

Lower Bounds for Achieving Synchronous Early Stopping
Consensus with Orderly Crash Failures

Xianbing Wang1, Yong-Meng Teo1,2, and Jiannong Cao3
1Singapore-MIT Alliance, 2Department of Computer Science, National University of Singapore,

3Department of Computing, Hong Kong Polytechnic University

 (2) Validity: If a process decides on v, then v was
proposed by some processes. Abstract—In this paper, we discuss the consensus problem

for synchronous distributed systems with orderly crash
failures. For a synchronous distributed system of n processes
with up to t crash failures and f failures actually occur, first,
we present a bivalency argument proof to solve the open
problem of proving the lower bound, min (t + 1, f + 2) rounds,
for early-stopping synchronous consensus with orderly crash
failures, where t < n − 1. Then, we extend the system model
with orderly crash failures to a new model in which a process
is allowed to send multiple messages to the same destination
process in a round and the failing processes still respect the
order specified by the protocol in sending messages. For this
new model, we present a uniform consensus protocol, in
which all non-faulty processes always decide and stop
immediately by the end of f + 1 rounds. We prove that the
lower bound of early stopping protocols for both consensus
and uniform consensus are f + 1 rounds under the new model,
and our proposed protocol is optimal.

(3) Agreement: No two correct processes decide
differently.

The agreement property applies to only correct
processes. Thus it is possible that a process decides on a
distinct value just before crashing. The uniform consensus
prevents such a possibility. It replaces the agreement
property with the following:
(3’) Uniform Agreement: No two processes (correct or not)
decide differently.

Synchronous consensus protocols are based on the
notion of round. In a synchronous distributed system,
every execution of the consensus protocol consists of a
sequence of rounds. Every process will start and finish the
same round synchronously. Both message delay and
relative processes speed are bounded and these bounds are
known. Most existing synchronous consensus protocols are
designed to tolerate crash failures. When a process crashes
in a round, it sends a subset of the messages that it intends
to send in that round, and does not execute any subsequent
rounds [8].

Index Terms—Consensus, Orderly crash failure, Early

stopping, Synchronous distributed system

I. INTRODUCTION

C ONSENSUS is one of the fundamental problems in
distributed computing theory and practice. Assuming

that a distributed system consists of a set of n processes in
the consensus problem, each process pi initially proposes a
value vi, and all non-faulty processes have to decide on one
common value v, in relation to the set of proposed values
V= { vi | i = 1, …, n }. Without losing generality, we just
consider V = {0, 1} in this paper. A process is faulty during
an execution if its behavior deviates from that prescribed
by its algorithm, otherwise it is correct. More precisely, the
consensus problem is defined by the following three
properties:

If a protocol allows processes to reach consensus in
which at most t (t < n − 1) processes can crash, the protocol
is said to tolerate t faults or to be a t-resilient consensus
protocol. It has been proved that the lower bound on the
number of rounds is t + 1 for any synchronous consensus
protocol tolerating up to t crash failures. The proofs can be
found in [2][1][8].

If a protocol can achieve consensus and stops before
round t + 1 when there are actually f (f ≤ t) crashes, we call
it an early stopping protocol. The well-known lower
bound, min (t + 1, f + 2) rounds, for early stopping
consensus protocols in synchronous distributed systems
has been proved [5]. If just consider the time at which
processes decide, we call those protocols in which all
processes decide before round t + 1 with actually f crashes
as early-deciding protocols. The lower bound, (f + 1)-
rounds, for early deciding synchronous consensus
protocols has been proved [3]. For synchronous uniform
consensus, the lower bound of f + 2 rounds for crash
failures, where f ≤ t − 2, has been proved in [3][7][11], and
for f = t − 1, [3] presents a synchronous uniform consensus
protocol in which all processes decide by the end of round
f + 1.

(1) Termination: Every correct process eventually decides
on a value.

 X. Wang is with Singapore-MIT Alliance, 4 Engineering Drive 3,

National University of Singapore, Singapore 117576 (e-mail:
wangxb@comp.nus.edu.sg).

Y.M. Teo is with the Department of Computer Science, School of
Computing, 3 Science Drive 2, National University of Singapore,
Singapore 117543, and Singapore-MIT Alliance, 4 Engineering Drive 3,
National University of Singapore, Singapore 117576 (e-mail:
teoym@comp.nus.edu.sg).

J. Cao is with the Department of Computing, the Hong Kong
Polytechnic University, Hong Kong (csjcao@comp.polyu.edu.hk).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(2) wait for round r messages from the other processes; In this paper, we consider synchronous consensus
protocols under the orderly crash failure model [5][9][10].
With orderly crash failures, the failing process must respect
the order specified by the protocol in sending messages.
That is, if a process fails to send a specified message, it
must also fail to send any message specified to be sent after
that message in the protocol ordering. In [5], the authors
mentioned that they could not prove the lower bound of
min (t + 1, f + 2) rounds for the orderly crash failure
model. So, our first contribution is to solve the open
problem.

(3) execute local computations.
Thus, the system is synchronous. The underlying

communication system is assumed to be failure-free: there
is no creation, alteration, loss or duplication of message.

As mentioned in the Introduction, we restrict the failure
model to the orderly crash failure model. Figure 1 shows
the model. Process pj is specified to send messages m1, ..,
mi, .., mn, in a round, to processes p1, .., pi, .., pn,
respectively. But it fails to send message mi and stops by
doing nothing. Then processes p1, .., pi−1 must have
successfully received m1, .., mi−1 respectively, and
processes pi, .., pn did not receive message from pj in the
same round.

Then, we extend the system model with orderly crash
failures to a new model in which a process is allowed to
send multiple messages to the same destination process in a
round and the failing processes still respect the order
specified by the protocol in sending messages. For this new
model, we present a uniform consensus protocol that
tolerates up to t failures, in which all non-faulty processes
always decide and stop immediately by the end of f + 1
rounds. Then we prove that the lower bound of early
stopping protocols for both consensus and uniform
consensus are f + 1 rounds under this new model, and show
our proposed protocol is optimal.

In the paper, the lower bounds are proved using
bivalency arguments. Bivalency argument is a technique
that uses forward induction to show impossibility results
and lower bounds that are related to consensus. It means
that there exists a state from which two different
executions lead to different decisions. The technique was
first introduced by [6] and used in [1] to show the lower
bound for achieving consensus simply and intuitively.

Figure 1. Example of orderly crash failures model

III. BIVALENCY ARGUMENT PROOF
Bivalency argument proofs are based on the observation

that a state in which some processes have decided cannot
be bivalent. These proofs are based on a synchronous
round-based system S with n processes and at most t crash
failures such that at most one process crashes in each
round. S is just a subset of executions of a consensus
protocol. The following notations are introduced and used
in the bivalency argument proofs.

The rest of the paper is organized as follows. Section II
describes the system and orderly failure model. Section III
introduces the bivalency proof in [1] and revises it to work
for the orderly crash failure model. Section IV presents the
bivalency proof of lower bound for early-stopping
synchronous consensus with orderly cash failures. Section
V describes the new system and failure model. Section VI
proposes a uniform consensus protocol for the new model,
and presents its correctness proof. Section VII presents the
bivalency proof for the lower bounds in the new model.
Finally, section VIII concludes this paper.

• configuration, a configuration of the system S is
considered at the end of each round. Such a
configuration is just the state of each process.

• 0-valent, a configuration C is 0-valent if starting from C
the only possible decision value that correct processes
can make is 0.

• 1-valent, a configuration C is 1-valent if starting from C
the only possible decision value that correct processes
can make is 1.

II. ORDERLY CRASH FAILURE MODEL
• univalent, C is univalent if it is either 0-valent or 1-

valent. A distributed system consists of n processes, ∏ = {p1,
…, pn}, that communicate and synchronize by sending and
receiving messages. Each pair of processes, pi and pj, is
connected by a channel. Both message delay and relative
process speed are bounded, and these bounds are known.
Every execution consists of a sequence of rounds. While in
round r, each process executes the following steps
sequentially:

• bivalent, C is bivalent if it is not univalent.
• k-round partial run, rk, denotes an execution of

algorithm A up to the end of round k.
Consider the configuration Ck at the end of round k of

partial run rk, we say that rk is 0-valent, 1-valent, univalent,
or bivalent if Ck is 0-valent, 1-valent, univalent, or
bivalent, respectively.

(1) send round r messages to the other processes, but send
at most one message to a destination process;

• same univalent, two partial runs are same univalent if
both are 1-valent or both are 0-valent.

We say that a partial run rk decides v if all correct
processes decide v by the end of round k of rk. We say that
a process sinks in a round if it sends no message and
crashes at the beginning of the round.

The bivalency proof in [1] shows that a t-resilient
consensus protocol requires t + 1 rounds in the crash
failure model. We modify it to work for the orderly crash
failure model in subsection B.

A. Bivalency Proof for Crash Failures
Theorem 1 [1]. Consider a synchronous round-based
system S with n processes and at most t crash failures such
that at most one process crashes in each round. If n > t + 1
then there is no algorithm that solves consensus in t rounds
in S.

The proof proceeds by contradiction as follows. Suppose
there is an algorithm A that solves consensus in t rounds in
S. Without loss of generality, each process is supposed to
send a message to every other process in a round. Three
lemmas have been proved in [AT99]. The third Lemma
contradicts the first and thus completes the proof of the
theorem.
Lemma 1 [1]. Any (t − 1)-round partial run rt−1 is
univalent.
Lemma 2 [1]. There is a bivalent initial configuration.
Lemma 3 [1]. There is a bivalent (t − 1)-round partial run
rt−1.

B. Revised Proof for Orderly Crash Failures
To prove the same lower bound for the orderly crash

failure model, some modifications to the proof of above
Lemmas are needed. We show the revised proof works for
the lower bound proof of the new model in section VII.
Theorem 1. Consider a synchronous round-based system S
with n processes and at most t orderly crash failures such
that at most one process crashes in each round. If n > t + 1
then there is no algorithm that solves consensus in t rounds
in S.
Proof. Suppose there is an algorithm A that solves
consensus in t rounds in S.
Lemma 1. Any (t − 1)-round partial run rt−1 is univalent.
Proof: Suppose there is a bivalent (t − 1)-round partial run
rt−1. Let r* be the t-round partial run obtained by extending
rt−1 by one round such that no process crashes in round t.
Without loss of generality, we assume that all correct
processes decide 0 in r*. On the other hand, since the
partial run rt−1 is bivalent, there exists one t-round partial
run r+ that extends rt−1 such that all correct processes
decide 1. Note that in round t of r+, exactly one process p
must crash because in system S at most one process crashes
per round.

Let {q1, q2, …, qm} be the set of prescribed receivers of
all orderly messages sent by p in round t. In partial run r+,
suppose ql−1 is the last process to which p delivers a

message. Then, we can construct t-round partial runs rj, l ≤
j ≤ m, based on run r+ as follows. Let rl−1 be r+. For every j,
l ≤ j ≤ m, rj is identical to rj−1 except that in rj p sends a
message to qj before it crashes in round t. Every rj is t-
partial run and must be univalent. There are two possible
cases:

Case 1. For each j, l ≤ j ≤ m, rj is 1-valent. So rm and r*
are 1-valent and 0-valent, respectively. The only difference
between rm and r* is that p crashes at the end of round t in
rm, while p is correct in r*. Every process except p in both
partial runs maintains the same information, thus they
cannot decide different in the two partial runs, —a
contradiction.

Case 2. There is a j, l ≤ j ≤ m, such that rj−1 is 1-valent
while rj is 0-valent. Every process except qj in both partial
runs maintains the same information, and there is at least
one other correct process because n > t + 1, then these
processes cannot distinguish rj−1 and rj, thus they cannot
decide different in rj−1 and rj, —a contradiction.
Lemma 2. There exists a bivalent initial configuration.
Proof: Suppose all initial configurations are univalent.
Consider two initial configurations C0 and C1 such that all
processes have initial value 0 and 1, respectively. By the
validity property of consensus, C0 is 0-valent and C1 is 1-
valent. Clearly, there are two initial configurations that
differ by the initial value of only one process p, such that
one is 0-valent and the other is 1-valent. We can easily
reach a contradiction by sinking p at the beginning of
round 1.
Lemma 3. There is a bivalent (t − 1)-round partial run rt−1.

In order to prove Lemma 3, we introduce and prove
Lemma 4 first. Lemma 4 is used in the proofs in Section
IV.
Lemma 4. Every bivalent k-round partial run (0 ≤ k ≤ t −
2), rk, can be extended by one round into a bivalent (k + 1)-
round partial run.
Proof. Assume, by contradiction, that every one-round
extension of rk is univalent. Because k ≤ t − 2, according to
the definition of S, there are crashes which may occur till
round k + 2.

Let rk+1* be the partial run obtained by extending rk by
one round such that no new crashes occur. Without loss of
generality, assume rk+1* is 0-valent. Since rk is bivalent,
and every one-round extension of rk is univalent, there is at
least one one-round extension rk+1

+ of rk that is 1-valent.
Note that rk+1* and rk+1

+ must differ in round k + 1. Since
round k + 1 of rk+1* is failure-free, there must be exactly
one process p that crashes in round k + 1 of rk+1

+ because in
system S at most one process crashes per round. Since p
crashes in round k + 1 of rk+1

+, it may fail to send a
message to some processes. Suppose that, in round k + 1,

the set of receivers of all orderly messages sent by p is {q1,
q2, …, qm}, and ql−1 is the last process to which p delivers a
message. Then p fails to send messages to {ql, …, qm}.

Based on rk+1
+, we now construct (k + 1)-round partial

runs rk+1
l, …, rk+1

m as follows. Let rk+1
l−1 be rk+1

+. For every
j, l ≤ j ≤ m, rk+1

j is identical to rk+1
j−1 except that p sends a

message to qj before it crashes in the round k + 1 of rk+1
j.

Recall the assumption that for every j, l ≤ j ≤ m, rk+1
j is

univalent. There are two possible cases:
Case 1. For all j, l ≤ j ≤ m, rk+1

j are 1-valent. In this case
rk+1

m and rk+1* are 1-valent and 0-valent, respectively. The
only difference between rk+1

m and rk+1* is that p crashes at
the end of round k + 1 in rk+1

m, while p is correct up to and
including round k + 1 in rk+1*. Consider the k + 2 partial
runs, r and r’, extending from rk+1* and rk+1

m, respectively.
In r, process p sinks at the beginning of round k + 2 (before
it sends any messages in that round). In r’, there is no
crash. Thus, partial runs r and r’ are same. Since rk+1* is 0-
valent and rk+1

m is 1-valent, then r should be 0-valent but r’
should be 1-valent —a contradiction.

Case 2. There is a j, l ≤ j ≤ m, such that rk+1
j−1 is 1-valent

while rk+1
j is 0-valent. Consider the k + 2 partial runs, r and

r’, extending from rk+1
j−1 and rk+1

j by sinking process qj at
the beginning of round k + 2, and continuing with no
additional crashes, respectively. Thus, partial runs r and r’
are same. Since rk+1

j−1 is 1-valent and rk+1
j is 0-valent, then

r should be 1-valent but r’ should be 0-valent —a
contradiction.
Lemma 5. For every bivalent k-round partial run, rk, if at
least two processes may orderly crash in the following
execution, rk can be extended by one round into a bivalent
(k + 1)-round partial run.
Proof. It is obvious that there is possible crash in round k +
2. Thus the proof of Lemma 4 works for this Lemma.

The proof of Lemma 3 then proceeds by forward
induction:
Basis: By Lemma 2, there exists a bivalent initial
configuration C0. For k = 0, let r0 be the 0-round partial run
that ends in C0.
Hypothesis: Suppose 0 ≤ k ≤ t − 2. Let rk be a bivalent k-
round partial run.
Induction step: By Lemma 4, we can get a bivalent (k +
1)-round partial run rk+1. Lemma 3

Lemma 3 contradicts Lemma 1. Thus, Theorem 1 must
be true. Theorem 1

IV. LOWER BOUND FOR EARLY-STOPPING
Theorem 2. Consider a synchronous round-based system S
with n processes and at most t orderly crash failures that
at most one process crashes in each round. If t < n − 1 and
0 ≤ f ≤ t − 1, there is no early-stopping protocol that solves
consensus in f + 1 rounds in S.
Proof. The proof of Theorem 2 is by contradiction.
Assume the contrary, there is an early-stopping protocol A
that solves consensus in f + 1 rounds in S. That is, in any
execution of A with f (0 ≤ f ≤ t − 1) failures, all the correct
processes must decide and stop by the end of round f + 1.
Follow the assumption, first, we introduce and prove

Lemma 6, 7, 8, and 9.
Lemma 6. For an early-stopping synchronous consensus
protocol, no correct process can decide and stop in any
bivalent partial run in S.
Proof. Assume, by contradiction, a correct process pi
decides 1 and stop at the end of the round k of a bivalent
partial run rk. According to the definition of bivalent partial
run, firstly, not all correct processes decide in this round,
otherwise rk is univalent; secondly, there is an execution
continuing rk, in which other correct processes decide 0.
This is a violation of the agreement property of consensus.

Lemma 7. If a process decides v and stops in a round of a
partial run, the partial run is v-valent.
Proof. By Lemma 6, the partial run must be univalent. The
process which decides and stops may be a correct process
that it never crashes in following rounds. If the partial run
is not v-valent, the agreement property is violated.
Lemma 8. Any partial run rk (k ≤ f + 1) of A without
failure during round k in S is univalent.
Proof. If it is not univalent, A cannot solve consensus with
f actual failures by the end of round f + 1, because we can
construct at least f + 1 consecutive bivalent partial runs by
using Lemma 5 as follows.

When k = f + 1, by Lemma 6, no process can decide and
stop by the end of round f + 1.

Now consider k < f + 1. According to the definition of S,
at most (k − 1) processes crashed before round k. Now
there are (f − k + 1) rounds from round k + 1 to f + 1 and
there are f − (k − 1) processes actually crash. And for every
round j, where k + 1 ≤ j ≤ f, there are at least two processes
may crash in the following rounds because of (f ≤ t − 1).
Then, by Lemma 5, there are bivalent partial runs of A at
each round from round k + 1 to round f + 1. We can crash
one process in each round to construct a new bivalent
partial run as extensions from rk, the execution enters into a
bivalent (f + 1)-round partial run. In this case, by Lemma 6
no process can decide and stop by the end of round f + 1. –
Contradiction.
Lemma 9. When extending from a bivalent f-round partial
run, rf, all (f + 1)-round partial runs of A in S, in which at
least one process receive all prescribed messages in round
f + 1, are same univalent.
Proof. First consider the (f + 1)-round partial run extended
from rf without failures, rf+1*. By Lemma 8, rf+1* is
univalent. According to the assumption, all processes
decide and stop in round f + 1. Now consider another (f +
1)-round partial run extended from rf with one orderly
crash, rf+1, in which process pi received all prescribed
messages in round f + 1. pi cannot distinguish that it is in
rf+1 or rf+1*, if rf+1 is bivalent, then by Lemma 6, pi cannot
make decision and stop in round f + 1. This is a
contradiction. Thus, rf+1 should be univalent also.

Without losing generality, assume rf+1* is 1-valent and
all processes in rf+1* decide 1. Then pi decides 1 and stops

in round f + 1 of rf+1 also. Thus, rf+1 must be 1-valent,
otherwise it violates the agreement property of consensus
when pi is a correct process.

Now, continuing the proof of Theorem 2. By
assumption, all correct processes decide and stop by the
end of round f + 1.

Case 1: consider 0 < f ≤ t − 1.
Let another protocol A’ be the same as protocol A except

A’ is designed to tolerate up to f crash failures. By Lemma
2 and Lemma 4, there is an (f − 1)-round bivalent partial
run rf−1 in protocol A’. It is clear that rf−1 is also an (f − 1)-
round bivalent partial run in protocol A. We will prove that
all executions extended from rf−1 in protocol A’ decides the
same according to the previous assumption.

Now first consider rf−1 in protocol A and extend it to
round f. Consider rf* without failure occurs in round f, by
Lemma 8, it is univalent. Without losing generality,
assume rf* is 1-valent. Let rf

k be those partial runs that k
processes do not received the message from the crashed
process in round f where 0 ≤ k ≤ n − f, and rf+1

k* denote the
(f + 1)-round partial run extending from rf

k without failures
in round f + 1. Because the messages sent from a process
crash in order and total n − f + 1 processes remain in rf−1,
there are (n − f + 1) rf

ks for each k. By Lemma 8, all those
rf+1

k*s are univalent. We will prove they are same univalent
as follows:
Basis: Consider rf

0, those partial runs are the same as rf*
except that one process, p, crashes at the end of round f of
rf

0 but p have successfully delivered all its messages in the
round. There are two cases: (1) some processes in both rf

0
and rf* deicide and stop in round f, by Lemma 7, rf

0 should
be 1-valent. (2) no such process exists, then extend both
runs to round f + 1 just by sinking p in rf* if p has not
decided and stopped in round f of rf*. Then two extensions
rf+1

0* and rf+1* are the same, because rf* is 1-valent, rf+1* is
univalent and will decide 1. Thus, all rf+1

0*s decide 1.
Hypothesis: Suppose 0 ≤ k < n − f, all rf+1

k*s decide 1.
Induction Step: Because the messages sent from a process
crash in order, then for every rf

k+1, there exist one and only
one rf

k, where 0 ≤ k < n − f, the partial runs differ by only
one process, pi, that pi received the message sent by the
crashed process in round f of rf

k, but not in round f of rf
k+1.

By Lemma 8, both rf+1
k* and rf+1

k+1* are univalent and rf+1
k*

is 1-valent by hypothesis.
Consider extending rf

k and rf
k+1 to rf+1

k’ and rf+1
k+1’

respectively by crashing pi that only pj receives the
message sent from pi in both partial runs. Thus, rf+1

k+1’ is
the same as rf+1

k’ except pj. By Lemma 9, rf+1
k’ and rf+1

k+1’
are univalent because pj received all messages in round f +
1, and rf+1

k’ is 1-valent because rf+1
k* is 1-valent.

Because pj will decide and stop at the end of round f + 1
as it does in rf+1

k* and rf+1
k+1*, now extending both rf+1

k’ and
rf+1

k+1’ to round f + 2, rf+2
k’ and rf+2

k+1’, without failure.
Then, rf+2

k’ and rf+2
k+1’ are the same and also univalent.

Thus, rf+2
k+1’ is 1-valent as rf+2

k’ and then rf+1
k+1’ is also 1-

valent. By Lemma 9, rf+1
k+1* must decide 1 too.

By induction, all (f + 1)-round partial runs, extended
from rf−1, without failure in round f + 1 decide 1. Because
rf* is univalent, then all (f + 1)-round partial runs extended
from it are 1-valent.

Now consider protocol A’. Because it is the same as
protocol A and is an f-resilient protocol, then when
extended from rf−1 only one process can crash in round f or
round f + 1. Thus, all (f + 1)-round partial runs extended
from rf−1 are the same as discussed before in protocol A.
But all those extensions eventually make the same decision
by the end of round f + 1, then rf−1 is univalent. –
Contradiction.

Case 2: consider f = 0.
Consider initial configurations C0 and C1 where all

processes propose 0 in C0 and all processes propose 1 in
C1. According to the validity property of consensus, C1 is
1-valent and C0 is 0-valent. Then all 1-round partial runs
extended from C0 are 0-valent and all 1-round partial runs
extended from C1 are 1-valent. Clearly, there are two initial
configurations, C’ and C’’, that differ by the initial value of
only one process p, such that the 1-round partial runs
extended from C’ and C’’ without failure, r1’* and r1’’*,
decide different. Otherwise, both C0 and C1 will be the
same v-valent, where v is 0 or 1, this violates the validity
property of consensus. Without losing generality, assume
that r1’* is 1-valent and r1’’* is 0-valent.

By Lemma 9, when extended from any initial
configuration C, all 1-round partial runs, in which at least
one process receives all prescribed messages in round 1,
are same univalent. Now consider a 1-round partial run,
r1’, extended from C’ and a 1-round partial run, r1’’,
extended from C’’, in both cases by crashing p and p only
has successfully delivered its message to one process q in
round 1. Then r1’ and r1’’ differ only by q. By Lemma 9,
both r1’ and r1’’ are univalent and r1’ is 1-valent and r1’’ is
0-valent. Because all processes in r1’* and r1’’* decide and
stop in round 1, q will decide and stop in both r1’ and r1’’.

Now extending both r1’ and r1’’ to 2-round partial runs,
r2’ and r2’’, without failures. Then r2’ and r2’’ are same,
but r2’ is 1-valent and r2’’ is 0-valent —contradiction.

Thus, the Theorem 2 must be true.
Theorem 3. The lower bound of the early-stopping
consensus protocols for synchronous distributed systems
with orderly crash failures is min (t + 1, f + 2)-rounds,
where t < n − 1 and f ≤ t.
Proof. By Theorem 2, for f < t, the lower bound of early-
stopping synchronous consensus protocols with orderly
failures is f + 2 rounds. By theorem 1, for f = t, the lower
bound is t + 1 rounds. Thus for f ≤ t, the lower bound of
early-stopping synchronous consensus protocols with
orderly crash failures is min (t + 1, f + 2)-rounds.

VI. THE UNIFORM CONSENSUS PROTOCOL V. NEW SYSTEM MODEL
The new system also consists of n processes, ∏={p1, …,

pn}, that communicate and synchronize by sending and
receiving messages. Each pair of processes, pi and pj, is
connected by a channel. The system executes protocols in a
sequence of rounds and is still synchronous. While in
round r, each process executes sequentially the following
steps:

A. Protocol Description
Figure 3 presents our early stopping uniform consensus

protocol for synchronous distributed systems in the new
model, which can tolerate up to t (t < n−1) faults. Each
process pi is assigned a unique identity (ID) i (1 ≤ i ≤ n).
Each process pi invokes the function Consensus(vi), where
vi is the value it proposes. It terminates with the invocation
of the return() statement that provides the decided value.

(1) send round r messages to the other processes. In this
model, a process can send multiple messages to one
destination process;

(2) wait for round r messages from the other processes;
(3) execute local computations.

Both message delay and relative process speed are
bounded, and these bounds are known. The underlying
communication system is assumed to be failure-free: there
is no creation, alteration, loss or duplication of message.

The failure model is similar to the orderly crash failures,
the failing process must respect the messages sending order
specified by the protocol.

Figure 3. The uniform consensus protocol
The protocol uses the rotating coordinator paradigm.

Consensus() is made up of t + 1 rounds. Each round r (1 ≤
r ≤ t + 1) is managed by a predetermined coordinator pr.
Only the coordinator can send messages in a round, others
just wait for message from the coordinator. Therefore, a
round r consists of the following steps:

Figure 2. Example of the new model
Figure 2 shows the new failure model. Process pj is

specified to send messages, m , .., m , .., m , in a round,

to processes, , .., , .., , respectively, where k is
the number of messages prescribed to be sent by p

1j

jp

jp

ij

p

kj

m

1jp ijp
k

i

j and j1,
…, ji, …, jk ∈ N = {1, .., n}. But it fails to send message

 and stops by doing nothing. Then processes, , ..,
1, must have successfully received , .., 1

respectively, and processes , .., did not receive
message from p

ijm

−ijp
1jp

1j −ijm

kj

j in the same round. It is obvious that pj
may send messages to the same process in a round.

(1) The rotating coordinator in this round sends round r
messages to the other processes.

(2) Every process waits for round r messages from the
rotating coordinator in the round.

(3) After a process has received messages, it executes
local computations.

Thus, all processes in the protocol are divided into two
sets, ∏CP which consists of the IDs of the rotating
coordinator processes, and ∏non-CP = ∏ − ∏CP which
consists of the IDs of non-coordinator processes. Because
the protocol aims to tolerate t process crashes and just
consists of t + 1 rounds, the size of ∏CP is t + 1. For
simplicity, we choose the first t + 1 processes from ∏ to
form ∏CP. Thus ∏CP = {pi1 ≤ i ≤ t + 1}.

The difference between the new model and the orderly
crash failure model described in section II is that a process
can set multiple messages to another process in a round in
the new model. [10] presents a reference implementation of
the new model by designing a similar protocol for
synchronous reliable broadcast. How to realize the orderly
crash in the new model is not focused in this paper. But we
want to argue that the new model does not change the
essence of the round notion, and in the crash failure model,
allowing a process to send multiple messages to the same
processes in a round does not improve the lower bound of
early-stopping protocols.

During round r, the rotating coordinator pr will first send
vr in ascending order to all processes whose IDs are larger
than r, and then send vr in descending order to processes
whose IDs ranges from t + 1 to r + 1. The coordinator will
decide on its own value at the end of the round. When a
process pj (j ≠ r) in ∏CP receives a value from pr in round r,
it will set vj to the received value; if it receives the value
twice, it decides on the value and stops immediately. When
a process pj in ∏non-CP receives a value from pr in the same
round, it will decide on the received value and stop

immediately.

B. Correctness Proof
Theorem 4. The proposed protocol solves the Uniform
Consensus problem in the new model, in which up to t
processes can crash, and all non-faulty processes decide
by the end of f + 1 rounds, where t < n − 1, f ≤ t, and f is
the number of failures that actually occur.
Proof. It is obvious that the proposed protocol satisfies the
Validity property.

To show that the Termination property is achieved, we
first prove lemma 10.
Lemma 10. If the rotating coordinator does not crash in a
round, all non-faulty processes, which have not made
decision, can make the same decision in the round.
Proof. Assume the rotating coordinator pr is the first
coordinator that does not crash in its round. According to
the protocol, all non-faulty processes in ∏non-CP that have
not made decision, can receive a message from pr in the
round. Then they will decide on the value vr maintained by
pr. All non-faulty processes in ∏CP, except pr, that have not
made decision, can receive two messages from pr in the
round, then they will decide on vr. pr decide on its value, vr,
at the end of the round.

Because at most t processes can crash, and actually f (f ≤
t) processes crash, there is at least one of the first f + 1
rounds in which the corresponding coordinator does not
crash. Assume r is the first round in which the coordinator
pr does not crash and r must be not more than f + 1. By
Lemma 10, all non-faulty processes will decide in the
round. Thus, the Termination property is achieved.

To prove that the Uniform Agreement property is
achieved, we first prove Lemma 11 and Lemma 12.
Lemma 11. If two processes decide in the same round,
they make the same decision.
Proof. According to the protocol, a process decides on the
value of the current rotating coordinator in a round if it can
do so. Thus all processes that decide in the same round
must make the same decision.
Lemma 12. If all non-faulty processes in ∏CP maintain the
same value v at the end of a round, all processes which
decide after that round will make the same decision on v.
Proof. This is obvious. During the following rounds a
process decides on the value of the corresponding rotating
coordinator. Because the values of the non-faulty processes
in ∏CP are the same, all processes that decide after the
round will make the same decision on v.

Now, we prove the uniform agreement property, by
contradiction, that two processes pi and pj (i ≠ j) make
different decisions. By Lemma 11, they must have not
decided in the same round. Without losing generality,
assume that pi decides in round r and pj decides in round r’,
and r < r’. There are two possible cases:
(a) pi is the rotating coordinator pr (i = r), by Lemma 10,

all non-faulty processes will decide and terminate in

round r. So pj cannot decide in round r’, — a
contradiction.

(b) pi is not the rotating coordinator pr. According to the
protocol and the property of the new model, when pi
decides on the value of pr in round r, all non-faulty
processes in ∏CP must have received at least one
message from pr and set their values to the value of pr.
So their values are the same. By Lemma 12, all
processes which decide after round r will make the
same decision on the value of pr. Thus pj should make
the same decision as pi, — a contradiction.

So, any two processes make the same decision. Thus,
Theorem 4 must be true because all three properties of the
uniform consensus are satisfied.

VII. LOWER BOUNDS FOR THE NEW MODEL
In section III and IV we have proved that the lower

bound for t-resilient protocols with the orderly crash failure
model is t + 1 rounds in which any process can just send at
most one message to one destination in a round, and the
lower bound for early-stopping protocols is min (t + 1, f +
2) rounds, respectively. Now, consider the new model, in
section VI we present a protocol which solves the early-
stopping uniform consensus in f + 1 rounds. The lower
bound of t-resilient consensus protocols will be less than t
+ 1 rounds if we can design a consensus protocol in the
new model which can achieve consensus before round f +
1. However, we show that the proof of Theorem 1 also
works for this new model. Thus, under the new model, the
lower bound of t-resilient consensus protocols is still t + 1
rounds. Subsequently, we use this result to show that the
lower bound of early stopping protocols for both consensus
and uniform consensus is f + 1 rounds in the new model.
Therefore, our proposed protocol is optimal.

A. Lower Bound for t-resilient Protocols
In this section, we adopt the notations and bivalency

proof method in Theorem 1 and then analyze the proof of
Theorem 1 and indicate that it also works for Theorem 5.
Theorem 5. Consider a synchronous round-based system S
in the new model with n processes and at most t failures
such that at most one process crashes in each round. If n >
t + 1 then there is no algorithm that solves consensus in t
rounds in S.

The proof of Theorem 5 proceeds by contradiction as
follows. Suppose there is an algorithm A that solves
consensus in t rounds in S. Like the proof of Theorem 1,
three Lemmas are proved and the third contradicts the first
one.
Lemma 13. Any (t − 1)-round partial run rt−1 is univalent.

The proof of Lemma 1 also works for this Lemma.
Consider the set of receivers, {q1, q2, …, qm}, of all orderly
messages sent by the crash process p in round t. In Lemma
1, qi must be different than qj, i ≠ j, 1 ≤ i, j ≤ m. But in the

new model, qi may be the same as qj, i ≠ j, 1 ≤ i, j ≤ m. It is
obvious that this does not affect the truth of the proof,
because rj−1 and rj still differ by only one process, qj, in
both models. Then except qj, all other correct processes
cannot distinguish rj−1 and rj in both models.
Lemma 14. There is a bivalent initial configuration.

The proof is the same as the proof of Lemma 2.
Lemma 15. There is a bivalent (t − 1)-round partial run
rt−1.

The proof of Lemma 3 also works for this Lemma. We
just need show that the proof of Lemma 4 works under the
new model. The reason is the same as the above in Lemma
13. Consider the set of receivers, {q1, q2, …, qm}, of all
orderly messages sent by the crash process p in round k +
1. That the orderly set {q1, q2, …, qm} and {ql, …, qm} have
redundant processes does not affect the truth of the proof
of Lemma 4, because rk+1

j−1 and rk+1
j differ by only one

process in both models. Then sink qj at the beginning of
round k + 2, the two (k + 2)-round partial runs extended
from rj−1 and rj are same in both models.

Lemma 15 contradicts Lemma 13, thus Theorem 5 must
be true. Theorem 5
Corollary 1. Consider a synchronous round-based system
S in the new model with n processes and at most t failures
such that at most one process crashes in each round. If n >
t + 1 then there is no protocol that solves uniform
consensus in t rounds in S.
Proof. By the definitions of Agreement and Uniform
agreement property and Theorem 5, it is obvious that the
corollary is true.

B. Lower Bound for Early Stopping Protocols
We now use the result of Theorem 5 to show that the

lower bounds of early stopping protocols for both
consensus and uniform consensus in the new model are f +
1 rounds.
Lemma 16. Let A be a consensus protocol that tolerates
up to t orderly crashes in the new model, where t < n − 1.
Let f be the number of processes that actually fail. For
each f, 0 ≤ f ≤ t, there exists a run of A in which at least
one process decides not earlier than round f + 1.
Proof. Since f ≤ t, the proof follows immediately from
Theorem 5.
Lemma 17. Let A be a uniform consensus protocol that
tolerates up to t orderly crashes in the new model. If t < n
− 1 then for each f, 0 ≤ f ≤ t, there exists a run of A in
which at least one process decides not earlier than round f
+ 1.
Proof. It follows immediately from Corollary 1.
Theorem 6. The lower bound for both early stopping
consensus and early stopping uniform consensus protocols
in the new model is f + 1 rounds.
Proof. The proof is straightforward, following Lemma 16
and Lemma 17.

We have demonstrated in Section VI that there exists an
early stopping uniform consensus protocol for the new
model, which achieves the lower bound of f + 1. By
Theorem 6, our proposed protocol is optimal under the new
model.

C. Discussion
One question is why the bivalency proof for the early-

stopping lower bound in section IV cannot work for the
new model. The reason is that when we assume an early-
stopping protocol solve the consensus in the new model in
f + 1 rounds (in fact we present one in section VI), Lemma
6, 7, 8, 9 are still true in this new model, but there are two
problems which make the proof of Theorem 2 not
workable for the new model:

First, for f = 0. In the proof of Theorem 2, there exists
two initial configurations, C’ and C’’, that differ by the
initial value of only one process p, but their 1-round failure
free partial runs extensions, r1’* and r1’’*, decide
differently, r1’* is 1-valent and r1’’* is 0-valent. For a 1-
round partial run, r1’, extended from C’ and a 1-round
partial run, r1’’, extended from C’’, in both runs, p crashed
by only having successfully delivered its message to one
process q in round 1. Then r1’ and r1’’ differ only by q. By
Lemma 9, both r1’ and r1’’ are univalent and r1’ is 1-valent
and r1’’ is 0-valent and q decides and stops in both r1’ and
r1’’.

But in the new model, because p may send multiple
messages to q in the round such as our proposed protocol,
and no process can receive all prescribed messages sent to
it in the round if p has just successfully sent one message,
then the condition of Lemma 9, that one process received
all prescribed messages, cannot be satisfied. Thus univalent
of both r1’ and r1’’ cannot be ensured. Otherwise, if q gets
all its messages from p, it cannot ensure only one process
differ in both partial runs, because other processes may
maintain different information in this case. Thus, the proof
in Theorem 2 for f = 0 does not work for the new model.

Second: for 0 < f ≤ t − 1. In the proof of Theorem 2,
when consider that rf

k and rf
k+1 only differ by pi and extend

rf
k and rf

k+1 to rf+1
k’ and rf+1

k+1’ respectively by crashing pi
that only pj receives the message sent from pi in both
partial runs. Thus, rf+1

k+1’ is the same as rf+1
k’ except pj. By

Lemma 9, rf+1
k’ and rf+1

k+1’ are univalent because pj received
all messages in round f + 1, and rf+1

k’ is 1-valent because
rf+1

k* is 1-valent.
But in the new model, by the same reason as above, the

condition of Lemma 9 cannot be satisfied, because pi may
send multiple messages to pj in the round like our proposed
protocol and no process can receive all prescribed
messages sent to it in the round. Thus univalent of both
rf+1

k’ and rf+1
k+1’ cannot be ensured. The proof in Theorem 2

for 0 < f ≤ t − 1 does not work for the new model.

VIII. CONCLUSION
In this paper, we discuss the consensus problem for

synchronous distributed systems with orderly crash
failures. Our contributions are threefold. First, we present a
bivalency argument proof to solve the open problem of
proving the lower bound, min (t + 1, f + 2) rounds, for
early-sopping synchronous consensus with orderly crash
failures, where t < n − 1. Then, we extend the system
model with orderly crash failures to a new model in which
a process is allowed to send multiple messages to the same
destination in a round and these messages are supposed to
crash in order. For this new model, we present a uniform
consensus protocol that tolerates up to t failures, in which
all non-faulty processes always decide and stop
immediately by the end of f + 1 rounds. Finally, we have
proved that, under this new model, the lower bound of t-
resilient consensus protocols is still t + 1 rounds; we then
use this result to show that the lower bound of early
stopping protocols for both consensus and uniform
consensus are f + 1 rounds. As a result, our proposed
protocol is optimal under this new model.

ACKNOWLEDGMENT
This work is partially supported by the National

University of Singapore, under Academic Research Fund
R-252-000-180-112.

REFERENCES
[1] M. K. Aguilera, and S. Toueg, “A Simple Bivalency Proof that t-

Resilient Consensus Requires t + 1 Rounds”, Information Processing
Letters, 71(3-4), 1999, 155-158.

[2] H. Attiya, and J. Welch, “Distributed Computing: Fundamentals,
Simulations and Advanced Topics”, McGraw-Hill, 451 pages, 1998.

[3] B. Charron-Bost, and A. Schiper, “Uniform consensus harder than
consensus”, Technical Report DSC/2000/028, École Polytechnique
Fédérale de Lausanne, Switzerland, May 2000.

[4] T. Chandra, and S. Toueg, “Time and Message Efficient Reliable
Broadcasts”, 4th International Workshop on Distributed Algorithms,
WDAG '90, Bari, Italy, September 24-26, 1990, Proceedings.

[5] D. Dolev, R. Reischuk, and R. Strong, “Early Stopping in Byzantine
Agreement”, J. ACM, vol. 37, no. 4, Apr. 1990, 720-741.

[6] M. Fischer, N. Lynch, and M. Paterson. "Impossibility of distributed
consensus with one faulty process", J. ACM, vol. 32, no. 2, Apr.
1985, 374–382.

[7] I. Keidar and S. Rajsbaum, "A Simple Proof of the Uniform
Consensus Synchronous Lower Bound", Information Processing
Letters, 85(1), 2003, 47-52.

[8] N. Lynch, "Distributed Algorithms", Morgan Kaufmann, 1996.
[9] M. Merritt, "Notes on the Dolev-Strong lower bound for byzantine

agreement", Unpublished manuscript, 1985.
[10] H. Tzeng, and K. Siu, "Message-Optimal Protocols for Fault-

Tolerant Broadcasts/ Multicasts in Distributed Systems with Crash
Failures", IEEE Transactions on Computers, vol. 44, no. 2, Feb.
1995, 346-352.

[11] J. Xu, ''A Unified Proof of Minimum Time Complexity for Reaching
Consensus and Uniform Consensus -- An Oracle-based Approach'',
IEEE 21st Symposium on Reliable Distributed Systems (SRDS 2002),
Osaka, Japan, October 2002.

	INTRODUCTION
	Orderly Crash Failure Model
	Bivalency Argument Proof
	Bivalency Proof for Crash Failures
	Revised Proof for Orderly Crash Failures

	Lower Bound For Early-Stopping
	New System Model
	The Uniform Consensus Protocol
	Protocol Description
	Correctness Proof

	Lower Bounds for the New Model
	Lower Bound for t-resilient Protocols
	Lower Bound for Early Stopping Protocols
	Discussion

	Conclusion

