
1

Memory Hierarchy Hardware-Software Co-design
in Embedded Systems

Zhiguo Ge1, H. B. Lim2, W. F. Wong1,2

1 Department of Computer Science, 2 Singapore-MIT Alliance, National University of Singapore

Abstract— The memory hierarchy is the main bottleneck in
modern computer systems as the gap between the speed of the
processor and the memory continues to grow larger. The situation
in embedded systems is even worse. The memory hierarchy
consumes a large amount of chip area and energy, which are
precious resources in embedded systems. Moreover, embedded
systems have multiple design objectives such as performance,
energy consumption, and area, etc.

Customizing the memory hierarchy for specific applications is
a very important way to take full advantage of limited resources
to maximize the performance. However, the traditional custom
memory hierarchy design methodologies are phase-ordered. They
separate the application optimization from the memory hierarchy
architecture design, which tend to result in local-optimal solu-
tions. In traditional Hardware-Software co-design methodologies,
much of the work has focused on utilizing reconfigurable logic to
partition the computation. However, utilizing reconfigurable logic
to perform the memory hierarchy design is seldom addressed.

In this paper, we propose a new framework for designing
memory hierarchy for embedded systems. The framework will
take advantage of the flexible reconfigurable logic to customize
the memory hierarchy for specific applications. It combines the
application optimization and memory hierarchy design together
to obtain a global-optimal solution. Using the framework, we
performed a case study to design a new software-controlled
instruction memory that showed promising potential.

Index Terms— Memory hierarchy design, embedded systems,
reconfigurable logic.

I. INTRODUCTION

Embedded systems have different characteristics compared
to general-purpose computer systems. First, they combine
software and hardware to run specific applications that range
from multimedia consumer devices to industry control system.
These applications differ greatly in their characteristics.They
demand different hardware architectures to maximize per-
formance and minimize cost, or make a tradeoff between
performance and cost according to the expected objectives.
Second, unlike general-purpose systems, embedded systems
are characterized by restrictive resources and low energy
budget. In addition to the vigorous restrictions, embedded
systems have to provide high computation capability and meet
real-time constraints.

Zhiguo Ge is with the Department of Computer Science, National Univer-
sity of Singapore. Email:{gezhiguo@comp.nus.edu.sg}

H.B. Lim is with the Singapore-MIT Alliance, National University of
Singapore. Email:{limhb@comp.nus.edu.sg}

W.F. Wong is with the Department of Computer Science and
the Singapore-MIT Alliance, National University of Singapore.
Email:{wongwf@comp.nus.edu.sg}

All these diverse constraints on embedded systems including
area, performance and power consumption result in enormous
issues and concerns during the design process. Among them,
memory hierarchy design is of great importance. The mem-
ory bottleneck in a modern computer system is a widely
known problem: the memory speed cannot keep up with the
processor speed. This problem becomes even worse in an
embedded system, where designers not only need to consider
the performance, but also the energy consumption. In an
embedded system, memory hierarchy takes a huge portion of
both the chip area and power consumption. Thus, optimizing
the memory hierarchy to reduce hardware usage and energy
consumption in order to sustain high performance becomes
extremely important.

Basically, we categorize the optimization methods for mem-
ory hierarchy into two approaches. The first approach deals
with the architectural aspect, where designers customize and
tune the memory hierarchy by analyzing specific applications,
including parameterizing the data cache size and line size,
instruction cache size, scratch memory size, etc. The second
approach deals with the software aspect, where designers
analyze and optimize the application intensively, such as
partitioning data into different types of storage, optimizing
the data layout to reduce the amount of cache conflicts, etc.
Most previous research focus on the two methods separately.
Researchers either perform application optimizations for a
given memory architecture, or design a memory architecture
by analyzing applications. However, these two approaches may
affect each other.

In order to explore the design space more thoroughly and
make the hardware and software match better, it is neces-
sary to combine these two aspects. Borrowing the idea and
concept from Software and Hardware Co-design, we propose
a new Memory Hierarchy Co-design methodology to design
embedded system memory hierarchy. In this framework, the
management of the application and architecture will be done
uniformly, and they will interact with and guide each other.
The framework takes the application source code, hardware
information, and objectives constraints as inputs. It outputs
the transformed source code and the memory hierarchy archi-
tecture specifically for the transformed source code.

The rest of this paper is organized as follows. In Section
2, we present the background and motivation for Memory
Hierarchy Co-design. Section 3 discusses the memory hierar-
chy architecture parameterization. We explain the key software
techniques for program analysis and transformations that our
framework require in Section 4. In Section 5, we present



2

a preliminary case study of the feasibility of our approach.
Finally, we conclude in Section 6 and discuss our ideas for
future research.

II. BACKGROUND AND MOTIVATION

A. Embedded System-on-Chip Design and Memory Hierarchy
Issues

1) Embedded system-on-chip: As modern digital systems
become increasingly more complex and time-to-market be-
comes shorter, the task of designing digital systems becomes
more and more challenging. New design methodologies have
to be developed to cope with this problem, such as compo-
nent reuse of processor core, memories and co-processor etc.
System-on-Chip (SOC) refers to products that integrate the
components into one system on a single silicon chip.

One prominent characteristic of the embedded SOC is its
heterogenous architecture with programmable processor cores,
custom designed logic, and different type of memory on a
single chip [1]. The architecture can be tailored or reconfig-
ured for specific applications. Custom instructions intended
for specific applications can dramatically improve the CPU
performance. Tuning the cache size, associativity, and line size
can best make use of the limited hardware resources to achieve
maximal performance for the application. For most cases,
customizing the hardware architecture requires sophisticated
compiler support for generating the corresponding code for
the customized architecture. Thus, the compiler and hardware
both need to be managed together in the design of embedded
systems. In the Software-Hardware Co-design methodology,
the design process starts with one uniform description for both
hardware and software. The computations are partitioned into
different functional units such as processor, co-processor and
hardware functional units, etc.

The nature of the heterogeneous architecture and the tightly-
coupled hardware and software of embedded systems result in
many research issues involving both architecture and software
co-optimization. The software optimizations and hardware
optimizations should be accomplished in one uniform frame-
work, which is seldom addressed in traditional research on
embedded systems.

2) Embedded memory hierarchy issues: The memory is
a bottleneck in a computer system since the memory speed
cannot keep up with the processor speed, and the gap is be-
coming larger and larger. Memory hierarchy issues are among
the most important concerns in designing application-driven
embedded systems. The memory system occupies a large area
and consumes a lot of energy. Studies show that in many
digital signal processing applications, the memory subsystem
occupies up to ten times the area and power consumed than
those of the data-path [1].

Figure 1 shows a typical embedded system architecture con-
sisting of processor core, reconfigurable hardware, instruction
cache, data cache, on-chip scratch memory, on-chip DRAM,
and off-chip memory. As shown in the figure, the computations
are partitioned into different computational units while the data
are assigned to different storage components.

Unlike the memory hierarchy of a general-purpose system
mainly concerned with performance, the memory hierarchy

?


Processor

Core


Instruction

cache


Data cache

On-chip

SRAM


On-Chip

DRAM


Off-Chip

Memory


Hardware

FU


A{i] = B[i] + C[i];


Computation

Partition


Data storage

partition


Reconfigurable

Logic


Fig. 1. A typical embedded system architecture

of an embedded system has more diverse design objectives,
including area, performance, and power consumption.

On one hand, researchers tune the memory hierarchy for
specific applications [2]. On the other hand, they optimize
the applications to reduce the memory size needed [3], [4],
and optimally assign the data into storage [5] to maximize the
performance and decrease the energy consumption by reducing
the amount of data transfer between the processor and off-
chip memory [6]. Recently, researchers are beginning to focus
on combining these two aspects. The application is optimized
and transformed, meanwhile the architecture is reconfigured
accordingly [7].

B. Traditional Memory Hierarchy Design Methodology

Traditionally, system designers either perform software op-
timization independently and assign the data to the allocated
memory units for the optimized applicatione code [8], or
design the most suitable memory hierarchy for a given ap-
plication [9]. They seldom consider the influence between the
architecture exploration and the application optimization.

1) DSTE framework: The Data Transfer and Storage Ex-
ploration (DTSE) methodology, developed by the Interuni-
versity Microelectronics Center (IMEC) within the context
of the ATOMIUM research project [8], is well known for
managing memory architecture and embedded applications,
especially multimedia applications.

Many embedded applications are data-dominated and ex-
periments show that data transfer and data storage consume a
large amount of energy and chip area. ”The goal of DSTE is
to determine an optimal execution order for the data transfer
together with an optimal memory hierarchy for storing the
data of given application” [8]. By transforming the application
source code to reduce the need for storage and the need for
data transfer between CPU and off-chip memory, the energy
consumption and the required storage size are decreased
dramatically. Figure 2 shows the design flow of the DTSE
methodology.

From the figure, the methodology is basically top-down.
Starting from the system level specification, it performs opti-
mization step by step from memory architecture independent
optimization down to the implementation of the system. There



3

Input specification and Data flow analysis


Specification pruning


Loop/Control flow transformations


Data reuse decisions


Storage Cycle Budget Distribution


Memory Allocation and Assignment


Memory Allocation and Assignment


Memory Layout Organization


Address generator/data path/

controller synthesis / compilation


Global data flow optimization


Fig. 2. Design flow of DSTE methodology [8]

are no iterations between different phases and the loop/control
flow transformations are completely architecturally indepen-
dent. In general, the higher level optimization should produce
larger performance gain.

2) MemExpore framework: Instead of optimizing applica-
tion, Panda et. al. [1] presents a framework, named Mem-
Explore, for designing the on-chip memory hierarchy for a
specific application based on the analysis of the application.
Given a certain amount of on-chip memory, the problem is
to partition it into on-chip scratch memory and data cache
to maximize the performance. The cache is characterized by
its size (C) and line size (L), and the scratch memory is
characterized by its size. The metric used for evaluating the
memory architecture is the total number of processor cycles
required for the memory access. The optimal architecture
should minimize this metric. Apart from determining the
memory architecture , the application data is assigned to the
memory storage units such as on-chip scratch memory and
off-chip memory (accessed through cache).

For an on-chip memory size T, the algorithm divides it into
varying amount of cache (size C and line size L) and scratch-
pad memory. The framework partitions and assigns the most
critical scalars and arrays into scratch-pad memory based on
the data size, memory access frequency, and the degree of
cache conflict. Analytical models are used to estimate the
performance. The pair (C,L) which is estimated to maximize
performance will be selected.

C. Drawback of the Traditional Methodologies

Most of the existing research on memory hierarchy either
focuses on application optimization without considering the
memory architecture, or explore suitable memory architectures
for given applications.

In fact, that the architecture and the application optimiza-
tions affect each other. The current methodologies are phase-
ordered and thus separate the two tasks, (i,e, application
optimization and memory architecture design).

D. The Framework of Memory Hierarchy Co-design

The traditional methods have limited design instance space
available to search, which will probably result in a suboptimal
solution. To avoid getting a suboptimal solution and to obtain
a global optimal one, we propose a new framework in this
paper.

1) Rationale of framework: The rationale of the proposed
framework is to search for an optimal solution from a much
larger design instance space which includes all the combi-
nations of application optimization and memory hierarchy
architecture. Theoretically, the new method is able to obtain
the global optimal solution in terms of application optimization
and memory hierarchy architecture.

2) Framework design: Our framework for memory hierar-
chy co-design is shown in Figure 3. This framework takes the
application, hardware information, and objectives as inputs.
It will exploit software transformations and optimizations,
explore memory hierarchy architectures, and evaluate the
performance and other objectives.

Hardware Constraints

and parameters


Memory

hierarchy

management


Objectives
Application


Application

management


Performance

evaluation,

and Estimation


Transformed application

Memory hierarchy

architecture specification


Input


Processing


Output


Fig. 3. The framework of memory hierarchy co-design

The input application can be system-level source code,
intermediate representations, or binary code. The hardware
input can be the information and constraints of the hard-
ware resources for memory hierarchy, such as the amount
of hardware resources available, how much on-chip DRAM
and SRAM, and the amount of reconfigurable resources, etc.
The objectives are the metrics we need to focus on, such as
performance, energy consumption and real-time constraints,
etc. Different applications or devices may require different
objective metrics. For example, energy consumption is of great
importance to handset devices which have very limited energy
budget, while real-time property is very crucial for control
applications and devices which must guarantee the response
and service within certain time deadline.

The processing portion of the framework consists of three
parts: application management, memory hierarchy manage-
ment, and performance evaluation and estimation. The ap-
plication management part is responsible for performing ap-
plication and loop transformations and optimizations. The
memory hardware management part is to explore the suitable
memory hierarchy architecture for optimized applications. The
performance evaluation and estimation part is used to direct
the application optimization and the exploration of memory
hierarchy.

The output of the framework are the transformed and
optimized application code, and the corresponding memory



4

hierarchy architecture specifications. Specifically, the specifi-
cations of memory hierarchy architectures can be synthesized
and implemented on hardware platforms such as ASIC and
FPGA.

The key difference between our proposed framework and
the traditional methods is that the application management and
memory hardware architecture management direct each other.
Unlike the DSTE method which performs loop transformation
independently, the loop transformation and application opti-
mization of the proposed framework is based on the memory
hierarchy management, while the management of memory
hierarchy is influenced by the application optimizations.

III. MEMORY HIERARCHY ARCHITECTURE

PARAMETERIZATION

A. Tuning Memory Hierarchy Architecture for Applications

Studies show that applications from different domains ex-
hibit different characteristics [2]. In a general-purpose system,
a large cache is often used to fit all the applications, which
results in resource consumption of up to 80% of the total
transistor budget and up to 50% of the die area [2].

For resource stringent embedded systems, it is not a good
strategy to meet the performance requirements with large
caches. The huge energy consumption by large caches is not
tolerable for embedded systems. In order to decrease energy
consumption, some cache architecture variations have been
developed according to the principle that accessing smaller
storage units consumes less energy.

For example, a phased-lookup cache uses two-phase lookup.
All the tag arrays are accessed in the first phase, then only
the data way corresponding to the hit tag way will be ac-
cessed [10]. At the expense of larger access latencies, this
strategy results in less power consumption since a smaller data
way will be accessed.

Way predictive set-associative caches access only one tag
and data array initially. If a miss happens, then the other ways
will be accessed [10]. Filter caches are very small direct-
mapped caches in front of the regular cache [10]. If most
accesses fall into filter caches, power will be saved since
accessing the small filter caches consume less power.

In addition to the above techniques, the application-driven
property of embedded system offers a big opportunity for
tuning the memory hierarchy specifically for applications.
Statically parameterizing memory hierarchies according to the
demands of the applications has been studied quite thoroughly
in previous research. In the DSTE methodology [8], different
memory units with different number of ports and different
word widths are allocated according to application analysis
and instructions scheduling. MemExplore [1] explores the best
memory hierarchy variants consisting of cache and scratch
memory for the given applications.

Recently, researchers have started to focus on configurable
cache architectures. The cache architectures can be changed
by the control of applications. A program is able to configure
the memory architecture when it starts execution or during
the course of its execution according to its needs. [10]

presents a reconfigurable cache architecture for a general-
purpose processor, where the cache banks can be reconfigured
as instruction reuse buffer.

Basically, the parameterization of memory hierarchy can be
classified into two categories: static parameterization (for stat-
ically configurable memory hierarchy) and dynamic parame-
terization (for dynamically reconfigurable memory hierarchy).

B. Potential Opportunities for Memory Hierarchy Parameter-
ization

The possible opportunities for parameterizing the memory
hierarchy are as follows:

Utilizing the limited resources according to demand.
By parameterizing the memory hierarchy according to the re-
quirement of applications, high performance can be sustained
with minimal resource usage. Different applications require
different memory hierarchy architectures. Some applications
may need large caches to obtain high performance, while for
other applications, small caches may be enough to achieve
high performance. Based on different requirements from ap-
plications, allocating memory units on demand can save much
resource and obtain high performance.

Handling program execution phases. Apart from the
different requirements for memory hierarchies from different
applications, different program execution phases may require
different memory hierarchies. Thus, dynamically configuring
the memory hierarchy on the fly to meet the needs of different
execution phases of a program becomes potentially beneficial.

Real-time requirement. Real-time property is very im-
portant for embedded applications. In certain cycles budget,
the feasible instruction scheduling may drive the need for
multiple simultaneous memory accesses [11]. Thus, elabo-
rately designed memory hierarchy is indispensable for these
applications. On the other hand, many DSP processors use
scratch memories instead of caches to ensure the predictability
of memory latencies [2].

Need of compiler or software controlled memory [2].
Caches make use of hardware mechanisms for replacing data.
The hardware replacement policy is not flexible, and thus
it may result in many cache conflicts. In fact, certain data
replacements are predictable. Thus it is desirable for the
compiler to determine such data replacements to avoid the
cache conflicts. The scratch memory is an important software-
controlled memory variant [12], [13].

C. Static Memory Hierarchy Parameterization

In static memory hierarchy parameterization, the memory
architecture is determined statically. The applications cannot
change the configuration of the memory hierarchy. Basically,
the memory hierarchy is parameterized by analyzing the
application. Once the memory hierarchy is implemented in
hardware, such as ASIC or FPGA, the application cannot
change the architecture before and during the execution. The
parameters that can be configured are the number of memory
banks, the bit widths of the memory units, the port numbers
of the memory units, the cache size, the cache line size, the
cache associativity, the on-chip memory size, and the number



5

of registers, etc. The static memory hierarchy parameterization
normally determines a memory hierarchy for a specific ap-
plication, because the application cannot change the memory
hierarchy once it has been implemented.

A method to parameterize the memory hierarchy for real-
time applications is presented in [11]. If two load operations to
the same memory banks must be scheduled at the same cycle
to meet the real-time requirement, the memory banks must be
parameterized to have dual read ports.

A memory exploration framework is presented in [1]. Given
a fixed size memory budget, it partitions the memory into some
amount of cache and scratch memory to avoid the conflicts
between data accesses. The most frequently used data with
small size will be put into the scratch memory to avoid the
conflicts.

D. Dynamic Memory Hierarchy Parameterization

With dynamic memory hierarchy parameterization, the
memory hierarchy can be changed during the course of
program execution. Thus, the dynamic memory hierarchy
parameterization offers applications the flexibility to configure
the memory hierarchy according to its need. There are two
ways to exploit this technique. First, dynamic memory hierar-
chy parameterization makes it possible to customize memory
hierarchies for a variety of applications rather than just one
application. Since the application can change the memory
hierarchy, various applications can tune the memory hierarchy
for their own needs. Second, it provides the chance for an
application to change the memory hierarchy during its different
execution phases. Different execution phases may have differ-
ent requirements for the memory hierarchy. Dynamic memory
hierarchy parameterization provides the application with some
flexibility to reconfigure the memory hierarchy to meet the
requirements for different phases.

A reconfigurable cache architecture for general-purpose
processors is presented in [2]. The L1 data cache is partitioned
into two banks. One of them is used as conventional cache,
while the other can be configured as an instruction reuse
buffer [2]. For some multimedia applications, the data stream-
ing characteristics cause large caches to be under-utilized. In
order to make better use of the hardware resources, such
applications can configure one of the banks of the under-
utilized cache into an instruction reuse buffer at the beginning
of application execution.

Using a new technique, called way concatenation [10], the
cache associativity can be configured dynamically. The cache
associativity greatly affects power consumption. Studies show
that a direct-mapped cache consume 30% energy of a same
size four-way set associative cache [10]. The reason for the
low power consumption of the direct-mapped caches is that
only one tag and one data array are read during an access,
while four tags and four data arrays are read for a four-
way associative cache. For some applications, a direct-mapped
cache has a low miss rate, and thus results in low energy
consumption. However, other applications result in a high
miss rate for direct-mapped cache. This high miss rate incurs
larger energy consumption due to the longer execution time

and more energy-consuming accesses to the larger low-level
memory units. Thus, using a suitable cache associativity for a
particular application is of great importance to decrease energy
consumption.

IV. PROGRAM ANALYSIS AND TRANSFORMATIONS

A. Data-flow Analysis

1) Standard data-flow analysis: Data flow analysis is an
important technique to obtain useful information about the
flow of data in a program, such as the uses and definitions
of data [14]. Most data flow analysis is performed statically
at compile time.

There are various representations for data flow analysis. The
most commonly used are as flows: the directed acyclic graph
(DAG), the control flow graph (CFG), the call graph (CG),
and the static single assignment form (SSA).

Data flow analysis is widely used to optimize the program
data flow. Its typical applications are as follows:

• Available Expressions Analysis is used to identify the
previously computed values to eliminate redundant com-
putation.

• Reaching Definition Analysis is used to detect and elim-
inate redundant definition.

• Live Variables Analysis is used to determine whether a
variable will be used after a program point.

• Constant Propagation tries to replace an expression by a
constant when compiling.

2) Memory-oriented data flow analysis: Several models
have been proposed for data flow analysis oriented to array
data.

Stream model: Stream model is used for data description
in Phideo compiler [15]. Multiple-dimensional signals are
mapped to time axis by use of a linear function. A schedule
determines the offset of the stream on the time axis. The
drawback of the stream model is that the dependency between
the data is not well specified.

Polyhedral models: Polyhedral models are widely used for
array synthesis systems. A polyhedral model can be used for
partitioning array data into non-overlapped portions. It can also
be used for variable counting and memory size estimation [8].

B. Program Transformations and Optimizations

The application optimizations have a large impact on the
application performance. There are different application op-
timizations for different objectives. Data flow optimizations
are used to reduce the redundant memory accesses. Loop
transformations can improve the data locality. Memory in-
place optimizations can reduce the memory size requirement.
If application transformations are not applied, the memory
organization will be heavily suboptimal [1].

For embedded systems, program transformations should be
performed to maximize or make a suitable tradeoff between
multiple design objectives, such as performance, memory
footprint, and energy.



6

1) Data-flow Transformations: Data flow analysis and
transformations happen at the beginning of the design process,
which greatly impact the performance of applications. Proper
data flow transformations can produce significant performance
gains. Data flow transformations may reduce or remove re-
dundant data accesses. Furthermore, data flow transformations
may dramatically reduce the size of the intermediate buffers or
even eliminate them completely. For example, signal substitu-
tion and propagation can eliminate the copies of the same data
which are accessed by different loops or kernels. Optimizing
the computation order in associate chains can change the data
production and consumption order which can result in much
lower intermediate buffer size requirement.

This buffer size reduction decreases the requirement for
storage. Furthermore, the reduced buffer can be put into the
smaller and faster storage units, which in turn results in better
performance and less energy consumption.

2) Loop transformations: The main purpose of loop trans-
formations for memory hierarchy design is to improve the
access locality, including the temporal locality and spatial
locality. Apart from being used for memory organization, loop
transformations are also used for other purposes, such as to
exploit the inherent parallelism of algorithms.

The commonly used loop transformations are loop inter-
changing, loop tiling, loop merging, loop unrolling, etc [16].
Loop transformations may substantially change the charac-
teristics of the programs. For example, loop transformations
can change the spatial and the temporal locality of memory
accesses. By moving a certain loop to the innermost level,
the inner loop may carry the reuse, and thus improving the
temporal locality. As a result, the variables may be stored in
smaller and faster storage units or even registers.

Loop transformations can also be used to discover loop
parallelism. For example, to parallelize a nested loop, the loop
that carries all the dependence should be interchanged to the
outermost level. Then, the rest of the loops should be executed
in parallel [16].

3) Code rewriting to improve data reuse: Optimizing the
data transfer and storage of programs is very important for
improving the performance of memory hierarchies. Apart from
the loop transformations which aim to improve the perfor-
mance of programs, other code rewriting techniques can also
achieve performance improvement. For example, by explicitly
adding copies of subsets of the data in the program source
code [17], the program explicitly controls the data transfers
and the reuse of storage copies to maximize the data reuse.

4) Memory in-place optimizations: Another scenario where
source code rewriting may be applied is memory in-place
optimization [4], [8], which aims to reuse memory locations
as much as possible to reduce the memory size requirements.

The principle to reduce the number of required registers is
to put the variables in the same location if their life times
are non-overlapped. The same principle applies in reducing
the memory size requirements. Basically, there are two ways
to reduce the memory requirement. The first one is to assign
the elements from the same array (intra-array) to the same
memory locations. The other one tries to put the elements from
different arrays (inter-array) to the same memory locations.

5) Storage Bandwidth Optimization (SBO): The goal of
parameterizing and customizing memory architectures is to
determine the suitable memory architectures for given ap-
plications. One important factor that affects the cost of the
customized memory hierarchy is the memory access pattern of
the underlying program. The objective of Storage Bandwidth
Optimization (SBO) is to lower the cost of the memory
hierarchy, in terms of the number of memory ports and the
memory banks, by exploiting the scheduling of memory access
patterns [8].

6) Impact of the transformations on multiple design ob-
jectives: A transformation may have different effects on
the design objectives. Some effects may conflict with each
other. For example, the memory in-place optimizations can
reduce the memory size requirements, but the execution time
may be increased due to the extra code for managing the
signal address. Since embedded systems have multiple design
objectives, it is necessary to make a suitable trade-off between
these objectives.

Some loop transformations may need the hardware plat-
form support, while some loop transformations need spe-
cific platforms to exploit the potential improvement of the
transformations. For example, loop merging can be used to
parallelize loops, and to decrease the amount of intermediate
buffer needed, which in turn improves the performance of data
cache. However, merging loops may increase the number of
instructions in the loop kernel, which in turn might result in
a larger instruction cache size requirement. Combining the
source transformations with the architecture parameterization
might lead to larger performance improvement.

V. SOFTWARE-CONTROLLED INSTRUCTION MEMORY: A
CASE STUDY

Based on our framework, we performed a case study to
develop a new instruction memory architecture called the
software-controlled instruction memory.

A. Motivation

As the speed of the processor becomes increasingly faster,
the instruction fetch architecture that provides the processor
with needed instructions has become more and more im-
portant. However, the low access speed of the memory can
not keep up with the processor speed, and this is a major
bottleneck in modern systems. The most important way to
tackle this problem is to use small and fast cache memories
between the processor and the main memory. However, even
a small cache miss rate can incur a large latency penalty that
greatly hinders the performance of the processor. Much effort
has been made to decrease the cache miss rate.

Instruction placement optimizations are introduced in [18],
[19]. The goal is to improve the instruction locality by
repositioning the instructions. It can be performed at different
granularity. Repositioning the instruction at procedure level
is called Global Layout Optimization, while performing the
optimization at basic block level inside a procedure is called
Function Layout Optimization. To get a finer granularity than
procedure level, we can split the procedure, which is called
procedure splitting.



7

B. Improving the Instruction Memory Architecture

Caches use hardware mechanisms to implement the data
replacement. These mechanisms are not flexible and may result
in many conflict misses. The characteristics of the program can
often be statically analyzed. Designing a memory architecture
to make full use of this static analysis information is desirable.
For example, by using software-controlled memory architec-
ture, the compiler may have much more freedom to perform
the program optimization, and obtain extra performance im-
provement.

In [9], the on-chip storage resources are partitioned sepa-
rately into data cache and scratch memory. The program data
are carefully assigned into these two memory units to reduce
the conflict miss. We believe that a similar approach can be
applied for instruction memory units.

Based on the above principles, we propose an instruction
memory architecture consisting of the instruction cache and
an on-chip scratch memory. The most frequently executed
portions of the program will be placed in the on-chip memory,
while less frequently executed parts will be handled by the
cache. This new architecture can provide thre main benefits.
First, by carefully assigning the most frequently executed parts
of the program into scratch memory, the conflict misses will be
reduced. Second, the on-chip scratch memory is less costly in
terms of both resource and energy consumption. Third, since
the behavior of the scratch memory is completely predictable,
the real-time property of the system can be strengthened.

C. The Framework and Design Flow

Program


Performing analysis

and profiling


Perform program optimization & Partition

on-chip storage resources into


instruction cache and scratch memory


On-chip storage

resource size


Optimized Program
 Instruction memory hierarchy


Fig. 4. Design flow

The design flow is shown in Figure 4. The inputs are the
on-chip memory storage resource size and the program, either
in the form of the source code or intermediate code. Taking the
inputs, the framework will explore the software optimizations
and the instruction memory hierarchy configurations in order
to get the best combination.

The optimizations for the program are to reorder the pro-
gram blocks and assign the blocks either to the instruction
cache or the on-chip scratch memory. The memory architecture
is shown in Figure 5. For the memory architecture aspect, the
task is to decide the most suitable partition of the on-chip
storage resource into the cache and the scratch memory for
the program. These two aspects guide each other during the
optimization process. Upon completion of the optimization,

the framework will output the optimized program and a mem-
ory hierarchy architecture for running the optimized program.
The memory hierarchy architecture is in the form of a Verilog
description which can be synthesized into hardware.

CPU


Instruction Cache
 Scratch Memory


Off-chip SDRAM


Fig. 5. Proposed memory architecture

In this case study, we will manipulate the program at the
assembly code level because we can control the positioning of
the instructions, and the processing complexity is acceptable.
First, all the source files are compiled into assembly code files.
Second, we instrument the assembly code in order to profile
the program for obtaining the execution information. Third,
we perform the program block positioning according to the
profiling information and the hardware resource size. This also
enables us to determine the memory architecture parameters.
Finally, we compile the optimized assembly code into binary
executable and synthesize the memory architecture platform.
The executable can then be run on the hardware platform.

D. Experimental Platform

1) Hardware platform: In this case study, we use the Nios
Development Kit (Stratix Professional Edition) [20], which
is based on the Altera Nios processor and the Stratix EPS10
FPGA, to prototype the system. Nios is a highly reconfigurable
soft-core CPU, with customizable instructions and customiz-
able cache size, etc.

The Stratix EPS10 FPGA is connected to an external
memory hierarchy consisting of 16M bytes off-chip SDRAM,
1M bytes off-chip SRAM, 8M bytes off-chip flash memory,
and 16M bytes compact flash disk.

2) Software tools: The software tools provided include
the SOPC, the QuartusII, and the Nios processor software
development kit. SOPC is a software tool for integrating
all the intellectual property (IP) components into an on-chip
system, and generating the corresponding hardware language
specifications of the system. QuartusII is a software tool
for synthesizing and implementing the hardware language
specifications into hardware for running applications. The
Nios processor software development kit is responsible for
compiling the programs into their executables for Nios based
systems.

E. Experimental Methodology

1) Hardware setup: In this case study, we modified the
Verilog source code of the Nios processor by adding our
custom memory hierarchy. We have performed the following
work:



8

1. Modified an existing direct-mapped cache design into a
two-way set-associative cache. The cache size can be
easily changed.

2. Implemented a scratch memory besides the on-chip in-
struction cache, which can be accessed in parallel with
the cache by the Nios processor.

3. Placed the instructions of selected subroutines manually
into the scratch memory.

4. Introduced a timer and hardware counters into the system
to collect performance statistics such as the program
execution time, the number of instructions fetched by the
processor, and the instruction cache miss rate.

2) Benchmark application: For our experiments, we have
selected the FFT (Fast Fourier Transformation) from the
MiBench benchmark suite, which is mainly used for evalu-
ating embedded systems. FFT is used to perform fast fourier
transformation computation, which transforms a time-domain
signal to its frequency-domain form.

We first profile the FFT application to find out which routine
is the most frequently executed. Then, we place that routine
into the on-chip scratch memory to guarantee the fetch hit and
avoid the conflict with other instructions. After the profiling,
we found that the floating point multiplication subroutine
is the most frequently executed, and its size is 906 bytes.
For simplicity, we place the whole subroutine in the scratch
memory.

The following memory hierarchy configurations are used to
perform the experiments:

1K scratch memory + 1K instruction cache versus
2K instruction cache.

1K scratch memory + 2K instruction cache versus
4K instruction cache

We name the memory hierarchy with scratch memory as
new architecture, while the memory architecture consisting
of pure cache is named traditional architecture. The size
of the scratch memory and cache determine the total amount
of instructions that can be stored on-chip. Since the length of
instruction is two bytes, the depth of the scratch memory and
the cache is given by their respective sizes divided by two.

3) Experimental results and discussion: The experimental
results are shown in Table I. For the first pair of configurations,
the new architecture provides a faster execution time (90.67sec
vs. 91.26sec), while the cache miss rate is slightly higher
(17.29% vs. 15.98%). As for the second pair of configurations,
the execution time (84.47sec vs. 82.02sec) and the miss rate
(10.17% vs. 7.60%) of the new architecture are slightly worse
than that of the traditional architecture.

TABLE I

EXPERIMENTAL RESULTS

Cache miss Execution Storage

rate(%) time(sec) (kbits)

2K cache 15.98 91.26 31
1K cache 17.29 90.67 24

+ 1K scratch memory

4K cache 7.60 82.02 60
2K cache 10.17 84.47 39

+ 1K scratch memory

The preliminary experimental results show that the new
architecture can provide comparable performance as the tra-
ditional architecture. In addition, the new architecture has
promising potential.

First, the new architecture consumes less memory resources.
The new architecture of 1K cache & 1K scratch memory
consumes an amount of 24 Kbits storage, while the resource
consumption of the traditional architecture of 2K cache is
equal to 31 Kbits. For the second pair of configurations, the
resource consumed by the new and the traditional architecture
are 39 Kbits and 60 Kbits, respectively.

Second, in this case study, the granularity of the program
partitioning is at the procedure level, which may result in
rarely executed basic blocks being assigned to the scratch
memory. If we manipulate the program at the basic block
level, more frequently used portions of the program can be
placed in the scratch memory, and thus the performance can
be improved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first present the background and motivation
of our research work. Then we presented a survey of existing
work in this research area. We present a case study on a
new software-controlled instruction memory hierarchy, and
obtained preliminary experimental results. We believe that the
new instruction memory hierarchy is promising compared to
the traditional instruction memory architecture.

In the future, we would like to explore several important
and interesting issues.

1. Development of profiling and instruction partitioning
techniques

First, we will continue to work on our proposed instruction
memory architecture. We plan to perform the profiling and
instruction partitioning at the basic block level rather than the
procedure level. We are also going to study and devise suitable
algorithm to perform the instruction partitioning.

2. Co-optimization and co-synthesis of memory hierarchy
and application

The second issue is the co-optimization and generation of
both the memory hierarchy architecture and the applications.
We would like to fully implement our co-design framework.
The framework takes the hardware constraints and applications
as inputs, and outputs both the memory hierarchy architecture
descriptions and the coupled optimized applications, where
the memory hierarchy descriptions (e.g. Verilog specifications)
can be synthesized into hardware.

During the exploration, the framework should try to make
full use of all the hardware resources to avoid the performance
bottleneck. For example, if the computational capability of
the processor is very powerful, the memory hierarchy may
become a major bottleneck. Thus, more hardware resources
should be used for designing the memory hierarchy. In other
words, the memory hierarchy design should take into account
of the parameters of the other components of the hardware
platform.

3. Dynamically reconfigurable memory hierarchy
The third issue we would like to explore is the reconfig-

urable memory architecture for embedded systems. There are



9

opportunities to design other kinds of reconfigurable memory
architecture, such as the ability to dynamically reconfigure the
line size of the cache. The applications may be able to change
the configuration of the memory hierarchy dynamically during
different execution phases.

4. Mutual effects of application optimization and memory
architecture

The last issue is to study how the application optimization
and the memory architecture affect each other. The optimiza-
tion and the architecture are tightly coupled with each other.
For example, by performing loop merging, the intermediate
data buffer size may be reduced, which means that a smaller
data cache size is needed. On the other hand, the loop
merging increases the kernel size, and thus a larger instruction
cache size may be needed. Given a fixed amount of storage
resource, the problem is how to divide it into appropriate
sizes of instruction cache and data cache, and perform loop
transformations simultaneously to maximize the performance.

REFERENCES

[1] Preeti Ranjan Panda, Nikil Dutt, and Alexandru Nicolau. Memory Issue
in Embedded Systems-on-chip: Optimization and Exploration. Kluwer
Academic Publisher, 1999.

[2] Parthasarathy Ranganathan, Sarita Adve, and Norman P. Jouppi. Re-
configurable caches and their applications to media processing. In
Proceedings of the 27th Annual International Symposium on Computer
Architecture, pages 214–224, 2000.

[3] Ying Zhao and Sharad Malik. Exact memory size estimation for
array computations without loop unrolling. In Proceedings of the 36th
ACM/IEEE conference on Design Automation, pages 811–816, 1999.

[4] Eddy de Greef, Francky Catthoor, and Hugo De Man. Array placement
for storage size reduction in embedded multimedia systems. In Inter-
national Conference on Application-Specific Systems, Architectures, and
Processors, 1997.

[5] Niklas Petterson. A summary of storage allocation for embedded
processors. 2004.

[6] Sven Wuytack, Jean-Philippe Diguet, Francky V. M. Catthoor, and Hugo
J. De Man. Formalized methodology for data reuse: Exploration for low-
power hierarchical memory mappings. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 6(4), December 1998.

[7] Iroshi Nakamura, Masaaki Kondo, Taku Ohneda, Motonobu Fujita,
Shigeru Chiba, Mitsuhisa Sato, and Taisuke Boku. Architecture and
compiler co-optimization for high performance computing. In Proceed-
ings of the International Workshop on Innovative Architecture for Future
Generation High-Performance Processors and Systems, 2002.

[8] Francky Catthoor, Sven Wuytack, Eddy De Greef, Florin Balasa, Lode
Nachtergaele, and Arnout Vandecappelle. Custom Memory Management
Methodology: Exploration of Memory Organization for Embedded Mul-
timedia System Design. Kluwer Academic Publisher, 1998.

[9] Preeti Ranjan Panda, Nikil D.Dutt, and Alexandru Nicolau. Local
memory exploration and optimization in embedded systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18(1), Jan 1999.

[10] Chuanjun Zhang, Frank Vahid, and Walid Najjar. A highly configurable
cache architecture for embedded systems. In Proceedings of the 30th
Annual International Symposium on Computer Architecture, pages 136–
146, 2003.

[11] S. Wuytack, F. Catthoor, G. De Jong, and H.J. De Man. Minimizing
the required memory bandwidth in vlsi system realizations. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 7(4), 1999.

[12] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad memory: A design alterative for cache
on-chip memory in embedded systems. In Proceedings of the Tenth
International Symposium on Hardware/Software Codesign, pages 73–
78, 2002.

[13] Masaaki Kondo, Hideki Okawara, and Hiroshi Nakamura. Scima: Soft-
ware controlled integrated memory architecture for high performance
computing. In IEEE International Conference on Computer Design:
VLSI in Computers & Processors, 2000.

[14] Y.N Srikant and P.Shankar. The Compiler Design Handbook. CRC
Press, 2003.

[15] M.van Swaaij, F.Franssen, and D.De Man. Modelling data and control
flow for high-level memory management. In Proceedings of 3rd
ACM/IEEE Europe Design Automation Conference, pages 8–13, 1992.

[16] Michael Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1998.

[17] P.R. Panda, F.Catthoor, N.D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P.G. Kjeldsberg. Data and memory
optimization techniques for embedded systems. ACM Transactions on
Design Automation of Electronic Systems, 6(2), April 2001.

[18] Karl Pettis and Robert C.Hansen. Profile guided code positioning. In
Proceedings of the 1990 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1990.

[19] Wen mei W. Hwu and Pohua P. Chang. Achieving high instruction cache
performance with an optimizing compiler. In Proceedings of the 16th
Annual International Symposium on Computer Architecture, 1989.

[20] Nios development board reference manual, stratix edition. In
www.altera.com/literature/manual/mnl nios board stratix 1s10.pdf.


