
 
 

  
Abstract — We develop an extension to the tactical planning 
model (TPM) for a job shop by Graves [1]. The TPM is a 
discrete-time model in which all transitions occur at the start 
of each time period. The time period must be defined 
appropriately in order for the model to be meaningful. Each 
period must be short enough so that a job is unlikely to travel 
through more than one station in one period. At the same 
time, the time period needs to be long enough to justify the 
assumptions of continuous workflow and Markovian job 
movements. We build an extension to the TPM that 
overcomes this restriction of period sizing by permitting 
production control over shorter time intervals. We achieve 
this by deriving a continuous-time linear control rule for a 
single station. We then determine the first two moments of the 
production level and queue length for the workstation. 
 

Index Terms—job shop, tactical planning model, moments 
of production quantities and queue lengths, production 
smoothing 
 

I. INTRODUCTION 
HIS paper considers an extension to the tactical 
planning model of a job shop by Graves [1]. A job 
shop is a process structure in which there is a wide 

variety of jobs and a jumbled work flow through the shop. 
Due to the large variety of jobs and the diverse processing 
requirements of each job, there is no distinct workflow 
through the shop. Because of the wide job variety and thus 
a lack of prevailing work flow, production control is 
difficult and can be very complex.  

A job shop often represents the most complex and 
generic form of a manufacturing environment. Therefore, 
the ability to plan a job shop will provide useful insights 
for production control of other process structures. Graves 
[1] develops an analytical model to support tactical 
planning in job shops.  The model characterizes the 
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interrelationship of variability, production smoothness and 
work-in-process inventory in a job shop. As such, the 
model provides a foundation for the understanding for the 
trade-offs inherent in the planning of a job shop.  

The tactical planning model (TPM) is a discrete-time 
model in which all transitions within the model are 
governed by an underlying time period. The model 
assumes that all movement of jobs occurs at the start of 
each time period. As such, one must set the time period to 
be short enough so that it is unlikely for one job to travel 
through two successive stations in one time period.  

The TPM does not explicitly model the flow of discrete 
jobs, but rather models the flow of work due to the jobs. 
Work completed in the current period flows to downstream 
stages in the next period. However, in discrete 
manufacturing, each job is only transferred to the 
downstream station upon completion. So in order to 
accurately model the job movement, the time period for the 
TPM should preferably be long to increase the “fluidity” of 
the flow of the discrete jobs.  

Furthermore, the TPM assumes a Markovian workflow. 
The validity of this assumption depends on whether each 
workstation in the shop produces a stable mix of jobs. If 
many jobs can be completed in one period, then it is more 
likely that there is a stable output; but this also argues for a 
longer time period.  

In this paper we extend the model in [1] to address the 
model’s limitation due to the setting of the period length. 
In the next section, we give a literature review of work 
related to the TPM. We then present a brief review of the 
TPM in section III.  Next, we illustrate in section IV the 
limitation of the TPM due to the restriction of sizing the 
time periods. In section V, we derive a new linear control 
rule that will remove this restriction for a single-station 
system, and also determine the first two moments of the 
production quantity and queue length. We conclude in 
section VI with some thoughts on future research 
directions.  

 

II. RELATED WORK 
Graves [1] develops the TPM as a tactical planning tool 

for job shop operations. The TPM is a discrete-time linear-
system model that determines the first two moments of the 
production and queue levels, given the planned lead times 
of the workstations. The model tracks the workload at each 
station rather than the individual jobs; the model assumes 
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that the volume of work arrivals at a station are in fixed 
proportions of the work completed at upstream stations.  

To date, there are several extensions to the TPM. Parrish 
[2] proposes a framework for modeling work releases to 
meet the delivery due date for a finished product. In 
addition, he also shows how to adjust the control 
parameters of the TPM to change service measures in 
meeting demand.  

Graves [3] presents three extensions to a single-station 
model of the TPM. First, he models a station that fails 
according to a Bernoulli process. Second, he incorporates 
variability due to lot-sizing, and finally, he presents the 
mathematical bounds on a station with capacity constraint.  

Mihara [4] extends the work of Graves [3] when he 
looks at an unreliable multi-station TPM. Similar to 
Graves’ work, the stations fail according to a Bernoulli 
process.  

Fine and Graves [5] test the TPM on a real-life job shop 
when they apply the TPM to a shop that manufactures 
thermal conduction modules for mainframe computers [5]. 
Here, the model is extended to allow consideration of 
features such as release policies. The model is then used to 
study the impact of various planning policies and the effect 
of changes in product mix.  

Hollywood [6] demonstrates how to calculate 
approximations for the steady-state moments of TPM with 
general non-linear control rules. His model allows for the 
modeling of machine congestion due to capacity loading. 

Other efforts adapt the TPM to pull systems. Leong [7] 
models a Kanban control system and other pull systems 
using the TPM in which work is produced at a station 
whenever there is a downstream inventory shortfall. More 
recently, Graves and Hollywood develop a constant-
inventory TPM in which the release of work into the shop 
is regulated to maintain a constant inventory level [8].  

 

III. REVIEW OF THE TACTICAL PLANNING MODEL 
The tactical planning model (TPM) is a discrete-time, 

continuous flow model. All transitions within the model 
occur at the start of each time period, and the jobs are 
modeled as workload measured in time units (e.g. hours). 
The workflow is assumed to have a Markov property: that 
is, the processing requirements at a station do not depend 
on how work got to the station. As such, each individual 
job has no identity. 

Central to the TPM model is the linear control rule, 
which is stated as  
 

itiit QP α=            (1) 
 
where Pit is the amount of production completed by work 
station i in time period t, Qit is the queue level at the start of 
period t, and the parameter 10, ≤< ii αα , is a smoothing 
parameter. This rule states that the production Pit at 
workstation i is a fixed portion (αi) of the queue of work 
Qit at the start of the period. In particular, 1/αi represents 
the number of periods, on average, the work requires to 

move through the work station. We interpret 1/αi to 
represent the planned lead time. We can view the control 
rule in (1) as a prescriptive equation, i.e. to preserve the 
integrity of the planned lead time, we must shift capacity to 
heavily loaded stations. But (1) can also be considered as a 
descriptive equation where production resources are 
naturally flexed to accommodate the varying workloads at 
the stations. 

The queue level Qit satisfies the standard inventory 
balance equation 

 ittitiit APQQ +−= −− 1,1,  (2) 

where Ait is the amount of work that arrives at workstation 
i at the start of period t.  By substituting (1) into (2), we 
obtain a first-order smoothing equation with iα  as the 
smoothing parameter: 

ititiiit APP αα +−= −1,)1(  (3)

Each workstation can receive two types of arrivals; one 
type of arrival consists of jobs that have their first 
processing step at the station, while the other type of 
arrival consists of in-process jobs that have just completed 
processing at an upstream station.  We model the arrivals 
to station i from another station j by the equation: 

 ijttjijijt PA εφ += −1,  (4) 

Aijt is the flow of work arriving at station i from station j at 
the start of period t, φij is a positive scalar and εijt is a 
random variable.  We assume that one unit (e.g. hour) of 
work at station j will trigger, on average, φij time units of 
work at station i. The variable εijt is a noise term that 
models uncertainty between production at j and arrivals to 
i, and is assumed to be an i.i.d. random variable with zero 
mean and a known variance. 

The arrival to station i is given by 
 

 ∑ +=
j

itijtit NAA  (5) 

where Nit is an i.i.d. random variable for the workload from 
new jobs that enter the shop at station i at time t.  
Substituting for Aijt, we obtain  
 

∑ += −
j

ittjijit PA εφ 1, , where ∑+=
j

ijtitit N εε  (6) 

The term εit represents arrivals that are not predictable from 
the production levels of the previous period, and consists 
of work from new jobs and noise in the flow.  By 
assumption, the time series εit is independent and 
identically distributed over time. 

We can restate the equations for production (3) and for 
arriving work (6) in matrix-vector form: 

 



 
 

ttt DAPDIP +−= −1)( , (7) 

ttt PA εΦ += −1  (8) 

 
where Pt = {P1t,…Pnt}', At = {A1t,…,Ant}', and εt = 
{ε1t,…,εnt}' are column vectors of random variables, n is 
the number of workstations, I is the identity matrix, D is a 
diagonal matrix with {α1,…,αn} on the diagonal, and Φ is 
an n-by-n matrix with elements φij.  By substituting 
equation (8) into equation (7), we find that 
 

ttt DPDDIP εΦ ++−= −1)(  (9) 

 
By iterating this equation and assuming an infinite history 
of the system, we rewrite Pt as an infinite series 
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The mean and the covariance for the noise vector εt are 
denoted by µ = {µ1,…,µn}', and Σ = {σij} respectively.  The 
first two moments of Pt are given by 
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where ΦDDIB +−=  

 
We note that S provides the variance of the production 

requirements for each station, as well as the covariance for 
each pair of workstations. In addition, we determine the 
first two moments of the queue levels. From (1), we note 
that 

 

tt PDQ 1−=           (13) 
 
Therefore we have 
 

][][ 1
tt PEDQE −=        (14) 

 
and 
 
      11)( −−= SDDQVar t       (15) 

 
The infinite series in equations (11), (12), (14) and (15) 

converge provided that ρ(Φ) < 1, where ρ(Φ) denotes the 
spectral radius of Φ (see [1]).  

 

IV. LIMITATION OF TPM 
In this section, we examine the limitations of the TPM 

due to the sizing of the discrete time period. This provides 
the motivation for our work, which is presented in the next 
section. 

In the TPM, all job movements can only occur at the 
start of each time period. In order to model movement of 
jobs in the actual shop, we are restricted to set the period 
length to be short enough so that it is highly improbable for 
one job to travel through more than one station in a single 
time period.  

However, due to the continuous-flow assumption, the 
time period should be long relative to the workload of the 
individual discrete jobs. This will increase the “fluidity” of 
the discrete jobs and will make the continuous-flow 
assumption more reasonable. Now we use an example to 
illustrate the discrepancies between the model and the 
actual system due to the above contradictory objectives in 
period sizing.  

To simplify our illustration, we consider a simple system 
that consists of two stations in series, namely Station i and 
Station j. We further assume that the planned lead time of 
Station i is 2 hours, while that of Station j is 1 hour. We set 
the length of the time period to be 1 hour, as we assume 
that it is unlikely for a job in Station i to travel beyond 
Station j in 1 hour. Now consider a job that enters the 
empty system and arrives at Station i at the start of period t. 
We suppose that the job has a processing time of 2 hours at 
Station i, and 1 hour at Station j. We illustrate and compare 
the sequence of events for the actual system and the TPM 
from period t to t + 2.  

Fig. 1 shows the actual system from the start of period t 
to t + 2. The job arrives at Station i at the start of period t. 
Since the planned lead time is 2 periods, the job is 
processed at Station i till the end of t + 1. The job is then 
transferred to Station j at the start of t + 2. It is then 
processed at Station j till the end of period t + 2 since the 
planned lead time is 1 period.   

Now we look at the same scenario in the context of the 
TPM. Suppose that both Stations i and j produce according 
to the TPM control rule in equation (1). In this case, given 
the planned lead time of each station, we have αi = ½ and 
αj = 1. Job movements between the two stations are 
modeled by equation (4). We assume that the term φij = 0.5 
given the processing times of the job, and εijt = 0. Fig. 2 
illustrates the workflow in the TPM from the start of period 
t to t + 2. As shown in the figure, Station i processes half 
of the in-queue workload at the start of each period (αi = 
½), while Station j processes the entire workload (αj = 1). 
And the workload processed by Station i in each period 
generates half the workload at Station j at the start of the 
next period (φij = 0.5). 
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Fig. 3. Production levels at Station j in actual system and TPM 
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In the actual system, the discrete job moves to the 
downstream station only upon completion. However, in 
the TPM, work flows as a fluid to the downstream station 
even if the discrete job is not completed. In this example, 
the discrete job is “split” up and moved in parts to the 
downstream station. This is due to the fact that the period 
length is short (1 hour) compared to the workload of the 
job at Station i (2 hours). As a result, a workload from the 
job is generated at Station j even though it is still in-
process at the upstream station.  

Fig. 3 shows the production levels at Station j over 
period t to t + 2 in both the actual system and the TPM. 
The production level in the actual system consists of a 
“spike” of 1 hour in period t + 2. In the TPM, the 
production is “smoothed”, with production levels at 0.5 
hour and 0.25 hour in period t + 1 and t + 2 respectively. 

This example considers a system of only two stations. 
To model a complex job shop using the TPM, one must 
set the period length by considering the job movements 
between all stations.  

On the one hand, the period length should be such that 
it is unlikely that a job completes processing at more than 
one work station in a time period.  In a shop with many 
stations and where jobs move quickly between stations, 
this implies that the period length be set on the order of 
the average job workload.  

On the other hand, the accuracy of the TPM depends on 
assumptions of continuous workflow.  We prefer to set a 
long time period relative to the workload of the jobs so 
that the discrete jobs will be “more fluid.” Furthermore, 
the TPM assumes a Markovian workflow such that 
transitions do not depend on the history of the system. In 
essence, the model assumes that each station processes a 
relatively stable mix of jobs in each time period, so that 
subsequent flow to downstream stations is stable as well. 
The validity of this assumption also depends on the length 
of the time period. If only a few jobs are completed in 
each period, then it is unlikely that there is a very stable 
output. Therefore, this assumption will be more valid if we 
are able to set a longer time period. 

In addition, the restriction of period sizing may hinder 
the application of the TPM to production planning and 
scheduling. In some job shops, it takes only a short time 
(e.g. less than an hour) for a job to travel through more 
than one station, and thus the discrete time period has to 
be short. However, the parameters in most planning 
systems, such as the demand requirements, are defined in 
daily or weekly time units. Thus the ability to set a longer 
time period will facilitate the application of the TPM to 
production planning and scheduling.  

In the next section we describe an approach to extend 
the TPM to be less dependent on the choice of time 
period. 

V. MODEL 
In this section, we develop a single-station model to 
overcome the limitations of the TPM discussed in section 
IV. We will derive a linear control rule that accommodates 

more frequent arrivals to the work station; as a 
consequence, we can now permit work to flow through 
more than one work station within a time period. We find 
the first two moments of the production and queue length 
variables using the derived control rule.  

Without loss of generality, we suppose that each 
discrete time period t has a length of one time unit. We 
sub-divide each time period t into m equal subintervals of 
sub-period s, where s = 1, 2,…, m.  We define m = 1/∆, 
where ∆ is the length of each sub-period.  

We assume that work flow can arrive at the start of each 
sub-period. We also assume that we set the production in 
each sub-period according to the linear control rule (1). 
Thus, we control the production according to a finer time 
grid, and we allow for more fluid arrivals to the work 
station.  

We restate the control rule (1) for each sub-period s as  
 
  Y(∆, s) = α∆.X(∆, s)  for s = 1, 2, …, m  (16) 
 
where Y(∆, s) is the production level in sub-period s of 
length ∆, X(∆, s) is the queue length at start of sub-period 
s of length ∆ and α is the smoothing parameter. We 
interpret 1/α as the planned lead time; however, we now 
permit α to assume any positive value, and thus, we permit 
the planned lead time to be less than one time period.   
Equation (16) is analogous to (1) such that the production 
Y(∆, s) in each sub-period s is a fixed fraction α∆ of the 
queue length X(∆, s) at the start of each sub-period.  

Now we proceed to develop the linear control rule for 
Pt in terms of Qt and At. These variables have the same 
definition as in TPM: Pt is the production completed in 
period t, Qt is the queue length at the start of period t, and 
At is the arrival of work to the station in period t. 
However, we now assume that At does not arrive at the 
start of the period, but rather arrives uniformly over period 
t. In particular, we assume that in each sub-period, the 
arrival amount is equal to At /m.  

We have the following boundary condition for the 
queue length for the first sub-period: 
 

X(∆, s = 1) = Qt + At /m        
 
For s > 1, we model the queue length in the sub-period s 
by the standard inventory equation 
 

X(∆, s)  = X(∆, s - 1) - Y(∆, s - 1) + At /m   (17) 
 
 
By substituting (16) into (17), we obtain 
 

X(∆, s)  = (1 - α∆) X(∆, s - 1) + At /m   (18) 
 
Now to get an expression for Pt, we note that 
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We sum the above expressions for X(∆, s) to find 
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From (20), we observe that 
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We now combine (19) and (21) to get 
 

),()1( mXAQP ttt ∆∆α−−+=       (22) 
 
From (22), in order to get an expression for Pt, we need to 
find X(∆, m). From (18) and repeated substitution, we can 
then write 
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We can use (23) to re-write (22) as 
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Thus we can write (24) as 
 

ttt AQP )()( ∆γ∆β +=           (25) 

 where 
 

m)1(1)( ∆α∆β −−=  
 
and 
 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

−=

−−⎟
⎠
⎞

⎜
⎝
⎛ −

−=

α
∆α∆β

∆α
α

∆α∆γ

1)(1

)1(111)( m

  

 
Now we proceed to determine the continuous-time limits 
for β(∆) and γ(∆) as the length of the sub-period goes to 
zero. This corresponds to a continuous-time control in 
which the production level will satisfy (16) at every 

instant in time. We use the formula 1
1

0
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For γ(∆), we find that 
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We can now restate (25) for the continuous-time control 
as: 
 

ttt AQP γβ +=             (26) 
 

where β and γ are given above. 
 The balance equation for the queue length for the single 
station is now given by: 
 

111 −−− +−= tttt APQQ .                                 (27) 
 
This balance equation differs from (2) in the TPM, due to 
the new assumption that arrivals occur continuously 
throughout a period. Hence, we define Qt to be the queue 
length at the start of period t, prior to any arrivals in 
period t.    

By substituting (26) into (27) and repeated substitution, 
we obtain: 
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 If we assume that the arrivals are i.i.d. with mean µ and 
variance σ2, then we find the two moments for the queue 
length from (28): 
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 Similarly, we obtain the two moments for the 
production variable: 
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Thus, we have analytical expressions for the moments 

of these two variables. We have expressed these in terms 
of the parameters β and γ, both of which are functions of 
our smoothing parameter α.  However, it is not obvious 
how the variances of production and the queue length 
depend on the smoothing parameter α. To provide some 
insight into this, we graph each variance as a function of 
the smoothing parameter α in Fig. 4 (with σ = 1). We see 
from these graphs that the variance of production drops as 
we do more smoothing, i.e., small values of α, or 
equivalently longer planned lead times.  However, as we 
do more smoothing of production, both the expected 
queue length and its variance grow.  

 

 
  

These moments provide a simple way to see the 
fundamental trade-offs across the three elements of time, 
capacity and variability.  For given level of demand 
variability (given by the arrival process), as we reduce the 
planned lead time, production becomes more variable and 
more capacity is required; alternatively, as we smooth 
production, we need less capacity but more time in terms 
of the planned lead time. 
 These insights are the same as for the TPM. But the 
model given here is more general in that we permit 
continuous arrivals to the work station and continuous 
production control. 
 

VI. CONCLUDING REMARKS 
In this paper, we extend the TPM to address its 

dependency on the choice of time period; in particular, we 

permit work to arrive throughout a period, as opposed to 
at the start of each period and we permit continuous 
production control. We derive a linear control rule by 
assuming that the production is controlled according to a 
finer time grid. We then obtain the continuous-time limits 
of the control rule, and find the first two moments of the 
production and queue random variables based on the 
control rule. 

Our next step is to extend the single-station model to a 
network of workstations as would exist in a job shop. We 
will need to determine how best to model the flow of work 
between stations, so as to capture actual behavior and yet 
still retain analytical tractability. We will need to 
investigate the stability of this model; in particular, we 
wish to find the conditions of convergence for the first two 
moments of production and queue vectors. In the TPM in 
[1], the first two moments converge provided that the 
spectral radius of workflow matrix Φ is less than 1. This 
implies that a unit of work at any station cannot eventually 
result in more than one unit of work for the same station. 
It is of interest to evaluate the convergence conditions of 
this model as compared to the TPM in [1].  

In addition, we have not established the benefits of this 
extension over the original TPM under different job shop 
conditions. It is worthwhile to carry out a study, perhaps 
through a computational experiment, to compare how this 
extension performs relative to the TPM in different 
operating conditions, such as the stability of job mix and 
speed of job movement between stations. 
 Another opportunity for future research is to extend this 
model to incorporate congestion effects due to capacity 
loading. This would involve relaxing the linear control 
assumptions for each station. Hollywood [6] has 
developed an approximation for the TPM with nonlinear 
control rules. It may be possible to integrate his 
approximation into this model.  
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