
On-the-Fly Maintenance of Series-Parallel Relationships
in Fork-Join Multithreaded Programs

Michael A. Bender Jeremy T. Fineman Seth Gilbert Charles E. Leiserson

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract

A key capability of data-race detectors is to determine whether one
thread executes logically in parallel with another or whether the
threads must operate in series. This paper provides two algorithms,
one serial and one parallel, to maintain series-parallel (SP) rela-
tionships “on the fly” for fork-join multithreaded programs. The
serial SP-order algorithm runs in O(1) amortized time per opera-
tion. In contrast, the previously best algorithm requires a time per
operation that is proportional to Tarjan’s functional inverse of Ack-
ermann’s function. SP-order employs an order-maintenance data
structure that allows us to implement a more efficient “English-
Hebrew” labeling scheme than was used in earlier race detectors,
which immediately yields an improved determinacy-race detector.
In particular, any fork-join program running in T1 time on a sin-
gle processor can be checked on the fly for determinacy races in
O(T1) time. Corresponding improved bounds can also be obtained
for more sophisticated data-race detectors, for example, those that
use locks.

By combining SP-order with Feng and Leiserson’s serial SP-
bags algorithm, we obtain a parallel SP-maintenance algorithm,
called SP-hybrid. Suppose that a fork-join program has n threads,
T1 work, and a critical-path length of T∞. When executed
on P processors, we prove that SP-hybrid runs in O((T1/P +
PT∞) lg n) expected time. To understand this bound, consider that
the original program obtains linear speed-up over a 1-processor ex-
ecution when P = O(T1/T∞). In contrast, SP-hybrid obtains lin-
ear speed-up when P = O(

√

T1/T∞), but the work is increased
by a factor of O(lg n).

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; D.2.5 [Software Engineering]: Testing
and Debugging—debugging aids; E.1 [Data Structures]: dis-
tributed data structures; G.2 [Discrete Mathematics]: Graph The-
ory—graph algorithms.

This research was supported in part by the Singapore-MIT Alliance,
Sandia National Laboratories, and NSF grants ACI-032497, EIA-0112849,
CCR-0208670, ITR-0121277, and AFOSR #F49620-00-1-0097.

Michael Bender is a Visiting Scientist at MIT CSAIL and Assistant Pro-
fessor at the State University of New York at Stony Brook.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04, June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

General Terms

Algorithms, Theory, Verification.

Keywords

Amortized analysis, algorithm, Cilk, data race, data structure, dy-
namic set, fork-join, graph, least common ancestor, locking, multi-
threading, mutual exclusion, on the fly, order maintenance, parallel
computing, parse tree, race detection, series-parallel, SP-bags, SP-
hybrid, SP-order, thread, trace, tree, work stealing.

1 Introduction

This paper shows how to maintain the series-parallel (SP) relation-
ships between logical threads in a multithreaded program “on the
fly.” This problem arises as the principal data-structuring issue in
dynamic data-race detectors [13, 19, 20, 26, 27]. In this paper, we
show that for fork-join programming models, such as MIT’s Cilk
system [11, 21, 28], this data-structuring problem can be solved
asymptotically optimally. We also give an efficient parallel solu-
tion to the problem.

The execution of a multithreaded program can be viewed as a
directed acyclic graph, or computation dag, where nodes are either
forks or joins and edges are threads. Such a dag is illustrated in
Figure 1. A fork node has a single incoming edge and multiple
outgoing edges. A join node has multiple incoming edges and a
single outgoing edge. Threads (edges) represent blocks of serial
execution.

For fork-join programming models, where every fork has a cor-
responding join that unites the forked threads, the computation
dag has a structure that can be represented efficiently by a series-
parallel (SP) parse tree [20]. In the parse tree each internal node is
either an S-node or a P-node and each leaf is a thread of the dag.1

Figure 2 shows the parse tree corresponding to the computation
dag from Figure 1. If two subtrees are children of the same S-node,
then the parse tree indicates that (the subcomputation represented
by) the left subtree executes before (that of) the right subtree. If
two subtrees are children of the same P-node, then the parse tree
indicates that the two subtrees execute logically in parallel.

An SP parse tree can be viewed as an a posteriori execution of
the corresponding computation dag, but “on-the-fly” data-race de-
tectors must operate while the dag, and hence the parse tree, is un-
folding dynamically. The way that the parse tree unfolds depends
on a scheduler, which determines which threads execute where and
when on a finite number of processors. A partial execution corre-
sponds to a subtree of the parse tree that obeys the series-parallel
relationships, namely, that a right subtree of an S-node cannot be

1We assume without loss of generality that all SP parse trees are full
binary trees, that is, each internal node has exactly two children.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: A dag representing a multithreaded computation. The edges
represent threads, labeled u0, u1, . . . u8. The diamonds represent forks,
and the squares indicate joins.

Figure 2: The parse tree for the computation dag shown in Figure 1. The
leaves are the threads in the dag. The S-nodes indicate series relationships,
and the P-nodes indicate parallel relationships.

present unless the corresponding left subtree has been fully elabo-
rated. Both subtrees of a P-node, however, can be partially elabo-
rated. In a language like Cilk, a serial execution unfolds the parse
tree in the manner of a left-to-right walk. For example, in Figure 2,
a serial execution executes the threads in the order of their indices.

A typical serial, on-the-fly data-race detector simulates the exe-
cution of the program as a left-to-right walk of the parse tree while
maintaining various data structures for determining the existence
of races. The core data structure maintains the series-parallel re-
lationships between the currently executing thread and previously
executed threads. Specifically, the race detector must determine
whether the current thread is operating logically in series or in
parallel with certain previously executed threads. We call a dy-
namic data structure that maintains the series-parallel relationship
between threads an SP-maintenance data structure. The data struc-
ture supports insertion, deletion, and SP queries: queries as to
whether two nodes are logically in series or in parallel.

The Nondeterminator [13,20] race detectors use a variant of Tar-
jan’s [30] least-common-ancestor algorithm, as the basis of their
SP-maintenance data structure. To determine whether a thread ui

logically precedes a thread uj , denoted ui ≺ uj , their SP-bags al-
gorithm can be viewed intuitively as inspecting their least common
ancestor lca(ui, uj) in the parse tree to see whether it is an S-node
with ui in its left subtree. Similarly, to determine whether a thread
ui operates logically in parallel with a thread uj , denoted ui ‖ uj ,
the SP-bags algorithm checks whether lca(ui, uj) is a P-node. Ob-
serve that an SP relationship exists between any two nodes in the
parse tree, not just between threads (leaves).

For example, in Figure 2, we have u1 ≺ u4, because S1 =
lca(u1, u4) is an S-node and u1 appears in S1’s left subtree. We
also have u1 ‖ u6, because P1 = lca(u1, u6) is a P-node. The
(serially executing) Nondeterminator race detectors perform SP-
maintenance operations whenever the program being tested forks,
joins, or accesses a shared-memory location. The amortized cost
for each of these operations is O(α(v, v)), where α is Tarjan’s
functional inverse of Ackermann’s function and v is the number

Algorithm Space Time per
per node Thread Query

creation

English-Hebrew [27] Θ(f) Θ(1) Θ(f)
Offset-Span [26] Θ(d) Θ(1) Θ(d)

SP-Bags [20] Θ(1) Θ(α(v, v)) Θ(α(v, v))
SP-Order Θ(1) Θ(1) Θ(1)

f = number of forks in the program
d = maximum depth of nested parallelism
v = number of shared locations being monitored

Figure 3: Comparison of serial, SP-maintenance algorithms. The run-
ning times of the English-Hebrew and offset-span algorithms are worst-case
bounds, and the SP-bags and SP-order algorithms are amortized. The func-
tion α is Tarjan’s functional inverse of Ackermann’s function.

of shared-memory locations used by the program. As a conse-
quence, the asymptotic running time of the Nondeterminator is
O(T1α(v, v)), where T1 is the running time of the original pro-
gram on 1 processor.

The SP-bags data structure has two shortcomings. The first is
that it slows the asymptotic running time by a factor of α(v, v).
This factor is nonconstant in theory but is nevertheless close enough
to constant in practice that this deficiency is minor. The second,
more important shortcoming is that the SP-bags algorithm relies
heavily on the serial nature of its execution, and hence it appears
difficult to parallelize.

Some early SP-maintenance algorithms use labeling schemes
without centralized data structures. These labeling schemes are
easy to parallelize but unfortunately are much less efficient than
the SP-bags algorithm. Examples of such labeling schemes include
the English-Hebrew scheme [27] and the offset-span scheme [26].
These algorithms generate labels for each thread on the fly, but once
generated, the labels remain static. By comparing labels, these SP-
maintenance algorithms can determine whether two threads operate
logically in series or in parallel. One of the reasons for the ineffi-
ciency of these algorithms is that label lengths increase linearly
with the number of forks (English-Hebrew) or with the depth of
fork nesting (offset-span).

Results

In this paper we introduce a new SP-maintenance algorithm, called
the SP-order algorithm, which is more efficient than the SP-bags
algorithm. This algorithm is inspired by the English-Hebrew
scheme, but rather than using static labels, the labels are maintained
by an order-maintenance data structure [10, 15, 17, 33]. Figure 3
compares the serial space and running times of SP-order with the
other algorithms. As can be seen from the table, SP-order attains
asymptotic optimality.

We also present a parallel SP-maintenence algorithm which is
designed to run with a Cilk-like work-stealing scheduler [12, 21].
Our SP-hybrid algorithm consists of two tiers: a global tier based
on our SP-order algorithm, and a local tier based on the Nondeter-
minator’s SP-bags algorithm. Suppose that a fork-join program has
n threads, T1 work, and a critical-path length of T∞. Whereas the
Cilk scheduler executes a computation with work T1 and critical-
path length T∞ in asymptotically optimal TP = O(T1/P + T∞)
expected time on P processors, SP-hybrid executes the computa-
tion in O((T1/P + PT∞) lg n) time on P processors while main-
taining SP relationships. Thus, whereas the underlying computa-
tion achieves linear speedup when P = O(T1/T∞), SP-hybrid
achieves linear speed-up when P = O(

√

T1/T∞), but the work is
increased by a factor of O(lg n).



The remainder of this paper is organized as follows. We present
the SP-order algorithm in Section 2. Section 3 presents an overview
of the parallel SP-hybrid algorithm. Section 4 describes the orga-
nization of SP-hybrid’s global tier in more detail, and Section 5
describes the local tier. Section 6 provides a proof of correctness,
and Section 7 analyzes the performance of SP-hybrid. Finally, Sec-
tion 8 reviews related work, and Section 9 offers some concluding
remarks.

2 The SP-order algorithm

This section presents the serial SP-order algorithm. We begin by
discussing how an SP parse tree, provided as input to SP-order, is
created. We then review the concept of an English-Hebrew order-
ing [27], showing that two linear orders are sufficient to capture SP
relationships. We show how to maintain these linear orders on the
fly using order-maintenance data structures [10,15,17,33]. Finally,
we give the SP-order algorithm itself. We show that if a fork-join
multithreaded program has a parse tree with n leaves, then the to-
tal time for on-the-fly construction of the SP-order data structure
is O(n) and each SP query takes O(1) time. Thus, any fork-join
program running in T1 time on a single processor can be checked
on the fly for determinacy races in O(T1) time.

The input to SP-order

SP-order takes as input a fork-join multithreaded program ex-
pressed as an SP parse tree. In a real implementation, such as a
race detector, the parse tree unfolds dynamically and implicitly as
the multithreaded program executes, and the particular unfolding
depends on how the program is scheduled on the multiprocessor
computer. For ease of presentation, however, we assume that the
program’s SP parse tree unfolds according to a left-to-right tree
walk. During this tree walk, SP-order maintains the SP relation-
ships “on the fly” in the sense that it can immediately respond to
SP queries between any two executed threads. At the end of the
section, we relax the assumption of left-to-right unfolding, at which
point it becomes apparent that no matter how the parse tree unfolds,
SP-order can maintain SP relationships on the fly.

English and Hebrew orderings

SP-order uses two total orders to determine whether threads are
logically parallel, an English order and a Hebrew order. In the
English order, the nodes in the left subtree of a P-node precede
those in the right subtree of the P-node. In the Hebrew order, the
order is reversed: the nodes in the right subtree of a P-node precede
those in the left. In both orders, the nodes in the left subtree of an
S-node precede those in the right subtree of the S-node.

Figure 4 shows English and Hebrew orderings for the threads
in the parse tree from Figure 2. Notice that if ui belongs to the
left subtree of an S-node and uj belongs to the right subtree of the
same S-node, then we have E[ui] < E[uj ] and H[ui] < H[uj ]. In
contrast, if ui belongs to the left subtree of a P-node and uj belongs
to the right subtree of the same P-node, then E[ui] < E[uj ] and
H[ui] > H[uj ].

The English and Hebrew orderings capture the SP relationships
in the parse tree. Specifically, if one thread ui precedes another
thread uj in both orders, then thread ui ≺ uj in the parse tree (or
multithreaded dag). If ui precedes uj in one order but ui follows
uj in the other, then ui ‖ uj . For example, in Figure 4, we have
u1 ≺ u4, because 1 = E[u1] < E[u4] = 4 and 5 = H[u1] <
H[u4] = 8. Similarly, we can deduce that u1 ‖ u6, because 1 =
E[u1] < E[u6] = 6 and 5 = H[u1] > H[u6] = 3. The following
lemma shows that this property always holds.

Figure 4: An English ordering E and a Hebrew ordering H for the threads
in the parse tree from Figure 2. Under each thread u is an ordered pair
(E[u], H[u]) giving its index in each of the two orders.

Lemma 1. Let E be an English ordering of the threads of an SP-
parse tree, and let H be a Hebrew ordering. Then, for any two
threads ui and uj in the parse tree, we have ui ≺ uj in the parse
tree if and only if E[ui] < E[uj ] and H[ui] < H[uj ].

Proof. (⇒) Suppose that ui ≺ uj , and let X = lca(ui, uj).
Then, X is an S-node in the parse tree, the thread u1 resides in X’s
left subtree, and uj resides in X’s right subtree. In both orders, the
threads in the X’s left subtree precede those in X’s right subtree,
and hence, we have E[ui] < E[uj ] and H[ui] < H[uj ].

(⇐) Suppose that E[ui] < E[uj ] and H[ui] < H[uj ], and let
X = lca(ui, uj). Since we have E[ui] < E[uj ], thread u1 must
appear in X’s left subtree, and u2 must appear in X’s right subtree.
By definition of a Hebrew ordering, X must be an S-node, and
hence ui ≺ uj .

We can restate Lemma 1 as follows.

Corollary 2. Let E be an English ordering of the threads of an
SP-parse tree, and let H be a Hebrew ordering. Then, for any two
threads ui and uj in the parse tree with E[ui] < E[uj ], we have
ui ‖ uj if and only if H[ui] > H[uj ].

Labeling a static SP parse tree with an English-Hebrew ordering
is easy enough. To compute the English ordering, perform a depth-
first traversal visiting left children of both P-nodes and S-nodes
before visiting right children (an English walk). Assign label i to
the ith thread visited. To compute the Hebrew ordering, perform
a depth-first traversal visiting right children of P-nodes before vis-
iting left children but left children of S-nodes before visiting right
children (a Hebrew walk). Assign labels to threads as before.

In race-detection applications, one must generate “on-the-fly”
orderings as the parse tree unfolds. If the parse tree unfolds ac-
cording to an English walk, then computing an English ordering
is easy. Unfortunately, computing a Hebrew ordering on the fly
during an English walk is problematic. In the Hebrew ordering the
label of a thread in the left subtree of a P-node depends on the num-
ber of threads in the right subtree. In an English walk, however, this
number is unknown until the right subtree has unfolded.

Nudler and Rudolph [27], who introduced English-Hebrew la-
beling for race detection, addressed this problem by using large
thread labels. In particular, the number of bits in a label in their
scheme can grow linearly in the number of P-nodes in the SP parse
tree. Although they gave a heuristic for reducing the size of labels,
manipulating large labels is the performance bottleneck in their al-
gorithm.

The SP-order data structure

Our solution is to employ order-maintenance data structures [10,15,
17,33] to maintain the English and Hebrew orders rather than using



the static labels described above. In order-maintenance data struc-
tures, the labels inducing the order change during the execution of
the program. An order-maintenance data structure is an abstract
data type that supports the following operations:
• OM-PRECEDES(L, X, Y ): Return TRUE if X precedes Y in

the ordering L. Both X and Y must already exist in the or-
dering L.

• OM-INSERT(L, X, Y1, Y2, . . . , Yk): In the ordering L, insert
new elements Y1, Y2, . . . , Yk, in that order, immediately after
the existing element X .

The OM-PRECEDES operation can be supported in O(1) worst-
case time. The OM-INSERT operation can be inserted in O(1)
worst-case time for each node inserted.

The SP-order data structure consists of two order-maintenance
data structures to maintain English and Hebrew orderings.2 With
the SP-order data structure, the implementation of SP-order is re-
markably simple.

Pseudocode for SP-order

Figure 5 gives C-like pseudocode for SP-order. The code performs
a left-to-right tree walk of the input SP parse tree, executing threads
on the fly as the parse tree unfolds. In lines 1–3, the code handles
a leaf in the SP parse tree. In a race-detection application, queries
of the two order-maintenance data structures are performed in the
EXECUTETHREAD function, which represents the computation of
the program under test. Typically, a determinacy-race detector per-
forms O(1) queries for each memory access of the program under
test.

As the tree walk encounters each internal node of the SP parse
tree, it performs OM-INSERT operations into the English and He-
brew orderings. In line 4, we update the English ordering for the
children of the node X and insert X’s (left and right) children after
X with X’s left child appearing first. Similarly, we update the He-
brew ordering in lines 5–7. For the Hebrew ordering, we insert X’s
children in different orders depending on whether X is an S-node
or a P-node. If X is an S-node, handled in line 6, we insert X’s
left child and then X’s right child after X in the Hebrew order. If
X is a P-node, on the other hand, X’s left child follows X’s right
child. In lines 8–9, the code continues to perform the left-to-right
tree walk. We determine whether X precedes Y , shown in lines
10–11, by querying the two order-maintenance structures using the
order-maintenance query OM-PRECEDES.

The following lemma demonstrates that SP-ORDER produces
English and Hebrew orderings correctly.

Lemma 3. At any point during the execution of SP-ORDER on an
SP parse tree, the order-maintenance data structures Eng and Heb
maintain English and Hebrew, respectively, orderings of the nodes
of the parse tree that have been visited thus far.

Proof. Consider an internal node Y in the SP parse tree, and con-
sider first the Eng data structure. We must prove that all the nodes
in Y ’s left subtree precede all the nodes in Y ’s right subtree in the
Eng ordering. We do so by showing that this property is main-
tained as an invariant during the execution of the code. The only
place that the Eng data structure is modified is in line 4. Suppose
that the invariant is maintained before SP-ORDER is invoked on a
node X . There are four cases:

1. X = Y : Trivial.
2. X resides in the left subtree of Y : We already assume that

X precedes all the nodes in Y ’s right subtree. In line 4, X’s
children are inserted immediately after X in Eng . Hence,

2In fact, the English ordering can be maintained implicitly during a left-
to-right tree walk. For conceptual simplicity, however, this paper uses order-
maintenance data structures for both orderings.

SP-ORDER(X)

1 if ISLEAF(X)
2 then EXECUTETHREAD(X)
3 return

� X is an internal node
4 OM-INSERT(Eng , X, left [X], right [X])

5 if ISSNODE(X)
6 then OM-INSERT(Heb, X, left [X], right [X])
7 else OM-INSERT(Heb, X, right [X], left [X])

8 SP-ORDER(left [X])
9 SP-ORDER(right [X])

SP-PRECEDES(X, Y )

10 if OM-PRECEDES(Eng , X, Y ) and
OM-PRECEDES(Heb, X, Y )

11 then return TRUE
12 return FALSE

Figure 5: The SP-order algorithm written in C-like pseudocode. The SP-
ORDER procedure maintains the relationships between thread nodes in an
SP parse tree which can be queried using the SP-PRECEDES procedure.
An internal node X in the parse tree has a left child, left [X], and a right
child, right [X]. Whether a node is an S-node or a P-node can be queried
with ISSNODE. Whether the node is a leaf can be queried with ISLEAF.
The English and Hebrew orderings being constructed are represented by
the order-maintenance data structures Eng and Heb, respectively.

left [X] and right [X] also precede all the nodes in Y ’s right
subtree.

3. X resides in the right subtree of Y : The same argument ap-
plies as in Case 2.

4. X lies outside of the subtree rooted at Y : Inserting X’s chil-
dren anywhere in the data structure cannot affect the invariant.

The argument for the Heb data structure is analogous, except that
one must consider the arguments for Y being a P-node or S-node
separately.

The next theorem shows that SP-PRECEDES works correctly.

Theorem 4. Consider any point during the execution of the SP-
ORDER procedure on an SP parse tree, and let ui and uj be
two threads that have already been visited. Then, the procedure
SP-PRECEDES(ui, uj) correctly returns TRUE if ui ≺ uj and
FALSE otherwise.

Proof. The SP-ORDER procedure inserts a node X into the Eng
and Heb linear orders when it visits X’s parent and before exe-
cuting SP-ORDER(X). Thus, any thread is already in the order-
maintenance data structures by the time it is visited. Combining
Lemma 1 and Lemma 3 completes the proof.

We now analyze the running time of the SP-order algorithm.

Theorem 5. Consider a fork-join multithreaded program having a
parse tree with n leaves. Then, the total time for on-the-fly con-
struction of the SP-order data structure is O(n).

Proof. A parse tree with n leaves has at most O(n) nodes, caus-
ing O(n) calls to OM-INSERT. Since each of these operations can
be supported in O(1) amortized time, the theorem follows.

The following corollary explains that SP-order can be used to
make an efficient, on-the-fly race detector.



Figure 6: An illustration of how SP-order operates at an S-node. (a) A
simple parse tree with an S-node S and two children L and R. (b) The
order structures before traversing to S. The clouds represent the rest of the
order structure, which does not change when traversing to S. (c) The result
of the inserts after traversing to S. The left child L and then the right child
R are inserted after S in both lists.

Figure 7: An illustration of how SP-order operates at a P-node. (a) A
simple parse tree with an P-node P and two children L and R. (b) The
order structures before traversing to P . The clouds are the rest of the order
structure, which does not change when traversing to P . (c) The result of
the inserts after traversing to P . The left child L then the right child R are
inserted after P in the English order, and R then L are inserted after P in
the Hebrew order.

Corollary 6. Consider a fork-join multithreaded program with
running time T1 on a single processor. Then, a determinacy-race
detector using SP-order runs in O(T1) time.

To conclude this section, we observe that SP-order can be made
to work on the fly no matter how the input SP parse tree unfolds.
Not only can lines 8–9 of Figure 5 be executed in either order, the
basic recursive call could be executed on nodes in any order that
respects the parent-child and SP relationships. For example, one
could unfold the parse tree in essentially breadth-first fashion at P-
nodes as long as the left subtree of an S-node is fully expanded
before its right subtree is processed. An examination of the proof
of Lemma 3 shows why we have this flexibility. The invariant in
the proof considers only a node and its children. If we expand any
single node, its children are inserted into the order-maintenance
data structures in the proper place independent of what other nodes
have been expanded.

3 The SP-hybrid algorithm

This section describes the structure of the SP-hybrid parallel SP-
maintenance algorithm. We begin by discussing how an SP parse
tree is provided as input to SP-hybrid and explaining some of the
properties of Cilk that SP-hybrid exploits. We then describe the
two-tier structure of the algorithm, which combines elements of

SP-order from Section 2 and SP-bags from [20]. We investigate the
synchronization issues that must be faced in order to parallelize SP-
order and why a naive parallelization does not yield good bounds.
We then overview SP-hybrid itself and present pseudocode for its
implementation.

SP-hybrid’s input and Cilk

Like the SP-order algorithm, the SP-hybrid algorithm accepts as
input a fork-join multithreaded program expressed as an SP parse
tree. The algorithm SP-hybrid provides weaker query semantics
than the serial SP-order algorithm; these semantics are exactly what
is required for on-the-fly determinacy-race detection. Whereas SP-
order allows queries of any two threads that have been unfolded
in the parse tree, SP-hybrid requires that one of the threads be a
currently executing thread. For a fork-join program with n threads,
T1 work, and a critical path of length T∞, the parallel SP-hybrid
algorithm can be made to run (in Cilk) in O((T1/P + PT∞) lg n)
expected time.

Although SP-hybrid provides these performance bounds for any
fork-join program, it can only operate “on the fly” for programs
whose parse trees unfold in a Cilk-like manner. Specifically, SP-
hybrid is described and analyzed as a Cilk program, and as such,
it takes advantage of two properties of the Cilk scheduler to ensure
efficient execution. First, any single processor unfolds the parse
tree left-to-right. Second, it exploits the properties of Cilk’s “work-
stealing” scheduler, both for correctness and efficiency. Although
SP-hybrid operates correctly and efficiently on the a posteriori SP
parse tree for any fork-join program, it only operates “on-the-fly”
when the parse tree unfolds similar to a Cilk computation.

Cilk employs a “work-stealing” scheduler, which executes any
multithreaded computation having work T1 and critical-path length
T∞ in O(T1/P + T∞) expected time on P processors, which is
asymptotically optimal. The idea behind work stealing is that when
a processor runs out of its own work to do, it “steals” work from
another processor. Thus, the steals that occur during a Cilk com-
putation break the computation, and hence the computation’s SP
parse tree, into a set of “traces,” where each trace consists of a set
of threads all executed by the same processor. These traces have ad-
ditional structure imposed by Cilk’s scheduler. Specifically, when-
ever a thief processor steals work from a victim processor, the work
stolen corresponds to the right subtree of the P-node that is highest
in the SP-parse tree walked by the victim. Cilk’s scheduler provides
an upper bound of O(PT∞) steals with high probability.

A naive parallelization of SP-order

A straightforward way to parallelize the SP-order algorithm is to
share the SP-order data structure among the processors that are ex-
ecuting the input fork-join program. The problem that arises, how-
ever, is that processors may interfere with each other as they modify
the data structure, and thus some method of synchronization must
be employed to provide mutual exclusion.

A common way to handle mutual exclusion is through the use of
locks. For example, suppose that each processor obtains a global
lock prior to every OM-INSERT or OM-PRECEDES operation on
the shared SP-order data structure, releasing the lock when the op-
eration is complete. Although this parallel version of SP-order is
correct, the locking can introduce significant performance penal-
ties.

Consider a parallel execution of this naive parallel SP-order al-
gorithm on P processors. During a single operation by a processor
on the shared SP-order data structure, all P − 1 other processors
may stall while waiting for the lock required to perform their own
operations. Let us assume, as is reasonable, that no processor waits
on a lock unless another processor owns the lock. Thus, if we at-
tribute the cost of waiting for a lock to the processor that owns the



lock (rather than to the processor doing the waiting), the amortized
cost of a single operation could be as large as Θ(P ). Since as many
as Θ(T1) operations could occur during an execution of a fork-join
program with work T1, the apparent work — the real work plus
any time spent by processors waiting for locks — could expand to
Θ(PT1), thereby negating any benefits of P -way parallelism.

Of course, this scenario provides a worst-case example, and
common programs may not realize such a pessimistic bound. Nev-
ertheless, locking can significantly inhibit the scalability of a paral-
lel algorithm, and we would like provable guarantees on scalability.

Overview of SP-hybrid

The SP-hybrid algorithm uses a two-tiered hierarchy with a global
tier and a local tier in order to overcome the scalability problems
with lock synchronization. As SP-hybrid performs a parallel walk
of the input SP parse tree, it partitions the threads into traces on
the fly, where each trace consists of threads that execute on the
same processor. Much as in the naive parallelization of SP-order,
the global tier of SP-hybrid uses a shared SP-order algorithm to
maintain the relationships between threads belonging to different
traces. The local tier uses the serial SP-bags algorithm to maintain
the relationships between threads belonging to the same trace.

The goal of this two-tier structure is to reduce the synchroniza-
tion delays for shared data structures, that is, processors wasting
their time by waiting on locks. SP-hybrid’s shared global tier
minimizes synchronization delays in two ways. First, a lock-free
scheme is employed so that OM-PRECEDES can execute on the
shared data structure without locking. Second, the number of in-
sertions is reduced to O(PT∞), thereby reducing the maximum
apparent work for insertions to O(P 2T∞), since at most P − 1
processors need to wait during the work of any insertion.

For the purposes of explaining how SP-hybrid works, we main-
tain traces explicitly. Formally, we define a trace U to be a (dy-
namic) set of threads that have been executed on a single proces-
sor. The computation C is a dynamic collection of disjoint traces,
C = {U1, U2, . . . , Uk}. Initially, the computation consists of a
single empty trace. As the computation unfolds, each thread is in-
serted into a trace.

Whenever Cilk’s scheduler causes a steal from a victim proces-
sor that is executing a trace U , SP-hybrid splits U into five sub-
traces 〈U (1), U (2), U (3), U (4), U (5)〉, modifying the computation
C as follows:

C ← C − U ∪ {U (1), U (2), U (3), U (4), U (5)} .

Consequently, if the Cilk scheduler performs s steals, |C| = 4s+1.
Since the Cilk scheduler provides a bound of O(PT∞) steals with
high probability, the expected size of C is O(PT∞). The principal
use of the SP-bags algorithm from [20] is that it enables efficient
splitting, as will be explained in Section 5.

Details of the two tiers of SP-hybrid will be presented in Sec-
tions 4 and 5. For now, it is sufficient to understand the opera-
tions each tier supports. The global tier supports the operations
OM-INSERT and OM-PRECEDES on English and Hebrew order-
ings. In addition, the global tier supports a OM-MULTI-INSERT
operation, which inserts several items into an order-maintenance
data structure. The local tier supports LOCAL-INSERT and LOCAL-
PRECEDES on a local (SP-bags) data structure. It supports an op-
eration SPLIT, which partitions the threads in a trace when a steal
occurs. It also supports an operation FIND-TRACE, which returns
the current trace to which a thread belongs. The implementation of
all the local-tier operations must be such that many FIND-TRACE
operations can execute concurrently.

Figure 8 presents the Cilk-like pseudocode for the SP-hybrid al-
gorithm. (See [28] for a more complete presentation of the Cilk

SP-HYBRID(X, U)

� X is a SP-parse-tree node, and U is a trace
1 if ISLEAF(X)
2 then � X is a thread
3 U ← U ∪ {X}
4 EXECUTE-THREAD(X)
5 return U

6 if ISSNODE(X)
7 then � X is an S-node
8 U ′ ← spawn SP-HYBRID(left [X], U)
9 sync

10 U ′′ ← spawn SP-HYBRID(left [X], U ′)
11 sync
12 return U ′′

� X is a P-node
13 U ′ ← spawn SP-HYBRID(left [X], U)
14 if SYNCHED()
15 then � the recursive call on line 13 has completed
16 U ′′ ← spawn SP-HYBRID(left [X], U ′)
17 sync
18 return U ′′

� A steal has occurred
19 create new traces U (1), U (2), U (4), and U (5)

20 ACQUIRE(lock)
21 OM-MULTI-INSERT(Eng , U (1), U (2), U, U (4), U (5))
22 OM-MULTI-INSERT(Heb, U (1), U (4), U, U (2), U (5))
23 RELEASE(lock)
24 SPLIT(U, X, U (1), U (2))
25 spawn SP-HYBRID(left [X], U (4))
26 sync
27 return U (5)

Figure 8: The SP-hybrid algorithm written in Cilk-like pseudocode. SP-
HYBRID accepts as arguments an SP-parse-tree node X and a trace U , and
it returns a trace. The algorithm is essentially a tree walk which carries
along with it a trace U into which encountered threads are inserted. The
spawn keyword is a Cilk linguistic construct to indicate the forking of a
subprocedure, and the sync keyword indicates a join of the procedure with
all of the children it has spawned. The EXECUTE-THREAD procedure exe-
cutes the thread and handles all local-tier operations. The SYNCHED proce-
dure determines whether the current procedure is synchronized (whether a
sync would cause the procedure to block), which indicates whether a steal
has occurred. The OM-MULTI-INSERT(L, A, B, U, C, D) inserts the ob-
jects A, B, C, and D before and after U in the order-maintenance data
structure L. The Eng and Heb data structures maintain the English and
Hebrew orderings of traces. The SPLIT procedure uses node X to partition
the existing threads in trace U into three sets, leaving one of the sets in U
and placing the other two into U (1) and U(2).

language.) As in the SP-order algorithm, SP-hybrid performs a left-
to-right walk of the SP parse tree, executing threads as the parse
tree unfolds. Each thread is inserted into a trace, which is local to
the processor executing the thread. The structure of the trace forms
the local tier of the SP-hybrid algorithm and is described further in
Section 5.

SP-hybrid associates each node in the SP parse tree with a single
trace by accepting a trace U as a parameter in addition to a node
X , indicating that the descendant threads of X should be inserted
into the trace U . When SP-HYBRID(X, U) completes, it returns
the trace with which to associate the next node in the walk of the



SP-PRECEDES(X, Y )

28 U1 ← FINDTRACE(X)
29 U2 ← FINDTRACE(Y )
30 if U1 = U2

31 then return LOCAL-PRECEDES(X, Y )
32 if OM-PRECEDES(Eng , X, Y ) and

OM-PRECEDES(Heb, X, Y )
33 then return TRUE
34 return FALSE

Figure 9: The SP-Precedes precedure for the SP-Hybrid algorithm given in
Figure 8. SP-PRECEDES accepts two threads X and Y and returns TRUE

if X ≺ Y . FINDTRACE and LOCAL-PRECEDES are local-tier operations
to determine what trace a thread belongs to and the relationship between
threads in the same trace, respectively.

parse tree. In particular, for an S-node X , the trace U ′ returned
from the walk of the left subtree is passed to the walk of X’s right
subtree; see Lines 6–12. The same is true for P-nodes, unless a the
right subtree has been stolen; see lines lines 13–18.

Lines 1–5 deal with the case where X is a leaf and therefore a
thread. As in SP-ORDER, the queries to the SP-maintenance data
structure occur in the EXECUTE-THREAD procedure. In our anal-
ysis in Section 7, we shall assume that the number of queries is at
most the number of instructions in the thread. The thread is inserted
into the provided trace U in line 3 before executing the thread in
line 4. Lines 6–12 and lines 13–27 handle the cases where X is
an S- or P-Node, respectively. For both P-nodes and S-nodes, The
procedure walks to X’s left then right subtree. For an S-node, how-
ever, the left subtree must be fully expanded before walking to the
right subtree.

During the time that a P-node is being expanded, a steal may
occur. Specifically, while the current processor walks the left sub-
tree of the P-node, another processor may steal (the walking of) the
right subtree. When a steal is detected (line 14—SYNCHED returns
FALSE), the current trace is split into five traces—U (1), U (2), U (3),
U (4), and U (5)—with a call to the SPLIT procedure. This SPLIT
procedure, and the partitioning into subtraces, is described further
in Section 5. The SP-hybrid algorithm proceeds to order the traces,
inserting the five new traces into the global SP-maintenance data
structures. The Eng order maintains the English ordering of the
traces, as follows:

〈U (1), U (2), U (3), U (4), U (5)〉 .

Similarly, the Heb order maintains the Hebrew ordering of the
traces:

〈U (1), U (4), U (3), U (2), U (5)〉 .

If steal does not occur, we execute lines 16–18. Notice that if a
steal does not occur anywhere in the subtree rooted at some node
X , then we execute only lines 1–18 for the walk of this subtree.
Thus, all descendant threads of X belong to the same trace, thereby
satisfying the requirement that a trace be a set of threads that exe-
cute on the same processor.

The pseudocode for SP-PRECEDES is shown in Figure 9. A SP-
PRECEDES query for threads ui and uj first examines the order of
their respective traces. If the two threads belong to the same trace,
the local-tier (SP-bags) data structure determines whether ui pre-
cedes uj . If the two threads belong to different traces, the global-
tier SP-order data structure determines the order of the two traces.

4 The global tier

As introduced in Section 3, the global tier is essentially a shared
SP-order data structure, and locking is used to mediate concurrent
operations. This section describes the global tier in more detail. We
show how to support concurrent queries without locking, leaving
only insertions as requiring locking.

We focus on making OM-PRECEDES operations on the global
tier run efficiently without locking, because the number of concur-
rent queries may be large. If we were to lock the data structure
for each of Q queries, each query might be forced to wait for in-
sertions and other queries, thereby increasing the apparent work
by as much as Θ(QP ) and nullifying the advantages of P -way
parallelism. Thus, we lock the entire global tier when an inser-
tion occurs, but use a lock-free implementation for the presumably
more-numerous queries.

The global tier is implemented using an O(1)-amortized-time
order-maintenance data structure such as those described in [10,
17, 33]. The data structure keeps a doubly linked list3 of items and
assigns an integer label to each inserted item. The labels are used
to implement OM-PRECEDES: to compare two items in the linear
order, we compare their labels. When OM-INSERT adds a new
item to the dynamic set, it assigns the item a label that places the
item into its proper place in the linear order.

Sometimes, however, an item must be placed between two items
labeled i and i+1, in which case this simple scheme does not work.
At this point, the data structure relabels some items so that room
can be made for the new item. We refer to the dynamic relabeling
that occurs during an insertion as a rebalance. Depending on how
“bunched up” the labels of existing items are, the algorithm may
need to relabel different numbers of items during one rebalance
than another. In the worst case, nearly all of the items may need to
be relabeled.

When implementing a rebalance, therefore, the data structure
may stay locked for an extended period of time. The goal of the
lock-free implementation of OM-PRECEDES is to allow these op-
erations to execute quickly and correctly even in the midst of rebal-
ancing. The implementation of a rebalance for the global tier there-
fore maintains two properties which are not usually implemented in
a serial order-maintenance data structure:
• A concurrent query can detect whether a rebalance in progress

has corrupted its view of the linear order.
• Throughout the rebalance, the relative order of the items does

not change.
The first of these properties is enforced by associating a timestamp
with each item which is incremented during a rebalance. The sec-
ond is enforced by performing the rebalance in two passes.

The algorithm actually proceeds in five passes, two of which im-
plement the rebalance:4

1. Determine the range of items to rebalance.
2. Increment the timestamp of every item in the range to indicate

the beginning of the rebalance.
3. Assign each item its minimum possible label in the range,

starting with the smallest item and proceeding to the largest,
thereby maintaining the correct linear order.

4. Increment the timestamp of every item in the range to indicate
that the second pass has begun.

5. Assign the desired final label to each item, starting with the
largest item and proceeding to the smallest, thereby maintain-
ing the correct linear order.

3Actually, a two-level hierarchy of lists is maintained, but this detail is
unnecessary to understand the basic workings of lock-free queries, and the
one-level scheme we describe can be easily extended.

4The number of passes can be reduced, but this presentation favors clar-
ity.



This rebalancing strategy modifies each item 4 times while guar-
anteeing that the correct linear ordering of items is maintained
throughout.

OM-PRECEDES uses the timestamps to determine whether a re-
balance is in progress. To compare items X and Y , it examines the
label and timestamp of X , then of Y , then of X again, and finally
of Y again. If the second readings of labels and timestamps pro-
duce the same values as the first readings, then the query attempt
succeeds and the order of labels determines the order of X and Y .
Otherwise, the query attempt fails and is repeatedly retried until it
succeeds.

Given that queries attempts can fail, they may increase the appar-
ent work and the apparent critical-path length of the computation.
Section 7 bounds these increases.

5 The local tier

This section describes the local tier of the SP-hybrid algorithm. We
show how a trace running locally on a processor can be split when
a steal occurs. By using the SP-bags algorithm to implement the
trace data structure, a split can be implemented in O(1) time. Fi-
nally, we show that these data structures allow the series-parallel
relationship between a currently running thread and any other pre-
viously executed or currently executing thread to be determined.

Splitting traces

Besides maintaining the SP relationships within a single trace, the
local tier of the SP-hybrid algorithm supports the splitting of a trace
into subtraces. A split of a trace U occurs when the processor ex-
ecuting U becomes the victim of a steal. The work stolen corre-
sponds to the right subtree of the P-node X that is highest in the
SP-parse tree walked by the victim. When a trace U is split around
a P-node X , the local tier creates five subtraces:5

1. U (1) = {u ∈ U : u ≺ X}, the threads that precede X .
2. U (2) = {u ∈ U : u ‖ X and u 6∈ descendants(X)}, the

threads parallel to X that do not belong to a subtree of X .
3. U (3) = {u ∈ U : u ∈ descendants(left [X])}, the threads

in X’s left subtree.
4. U (4) = {u ∈ U : u ∈ descendants(right [X])}, the threads

in X’s (stolen) right subtree. This set is initially empty.
5. U (5) = {u ∈ U : X ≺ u}, the threads that follow X . This

set is also initially empty.
We call these properties the subtrace properties of U .

The SPLIT procedure from Figure 8 implements the split. Since
U (4) and U (5) are initially empty, they are not provided as param-
eters to the SPLIT procedure in line 24 of the SP-HYBRID pseu-
docode from Figure 8. The set U (3) is simply those threads that
remain in U after those from U (1) and U (2) have been split off.

Let us look at these subtraces in terms of the parse tree. Fig-
ure 10 shows the canonical Cilk parse tree6 as taken from [20]. A
Cilk procedure is composed of a series of sync blocks, which are
implemented through a series of spawn statements followed by a
single join. The form of a Cilk parse tree is slightly more restric-
tive than that of a generic fork-join program in Figure 2: at any
given time, all the outstanding children of a procedure share the
same join point.

Figure 11 shows the subtraces formed when a processor steals
the tree walk rooted at right [X]. Since all the threads contained in

5In fact, the subtraces U (2) and U(3) can be combined, but we keep
them separate to simplify the proof of correctness.

6Any SP parse tree can be represented as a Cilk parse tree with the
same work and critical path by adding additional S- and P-nodes and empty
threads.

Figure 10: The canonical parse tree for a generic Cilk procedure. The no-
tation F represents the parse tree of a spawned procedure, and u represents
a thread. All the nodes in the shaded area belong to the generic procedure,
while all the nodes in the ovals belong to a single sync block.

U (1) have been executed, no more changes to this subtrace will oc-
cur. Similarly, the threads contained in U (2) have already been ex-
ecuted. The subtrace U (3) is partially populated, and the processor
executing the walk of U will continue to put threads into U (3). The
subtrace U (4), which is initially empty, corresponds to the threads
encountered during the thief processor’s tree walk. The subtrace
U (5), which is also initially empty, represents the start of the next
sync block in the procedure.

When the subtraces are created, they are placed into the global
tier using the concurrent SP-order algorithm. The ordering of the
traces resulting from the steal in Figure 11 is shown in Figure 12.
All the threads in U (1) precede those in U (3), U (4), and U (5). Sim-
ilarly, all the threads (to be visited) in U (5) serially follow those in
U (1), U (2), U (3), and U (4). Thus, we place U (1) first and U (5) last
in both the English and Hebrew orders. Since any pair of threads
drawn from distinct subtraces U (2), U (3), and U (4) operate logi-
cally in parallel, we place U (2), U (3), and U (4) in that order into
the English ordering and U (4), U (3), and U (2) in that order into the
Hebrew ordering.

SP-bags

The SP-bags algorithm [20] provides an efficient means for imple-
menting the local tier using a disjoint-set data structure [14, 29]. In
SP-bags, each Cilk procedure maintains two bags (sets) of threads
with the following contents at any given time:7

• The S-bag of a procedure F contains the descendant threads
of F that logically precede the currently executing thread
in F . (The descendant threads of F include the threads of F .)

• The P-bag of a procedure F contains the descendant threads
of child procedures of F that have returned to F and that op-
erate logically in parallel with the currently executing thread
in F .

As SP-bags walks the parse tree of the computation, it inserts
threads into the bags, unions the bags, and queries as to what
type of bag a procedure belongs to. SP-bags can be adapted
to implement the local-tier operations LOCAL-INSERT, LOCAL-
PRECEDES, FIND-TRACE, and SPLIT required by SP-hybrid. All

7This version of SP-bags uses bags containing threads rather than bags
containing procedures, as was done in [13, 20]. This modification is
straightforward to implement, and we do not dwell on the details.



Figure 11: The split of a trace U around a P-node X in terms of a canon-
ical Cilk parse tree. The tree walk of U is executing in left [X] when the
subtree rooted at right [X] is stolen by a thief processor. The shaded re-
gions contain the nodes belonging to each of the subtraces produced by the
split. The two circles not enclosing any text indicate portions of the parse
tree that have not yet been visited by the tree walk of U .

Figure 12: An ordering of the new traces resulting from a steal as shown in
Figure 11. Each circle represents a trace.

these operations, except FIND-TRACE, are executed only by the
single processor working on a trace. The FIND-TRACE operation,
however, may be executed by any processor, and thus the imple-
mentation must operate correctly in the face of multiple FIND-
TRACE operations.

The implementation of SP-bags proposed in [20] uses the classi-
cal disjoint-set data structure with “union by rank” and “path com-
pression” heuristics [14, 29, 31]. On a single processor, this data
structure allows all local-tier operations to be supported in amor-
tized O(α(m, n)) time, where α is Tarjan’s functional inverse of
Ackermann’s function, m is the number of local-tier operations,
and n is the number of threads. Moreover, the worst-case time for
any operation is O(lg n).

The classical disjoint-set data structure does not work “out of
the box” when multiple FIND-TRACE operations execute concur-
rently. The reason is that although these operations are queries, the
path-compression heuristic modifies the data structure, potentially
causing concurrent operations to interfere.8 Consequently, our im-
plementation of the local tier uses the disjoint-set data structure
with union by rank only, which supports each operation in O(lg n)
worst-case time.

The SP-bags implementation used by SP-hybrid follows that of
[20], except that we must additionally support the SPLIT operation.

8In fact, concurrent path compression does not affect the correctness of
the algorithm, assuming that reads and writes execute atomically. The per-
formance analysis become more complicated. We conjecture that a better
running time can be obtained using the classical data structure.

At the time of a split, the subtraces U (1), U (2), and U (3) may all
contain many threads. Thus, splitting them off from the trace U
may take substantial work. Fortunately, SP-bags overcomes this
difficulty by allowing a split to be performed in O(1) time.

Consider the S- and P-bags at the time a thread in the procedure
F is stolen and the five subtraces U (1), U (2), U (3), U (4), and U (5)

are created. The S-bag of F contains exactly the threads in the sub-
trace U (1). Similarly, the P-bag of F contains exactly the threads
in the subtrace U (2). The SP-bags data structure is such that mov-
ing these two bags to the appropriate subtraces requires only O(1)
pointer updates. The subtrace U (3) owns all the other S- and P-bags
that belonged to the original trace U , and thus nothing more need
be done, since U (3) directly inherits U ’s threads. The subtraces
U (4) and U (5) are created with empty S- and P-bags. Thus, the
split can be performed in O(1) time, since only O(1) bookkeeping
needs to be done including updating pointers.

6 Correctness of SP-hybrid

This section proves the correctness of the SP-hybrid algorithm. We
begin by showing that the traces maintained by SP-hybrid are con-
sistent with the subtrace properties defined in Section 5. We then
prove that the traces are ordered correctly to determine SP relation-
ships. Finally, we conclude that SP-hybrid works.

Due to the way the splits work, we can no longer prove a theo-
rem as general as Lemma 1. That is to say, we can only accurately
derive the relationship between two threads if one of them is a cur-
rently executing thread.9 Although this result is weaker than for the
serial algorithm, we do not need anything stronger for a race detec-
tor. Furthermore, these are exactly the semantics provided by the
lower-tier SP-bags algorithm.

The following lemma shows that when a split occurs, the sub-
traces are consistent with the subtraces properties given in Sec-
tion 5.

Lemma 7. Let Ui be a trace that is split around a P-node X . Then,
the subtrace properties of Ui are maintained as invariants by SP-
HYBRID.

Proof. The subtrace properties of Ui hold at the time of the split
around the P-node X , when the subtraces were created, by defini-
tion. If a subtrace is destroyed by splitting, the property holds for
that subtrace vacuously.

Consider any thread u at the time it is inserted into some trace U .
Either U is a subtrace of Ui or not. If not, then the properties hold
for the subtrace Ui vacuously. Otherwise, we have five cases.

Case 1: U = Ui
(1). This case cannot occur. Since Ui

(1) is
mentioned only in lines 19–27 of Figure 8, it follows that Ui

(1) is
never passed to any call of SP-HYBRID. Thus, no threads are ever
inserted into Ui

(1).
Case 2: U = Ui

(2). Like Case 1, this case cannot occur.
Case 3: U = Ui

(3). We must show that Ui
(3) = {u : u ∈ de-

scendants(left [X])}. The difficulty in this case is that when the
trace Ui is split, we have Ui = Ui

(3), that is, Ui and Ui
(3) are

aliases for the same set. Thus, we must show that the invariant
holds for all the already spawned instances of SP-HYBRID that
took Ui as a parameter, as well as those new instances that take
Ui

(3) as a parameter. As it turns out, however, no new instances
take Ui

(3) as a parameter, because (like Cases 1 and 2) Ui
(3) is

neither passed to SP-HYBRID nor returned.
Thus, we are left to consider the already spawned instances

of SP-HYBRID that took Ui as a parameter. One such instance
is the outstanding SP-HYBRID(left [X], Ui) in line 13. If u ∈

9Specifically, we cannot determine the relationship between threads in
U(1) and U(2), but we can determine the relationship between any other
two traces.



descendants(left [X]), then we are done, and thus, we only need
consider the spawns SP-HYBRID(Y, Ui), where Y is an ancestor
of the P-node X . We use induction on the ancestors of X , starting
at Y = parent(X) to show that SP-HYBRID(Y, Ui) does not pass
Ui to any other calls, nor does it return Ui. For the base case, we
see that SP-HYBRID(X, Ui) returns Ui

(5) 6= Ui
(3).

For the inductive case, consider SP-HYBRID(Y, Ui). We ex-
amine the locations in the pseudocode where this procedure can
resume execution. If Y is an S-node, then this procedure can be
waiting for the return from SP-HYBRID(left [Y ], Ui) in line 9 or
SP-HYBRID(right [Y ], Ui) in line 11. In the first situation, our
inductive hypothesis states that SP-HYBRID(left [Y ], Ui) does not
return Ui, and hence, we neither pass Ui to the right child nor do
we return it. The second situation is similar.

Instead, suppose that Y is a P-node. Since steals occur from
the top of the tree, we cannot resume execution at line 16, or else
SP-HYBRID(right [Y ], Ui) would have already been stolen. We
can be only at either line 17 or line 26. If we’re at line 17, our
inductive assumption states that SP-HYBRID(right [Y ], Ui) does
not return Ui, and thus we do not return Ui either. Otherwise, we
are at line 26, and we return the U (5) resulting from some split.

Case 4: U = Ui
(4). We must show that Ui

(4) = {u : u ∈ de-
scendants(right [X])}. The only place where Ui

(4) is passed to
another SP-HYBRID call, and hence used to insert a thread, is
line 25. No matter what SP-HYBRID(right [X], Ui

(4)) returns,
SP-HYBRID(X, Ui) does not return Ui

(4); it returns Ui
(5). Thus,

the only threads that can be inserted into Ui
(4) are descendants of

right [X], which matches the semantics of U (4).
Case 5: U = Ui

(5). We must show that Ui
(5) = {u ∈ Ui :

X ≺ u)}. The subtrace Ui
(5) is used only in the return from

SP-HYBRID(X, Ui) on line 27. As seen in lines 6–12 and lines
16–18, SP-HYBRID passes the trace returned from a left subtree
to a right subtree. Thus, the only SP-HYBRID calls that have any
possibility of inserting into Ui

(5) are the right descendants of X’s
ancestors. When a split occurs (and hence when a steal occurs), by
the properties of the Cilk scheduler, it occurs at the topmost P-node
of a trace. Thus, the only ancestors of X with unelaborated right
subtrees are S-nodes. It follows that lca(u, X) is an S-node, and
hence X ≺ u.

The following lemma shows that the Eng and Heb orderings
maintained by SP-hybrid are sufficient to determine the relationship
between traces.

Lemma 8. Let Eng and Heb be the English and Hebrew order-
ings, respectively, maintained by the global tier of SP-hybrid. Let
uj be a currently executing thread in the trace Uj , and let ui be
any thread in a different trace Ui 6= Uj . Then ui ≺ uj if and only
if Eng [Ui] < Eng [Uj ] and Heb[Ui] < Heb[Uj ].

Proof. The proof is by induction on the number of splits during
the execution of SP-hybrid. Consider the time that a trace U is split
into its five subtraces. If neither Ui nor Uj is one of the resulting
subtraces U (1), U (2), . . . , U (5), then the split does not affect Ui or
Uj , and the lemma holds holds trivially.

Suppose that Ui ∈ {U
(1), U (2), . . . , U (5)}, but Uj 6∈ {U

(1),
U (2), . . . , U (5)}. Then, Ui and Uj have the same relationship they
did before the split, because we insert the subtraces U (1), U (2),
U (4), and U (5) contiguously with U = U (3) in the English and
Hebrew orderings. Similarly, if we have Ui 6∈ {U

(1), . . . , U (5)},
but Uj ∈ {U

(1), U (2), . . . , U (5)}, then the lemma holds symmet-
rically.

Thus, we are left with the situation where Ui ∈ {U
(1), U (2),

. . . , U (5)}, and Uj ∈ {U
(1), U (2), . . . , U (5)}. We can ignore the

case when Ui = Uj , because the lemma assumes that Ui 6= Uj ,
as well as the cases when Uj ∈ {U

(1), U (2)}, because uj is a
currently executing thread. We consider the remaining twelve cases
in turn.

Case (1,3): Ui = U (1) and Uj = U (3). We apply Lemma 7
to conclude that ui ≺ X for some P-node X and uj ∈ descen-
dants(left [X]), which implies that ui ≺ uj . We also have that
Eng [U (1)] < Eng [U (3)] and Heb[U (1)] < Heb[U (3)], which
matches the claim.

Case (2,3): Ui = U (2) and Uj = U (3). Lemma 7 allows us to
conclude that ui ∈ {u ∈ U : u ‖ X and u 6∈ descendants(X)}
for some P-node X and that uj ∈ descendants(left [X]), which
means that ui ‖ uj . We also have that Eng [U (2)] < Eng [U (3)]
and Heb[U (2)] > Heb[U (3)], which matches the claim.

The other ten cases are similar to these two.

We are now ready to prove that SP-hybrid returns the correct
result for an SP-PRECEDES operation run on a currently executing
thread and any other thread.

Theorem 9. Consider any point during the execution of SP-
HYBRID on an SP parse tree. Let ui be a thread that has been
visited, and let uj be a thread that is currently executing. Then,
the procedure SP-PRECEDES(ui, uj) correctly returns TRUE if
ui ≺ uj and FALSE otherwise.

Proof. The SP-HYBRID procedure inserts a thread u into a trace
U before executing u, and therefore when a thread executes, it be-
longs to some trace. Furthermore, the English and Hebrew order-
ings Eng and Heb, respectively, contain all traces that contain any
threads. If ui and uj belong to the same trace, then SP-PRECEDES
returns the correct result as the result of a query on the local tier. If
ui and uj belong to different traces, then Lemma 8 shows that the
correct result is returned.

7 Performance analysis

This section analyzes the SP-hybrid algorithm run on a fork-join
program. Suppose that the program has n threads, T1 work, and a
critical-path length of T∞. When executed on P processors using
the Cilk scheduler, we prove that SP-hybrid runs in O((T1/P +
PT∞) lg n) expected time.

Theorem 10. Suppose that a fork-join program has n threads, T1

work, and a critical-path length of T∞. When executed on P pro-
cessors using the Cilk scheduler, SP-hybrid runs in O((T1/P +
PT∞) lg n) expected time.

Proof. We use an accounting argument similar to [12], except
with seven buckets, instead of three. Each bucket corresponds to
a type of task that a processor can be doing during a step of the
algorithm. For each time step, each processor places one dollar in
exactly one bucket. If the execution takes time TP , then at the end
the total number of dollars in all of the buckets is PTP . Thus, if we
sum up all the dollars in all the buckets and divide by P , we obtain
the running time.

The analysis depends on the number s of successful steals during
the execution of the SP-hybrid algorithm. We shall show that the
expected value of s is O(PT∞ lg n). The seven buckets are as
follows:

B1: The work of the original computation excluding costs added
by SP-hybrid. We have that |B1| = O(T1), because a processor
places one dollar in the work bucket whenever it performs work on
the input program.

B2: The work for global-tier insertions, including the cost for
splits. SP-hybrid performs an OM-INSERT operation, serially, for
each steal. The amortized time required to perform s operations in
the order-maintenance data structure is O(s). Thus, |B2| = O(s).

B3: All the other SP-maintenance operations not included in B2.
This work is dominated by the local-tier SP-bags operations. Be-
cause there are O(1) SP-bags operations for each instruction in the



computation and each SP-bags operation costs O(lg n) time, we
have |B3| = O(T1 lg n).

B4: The work wasted on synchronization delays waiting for
the global lock on global-tier OM-INSERT operations. When one
processor holds the lock, at most O(P ) processors can be wait-
ing. Since O(1) insertions occurs for each steal, we have |B4| =
O(Ps).

B5: The work wasted on failed and retried global-tier queries.
Since a single insertion into the order-maintenance structure can
cause at most O(1) queries to fail on each processor and the number
of insertions is O(s), we conclude that |B4| = O(Ps).

B6: Steal attempts while the global lock is not held by any
processors. We use the potential argument from [9] to argue that
|B6| = O(PT∞ lg n), but with one slight variation. We do
not present the full argument here, because most of it is identi-
cal, but we do highlight the difference. The crux of their argu-
ment is that whenever a thief processor tries to steal from a vic-
tim processor, the victim loses a constant factor of its potential.
In our variation, imagine blowing up each instruction in the orig-
inal computation by a factor of r = O(lg n) to account for the
worst-case bound on the disjoint-set data structure, thereby pro-
ducing a new computation with total work O(T1 lg n) and critical
path O(T∞r) = O(T∞ lg n). In this new computation, a pro-
cessor may “accelerate” and execute up to r steps, corresponding
to when the bookkeeping takes less than r time, but that only de-
creases the potential even more. The same argument bounding the
number of steals still applies, but to a computation with critical
path T∞r rather than T∞. Thus, the expected number of steals is
O(PT∞r) = O(PT∞ lg n).

B7: Steal attempts while the global lock is held by some pro-
cessor. The global lock is held for O(s) time in total, and in the
worst case, all processors try to steal during this time. Thus, we
have |B7| = O(Ps).

To conclude the proof, observe that s ≤ |B6|, because the num-
ber of successful steals is less than the number of steal attempts.
Summing up all the buckets yields O((T1 +P 2T∞) lg n) expected
dollars at the end of the computation, and hence, dividing by P , we
obtain an expected running time of O((T1/P + PT∞) lg n). In
fact, this bound holds with high probability.

For race-detection applications, this running time can be reduced
to O((T1/P + PT∞) lg(min {v, n}), where v is the number of
shared-memory locations used by the program.

We suspect that the running time of SP-hybrid can be can be re-
duced to O((T1/P )α(T1, n) + PT∞ lg n), where α is Tarjan’s
functional inverse of Ackermann’s function. The idea is to use
the classical disjoint-set data structure with both union-by-rank
and path-compression heuristics. Since union operations are only
performed on a processor’s own local-tier data structure, the only
concurrency issues arise with path compressions, but these can be
performed safely using the lock-free “compare-and-swap” primi-
tive10 [6]. This implementation achieves the same bounds as those
in Theorem 10, but we conjecture that the coefficient of T1/P can
be reduced to α(T1, n), which it achieves when P = 1. In addi-
tion, this implementation would seem to achieve close to this bound
in practice, because processors are unlikely to contend as strongly
as the worst-case bounds suggest.

8 Related work

This section summarizes related work on SP-maintenance and
order-maintenance data structures.

10In fact, path compression can be performed safely with only the as-
sumption of atomic reads and writes, but one may need a stronger assump-
tion about the performance model to analyze this synchronization-free strat-
egy than one does when using compare-and-swap.

Nudler and Rudolph [27] introduced the English-Hebrew label-
ing scheme for SP-maintenance. Each thread is assigned two la-
bels, similar to the labeling in this paper. They do not, however, use
a centralized data structure to reassign labels. Instead, label sizes
grow proportionally to the maximum concurrency of the program.
Mellor-Crummey [26] proposed an “offset-span labeling” scheme,
which has label lengths proportional to the maximum nesting depth
of forks. Although it uses shorter label lengths than the English-
Hebrew scheme, the size of offset-span labels is not bounded by a
constant as it is in our scheme.

The first order-maintenance data structure was published by Di-
etz two decades ago [15]. It supports insertions and deletions in
O(lg n) amortized time and queries in O(1) time. Tarjan observed
[17] that updates could be supported in O(1) amortized time, and
the same result was obtained independently by Tsakalidis [33]. Di-
etz and Sleator [17] proposed two data structures, one that sup-
ports insertions and deletions in O(1) amortized time and queries
in O(1) worst-case time and a another that supports all operations
in O(1) worst-case time. Bender, Cole, Demaine, Farach-Colton,
and Zito [10] gave two simplified data structures whose asymptotic
performance matches the data structures from [17]. Their paper
also presents an implementation study of the amortized data struc-
ture.

A special case of the order-maintenance problem is the the on-
line list-labeling problem [7,16,18,23], also called the file mainte-
nance problem [34–37]. In online list labeling, we maintain a map-
ping from a dynamic set of n elements to the integers in the range
from 1 to u (tags), such that the order of the elements matches the
order of the corresponding tags. Any solution to the online list-
labeling problem yields an order-maintenance data structure. The
reverse is not true, however, because there exists an Ω(lg n) lower
bound on the list-labeling problem [16, 18]. In file maintenance,
we require that u = O(n), since this restriction corresponds to the
problem of maintaining a file densely packed and defragmented on
disk.

Labeling schemes have been used for other combinatorial prob-
lems such as answering least-common-ancestor queries [1, 3, 5, 24]
and distance queries used for routing [2, 4, 8, 22, 25, 32]. Although
these problems are reminiscent of the order-maintenance problem,
most solutions focus on reducing the number of bits necessary to
represent the labels in a static (offline) setting.

Anderson and Woll [6] discuss concurrent union-find opera-
tions using path compression (with path halving) and union by
rank. Whereas they consider multiple finds and multiple unions
occurring concurrently, however, our problem is confined to single
unions and multiple finds occurring concurrently.

9 Concluding remarks

This paper has focused on provably efficient parallel algorithms for
SP-maintenance. As a practical matter, our algorithms are likely
to perform faster than the worst-case bounds indicate, because it is
rare that every lock access sees contention proportional to the num-
ber of processors. This observation can be used in practical imple-
mentations to simplify the coding of the algorithms and yield some-
what better performance in the common case. Nevertheless, we
contend that the predictability of provably efficient software gives
users less-frustrating experiences. Giving up on provable perfor-
mance is an engineering decision that should not be taken lightly.
We also believe that provably efficient algorithms are scientifically
interesting in their own right.

As we were writing this paper, we repeatedly confronted the is-
sue of how an amortized data structure interacts with a parallel
scheduler. Standard amortized analysis could be applied to ana-
lyze the work of a computation, but we could not use amortiza-
tion to analyze the critical path and had to settle for worst-case



bounds. Moreover, we were surprised that we needed to reprise the
elaborate work-stealing analysis from [12] (with seven buckets, no
less!) in order show that SP-hybrid was efficient. Are there general
techniques that can allow us to develop provably good parallel al-
gorithms without repeatedly subjecting ourselves (and readers) to
such intricate and difficult mathematical arguments?

With respect to the results themselves, we have left many tech-
nical questions unanswered. Does a linear-work parallel algorithm
for SP-maintenance exist? Can parallelism closer to T1/T∞ be
achieved? Are our bounds actually tighter than what we have been
able to show? Are there better data structures for SP-maintenance?

In future work, we plan to implement the SP-order and SP-hybrid
algorithms and to evaluate their performance in a race-detection
tool for Cilk programs.

Acknowledgments

Thanks to Bradley Kuszmaul of MIT CSAIL for numerous helpful
discussions.

References
[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for

ancestor queries. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 547–556, 2001.

[2] S. Alstrup, P. Bille, and T. Rauhe. Labeling schemes for small dis-
tances in trees. In Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, pages 689–698, 2003.

[3] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common
ancestors: a survey and a new distributed algorithm. In Proceedings of
the ACM Symposium on Parallel Algorithms and Architectures, pages
258–264, 2002.

[4] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Direct routing
on trees. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pages 342–349, 1998.

[5] S. Alstrup and T. Rauhe. Improved labeling scheme for ancestor
queries. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pages 947–953, 2002.

[6] R. J. Anderson and H. Woll. Wait-free parallel algorithms for the
union-find problem. In Proceedings of the ACM Symposium on the
Theory of Computing, pages 370–380, 1991.

[7] A. Andersson and O. Petersson. Approximate indexed lists. Journal
of Algorithms, 29:256–276, 1998.

[8] M. Arias, L. J. Cowen, and K. A. Laing. Compact roundtrip routing
with topology-independent node names. In Proceedings of the ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Comput-
ing, pages 43–52, 2003.

[9] N. Arora, R. Blumofe, and G. Plaxton. Thread scheduling for multi-
programmed multiprocessors. In Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, pages 119–129, 1998.

[10] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito.
Two simplified algorithms for maintaining order in a list. In Proceed-
ings of the European Syposium on Algorithms, pages 152–164, 2002.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 207–216, Santa Bar-
bara, California, July 1995.

[12] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded com-
putations by work stealing. J. ACM, 46(5):720–748, 1999.

[13] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark.
Detecting data races in Cilk programs that use locks. In Proceed-
ings of the ACM Symposium on Parallel Algorithms and Architectures,
Puerto Vallarta, Mexico, June 1998.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms. The MIT Press and McGraw-Hill, second edition,
2001.

[15] P. F. Dietz. Maintaining order in a linked list. In Proceedings of the
ACM Symposium on the Theory of Computing, pages 122–127, May
1982.

[16] P. F. Dietz, J. I. Seiferas, and J. Zhang. A tight lower bound for on-line
monotonic list labeling. In Proceedings of the Scandinavian Work-
shop on Algorithm Theory, volume 824 of Lecture Notes in Computer
Science, pages 131–142, July 1994.

[17] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order
in a list. In Proceedings of the ACM Symposium on the Theory of
Computing, pages 365–372, May 1987.

[18] P. F. Dietz and J. Zhang. Lower bounds for monotonic list labeling.
In Proceedings of the Scandinavian Workshop on Algorithm Theory,
volume 447 of Lecture Notes in Computer Science, July 1990.

[19] A. Dinning and E. Schonberg. An empirical comparison of monitor-
ing algorithms for access anomaly detection. In Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 1–10, 1990.

[20] M. Feng and C. E. Leiserson. Efficient detection of determinacy races
in Cilk programs. In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 1–11, Newport, Rhode Island,
June 1997.

[21] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 212–223, 1998.

[22] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling
in graphs. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pages 210–219, 2001.

[23] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation
of priority queues. In S. Even and O. Kariv, editors, Proceedings of the
Colloquium on Automata, Languages, and Programming, volume 115
of Lecture Notes in Computer Science, pages 417–431, Acre (Akko),
Israel, July 1981.

[24] H. Kaplan, T. Milo, and R. Shabo. A comparison of labeling schemes
for ancestor queries. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 954–963, 2002.

[25] M. Katz, N. A. Katz, A. Korman, and D. Peleg. Labeling schemes for
flow and connectivity. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, pages 927–936, 2002.

[26] J. Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. In Proceedings of Supercomputing,
pages 24–33, 1991.

[27] I. Nudler and L. Rudolph. Tools for the efficient development of effi-
cient parallel programs. In Proceedings of the First Israeli Conference
on Computer Systems Engineering, May 1986.

[28] Supercomputing Technologies Group, MIT Computer Science and
Artificial Intelligence Laboratory. Cilk 5.3.2 Reference Manual,
November 2001.

[29] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215–225, April 1975.

[30] R. E. Tarjan. Applications of path compression on balanced trees.
Journal of the ACM, 26(4):690–715, October 1979.

[31] R. E. Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, 1983.

[32] M. Thorup and U. Zwick. Compact routing schemes. In Proceed-
ings of the ACM Symposium on Parallel Algorithms and Architectures,
pages 1–10, 2001.

[33] A. K. Tsakalidis. Maintaining order in a generalized linked list. Acta
Informatica, 21(1):101–112, May 1984.

[34] D. E. Willard. Inserting and deleting records in blocked sequential
files. Technical Report TM81-45193-5, Bell Laboratories, 1981.

[35] D. E. Willard. Maintaining dense sequential files in a dynamic en-
vironment. In Proceedings of the ACM Symposium on the Theory of
Computing, pages 114–121, San Francisco, California, May 1982.

[36] D. E. Willard. Good worst-case algorithms for inserting and deleting
records in dense sequential files. In Proceedings of the ACM Inter-
national Conference on Management of Data, pages 251–260, Wash-
ington, D.C., May 1986.

[37] D. E. Willard. A density control algorithm for doing insertions and
deletions in a sequentially ordered file in good worst-case time. Infor-
mation and Computation, 97(2):150–204, April 1992.


