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  (2) Validity: If a process decides on v, then v was 
proposed by some processes.  Abstract—In this paper, we discuss the consensus problem 

for synchronous distributed systems with orderly crash 
failures. For a synchronous distributed system of n processes 
with up to t crash failures and f failures actually occur, first, 
we present a bivalency argument proof to solve the open 
problem of proving the lower bound, min (t + 1, f + 2) rounds, 
for early-stopping synchronous consensus with orderly crash 
failures, where t < n − 1. Then, we extend the system model 
with orderly crash failures to a new model in which a process 
is allowed to send multiple messages to the same destination 
process in a round and the failing processes still respect the 
order specified by the protocol in sending messages. For this 
new model, we present a uniform consensus protocol, in 
which all non-faulty processes always decide and stop 
immediately by the end of f + 1 rounds. We prove that the 
lower bound of early stopping protocols for both consensus 
and uniform consensus are f + 1 rounds under the new model, 
and our proposed protocol is optimal. 

(3) Agreement: No two correct processes decide 
differently.  

The agreement property applies to only correct 
processes. Thus it is possible that a process decides on a 
distinct value just before crashing. The uniform consensus 
prevents such a possibility. It replaces the agreement 
property with the following: 
(3’) Uniform Agreement: No two processes (correct or not) 
decide differently.  

Synchronous consensus protocols are based on the 
notion of round. In a synchronous distributed system, 
every execution of the consensus protocol consists of a 
sequence of rounds. Every process will start and finish the 
same round synchronously. Both message delay and 
relative processes speed are bounded and these bounds are 
known. Most existing synchronous consensus protocols are 
designed to tolerate crash failures. When a process crashes 
in a round, it sends a subset of the messages that it intends 
to send in that round, and does not execute any subsequent 
rounds [8].  

 
Index Terms—Consensus, Orderly crash failure, Early 

stopping, Synchronous distributed system 
 

I. INTRODUCTION 

C ONSENSUS is one of the fundamental problems in 
distributed computing theory and practice. Assuming 

that a distributed system consists of a set of n processes in 
the consensus problem, each process pi initially proposes a 
value vi, and all non-faulty processes have to decide on one 
common value v, in relation to the set of proposed values 
V= { vi | i = 1, …, n }. Without losing generality, we just 
consider V = {0, 1} in this paper. A process is faulty during 
an execution if its behavior deviates from that prescribed 
by its algorithm, otherwise it is correct. More precisely, the 
consensus problem is defined by the following three 
properties: 

If a protocol allows processes to reach consensus in 
which at most t (t < n − 1) processes can crash, the protocol 
is said to tolerate t faults or to be a t-resilient consensus 
protocol. It has been proved that the lower bound on the 
number of rounds is t + 1 for any synchronous consensus 
protocol tolerating up to t crash failures. The proofs can be 
found in [2][1][8].  

If a protocol can achieve consensus and stops before 
round t + 1 when there are actually f (f ≤ t) crashes, we call 
it an early stopping protocol. The well-known lower 
bound, min (t + 1, f + 2) rounds, for early stopping 
consensus protocols in synchronous distributed systems 
has been proved [5]. If just consider the time at which 
processes decide, we call those protocols in which all 
processes decide before round t + 1 with actually f crashes 
as early-deciding protocols. The lower bound, (f + 1)-
rounds, for early deciding synchronous consensus 
protocols has been proved [3]. For synchronous uniform 
consensus, the lower bound of f + 2 rounds for crash 
failures, where f ≤ t − 2, has been proved in [3][7][11], and 
for f = t − 1, [3] presents a synchronous uniform consensus 
protocol in which all processes decide by the end of round 
f + 1.  

(1) Termination: Every correct process eventually decides 
on a value.  
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(2) wait for round r messages from the other processes; In this paper, we consider synchronous consensus 
protocols under the orderly crash failure model [5][9][10]. 
With orderly crash failures, the failing process must respect 
the order specified by the protocol in sending messages. 
That is, if a process fails to send a specified message, it 
must also fail to send any message specified to be sent after 
that message in the protocol ordering. In [5], the authors 
mentioned that they could not prove the lower bound of 
min (t + 1, f + 2) rounds for the orderly crash failure 
model. So, our first contribution is to solve the open 
problem.  

(3) execute local computations. 
Thus, the system is synchronous. The underlying 

communication system is assumed to be failure-free: there 
is no creation, alteration, loss or duplication of message.  

As mentioned in the Introduction, we restrict the failure 
model to the orderly crash failure model. Figure 1 shows 
the model. Process pj is specified to send messages m1, .., 
mi, .., mn, in a round, to processes p1, .., pi, .., pn, 
respectively. But it fails to send message mi and stops by 
doing nothing. Then processes p1, .., pi−1 must have 
successfully received m1, .., mi−1 respectively, and 
processes pi, .., pn did not receive message from pj in the 
same round. 

Then, we extend the system model with orderly crash 
failures to a new model in which a process is allowed to 
send multiple messages to the same destination process in a 
round and the failing processes still respect the order 
specified by the protocol in sending messages. For this new 
model, we present a uniform consensus protocol that 
tolerates up to t failures, in which all non-faulty processes 
always decide and stop immediately by the end of f + 1 
rounds. Then we prove that the lower bound of early 
stopping protocols for both consensus and uniform 
consensus are f + 1 rounds under this new model, and show 
our proposed protocol is optimal.   

In the paper, the lower bounds are proved using 
bivalency arguments. Bivalency argument is a technique 
that uses forward induction to show impossibility results 
and lower bounds that are related to consensus.  It means 
that there exists a state from which two different 
executions lead to different decisions. The technique was 
first introduced by [6] and used in [1] to show the lower 
bound for achieving consensus simply and intuitively.  

Figure 1. Example of orderly crash failures model 
 

III. BIVALENCY ARGUMENT PROOF 
Bivalency argument proofs are based on the observation 

that a state in which some processes have decided cannot 
be bivalent. These proofs are based on a synchronous 
round-based system S with n processes and at most t crash 
failures such that at most one process crashes in each 
round. S is just a subset of executions of a consensus 
protocol. The following notations are introduced and used 
in the bivalency argument proofs.  

The rest of the paper is organized as follows. Section II 
describes the system and orderly failure model. Section III 
introduces the bivalency proof in [1] and revises it to work 
for the orderly crash failure model. Section IV presents the 
bivalency proof of lower bound for early-stopping 
synchronous consensus with orderly cash failures. Section 
V describes the new system and failure model. Section VI 
proposes a uniform consensus protocol for the new model, 
and presents its correctness proof. Section VII presents the 
bivalency proof for the lower bounds in the new model. 
Finally, section VIII concludes this paper. 

• configuration, a configuration of the system S is 
considered at the end of each round. Such a 
configuration is just the state of each process. 

• 0-valent, a configuration C is 0-valent if starting from C 
the only possible decision value that correct processes 
can make is 0. 

• 1-valent, a configuration C is 1-valent if starting from C 
the only possible decision value that correct processes 
can make is 1.  

 

II. ORDERLY CRASH FAILURE MODEL 
• univalent, C is univalent if it is either 0-valent or 1-

valent. A distributed system consists of n processes, ∏ = {p1, 
…, pn}, that communicate and synchronize by sending and 
receiving messages. Each pair of processes, pi and pj, is 
connected by a channel. Both message delay and relative 
process speed are bounded, and these bounds are known. 
Every execution consists of a sequence of rounds. While in 
round r, each process executes the following steps 
sequentially:  

• bivalent, C is bivalent if it is not univalent.  
• k-round partial run, rk, denotes an execution of 

algorithm A up to the end of round k.  
Consider the configuration Ck at the end of round k of 

partial run rk, we say that rk is 0-valent, 1-valent, univalent, 
or bivalent if Ck is 0-valent, 1-valent, univalent, or 
bivalent, respectively.  

(1) send round r messages to the other processes, but send 
at most one message to a destination process; 

• same univalent, two partial runs are same univalent if 
both are 1-valent or both are 0-valent.  



 
 

We say that a partial run rk decides v if all correct 
processes decide v by the end of round k of rk. We say that 
a process sinks in a round if it sends no message and 
crashes at the beginning of the round. 

The bivalency proof in [1] shows that a t-resilient 
consensus protocol requires t + 1 rounds in the crash 
failure model. We modify it to work for the orderly crash 
failure model in subsection B. 

 

A. Bivalency Proof for Crash Failures 
Theorem 1 [1]. Consider a synchronous round-based 
system S with n processes and at most t crash failures such 
that at most one process crashes in each round. If n > t + 1 
then there is no algorithm that solves consensus in t rounds 
in S. 

The proof proceeds by contradiction as follows. Suppose 
there is an algorithm A that solves consensus in t rounds in 
S. Without loss of generality, each process is supposed to 
send a message to every other process in a round. Three 
lemmas have been proved in [AT99]. The third Lemma 
contradicts the first and thus completes the proof of the 
theorem. 
Lemma 1 [1]. Any (t − 1)-round partial run rt−1 is 
univalent. 
Lemma 2 [1]. There is a bivalent initial configuration. 
Lemma 3 [1]. There is a bivalent (t − 1)-round partial run 
rt−1. 

 

B. Revised Proof for Orderly Crash Failures 
To prove the same lower bound for the orderly crash 

failure model, some modifications to the proof of above 
Lemmas are needed. We show the revised proof works for 
the lower bound proof of the new model in section VII.  
Theorem 1. Consider a synchronous round-based system S 
with n processes and at most t orderly crash failures such 
that at most one process crashes in each round. If n > t + 1 
then there is no algorithm that solves consensus in t rounds 
in S. 
Proof. Suppose there is an algorithm A that solves 
consensus in t rounds in S.  
Lemma 1. Any (t − 1)-round partial run rt−1 is univalent. 
Proof: Suppose there is a bivalent (t − 1)-round partial run 
rt−1. Let r* be the t-round partial run obtained by extending 
rt−1 by one round such that no process crashes in round t. 
Without loss of generality, we assume that all correct 
processes decide 0 in r*. On the other hand, since the 
partial run rt−1 is bivalent, there exists one t-round partial 
run r+ that extends rt−1 such that all correct processes 
decide 1. Note that in round t of r+, exactly one process p 
must crash because in system S at most one process crashes 
per round.  

Let {q1, q2, …, qm} be the set of prescribed receivers of 
all orderly messages sent by p in round t. In partial run r+, 
suppose ql−1 is the last process to which p delivers a 

message. Then, we can construct t-round partial runs rj, l ≤ 
j ≤ m, based on run r+ as follows. Let rl−1 be r+. For every j, 
l ≤ j ≤ m, rj is identical to rj−1 except that in rj p sends a 
message to qj before it crashes in round t. Every rj is t-
partial run and must be univalent. There are two possible 
cases:  

Case 1. For each j, l ≤ j ≤ m, rj is 1-valent. So rm and r* 
are 1-valent and 0-valent, respectively. The only difference 
between rm and r* is that p crashes at the end of round t in 
rm, while p is correct in r*. Every process except p in both 
partial runs maintains the same information, thus they 
cannot decide different in the two partial runs, —a 
contradiction.  

Case 2. There is a j, l ≤ j ≤ m, such that rj−1 is 1-valent 
while rj is 0-valent. Every process except qj in both partial 
runs maintains the same information, and there is at least 
one other correct process because n > t + 1, then these 
processes cannot distinguish rj−1 and rj, thus they cannot 
decide different in rj−1 and rj, —a contradiction.      
Lemma 2. There exists a bivalent initial configuration. 
Proof: Suppose all initial configurations are univalent. 
Consider two initial configurations C0 and C1 such that all 
processes have initial value 0 and 1, respectively. By the 
validity property of consensus, C0 is 0-valent and C1 is 1-
valent. Clearly, there are two initial configurations that 
differ by the initial value of only one process p, such that 
one is 0-valent and the other is 1-valent. We can easily 
reach a contradiction by sinking p at the beginning of 
round 1.    
Lemma 3. There is a bivalent (t − 1)-round partial run rt−1. 

In order to prove Lemma 3, we introduce and prove 
Lemma 4 first. Lemma 4 is used in the proofs in Section 
IV.  
Lemma 4. Every bivalent k-round partial run (0 ≤ k ≤ t − 
2), rk, can be extended by one round into a bivalent (k + 1)-
round partial run. 
Proof. Assume, by contradiction, that every one-round 
extension of rk is univalent. Because k ≤ t − 2, according to 
the definition of S, there are crashes which may occur till 
round k + 2. 

Let rk+1* be the partial run obtained by extending rk by 
one round such that no new crashes occur. Without loss of 
generality, assume rk+1* is 0-valent. Since rk is bivalent, 
and every one-round extension of rk is univalent, there is at 
least one one-round extension rk+1

+ of rk that is 1-valent. 
Note that rk+1* and rk+1

+ must differ in round k + 1. Since 
round k + 1 of rk+1* is failure-free, there must be exactly 
one process p that crashes in round k + 1 of rk+1

+ because in 
system S at most one process crashes per round. Since p 
crashes in round k + 1 of rk+1

+, it may fail to send a 
message to some processes. Suppose that, in round k + 1, 

the set of receivers of all orderly messages sent by p is {q1, 
q2, …, qm}, and ql−1 is the last process to which p delivers a 
message. Then p fails to send messages to {ql, …, qm}.  

Based on rk+1
+, we now construct (k + 1)-round partial 



 
 

runs rk+1
l, …, rk+1

m  as follows. Let rk+1
l−1 be rk+1

+. For every 
j, l ≤ j ≤ m, rk+1

j is identical to rk+1
j−1 except that p sends a 

message to qj before it crashes in the round k + 1 of rk+1
j. 

Recall the assumption that for every j, l ≤ j ≤ m, rk+1
j is 

univalent. There are two possible cases: 
Case 1. For all j, l ≤ j ≤ m, rk+1

j are 1-valent. In this case 
rk+1

m and rk+1* are 1-valent and 0-valent, respectively. The 
only difference between rk+1

m and rk+1* is that p crashes at 
the end of round k + 1 in rk+1

m, while p is correct up to and 
including round k + 1 in rk+1*. Consider the k + 2 partial 
runs, r and r’, extending from rk+1* and rk+1

m, respectively. 
In r, process p sinks at the beginning of round k + 2 (before 
it sends any messages in that round). In r’, there is no 
crash. Thus, partial runs r and r’ are same. Since rk+1* is 0-
valent and rk+1

m is 1-valent, then r should be 0-valent but r’ 
should be 1-valent —a contradiction. 

Case 2. There is a j, l ≤ j ≤ m, such that rk+1
j−1 is 1-valent 

while rk+1
j is 0-valent. Consider the k + 2 partial runs, r and 

r’, extending from rk+1
j−1 and rk+1

j by sinking process qj at 
the beginning of round k + 2, and continuing with no 
additional crashes, respectively. Thus, partial runs r and r’ 
are same. Since rk+1

j−1 is 1-valent and rk+1
j is 0-valent, then 

r should be 1-valent but r’ should be 0-valent —a 
contradiction.    
Lemma 5. For every bivalent k-round partial run, rk, if at 
least two processes may orderly crash in the following 
execution, rk can be extended by one round into a bivalent 
(k + 1)-round partial run. 
Proof. It is obvious that there is possible crash in round k + 
2. Thus the proof of Lemma 4 works for this Lemma.    

The proof of Lemma 3 then proceeds by forward 
induction:  
Basis: By Lemma 2, there exists a bivalent initial 
configuration C0. For k = 0, let r0 be the 0-round partial run 
that ends in C0. 
Hypothesis: Suppose 0 ≤ k ≤ t − 2. Let rk be a bivalent k-
round partial run. 
Induction step: By Lemma 4, we can get a bivalent (k + 
1)-round partial run rk+1.   Lemma 3  

Lemma 3 contradicts Lemma 1. Thus, Theorem 1 must 
be true.   Theorem 1 

 

IV. LOWER BOUND FOR EARLY-STOPPING 
Theorem 2. Consider a synchronous round-based system S 
with n processes and at most t orderly crash failures that 
at most one process crashes in each round. If t < n − 1 and 
0 ≤ f ≤ t − 1, there is no early-stopping protocol that solves 
consensus in f + 1 rounds in S. 
Proof. The proof of Theorem 2 is by contradiction. 
Assume the contrary, there is an early-stopping protocol A 
that solves consensus in f + 1 rounds in S. That is, in any 
execution of A with f (0 ≤ f ≤ t − 1) failures, all the correct 
processes must decide and stop by the end of round f + 1. 
Follow the assumption, first, we introduce and prove 

Lemma 6, 7, 8, and 9. 
Lemma 6. For an early-stopping synchronous consensus 
protocol, no correct process can decide and stop in any 
bivalent partial run in S. 
Proof. Assume, by contradiction, a correct process pi 
decides 1 and stop at the end of the round k of a bivalent 
partial run rk. According to the definition of bivalent partial 
run, firstly, not all correct processes decide in this round, 
otherwise rk is univalent; secondly, there is an execution 
continuing rk, in which other correct processes decide 0. 
This is a violation of the agreement property of consensus.   

 
Lemma 7. If a process decides v and stops in a round of a 
partial run, the partial run is v-valent. 
Proof. By Lemma 6, the partial run must be univalent. The 
process which decides and stops may be a correct process 
that it never crashes in following rounds. If the partial run 
is not v-valent, the agreement property is violated.    
Lemma 8. Any partial run rk (k ≤ f + 1) of A without 
failure during round k in S is univalent. 
Proof. If it is not univalent, A cannot solve consensus with 
f actual failures by the end of round f + 1, because we can 
construct at least f + 1 consecutive bivalent partial runs by 
using Lemma 5 as follows.  

When k = f + 1, by Lemma 6, no process can decide and 
stop by the end of round f + 1.  

Now consider k < f + 1. According to the definition of S, 
at most (k − 1) processes crashed before round k. Now 
there are (f − k + 1) rounds from round k + 1 to f + 1 and 
there are f − (k − 1) processes actually crash. And for every 
round j, where k + 1 ≤ j ≤ f, there are at least two processes 
may crash in the following rounds because of (f ≤ t − 1). 
Then, by Lemma 5, there are bivalent partial runs of A at 
each round from round k + 1 to round f + 1. We can crash 
one process in each round to construct a new bivalent 
partial run as extensions from rk, the execution enters into a 
bivalent (f + 1)-round partial run. In this case, by Lemma 6 
no process can decide and stop by the end of round f + 1. – 
Contradiction.   
Lemma 9. When extending from a bivalent f-round partial 
run, rf, all (f + 1)-round partial runs of A in S, in which at 
least one process receive all prescribed messages in round 
f + 1, are same univalent. 
Proof. First consider the (f + 1)-round partial run extended 
from rf without failures, rf+1*. By Lemma 8, rf+1* is 
univalent. According to the assumption, all processes 
decide and stop in round f + 1. Now consider another (f + 
1)-round partial run extended from rf with one orderly 
crash, rf+1, in which process pi received all prescribed 
messages in round f + 1. pi cannot distinguish that it is in 
rf+1 or rf+1*, if rf+1 is bivalent, then by Lemma 6, pi cannot 
make decision and stop in round f + 1. This is a 
contradiction. Thus, rf+1 should be univalent also.  

Without losing generality, assume rf+1* is 1-valent and 
all processes in rf+1* decide 1. Then pi decides 1 and stops 



 
 

in round f + 1 of rf+1 also. Thus, rf+1 must be 1-valent, 
otherwise it violates the agreement property of consensus 
when pi is a correct process.     

Now, continuing the proof of Theorem 2. By 
assumption, all correct processes decide and stop by the 
end of round f + 1.  

Case 1: consider 0 < f ≤ t − 1. 
Let another protocol A’ be the same as protocol A except 

A’ is designed to tolerate up to f crash failures. By Lemma 
2 and Lemma 4, there is an (f − 1)-round bivalent partial 
run rf−1 in protocol A’. It is clear that rf−1 is also an (f − 1)-
round bivalent partial run in protocol A. We will prove that 
all executions extended from rf−1 in protocol A’ decides the 
same according to the previous assumption. 

Now first consider rf−1 in protocol A and extend it to 
round f. Consider rf* without failure occurs in round f, by 
Lemma 8, it is univalent. Without losing generality, 
assume rf* is 1-valent. Let rf

k be those partial runs that k 
processes do not received the message from the crashed 
process in round f where 0 ≤ k ≤ n − f, and rf+1

k* denote the 
(f + 1)-round partial run extending from rf

k without failures 
in round f + 1. Because the messages sent from a process 
crash in order and total n − f + 1 processes remain in rf−1, 
there are (n − f + 1) rf

ks for each k. By Lemma 8, all those 
rf+1

k*s are univalent. We will prove they are same univalent 
as follows: 
Basis: Consider rf

0, those partial runs are the same as rf* 
except that one process, p, crashes at the end of round f of 
rf

0 but p have successfully delivered all its messages in the 
round. There are two cases: (1) some processes in both rf

0 
and rf* deicide and stop in round f, by Lemma 7, rf

0 should 
be 1-valent. (2) no such process exists, then extend both 
runs to round f + 1 just by sinking p in rf* if p has not 
decided and stopped in round f of rf*. Then two extensions 
rf+1

0* and rf+1* are the same, because rf* is 1-valent, rf+1* is 
univalent and will decide 1. Thus, all rf+1

0*s decide 1. 
Hypothesis: Suppose 0 ≤ k < n − f, all rf+1

k*s decide 1. 
Induction Step: Because the messages sent from a process 
crash in order, then for every rf

k+1, there exist one and only 
one rf

k, where 0 ≤ k < n − f, the partial runs differ by only 
one process, pi, that pi received the message sent by the 
crashed process in round f of rf

k, but not in round f of rf
k+1. 

By Lemma 8, both rf+1
k* and rf+1

k+1* are univalent and rf+1
k* 

is 1-valent by hypothesis. 
Consider extending rf

k and rf
k+1 to rf+1

k’ and rf+1
k+1’ 

respectively by crashing pi that only pj receives the 
message sent from pi in both partial runs. Thus, rf+1

k+1’ is 
the same as rf+1

k’ except pj. By Lemma 9, rf+1
k’ and rf+1

k+1’ 
are univalent because pj received all messages in round f + 
1, and rf+1

k’ is 1-valent because rf+1
k* is 1-valent.  

Because pj will decide and stop at the end of round f + 1 
as it does in rf+1

k* and rf+1
k+1*, now extending both rf+1

k’ and 
rf+1

k+1’ to round f + 2, rf+2
k’ and rf+2

k+1’, without failure. 
Then, rf+2

k’ and rf+2
k+1’ are the same and also univalent. 

Thus, rf+2
k+1’ is 1-valent as rf+2

k’ and then rf+1
k+1’ is also 1-

valent. By Lemma 9, rf+1
k+1* must decide 1 too. 

By induction, all (f + 1)-round partial runs, extended 
from rf−1, without failure in round f + 1 decide 1. Because 
rf* is univalent, then all (f + 1)-round partial runs extended 
from it are 1-valent.  

Now consider protocol A’. Because it is the same as 
protocol A and is an f-resilient protocol, then when 
extended from rf−1 only one process can crash in round f or 
round f + 1. Thus, all (f + 1)-round partial runs extended 
from rf−1 are the same as discussed before in protocol A. 
But all those extensions eventually make the same decision 
by the end of round f + 1, then rf−1 is univalent. – 
Contradiction.    

Case 2: consider f = 0. 
Consider initial configurations C0 and C1 where all 

processes propose 0 in C0 and all processes propose 1 in 
C1. According to the validity property of consensus, C1 is 
1-valent and C0 is 0-valent. Then all 1-round partial runs 
extended from C0 are 0-valent and all 1-round partial runs 
extended from C1 are 1-valent. Clearly, there are two initial 
configurations, C’ and C’’, that differ by the initial value of 
only one process p, such that the 1-round partial runs 
extended from C’ and C’’ without failure, r1’* and r1’’*, 
decide different. Otherwise, both C0 and C1 will be the 
same v-valent, where v is 0 or 1, this violates the validity 
property of consensus. Without losing generality, assume 
that r1’* is 1-valent and r1’’* is 0-valent. 

By Lemma 9, when extended from any initial 
configuration C, all 1-round partial runs, in which at least 
one process receives all prescribed messages in round 1, 
are same univalent. Now consider a 1-round partial run, 
r1’, extended from C’ and a 1-round partial run, r1’’, 
extended from C’’, in both cases by crashing p and p only 
has successfully delivered its message to one process q in 
round 1. Then r1’ and r1’’ differ only by q. By Lemma 9, 
both r1’ and r1’’ are univalent and r1’ is 1-valent and r1’’ is 
0-valent. Because all processes in r1’* and r1’’* decide and 
stop in round 1, q will decide and stop in both r1’ and r1’’. 

Now extending both r1’ and r1’’ to 2-round partial runs, 
r2’ and r2’’, without failures. Then r2’ and r2’’ are same, 
but r2’ is 1-valent and r2’’ is 0-valent —contradiction.  

Thus, the Theorem 2 must be true.  
Theorem 3. The lower bound of the early-stopping 
consensus protocols for synchronous distributed systems 
with orderly crash failures is min (t + 1, f + 2)-rounds, 
where t < n − 1 and f ≤ t. 
Proof. By Theorem 2, for f < t, the lower bound of early-
stopping synchronous consensus protocols with orderly 
failures is f + 2 rounds. By theorem 1, for f = t, the lower 
bound is t + 1 rounds. Thus for f ≤ t, the lower bound of 
early-stopping synchronous consensus protocols with 
orderly crash failures is min (t + 1, f + 2)-rounds.  
 



 
 

VI. THE UNIFORM CONSENSUS PROTOCOL V. NEW SYSTEM MODEL 
The new system also consists of n processes, ∏={p1, …, 

pn}, that communicate and synchronize by sending and 
receiving messages. Each pair of processes, pi and pj, is 
connected by a channel. The system executes protocols in a 
sequence of rounds and is still synchronous. While in 
round r, each process executes sequentially the following 
steps:  

A. Protocol Description 
Figure 3 presents our early stopping uniform consensus 

protocol for synchronous distributed systems in the new 
model, which can tolerate up to t (t < n−1) faults. Each 
process pi is assigned a unique identity (ID) i (1 ≤ i ≤ n). 
Each process pi invokes the function Consensus(vi), where 
vi is the value it proposes. It terminates with the invocation 
of the return() statement that provides the decided value.  

(1) send round r messages to the other processes. In this 
model, a process can send multiple messages to one 
destination process; 

 

(2) wait for round r messages from the other processes; 
(3) execute local computations. 

Both message delay and relative process speed are 
bounded, and these bounds are known. The underlying 
communication system is assumed to be failure-free: there 
is no creation, alteration, loss or duplication of message.  

The failure model is similar to the orderly crash failures, 
the failing process must respect the messages sending order 
specified by the protocol.  

 

Figure 3. The uniform consensus protocol 
The protocol uses the rotating coordinator paradigm. 

Consensus() is made up of t + 1 rounds. Each round r (1 ≤ 
r ≤ t + 1) is managed by a predetermined coordinator pr. 
Only the coordinator can send messages in a round, others 
just wait for message from the coordinator. Therefore, a 
round r consists of the following steps: 

Figure 2. Example of the new model 
Figure 2 shows the new failure model. Process pj is 

specified to send messages, m , .., m , .., m , in a round, 

to processes, , .., , .., , respectively, where k is 
the number of messages prescribed to be sent by p

1j

jp

jp
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kj
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1jp ijp
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i

j and j1, 
…, ji, …, jk ∈ N = {1, .., n}. But it fails to send message 

 and stops by doing nothing. Then processes, , .., 
1, must have successfully received , .., 1 

respectively, and processes , ..,  did not receive 
message from p

ijm

−ijp
1jp

1j −ijm

kj

j in the same round. It is obvious that pj 
may send messages to the same process in a round. 

(1) The rotating coordinator in this round sends round r 
messages to the other processes.  

(2) Every process waits for round r messages from the 
rotating coordinator in the round.  

(3) After a process has received messages, it executes 
local computations. 

Thus, all processes in the protocol are divided into two 
sets, ∏CP which consists of the IDs of the rotating 
coordinator processes, and ∏non-CP = ∏ − ∏CP which 
consists of the IDs of non-coordinator processes. Because 
the protocol aims to tolerate t process crashes and just 
consists of t + 1 rounds, the size of ∏CP is t + 1. For 
simplicity, we choose the first t + 1 processes from ∏ to 
form ∏CP. Thus ∏CP = {pi1 ≤ i ≤ t + 1}.  

The difference between the new model and the orderly 
crash failure model described in section II is that a process 
can set multiple messages to another process in a round in 
the new model. [10] presents a reference implementation of 
the new model by designing a similar protocol for 
synchronous reliable broadcast. How to realize the orderly 
crash in the new model is not focused in this paper. But we 
want to argue that the new model does not change the 
essence of the round notion, and in the crash failure model, 
allowing a process to send multiple messages to the same 
processes in a round does not improve the lower bound of 
early-stopping protocols. 

During round r, the rotating coordinator pr will first send 
vr in ascending order to all processes whose IDs are larger 
than r, and then send vr in descending order to processes 
whose IDs ranges from t + 1 to r + 1. The coordinator will 
decide on its own value at the end of the round. When a 
process pj (j ≠ r) in ∏CP receives a value from pr in round r, 
it will set vj to the received value; if it receives the value 
twice, it decides on the value and stops immediately. When 
a process pj in ∏non-CP receives a value from pr in the same 
round, it will decide on the received value and stop  



 
 

immediately. 
 

B. Correctness Proof 
Theorem 4. The proposed protocol solves the Uniform 
Consensus problem in the new model, in which up to t 
processes can crash, and all non-faulty processes decide 
by the end of f + 1 rounds, where t < n − 1, f ≤ t, and f is 
the number of failures that actually occur. 
Proof. It is obvious that the proposed protocol satisfies the 
Validity property.  

To show that the Termination property is achieved, we 
first prove lemma 10. 
Lemma 10. If the rotating coordinator does not crash in a 
round, all non-faulty processes, which have not made 
decision, can make the same decision in the round. 
Proof. Assume the rotating coordinator pr is the first 
coordinator that does not crash in its round. According to 
the protocol, all non-faulty processes in ∏non-CP that have 
not made decision, can receive a message from pr in the 
round. Then they will decide on the value vr maintained by 
pr. All non-faulty processes in ∏CP, except pr, that have not 
made decision, can receive two messages from pr in the 
round, then they will decide on vr. pr decide on its value, vr, 
at the end of the round.     

Because at most t processes can crash, and actually f (f ≤ 
t) processes crash, there is at least one of the first f + 1 
rounds in which the corresponding coordinator does not 
crash. Assume r is the first round in which the coordinator 
pr does not crash and r must be not more than f + 1. By 
Lemma 10, all non-faulty processes will decide in the 
round. Thus, the Termination property is achieved. 

To prove that the Uniform Agreement property is 
achieved, we first prove Lemma 11 and Lemma 12. 
Lemma 11. If two processes decide in the same round, 
they make the same decision. 
Proof. According to the protocol, a process decides on the 
value of the current rotating coordinator in a round if it can 
do so. Thus all processes that decide in the same round 
must make the same decision.    
Lemma 12. If all non-faulty processes in ∏CP maintain the 
same value v at the end of a round, all processes which 
decide after that round will make the same decision on v. 
Proof. This is obvious. During the following rounds a 
process decides on the value of the corresponding rotating 
coordinator. Because the values of the non-faulty processes 
in ∏CP are the same, all processes that decide after the 
round will make the same decision on v.    

Now, we prove the uniform agreement property, by 
contradiction, that two processes pi and pj (i ≠ j) make 
different decisions. By Lemma 11, they must have not 
decided in the same round. Without losing generality, 
assume that pi decides in round r and pj decides in round r’, 
and r < r’. There are two possible cases: 
(a)  pi is the rotating coordinator pr (i = r), by Lemma 10, 

all non-faulty processes will decide and terminate in 

round r. So pj cannot decide in round r’, — a 
contradiction. 

(b)  pi is not the rotating coordinator pr. According to the 
protocol and the property of the new model, when pi 
decides on the value of pr in round r, all non-faulty 
processes in ∏CP must have received at least one 
message from pr and set their values to the value of pr. 
So their values are the same. By Lemma 12, all 
processes which decide after round r will make the 
same decision on the value of pr. Thus pj should make 
the same decision as pi, — a contradiction.   

So, any two processes make the same decision. Thus, 
Theorem 4 must be true because all three properties of the 
uniform consensus are satisfied.    

 

VII. LOWER BOUNDS FOR THE NEW MODEL 
In section III and IV we have proved that the lower 

bound for t-resilient protocols with the orderly crash failure 
model is t + 1 rounds in which any process can just send at 
most one message to one destination in a round, and the 
lower bound for early-stopping protocols is min (t + 1, f + 
2) rounds, respectively. Now, consider the new model, in 
section VI we present a protocol which solves the early-
stopping uniform consensus in f + 1 rounds. The lower 
bound of t-resilient consensus protocols will be less than t 
+ 1 rounds if we can design a consensus protocol in the 
new model which can achieve consensus before round f + 
1. However, we show that the proof of Theorem 1 also 
works for this new model. Thus, under the new model, the 
lower bound of t-resilient consensus protocols is still t + 1 
rounds. Subsequently, we use this result to show that the 
lower bound of early stopping protocols for both consensus 
and uniform consensus is f + 1 rounds in the new model. 
Therefore, our proposed protocol is optimal. 

 

A. Lower Bound for t-resilient Protocols  
In this section, we adopt the notations and bivalency 

proof method in Theorem 1 and then analyze the proof of 
Theorem 1 and indicate that it also works for Theorem 5. 
Theorem 5. Consider a synchronous round-based system S 
in the new model with n processes and at most t failures 
such that at most one process crashes in each round. If n > 
t + 1 then there is no algorithm that solves consensus in t 
rounds in S. 

The proof of Theorem 5 proceeds by contradiction as 
follows. Suppose there is an algorithm A that solves 
consensus in t rounds in S. Like the proof of Theorem 1, 
three Lemmas are proved and the third contradicts the first 
one. 
Lemma 13. Any (t − 1)-round partial run rt−1 is univalent. 

The proof of Lemma 1 also works for this Lemma. 
Consider the set of receivers, {q1, q2, …, qm}, of all orderly 
messages sent by the crash process p in round t. In Lemma 
1, qi must be different than qj, i ≠ j, 1 ≤ i, j ≤ m. But in the 



 
 

new model, qi may be the same as qj, i ≠ j, 1 ≤ i, j ≤ m. It is 
obvious that this does not affect the truth of the proof, 
because rj−1 and rj still differ by only one process, qj, in 
both models. Then except qj, all other correct processes 
cannot distinguish rj−1 and rj in both models.     
Lemma 14. There is a bivalent initial configuration. 

The proof is the same as the proof of Lemma 2.     
Lemma 15. There is a bivalent (t − 1)-round partial run 
rt−1. 

The proof of Lemma 3 also works for this Lemma. We 
just need show that the proof of Lemma 4 works under the 
new model. The reason is the same as the above in Lemma 
13. Consider the set of receivers, {q1, q2, …, qm}, of all 
orderly messages sent by the crash process p in round k + 
1. That the orderly set {q1, q2, …, qm} and {ql, …, qm} have 
redundant processes does not affect the truth of the proof 
of Lemma 4, because rk+1

j−1 and rk+1
j differ by only one 

process in both models. Then sink qj at the beginning of 
round k + 2, the two (k + 2)-round partial runs extended 
from rj−1 and rj are same in both models.     

Lemma 15 contradicts Lemma 13, thus Theorem 5 must 
be true.   Theorem 5 
Corollary 1. Consider a synchronous round-based system 
S in the new model with n processes and at most t failures 
such that at most one process crashes in each round. If n > 
t + 1 then there is no protocol that solves uniform 
consensus in t rounds in S. 
Proof. By the definitions of Agreement and Uniform 
agreement property and Theorem 5, it is obvious that the 
corollary is true.     
 

B. Lower Bound for Early Stopping Protocols  
We now use the result of Theorem 5 to show that the 

lower bounds of early stopping protocols for both 
consensus and uniform consensus in the new model are f + 
1 rounds.  
Lemma 16. Let A be a consensus protocol that tolerates 
up to t orderly crashes in the new model, where t < n − 1. 
Let f be the number of processes that actually fail. For 
each f, 0 ≤ f ≤ t, there exists a run of A in which at least 
one process decides not earlier than round f + 1. 
Proof. Since f ≤ t, the proof follows immediately from 
Theorem 5.     
Lemma 17.  Let A be a uniform consensus protocol that 
tolerates up to t orderly crashes in the new model. If t < n 
− 1 then for each f, 0 ≤ f ≤ t, there exists a run of A in 
which at least one process decides not earlier than round f 
+ 1. 
Proof. It follows immediately from Corollary 1.     
Theorem 6.  The lower bound for both early stopping 
consensus and early stopping uniform consensus protocols 
in the new model is f + 1 rounds. 
Proof. The proof is straightforward, following Lemma 16 
and Lemma 17.     

We have demonstrated in Section VI that there exists an 
early stopping uniform consensus protocol for the new 
model, which achieves the lower bound of f + 1. By 
Theorem 6, our proposed protocol is optimal under the new 
model. 

 

C. Discussion 
One question is why the bivalency proof for the early-

stopping lower bound in section IV cannot work for the 
new model. The reason is that when we assume an early-
stopping protocol solve the consensus in the new model in 
f + 1 rounds (in fact we present one in section VI), Lemma 
6, 7, 8, 9 are still true in this new model, but there are two 
problems which make the proof of Theorem 2 not 
workable for the new model: 

First, for f = 0. In the proof of Theorem 2, there exists 
two initial configurations, C’ and C’’, that differ by the 
initial value of only one process p, but their 1-round failure 
free partial runs extensions, r1’* and r1’’*, decide 
differently, r1’* is 1-valent and r1’’* is 0-valent. For a 1-
round partial run, r1’, extended from C’ and a 1-round 
partial run, r1’’, extended from C’’, in both runs, p crashed 
by only having successfully delivered its message to one 
process q in round 1. Then r1’ and r1’’ differ only by q. By 
Lemma 9, both r1’ and r1’’ are univalent and r1’ is 1-valent 
and r1’’ is 0-valent and q decides and stops in both r1’ and 
r1’’.  

But in the new model, because p may send multiple 
messages to q in the round such as our proposed protocol, 
and no process can receive all prescribed messages sent to 
it in the round if p has just successfully sent one message, 
then the condition of Lemma 9, that one process received 
all prescribed messages, cannot be satisfied. Thus univalent 
of both r1’ and r1’’ cannot be ensured. Otherwise, if q gets 
all its messages from p, it cannot ensure only one process 
differ in both partial runs, because other processes may 
maintain different information in this case. Thus, the proof 
in Theorem 2 for f = 0 does not work for the new model. 

Second: for 0 < f ≤ t − 1. In the proof of Theorem 2, 
when consider that rf

k and rf
k+1 only differ by pi and extend 

rf
k and rf

k+1 to rf+1
k’ and rf+1

k+1’ respectively by crashing pi 
that only pj receives the message sent from pi in both 
partial runs. Thus, rf+1

k+1’ is the same as rf+1
k’ except pj. By 

Lemma 9, rf+1
k’ and rf+1

k+1’ are univalent because pj received 
all messages in round f + 1, and rf+1

k’ is 1-valent because 
rf+1

k* is 1-valent.  
But in the new model, by the same reason as above, the 

condition of Lemma 9 cannot be satisfied, because pi may 
send multiple messages to pj in the round like our proposed 
protocol and no process can receive all prescribed 
messages sent to it in the round. Thus univalent of both 
rf+1

k’ and rf+1
k+1’ cannot be ensured. The proof in Theorem 2 

for 0 < f ≤ t − 1 does not work for the new model. 
 



 
 

VIII. CONCLUSION 
In this paper, we discuss the consensus problem for 

synchronous distributed systems with orderly crash 
failures. Our contributions are threefold. First, we present a 
bivalency argument proof to solve the open problem of 
proving the lower bound, min (t + 1, f + 2) rounds, for 
early-sopping synchronous consensus with orderly crash 
failures, where t < n − 1. Then, we extend the system 
model with orderly crash failures to a new model in which 
a process is allowed to send multiple messages to the same 
destination in a round and these messages are supposed to 
crash in order. For this new model, we present a uniform 
consensus protocol that tolerates up to t failures, in which 
all non-faulty processes always decide and stop 
immediately by the end of f + 1 rounds. Finally, we have 
proved that, under this new model, the lower bound of t-
resilient consensus protocols is still t + 1 rounds; we then 
use this result to show that the lower bound of early 
stopping protocols for both consensus and uniform 
consensus are f + 1 rounds. As a result, our proposed 
protocol is optimal under this new model. 
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