v,(t],0) VI. NUMERICAL RESULTS

We calculate, by simulation, the optimal temporary and [@aremt
buyout price and the corresponding benefit of using such &iorop
Furthermore we examine the dependence of the optimal byrae
where the expectation is ové¢, T}, T3, .., T, L, T2, T3, .., T?. and the corresponding additional profit, obtained by inicig a

Thus if the threshold function satisfies equation (11) thee t buyout option, on the average number of bidders in the aucial
corresponding strategyS is indeed an equilibrium strategy. We musthe time sensitivity of the seller and buyers.

!
X H F(min(vfh(t?,()),m))dxﬂ (1)



An online auction is simulated as follows: Time-sensitivdders * I
with uniformly distributed random valuations in the inteh{50, 500] w w0
arrive according to a Poisson process of ratand play the equi- £
librium strategy described if4 and§5 when faced with temporary =
and permanent buyout option case respectively. The seligility
from the auction is calculated by discounting the secondchdsy
valuation (or the buyout price, in case the option is exedjisby \\ w0
an appropriate discounting factor depending on the timeatéf of /‘/
the item. The seller’s utility is then maximized, and theresponding el sonstvy o T iddorsensiviy fcor -
optimal buyout price determined, by running a simulatiasdd line (a) (b)
search over. the. buyout price. . Fig. 2. Variation of simulated optimal buyout price with Iseland bidder

The auction is assumed to run for a length ®f = 16 units. ime sensitivity
The auction is simulated for different values &f « and 3. The
simulations were run long enough to ensure thatdf& confidence
interval width is within1% of the plotted and tabulated values. price for getting the product earlier. Figure 2 (both (a) by also

show the obvious fact that the seller will set a higher buymite
A. Performance of P, if there are more bidders. The simulated optimal permanexgout
grice follows similar patterns as the temporary.
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In an auction with a temporary buyout price and with bidder
having a finite time-sensitivitys, we propose using the approximate
optimal price, Pop:, as derived in equation (9) and assess its sub~ Variation of seller’s utility with auction parameters
optimality. DefineE*[Us (Popt)] and E°[Us (Popt)] to be the sim- e next look at the additional benefit of introducing a buyout
ulated expected utility of the seller if he sets the buyouitepto be option. The percent increase in seller's simulated utiityer an
Pope and Py, respectively ands®[Us] to be the simulated expectedauction without a buyout price, for both temporary and pevema
utility without a buyout price. N ; case, is plotted as a function of seller's time-sensitivityn figure

In Table 1, we comparaUs[(Popz)]( =E [US“;"SP[@}]_]E Wsl 3 (with B = 0.03). As seller's time-sensitivity increases (i.e.

s increases), the increase in utility, for both cases, is digdince a

B _ ES[Us(Popy)]—E°[Us]
.100) and_AUS[I(lp‘f”)]q - ES[Us] x100 ), the percent seller with a higher time-sensitivity finds it more advamags to
increase in seflers ut sell the product earlier.

ility (over an auction without a buygrice),
achieved by usingP,,: and P,,., for different arrival rates\ and
buyer time sensitivity3 (with a = 0.03). = "

g
AT B AUs[(Popt)] AUs[(Popt)] %
0.01 10.81% 2.05% :
2 0.03 16.03% 10.5%
0.05 19.66% 16.31% £
0.01 11.21 % 9.19 %
4 0.03 13.12% 11.77%
0.05 14.63% 13.79% el tme sensivyfacor Setlrtme sensiviy
0.01 10.18% 9.88%
8 003 10.38% 10.17% (a) Temporary (b) Permanent
0.05 10.42% 10.26% . o o . . o
Fig. 3. \Variation of seller’s utility increase with selldmie sensitivity
TABLE |

PERCENT UTILITY INCREASE ACHIEVED BY THE OPTIMAL AND
APPROXIMATE BUYOUT PRICE

Figure 4 plots percent increase in seller’s simulatedtytilor both
cases, as a function ¢f, bidder time sensitivity (withx = 0.03). The
increase in utility is higher for more time-sensitive bidglsince such

From the table, it is evident theﬁ’om performs well if the average bidders will be willing to pay more for getting the productriéar.

number of bidders in the auctiomT) is high. However for low
values of AT the increase in seller’s utility achieved by using th =
approximate buyout price is significantly lower than the imaxn “
achievable.

_____
e

Increase in seller's utiy (%)

B. Variation of optimal buyout price with auction parameters

The simulated optimal temporary buyout price is plotted as =
function of seller sensitivityae in figure 2(a) (withg = 0.03).
The optimal buyout price decreases with an increasing rstitee N i me senivyfactor o Bidder ime seniviy actor
sensitivity (i.e. increasingx) as a more time-sensitive seller will (a) Temporary (b) Permanent
prefer selling the product at a lower price early in the arctiather
than waiting for the auction to end. In figure 2(b), the sineda Fig. 4. Variation of seller's utility increase with biddemte sensitivity
optimal temporary buyout price is plotted as a function adder
sensitivity 5 (with o = 0.03). The buyout price increases wiih, As evident from figure 3(a) and figure 4(a) the percent in@eas
since a more time-sensitive bidder will be willing to pay ater in seller's utility, for the temporary case, decreases asa¥erage




number of bidders increase. However this effect is revefeedhe Our current research focuses on analyzing the permanemtubuy
permanent buyout option case. This is due to the fact thaiewhé option in multi-unit auctions. We are also looking at a buyoption
temporary option is available only to the first bidder, allvang whose price varies dynamically as the auction progressath tRese
bidders see the option in the permanent case. auction features are not widespread in practice and we hogee t

From the simulation results it can be concluded that, in ¢hee our research in this area will aid auctioneers who are cenisig to
bidders/seller is time-sensitive, the seller can subistéint(by as implement such auctions.
much as 60%) increase his utility from the auction by inti@idg
a buyout option. The increase in utility obtained by introidg a
temporary buyout option is significant (as high as 20%) wheste  [1] W. Vickrey, “Counterspeculation, Auctions, And Comiige Sealed
are lesser number of bidders in the auction, but decreasd¢keas Tenders,"The Journal of Finance, vol. 16, 1961.
number of bidders in the auction increases. The permaneraubu [2] P. Klem_perer, “Auction Theory: A Guide to the Literatyrelournal of
option, on the other hand, not only outperforms the tem tion Economic Srveys, 1999.
X p ! A ! y ou p_ ) Wﬂ [3] D. Lucking-Reiley, “Auctions on the Internet: What's iBg Auctioned,
in every scenario, but also leads to a higher increase iityui$ the and How?"Journal of Industrial Economics, vol. 48, no. 3, September
number of bidders increase. 2000.

However, as suggested by the equilibrium strategy, whenra pel4] E. tB- BILJttilsh f:rr:d 'Li N. tToa:ti(eyama, Ii(?tltly prleS7l2n 200n(|)l£1e anios:

: H H Irrationality on the Internet?7economic ers, vol. y .

manent buyout. optlon. IS. used, all bids are concentra'ted thear [5] S.S. Reynolds and J. Wooders, “Auctions with a Buy PtiGepartment
end of the auction. This is ger'lerally undesirable for vaiceasons of Economics, Eller College of Business & Public Administration,
not captured by our model. Firstly, because of network cstige, Working Paper, June 2003.
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bidders don’t qeed to commit the_mselveg to this aut_:t_lc_)ry thay 7] “The Impact of Discounting on an Auction with a BuyoGip-
choose other simultaneously running auctions, for a sirtéan, thus tion: a Theoretical Analysis Motivated by eBay’s Buy-lt-Md-eature,”
leading to a loss in revenue. Thus, in cases when the reveitheaw Journal of Economics, vol. 81, no. 1, January 2004.

permanent option is not significantly better than the tempocase, [8] —— "Bidder Welfare in an Auction with a Buyout OptionDepartment

. . of Economics, California Sate University-Northridge, Working Paper,
it may be better to use a temporary option. November 2003.
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APPENDIX

auction with a temporary buyout price, the approximate rogti
buyout price is determined analytically. Proof of Lemma 1
The simulation results show that, when any of the auctiomige Proof: Suppose the bidder waits till time(r > t) before
is time-sensitive, the seller can increase his utility frima auction deciding. Since the bidder is time-sensitive, he will digahis utility
significantly by introducing a buyout option. Introducingemporary at timer by the factore™#(7 =%
buyout option in an online auction can increases the sgllgtility Let £ be the event that no bidder arrives in the intervalr).
by as much as 20% in some cases. More importantly such amoptlB this case the buyout option is available to bidder The bidder
gives the first bidder an incentive to bid early by giving hinhuge A is effectively the first bidder (arriving at time) except that he
advantage over the other bidders - he can either exerciseugmit has waited for(r — ¢) time . Let E[Ugia(v,?)|£] be the expected
option or make it unavailable for other bidders by biddingstfir Utility from bidding given eventf happens. The expression for
Some auction sitegimazon for example, offer the first bidder a 10% E[Usia (v, t)] is
discount for achieving the same effect. _B(r_pm-e A(T—t)(v—2)
In case the number of bidders in the auction is high, the peemta.~~ E[Usia(v,t)] =€ NI (e - 1)
buyout option can increase the seller’s utility by as mucl6@%b, (A.15)
thus making it very attractive in such cases. However, byalieing  ThenE[Ug,q(v,t)|£] can be obtained by replacirigoy 7 in (A.15).
early bidding, such an option promotes late bidding whiclyhead Similarly the utility from buying out isv — P. The complementary
to undesirable effects like network congestion or biddérsosing eventf is the event that one or more arrivals occurred in the interva
a different auction. These effects, not captured by our mam (¢, 7). In this case the buyout option is no longer available. Let
decrease the seller’s utility significantly. E[Ugia(v,t)|€] be the expected utility from bidding if ever
It must be mentioned that all our conclusions must be inetegk  happens. Then the expected utility of the bidderif he waits fill
keeping in mind in light of the limitations of the model. Wil time 7(r > t), is
the model incorporates many features of an actual onlind¢icenic
there are several that are not captured accurately. Comstyjut is
important to validate our model predictions with empiricata and
we are currently working on it.

—X(T—t)

E[U,(v,t)] = e*mT*t)(max {v — P,E[Ugid(v, 7-)]} - Pr(€)
+E[Usiua(v,0)|E] - Pr(€))  (A16)



The discounting factoe™?("~) incorporates the waiting cost. As Thus in both case®[U. (v,t)] < E[U(v,t)] and so the bidder

argued earlierE[Ugiq(v,t)|€] = E[Ugia(v,7)]. Notice that the should not wait. |

event£ also includes the event that another bidder buys out. In thatProof of Lemma 2

case the auction is closed and the utility from bidding iozer Proof: Suppose the biddeA bids immediately. This reveals
Using the law of conditional expectation, we also have: information about his valuation to bidders arriving aftémh Since

 _B(r—t) he bids in the auction at timeand all other bidders bid at tint€,

E[Ugia(v,t)] = e (E[UBid(thﬂg] - Pr(€) we havel, = v for 7 € (¢,T).

+ E[Usia(v,1)|E] -Pr(éf)) (A.17) In this case, the probability that bidder wins the auction is:

k H 2 1
Notice that the time-discounting factor incorporates tbeuanulated Priy(A wins|€) = [T, F(mm(vth(ti’o)’ v))

waiting cost. 1, F(v2,(t,0)
Using (A.15), it can be verified that l oy
e *CVEUpia(v,7)] 2 EUsia(v,t)]  (A18) x L] F(min(uia (&5, ), )
This coupled with equation (A.17) implies that And the discounted expected utility is:
e PUIEUp(v,1)|€] < E[Ugia(v,t)] (A.19) E[Usiaq)(v,t,0)|€] :e_ﬁ(T—t)(/v I, F(min(v, (ti,0), )
(notice thatPr(€) € (0,1)). v [T F(v3,(t},0))

Using the above result, we now show that the expected utility

l
of bidder A at 7 is almost equal to the expected utility obtained x H F(min(vfh(tf,y),m))dm>
from acting immediately, i.eE[U;(v,t)] < E[U(v,t)]. Consider J=1
the following two cases: (A.21)
o Case 1:v — P < E[Ugia(v,7)] By assumption, the threshold function is a decreasing fomatf
In this case (A.16) becomes I;. Thus, we have:

E[U, (v, t)] = e_B(T_t)(max {1} ~ P, E[UBid(v,T)]} - Pr(g)  F(min(}, (5, 0), 2)) < F(min(v},(5,0),2))  Vj=1,2,.,1
+ E[Upia(v,0)|8] - Pr(E)) Thus comparing equation (A.21) with equation (10) we get:
E[Ug; ,t, I = 0)|E] < E[Upia(v,t, I, = 0)|E
— ¢ BT-D) (E[UBid(U,T)] - Pr(€) [Usia) (v t )IE] [Usia(v t )IE]
_ _ This is true for the event and in fact for any realization of
+ E[Upia(v,1)[€] - PT(5)> the random bidder arrival process. Thus, taking the exfientaver
1 1 1 2 2 2
— o Br—) (E[UBid(U7t)|5]  Pr(E) K,T1,Ty,.. T, L, T7, T, .., T, we have
_ _ E[Ug; v, t, Iy = 0)] < E[Upia(v,t, I =0
+E[UBid(v,t)|€]~Pr(8)> [ Bd(t)( z“ )] [-Bd( . t. )] . -
Hence the expected utility if the bidder bids immediatelyess

= E[Usia(v,1)] than or equal to his utility if he bids at time. ]
< max (E[Ugia(v,t)], Uuy(v)) = E[U(v, t)] Proof of Lemma 4
The third equality follows from the fact tha& (U (v, £)|€] = Proof: Differentiating the conditional utility from bidding,

E[Ugia(v,t, I, = 0)|£], with respect to bidder valuation, we get:

Hle F(min(vfh (t%7 0), v))

E[Ug;q(v, )] while the fourth equality follows from (A.17).
« Case 2:v — P > E[Upia(v, )]

0 _a(T—
In this case (A.16) becomes —E[Upiq(v,t,I; =0)|E] = B(T—1)
I ( ) v Usia(v ¢ )IE]=e ( [ [f:1 F(vfh(t%()))
E[U, (v,t)] = ¢ P79 ((u — P) . Pr(€)

+ E[Upia(v,1)|€] 'Pr(c‘f)> <11 F(min(vth(tj’o)’v))) (A.22)

j=1
Now notice that Thus 0 < Z2E[Upi(v,t, I = 0)|€] < 1 for all v > v and
efmfft)(v —P)> efﬂ(fft)E[UBid(U7T)] t e (O,QT).' Since the derivative exists and is finite for &}l i =
1,.,kt5,5=1,..,1, k1, we have
> E[Usia(v, )] . 5
> e "TVE[Upia(v,t)|E]  (A.20) 5 ElUBia(v,t, I = 0)] = E[%E[Umd(v, t, I = 0)|5]]
The second and third inequality follow from (A.18) and (A\19where the outer expectation in the right term is ov&f,i =
res_pectlvely. 1,.,K andT},j = 1,.., L. Using equation (A.22), we have <
Using (A.20) we get LE[Upia(v,t,I: = 0)] < 1 for all v > v andt € (0, 7). ]
__—B(r—t) Py, Proof of Lemma 5
BlU:(v.t)] =e ((U P)- Pr(£) Proof: For valuationv = v, we have:

+ E[Usia(v,t)|€] - PT(@) Ubuy(v) =v — P < 0 =E[Upia(v,t,0)]

<e P ((v =P)-Pr&)+(v-P)- P?“(c‘f)> In Lemma 4, we have shown that, with increasingg[Ug;q (v, t, 0)]
_ e—ﬁ('r—t)(v _p) increases less rapidly théfz,,, i.e.0 < %E[UBid(u,t,It =0)] <

< (v - P) < max (E[Usia(v, )], Upuy (v)) 1=2 (UBuy(v)). Thus there exists a uniqu€ (¢t) > v such that:
= E[U(v,1)] Ubuy (V" (t)) = E[Upia(v"(t),t,0)] (A.23)



[

Proof of Lemma 6

Proof: Let us compare the utility from bidding (&f) for a
bidder if his first arrival time (the first time he visits thection site)
ist' (>t) instead oft.

Suppose that there afebidders in(0,¢) and! bidders in(¢, T
and they arrive at timé® < t{ < t} < .. < t} < t andt < t? <
13 < .. <t} < T respectively. Suppose also that(0 < j < 1)
bidders arrive in the intervdk, '). Then the bidder arriving at has
information aboutk + j bidders and his utility from bidding is

E[UBid(T) t/ O)|k‘ l j,t},. ,t%,..] =

st / 15, F(min(vd,(t,0),2))
Hz 1thh( 0))
. H;{(mm(vth(t?v@’m)) [ #(mint, 2,0).))s)

o1 F(v7,(83,0) i=j+1

which can be written as

E[Usia(v,t',0)|k, 1,4, t1, .., t1,..]
B(T—t) / Hz 1F mln(vth(tzl,()),x))
Hz ACAC 0))
H¢:1 F(mln(vfh(t?70)7m))>
1 F (07,27, 0))

i=1
The corresponding expected utility for a bidder arriving a:

E[Upia(v,t,I; = 0)|k, 1,11, .., t3,.] =
v I, F(min(wf, (¢, 0), @)

Hf:1 F(Ugh(t'}7 0))

x [ F(min(o3, (¢2,0), x))dm)

i=1

e—ﬁ(T%)(

Since F(-) < 1 ande #(T=1) > AT e have:
E[UBZd(U7 t,7 0)|k:7 l7j7 t%lli7 ) t%? "] > E[UBld(v7t7 0)|k:7 l7j7 t}7 **

This is true for any sequence of arrivals and hence is trueeif
take the expectation over the bidder arrival times. Thushee

E[UBid(U, t/, O)] > E[UBid(U, t, 0)]

Hence the utility from bidding is higher for bidders arrigitater in

the auction than for bidders arriving earlier. ]
Proof of Lemma 7
Proof: By definition of the threshold function, we have
vin(t,0) — P = E[Ugia(vin(t,0),t,0)] (A.24)

Assume for contradiction that?, (¢,0) < v3, (t — dt,0). Thus there

exists adv > 0, such that

v (t,0) = vi, (t — dt,0) — dv (A.25)
Using Lemma 6, we have
E[Upia(viy(t,0),t,0)] > E[Ugia(viy(t,0),t — dt,0)]  (A.26)

Substituting equation (A.25) in equation (A.24) and usiAd26), we
get

v (t — dt,0) — dv — P = E[Upiq(viy(t — dt,0) — dv,t,0)]
> E[Upia(viy(t — dt,0) — dv,t — dt,0)]

(A.27)

2
t17~-
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—dt,0), we have
—dt,0),t

By the definition ofv, (¢
vin(t — dt,0) — P = E[Upia(vin(t

Using equation (A.28) in (A.27), we get

E[Ugia(viy (t—dt,0), t—dt, 0)]—E[Ugia(vi, (t—dt,0)—dv, t—dt, 0)] > dv

On dividing both sides bylv and taking the limit aglv goes to zero,
we get thatZ E[Ug;q(v, t — dt,0)] > 1 which is a contradiction to
Lemma 4. Hence the threshold valuatigf) (¢, 0) is a non-decreasing
function of ¢. ]
Proof of Proposition 2
Proof: Consider the threshold at tinteand ¢ + At. We have

vin(t) = P = B|Usia(v(t), )]
Vi (t+At) — P =E [UBid(vfh (t+ At), ¢+ At)]

—dt,0)] (A.28)

To get a differential equation, we first calculate the expaattility
from bidding at time andt+At. We then subtract the two and divide
by At. Taking the limit asAt approaches zero, we get:

dviy(t) _ vin(t+ At) — v}, (2)
dt At—0 At
E[UBid(vfh(t + At),t + At)] —-E [UBid(UtQh(t), t)
= lim
At—0 At

(A.29)

First consider a bidder, call him, arriving at timet and having a
valuation equal to the threshold valuatiof, (¢). He has information
about all the bidders arriving before him, i.e. in the int&r(0,t). In
particular every biddef whose arrival time; € (0,t) has valuation
v; < v2, (t;). Thus for bidderA the arrival process of other bidders
is:

1) Non-homogeneous Poisson process in (0,t) with arrived ra

A7) = AF (v3,(1))
2) Homogeneous Poisson process in (t,T] with arrival pate

]

w

o

Threshold valuation

<
3
< g

t  t+dt

T
Auction time line

0/1
bidder

K bidders L Bidders

Fig. 5. Threshold valuation

To calculateE[Usyq (v, (t),t)], we will condition on the number
of arrivals in the interval(t,t + At). For notational convenience
let ¢’ t + At. Suppose thak bidders arrived in (0,t) at time
t1,t3, .., t;, respectively and. bidders arrive int’, T] where L is a
Poisson random variable with paramepdf” — ¢').

For the sake of brevity, let

[15, F(min(vd,(t}), z))
H Hz 1F(vth( ))
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Now suppose that there was one arrival(int’). The probability Now if there was no arrival in(¢,¢") (probability = (1 -
of this event isAAt, since the arrival process is Poisson. The utl|lt)§\F

from bidding in this case is: (T ))At))’ the expected utility is:

E[Usia (vin (1), t|Arrival in (t,¢'))] = E[Usia(vin(t'),t')|No Arrival in (t =
iE[e—W—”(/U”MHF(q;) x F(z)'dz)| x Pr(L =1) ZE[e*W*”(/ " HF(w)ldw)]Pr(L=l)
=0 CA =0 CA

Again ignoring the possibility of more than one arrival, tinecon-

Notice that here we first calculate the expected utility aseg L = [ = A
ditional expected utility is:

and then sum over all possible valuesThe expectatiorE is over

KT, Ty .y T B{Una(vf (¢), )] =
If there was no arrival in(t,t') (probability =1 — \A¢), the , 9
expected utility is [szd(vth( ), t)|Arrivalin (¢, )] (/\F(vth(T))At)

B[Usa (02, (1), 1] No Arival in (1, + At))] +E[szd(vth( "),t')|No Arrival in (t,t )} (1 - AF(vfh(r))At>

i E[emT”(/ﬁh(t) [ F(@)'dz)] x Pr(L =1)

Substituting for the terms we get:

E[Upia(vin(t), )] =

The probability of more than one arrival in an interval of dém (Tt ) o7 (¢ ) mlﬂ(vm 7)7_%))
At is o(At), where o(At) indicates any functionf(§) such that Z ( / (02, () F(z) dx)]
lims_o @ = 0, and thus when we divide b\t and take the =0 - th
limit At — 0 (as in equation A.29) the(At) terms will disappear. x Pr(L (AF 02 (7 ))
Hence ignoring the terms corresponding to more than oneshrthe
unconditional expected utility is: N Z ( _B(T—t ) / HF ldx)}
1=0

E[Usia(v2, (), )] = E[Ubid (v, (t), t/Arrival in (t,t/))] x (AAL)
, o x Pr(L = 1)(1 - AF(vfh(T))At)) (A.31)
+ E[Ubid(vth(t),ﬂNo Arrival in(t,t ))] x (1 — AAt)
To proceed further we need to make the following approxiomati
ReplaceF ( min(v7, (), z)) by F(z) in the first term of the equation
9 (A.31). The replacement effectively assumes that one biddes
E[Usia(vin(t), )] = valuation in the intervajv, v3,(t')] instead offv, v, (7)]. When cal-

oo 2 (t) . . . . . .
_B(T—1) th I+1 _ culating the maximum valuation among the bidders, this mgtion
(Z E[e (/ H F(z) dx)]Pr(L o l)) (AA?) can lead to an errog which is bounded as follows:

Substituting for the terms, we get

1=0

8

+( E[@—B(T—t)(/v?h(t) H F(m)ldxﬂ Pr(L = l)) (1-AA?) 0<e<up(t') —vin(r) < vin(t') — vin(t)

= (A.30) Assuming thatd””l(t) is finite, i.e. there exists & such that

d”+;(t) < C, the errore can be bounded above Wy(At). Thus

We now use the same technique to @szd (vin ('), ")]. Con- it we let T; to be the first term in equation (A.31) ard be the
sider a bidder, call himB, arriving at a timet’ having a valuation corresponding approximate expression, we have:

v7, (). He has information about bidders arriving before him, i.e. -
in the |nterval(() t'). In particular every biddet whose arrival time <o < Ele 2T (2 ¢ 2
— t) —
€ (0,¢') has valuationv; < v2,(t;). Thus for bidderB the arrival 0T -Ti <), [e (U””( ) vth(T))]
process of other bidders is:

_ 2
1) Non-homogeneous Poisson procesg(nt’) with arrival rate x Pr(L =1)« /\F(vth(T))At)

M7) = AF(v3, (1 ST 5 9

2) H(orlogene(oljg(Pz))isson procesg#ifyT'] with arrival rate\. < )CAF(vth(T))(At)

Now to calculateE[Ubid(ufh(t/),t/)], we will condition on the Dividing by At and taking the limitA¢ — 0, it is seen that the error
number of arrivals in the intervalt,t’). Suppose tha& bidders goes to zero.
arrived in (0,t] at timet, ts, .., t, and L bidders arrive in(¢', T). Now getting back to our original derivation. The expressian
Recall thatL is a Poisson random variable with parametéf —¢').  (A.31), after a little simplification, becomes:

First suppose that there was an arrivat a (¢,t). The probability
of this event isAF (v, (1)) At, since the arrival process is a non- E[Upia(vin (t'),t')] =

homogeneous Poisson process. Then the utility from bidding ° , v (t)
SB[ >(/ I F(x)l“dx)]m( — )(\AD)

E[Ubid(vgh( t'),t")|Arrival in (t,t')] = 1=0 . v .
SUEESETANS B o 3 (ol o[ M)

x F(z) dx>] x Pr(L =1) x Pr(L = l)(l - /\F(vfh(r))At)) (A:32)



Subtracting equation (A.30) from equation (A.32), divigliby A¢
and taking the limitAt — 0, we get, after some simplification:

i (50 P60) (507

dt Lo (ﬁ+>\(1—F(v3h(t))>) (T*t)

As before, we can set the threshold to be (fp(t), 7). Since we
assume the bidder valuations to be uniformly distributedvirv],
1 F(u2,(t)) = 2 for v2,(t) € [, 7).
Substitutingt = 0 in equation (12), we get the initial value for the
above differential equation:

v, (0) = P—% (LambertW( — " (BHNT

_ —(P—)AT4me” BHMT

< e ) + e—(ﬁ+>\)T>
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