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Abstract—Artifacts made by humans, such as items of
furniture and houses, exhibit an enormous amount of vari-
ability in shape. In this paper, we concentrate on models of
the shapes of objects that are made up of fixed collections
of sub-parts whose dimensions and spatial arrangement ex-
hibit variation. Our goals are: to learn these models from
data and to use them for recognition. Our emphasis is on
learning and recognition from three-dimensional data, to
test the basic shape-modeling methodology. In this paper
we also demonstrate how to use models learned in three
dimensions for recognition of two-dimensional sketches of
objects.

Index Terms—sketch recognition, object recognition,
computer vision

I. Introduction

Object recognition is a fundamental required compe-
tence both for understanding human behavior and for gen-
erating sophisticated robotic behavior. A system should be
able both to identify objects in a scene and to understand
their relative placement in space. To support such broad
applications, it is important for the recognition to be of
object classes rather than particular object instances.

Artifacts made by humans, such as items of furniture
and houses, exhibit an enormous amount of variability in
shape. Unlike classes of natural shapes, such as animals, it
isn’t possible to smoothly morph between elements of the
set of shapes of chairs. There is structure in the variability
of these classes, however. Chairs have two arms or none;
the base may be made up of legs or caster wheels, but
that is independent of the shape of the back. This kind
of structural variability may be appropriately captured in
a probabilistic grammatical model, in which the terminals
are primitive shape descriptions of basic parts of the object.

In this paper, we will concentrate on models of the
shapes of objects that are made up of fixed collections of
sub-parts. Our goals are: to learn these models from data
and to use them for recognition. Our emphasis is on learn-
ing and recognition from three-dimensional data, to test
the basic shape-modeling methodology. In this paper we
will also demonstrate how to use models learned in three
dimensions for recognition of two-dimensional sketches of
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objects.
The approach to object recognition based on 3D models,

although popular in the past [1], [2], [3], is in contrast to
most current work in object recognition, which is strongly
image-based. There is an enormous amount of previous
work in object recognition, which is impossible to review
here even in barest outline. The closest recent work is the
constellation model [4], in which objects are modeled by
distributions over relations among salient image points in
two dimensions.

A. Modeling an object instance

We will use rectangular boxes as the primitive shapes
of parts in our models. Eventually, we may wish to use
more sophisticated primitives, such as superquadrics [5], to
model smoother, more complex shapes. However, our goal
in modeling shapes is to capture the gross overall structure;
if particular details (such as carving or precise curvature)
are crucial for recognition, they might be better modeled
as additional features such as texture in shape or intensity.

We can describe a simple chair, such as the one shown in
the first pane of figure 2, using a set of six boxes. The di-
mensions of each box are described using three parameters.
One box, in this case, the seat, is chosen as the global ref-
erence frame for the object. The pose (position and orien-
tation) of each of the other boxes is described with respect
to the base frame, using six parameters: three positions
and three rotations. Thus, an instance of this model class
is described with a total of 48 parameters.

There is a remaining issue of how, given a labeled col-
lection of parts, to establish canonical relative reference
frames. In the model, the frames are defined relative to
other parts. So, for example, the z axis of the seat is de-
fined to be pointing away from the legs and the x axis of
the seat to be pointing away from the back. Once these two
coordinates are defined, the third one may be computed.

B. Distributions over objects

Given the basic structural model, we can define a class of
objects by defining a joint probability distribution over the
model parameters. We will assume that the distribution is
uni-modal; if we need to describe different types of chairs,
we will do that with separate models.

Our strategy is to use a multivariate Gaussian distribu-
tion; but doing so is complicated by the fact that our model
does not have the simple algebraic structure of Rn. The
relative positions of objects are real-valued, and so easy to
model, but dimensions are strictly positive, and rotations
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are elements of a special group. Following the approach
of Fletcher et al. [6], we will define a joint Gaussian dis-
tribution over all the parameters, but in a space that is a
product of specialized subspaces for each of the parame-
ters. For the real-valued parameters, the space will simply
be R, but for the other parameter types, it will differ.

Dimensions: Since dimensions are elements of R+ (pos-
itive reals), an appropriate distribution for them is the
lognormal. A variable X is lognormally distributed if
Y = lnX is normally distributed. Because we want to de-
fine a joint distribution over all of our parameters, rather
than putting a lognormal distribution on the dimension
parameters, we will use ln to map them to a new space.

Rotations: A rotation can be represented in a variety
of ways, including as three Euler angles, as a 3 x 3 ro-
tation matrix, as a unit-vector axis and angle of rotation
about that axis, and as a unit quaternion. The quaternion
representation is particularly convenient because it lacks
singularities [7]. Quaternion representations of rotations
are points on the unit four-dimensional hypersphere.

There are two main approaches to representing a prob-
ability distribution on a hypersphere: one is based on gen-
eralizations of the von-Mises distribution for single angles,
and the other is based on a “wrapped” Gaussian distri-
bution. We will follow the wrapped Gaussian approach,
because it will integrate effectively with Gaussian distri-
butions on other parameters. This approach is very well
described by Johnson [8].

A wrapped Gaussian distribution can be best under-
stood first in the context of a single angle. We can
represent angles as points on the unit circle (defined by
〈sinθ,cosθ〉). The mean of a wrapped Gaussian is an an-
gle, µ. Once the mean is specified, we can make a line
tangent to the circle at µ, as shown in figure 1, and put a
univariate Gaussian distribution with variance σ2 on that
line. We can now take that tangent line and “wrap” it back
around the circle. The probability density of an angle x is
then defined to be

Pr(x) =
+∞∑

i=−∞

1√
2πσ

exp(− 1
2σ2

(x − µ − 2πi)2) .

It is an infinite sum because the tails of the Gaussian con-
tinue to wrap around the circle infinitely. In practice, we
assume the distribution is peaked and take only the first
term of the series (and normalize the distribution accord-
ingly).

The mechanism is essentially the same for the quaternion
representation of rotations. The mean of the distribution is
defined by a quaternion µ. Then, we construct an R3 space
that is tangent to the unit four-dimensional hypersphere at
µ.

Let us first consider the case in which µ is equal to the
quaternion representing the identity rotation: 〈1,〈0,0,0〉〉.
Then the mapping from a quaternion q = 〈w,v〉 into the
tangent space at the identity is

ln(q) =
arccos w

sin arccos w
v ,

Fig. 1. A. Represent mean angle as point on unit circle. B. Construct
tangent to circle at mean and center Gaussian distribution there. C.
Wrap the tangent line, togther with the Gaussian, back around the
circle.

which essentially is the scalar product of the axis of rota-
tion with the angle of rotation about that axis. Now, we
can place a Gaussian distribution on the tangent space,
using a 3 x 3 covariance matrix Σ to describe the distribu-
tion.

When the mean µ is not equal to the identity, then to
find the probability of a rotation represented by a quater-
nion q, we must first rotate the q by µ (this is accomplished
by composing the conjugate of µ with q, µ∗q), effectively
setting µ to the identity and constructing a tangent space
there, and then take the quaternion log of the resulting
point. The tangent space should also be wrapped infinitely
many times; we will just take the first term of the series,
so

Pr(q) ≈ c · exp(−1
2

ln(µ∗q)T Σ−1 ln(µ∗q)) ,

where c is a normalizing constant.
Joint Gaussian: We can put all the pieces together to

make a joint distribution over the whole parameter space.
Consider a model that includes a single position p, a di-
mension d, and a rotation q. The mean of the distribution
will be described by a vector 〈µp,µd,µq〉, and the covari-
ance will be described by a 5 x 5 matrix Σ. Note that q
and µq are quaternions, with 4 components; but we only
need three dimensions in Σ for the rotation, since we will
have mapped the quaternion into an element of R3 when
we consider covariance.

To compute Pr(〈p, d, q〉) we begin by “subtracting” off
the mean, to get a zero-centered vector:

X = 〈p − µp, ln
d

µd
, ln(µ∗qq)〉 .

Now X has a multivariate Gaussian distribution with mean
0 and covariance Σ. We will refer to distributions of this
type, over positions, dimensions and quaternions as PDQ
distributions.

II. Bayesian recognition

Assume we are given an “image”, I, which is a collec-
tion of three-dimensional parts. We would like to classify
collections of parts into different classes using a generative
model. That is, for each class CI , we compute Pr(Ci|I),
then choose the Ci that maximizes that expression.



Using Bayes’ rule, we have

Pr(Ci|I) = Pr(I|Ci) Pr(Ci)/ Pr(I) .

Because we will compare these probabilities across different
classes, but Pr(I) stays the same, we can ignore it. Pr(Ci)
is a prior on getting elements of the different classes. So,
we will concentrate on computing

Pr(I|Ci)

for each class.
Let Θi be the parameters of the (PDQ) distribution of

the shapes in class Ci. The full Bayesian solution would
construct a distribution over possible parameterizations of
the class, Pr(Θi|Ci), yielding

Pr(I|Ci) =
∫

Θi

Pr(I|Ci,Θi)Pr(Θi|Ci)

=
∫

Θi

Pr(I|Θi)Pr(Θi|Ci)

This formulation is computationally intractable in gen-
eral. Instead, we will assume that we have a single param-
eterization of the class (obtained via maximum likelihood
estimation), Θi, so that

Pr(I|Ci) ≈ Pr(I|Θi) .

Both our images and our models (encoded by Θi), are
made up of parts. In order to evaluate the probability
Pr(I|Ci) we need to known an assignment of parts of the
input “image” to parts of the model. We let A be a vector
of n variables, one for each primitive component of the
model, and let an a ∈ A be a vector of indices of primitive
components in the image, which correspond to the model
components. Then,

Pr(I|Ci) ≈ Pr(I|Θi,a) =
∑

a

Pr(I|Θi,a)Pr(a)

≈ max
a

Pr(I|Θi,a) .

For recognition purposes, we won’t know the assignment
of the parts in the image to those in the model, so we treat
them as hidden variables. In principle, we should sum
the probabilities over all possible assignments. Instead, we
will pick the assignment that maximizes the probability, as
computed by the joint Gaussian model presented above.

III. Learning

Given a collection of instances of a particular shape class,
such as a chair, we need to be able to learn the parameters
of the model. In this paper, we assume that the training
examples are labeled; so an example is a set of boxes, which
are labeled (seat, back, left-front-leg, etc.). Ultimately,
this assumption will have to be relaxed, and an additional
level of optimization will be required to maximize model
likelihood over part-labelings.

With labeled parts, it is easy to convert a set of boxes
into a vector of positions, dimensions, and quaternions of
the type on which our model distribution is to be defined.
Then our job is to estimate the model parameters given a
set of such vectors.

A. Parameter Estimation

Estimating the means of positions is completely straight-
forward. For dimensions, we first take the log and then
compute the sample mean. For rotations, it is more com-
plicated.

For quaternions, the mean is the point on the four-
dimensional unit hypersphere that minimizes the sum of
the distances on the hypersphere to the data points. One
difficulty with the quaternion representation for rotations
is that it is redundant: a quaternion and its negation are
both representations for the same rotation. When we mea-
sure the distance between two quaternions, we need to
choose the minimum distance achieved by negating one
of the arguments. Thus, the sample mean µ̂q of a set of
quaternions qi is defined to be

µ̂q = arg min
p

∑
i

min
a∈{qi,−qi}

‖ ln(p∗a)‖ .

Johnson [8] shows how to convert this into a simple eigen-
vector problem. We let Q be the 4 x N data matrix; then
the maximal eigenvector of QQT is µ̂q.

To compute the covariance matrix, we must first “hemi-
spherize” the quaternion data, by selecting the element of
{qi,−qi} that is closest to µ̂q for each quaternion compo-
nent in the model. Now, we map each data point into the
tangent space at the mean, getting a data set in a vector
space where the sample covariance matrix can be estimated
as usual.

As a proof of concept, we conducted some simple experi-
ments on model learning. We generated sets of sample ob-
jects from the following classes: chairs with wheels, chairs
with legs, chairs with legs and arms, tables, benches, and
benches with arms. The sample objects were described as
labeled sets of boxes. To see how much data was necessary
for effective learning, we trained each model type on sets of
increasing sizes and computed the log-likelihood assigned
to new test data by each of the models. The results, indi-
cate, relatively unsurprisingly, that a model with diagonal
covariance works best with small numbers of examples, but
is soon outperformed by the full-covariance model. We also
found that we can get good performance with as few as 50
training instances.

IV. Recognition from three-dimensional input

Once we have trained a set of models, we can use them
for recognizing novel instances of the learned object classes
in complex scenes. To illustrate the algorithm, we will
begin by assuming that a “scene” is actually made up of
three-dimensional boxes, each described by its dimensions
and its pose with respect to a global reference frame.

An interpretation of a scene is an assignment of boxes
to parts of object model instances. There may be multiple



Fig. 2. Representative training examples and learned mean (in box)
for two model classes.

instances of each object model in a scene. There may also
be boxes in the scene that cannot be accounted for as part
of an object instance; and there may be parts of object
instances that are missing in the scene.

To arrive at a maximum-likelihood interpretation of a
scene, it would be necessary to optimize the entire interpre-
tation at once. Instead, we take a greedy approach, choos-
ing a model class and looking for the highest-likelihood
instance of it in the scene. If an instance with sufficiently
high likelihood is found, it is added to the interpretation
and the associated boxes are removed from the scene. It
is necessary to provide a cutoff parameter for deciding
whether a purported model instance is sufficiently highly
likely.

A. Search

To find the highest likelihood instance of a given model
in a scene, we use A∗ search [9], in the space of partial
matches between boxes in the scene and parts in the model.
Each of the models has a “root” part with respect to which
the coordinate frames of the other parts are defined. The
initial interpretations are assignments of boxes in the scene
to the root model part, at every possible orientation. The
search proceeds by assigning boxes from the scene to parts
in model, until a complete assignment is found or there
is no further assignment that can be made without gen-
erating an instance with very low likelihood. This is a
probabilistic extension of interpretation-tree search [10].

In order to guarantee that A* will find the highest likeli-
hood interpretation, we must give it an admissible heuristic
function to use to decide which of the current partial in-
terpretations to expand first. A heuristic is admissible if it
never underestimates the possible quality of a partial solu-
tion. In our case, we wish to find the complete assignment
with the highest likelihood. An admissible heuristic must
be optimistic about this value, so an obvious choice is the
log likelihood of the complete model with the rest of its
parameters filled in so as to maximize the conditional like-
lihood given the parameter values that have already been
filled in.

More formally, let x be an interpretation that cur-
rently has parameters x1, . . . , xk filled in, and parameters
xk+1, . . . ,xn unassigned. Then the heuristic value for x is

H(x) = max
xk+1,...,xn

lnPr(x|Ci)

= max
xk+1,...,xn

lnPr(xk+1, . . . ,xn|x1, . . . ,xk,Ci) , (1)

where Ci is the class model for which we are trying to
find an interpretation. Since our probability model is just
a multivariate Gaussian (in the tangent space), it is rela-
tively straightfoward to compute H [11]. We can partition
the covariance matrix as

Σ =
[

s11 s12

s21 s22

]
,

where s11 is the block of the covariance matrix relat-
ing the variables x1, . . . , xk to themselves, s12 relates
the variables x1, . . . , xk to xk+1, . . . , xn, etc. Then
Pr(xk+1, . . . , xn|x1, . . . , xk) is itself a Gaussian with mean
equal to µk+1,...,n + s21s

−1
11 (x1,...,k − µ1,...,k), which maxi-

mizes the conditional likelihood.
The search proceeds by keeping an agenda, which is a set

of partial interpretations. It is initialized with hypotheses
that consider each of the boxes in the input to be the base
part of the model, in each of 24 possible orientations that
align faces in input to those of the corresponding part in
the model. Then, on each step, it finds the x with maximal
H(x) and expands it by choosing a part in the model and
considering extensions of x in which the part is matched
to every remaining box in the scene, and putting all of the
new interpretations into the agenda. It should, technically,
generate 24 additional hypotheses, matching the new box
to the selected part in every possible orientation; instead,
we commit at this point to the single orientation with the
best likelihood. If we considered all the orientations, this
method would be guaranteed to find the maximum like-
lihood interpretation of M in the scene. The local com-
mitment to an orientation voids this guarantee but sub-
stantially reduces the branching factor of the search. The
remaining branching factor is still large, but the heuris-
tic is quite powerful and tends to prune the search space
effectively.

Optimism penalty: Although using the conditional mean
to fill in the missing paramters is guaranteed to give us an
overestimate of the likelihood of a partial hypotheses, it is
very over-optimistic, and has the property of causing the
search to systematically prefer hypotheses with only a few
parts assigned. This is because any actual part will be
somewhat worse than the mean, and therefore contribute
a lower likelihood term.

So, we would like to be slightly less optimistic about
as-yet unmatched parts. Consider a random variable X,
normally distributed with mean µX and variance σ2

X . If we
want to be optimistic about the value this variable might
take on, we should assume that it will be the mean value,
and so an upper bound on the likelihood would be Pr(X =
µX) = 1/

√
2πσ. Instead, a more realistic estimate of the

likelihood of a hypothesis when a value for X is filled in
might be the expected likelihood of a random value drawn
from X, which is

EX [Pr(X = x)] =
∫

Pr(X = x)2dx



Fig. 3. Recognition algorithm interprets complex scene.

=
∫

1
2πσ2

e−
1

σ2 (x−µ)2dx

=
1

2
√

πσ

∫
1√
πσ

e−
1

σ2 (x−µ)2dx

=
1

2
√

πσ
.

We can see that the expected probability of a random draw
from a Gaussian random variable is smaller than the prob-
ability of the mean, by a factor of 1/

√
2.

In the p-dimensional multivariate Gaussian case, by sim-
ilar reasoning, we find that the probability of the mean is

Pr(X = µ) =
1√

(2π)p|Σ|
,

and that the expected probability of a random draw is

Pr(X = µ) =
1

2p
√

πp|Σ|
.

So, we add an additional multiplicative penalty to an
object with p as-yet unmatched parts of 1/

√
2p. Since

our heuristic is in log-likelihood space, we subtract p ln2/2
from the conditional likelihood defined in equation 1, yield-
ing (for p = n− k) a new heuristic:

H2(x) = max
xk+1,...,xn

ln Pr(x|Ci) − (n − k) ln 2/2 . (2)

B. Results

Figure 3 shows the operation of the recognition algo-
rithm in a scene made up of multiple instances of different
object classes. It quickly extracts the objects; although
the branching factor of the search is large, the heuristic
is powerful enough that very few extraneous paths are ex-
plored.

It is also possible to recognize objects with missing parts
by allowing some parts to remain unmatched. A score can
be readily computed for these partial hypotheses. How-
ever, more complete hypotheses above the acceptable like-
lihood threshold are preferred to less complete ones. In
the first part of figure 4 is a scene in which a chair leg and
a table leg are missing (indicated by ellipses). Neverthe-
less, the recognition algorithm is able to detect them. In

Fig. 4. Prediction of location and shape of missing parts (indicated
with ellipses in first part of figure).

addition, it is straightforward to predict the position and
dimensions of the missing parts as shown in the second part
of figure 4. This ability will be important when processing
is being done on real images, in which the bottom-up seg-
mentation process may have missed some parts. In such
cases, we can recognize a partial view of an object, predict
where the missing parts ought to be, and go back to verify
their presence in the image.

V. Recognition from Two-Dimensional Input

Ultimately, of course, our goal is to do both learn-
ing and recognition from two-dimensional data. We will
take a first step here by showing one way to use our
learned three-dimensional models to do recognition from
two-dimensional sketches, made up of projected faces of
boxes.

There are a variety of possible strategies for doing two-
dimensional recognition given a three-dimensional model.
We will pursue one here that is a direct extension of the
recognition we are doing from three-dimensional data. We
will perform a “bottom-up” two-to-three dimension pass,
in which we postulate the existence of three-dimensional
boxes based on groups of four input points. This pass will
postulate many more boxes than could possibly exist; but
the recognition process is guided by the search heuristics
and can ignore most of the incorrect hypotheses.

A. From two to three dimensions

Our goal is, given a set of points in the input, to generate
all of the three-dimensional boxes that are consistent with
those points being vertices of the box. For simplicity, we
will start by assuming weak perspective (orthographic plus
scale) projection. A simpler version of our problem has
been solved in the vision literature: given three points on
a rigid object, solve for the three-dimensional pose of the
object [12]. This can be done reasonably straightforwardly,
and the pose can be recovered, except for displacement
along the viewing direction, about which no information is
available in weak perspective projection. Our problem is
somewhat more difficult, because our objects are not rigid;
in particular, their dimensions are variable.

We will assume that the observed points arise from the
projection of a face of the part box. Although seeing a
single face of each part gives very weak information about
that part, a single-face view of each of the parts of a com-
plex object will typically provide sufficient information for
recognition. Given a single face, we will not be able to



solve directly for the heights of all points in the image and
dimensions of the corresponding box, we will only be able
to derive only constraints on them. During the recognition
process, we will have to optimize over the variables that
remain free.

The orthographic projection of a rectangle in 3-space is
always a parallelogram, and so there are really only three
observational degrees of freedom: essentially the lengths of
two sides, and one of the diagonals. In figure 5 we can see
vertices labeled v0 . . .v4.

Define hi to be the “height,” or distance orthogonal to
the viewing plane, from vertex vi to the viewer. We are
using weak perspective projection, so these heights cannot
be determined globally; we will arbitrarily set h0 to 0, and
constrain the remaining heights with respect to h0. Finally,
let sx, sy, sz be the dimensions of the object. We have
six unknowns: the three dimensions of the object and the
relative heights of three of the vertices.

For the orthographic projection of a rectangular face,
we can show that h2 = h1 + h3. So we have two unknown
heights. Further, we have no information at all about one
of the dimensions (without loss of generality, let it be sz)
and so we will ignore it completely in the following and
leave it as a free parameter to be optimized later. We have
three measured variables (d01,d02,d12) and four unknowns
(h1,h3, sx, sy), which leaves us no choice but to treat one
of the unknowns as a parameter. So, we will treat h1 as
a parameter, obtaining the following expressions for the
other unknown quantities:

h3 =
d2
01 − d2

02 − d2
12

2h1

sx =
√

d2
01 +h2

1

sy =
√

d2
12 +h2

3 ,

where the dij are distances between input points in the
image. Note that there are two solutions, for positive and
negative choice of h1.

These equations can be degenerate when d2
01 − d2

02 −
d2
12 = 0, in which case the perceived figure is a rectangle.

In that case, there are two possible interpretations.
In the first, h1 = 0, so the edge v0, v1 is in the viewing

plane. Then sx = d01, and we let h3 be the free parameter.
In the second, h3 = 0, so the edge v0, v3 is in the viewing
plane. Then sy = d03 = d12 and h1 is the free parameter.

In practice, because of measurement error or inaccura-
cies in hand-drawn sketches, these constraints cannot be
relied on. We have found that, it is more reliable to make
an initial guess at the box parameters and use optimization
of likelihood to choose their actual values, as described in
the next section.

B. Recognition

Given a set of rectangular input faces, we can recover
a set of possible three-dimensional boxes, which are miss-
ing depth information along the viewing axis and some

d01
h3

v0

v3

v2

v1

p3

p2

p0

p1

sx
h2

d12 sy
h1

Fig. 5. Orthographic projection of face vertices onto the viewing
plane.

dimension information. The goal remains to find the max-
imum likelihood interpretation of this scene given a three-
dimensional model. Let I2 be the two-dimensional “im-
age” that is our input and let I be the three-dimensional
scene that is our interpretation of the input image. Now
we would like to compute

Pr(I2|Ci) =
∫

I

Pr(I2|I, Ci) Pr(I|Ci) .

Given I, the random variables I2 and Ci are independent,
so we have

Pr(I2|Ci) =
∫

I

Pr(I2|I) Pr(I|Ci) .

Performing the integral is intractable, so we will again ap-
proximate by finding the maximizing I:

Pr(I2|Ci) ≈ max
I

Pr(I2|I) Pr(I|Ci) .

We have already described Pr(I|Ci) as well as strate-
gies for three dimensional recognition based on it. So,
what is Pr(I2|I)? It is a “sensor” model, describing how
three-dimensional objects are manifest in two-dimensional
scenes. If the two-dimensional input were to come from
hand-drawn sketches, it would encode information about
typical drawing methods and styles; if the two-dimensional
input comes from vision algorithms, then it would encode
information both about typical viewpoints and about the
kinds of errors made by the image-processing algorithms
that produced it. Detailed models of this sort are very
difficult to obtain.

Instead, we will start by assuming that there is no noise
in the two-dimensional image-generation process (we will
relax this assumption later), and therefore that there is a
subset of I2 that is consistent with any given I, and that
they all have equal likelihood β. That is,

Pr(I2|Ci) ≈ arg max
I ′ consistent with I2

β Pr(I ′|Ci) .



We can proceed with A∗ search as before; but it be-
comes more complex to evaluate the quality of a partial
interpretation. The difficulty is that the missing param-
eters are not in the same space as the model parameters
(the missing z parameter along the view direction, for ex-
ample, is not explicitly represented; the model represents a
part’s position in a frame that is described with respect to
the root part of the model). Thus, we will not be able to
compute the heuristic analytically, by choosing the max-
imum likelihood conditioned on the values of a subset of
the parameters in the PDQ distribution.

Instead, to compute the heuristic value for a partial
interpretation, we perform a gradient-based optimization
over the missing parameters, in order to find the maximiz-
ing parameter assignment, and use the resulting likelihood
as the value.

Let I2 be made up of a set of groups of observed points,
P̂j , each of which arises from a projected view of a rectan-
gular box. Using the approach described in the previous
section, each observed set of points P̂j can be converted
into a parameterized description of a three-dimensional
box, B(P̂j ,θj), which determines the box’s dimensions and
its position and orientation in the view coordinate frame,
as a function of the input data and an assignment of its
free parameters θj .

A partial hypothesis consists of a mapping from some
subset of parts of the object to a subset of the observed
boxes. Let us assume that m parts have been matched in
the current hypotheses. We have a vector of free parame-
ters Θ = 〈θ1 . . .θm〉; when these parameters are set, then k
parameters x1 . . .xk describing m three-dimensional boxes
are determined. We will denote this mapping from the
measured point and the free parameters Θ to the k box
parameters as B(P̂ ,Θ). Now we can specify the heuristic
function as:

H3(P̂ ) = max
Θ

max
xk+1,...,xn

lnPr(B(P̂ ,Θ),xk+1, . . . ,xn|Ci)

− (n− k) ln2/2 (3)

The maximization over Θ is done via gradient ascent;
within the gradient ascent loop, the maximization over the
remaining parameters is done analytically by maximizing
conditional likelihood.

Parameter initialization: In order for the gradient search
to work at all, we need to start with good initial values for
the parameters.

In the general case, we initialize the scale parameter to
a value s that makes the scaled versions of the recovered
dimensions s ·sx, s ·sy, and s ·sz as close as possible to the
mean dimensions of all the parts being matched as well as
possible, in the least squares sense.

Each part has a depth offset, z, along the viewing axis.
We let the depth of the centroid of the seat be 0, and
each other part’s z is defined relative to the seat. These
z values are initialized by first determining the expected
(according to the learned PDQ distribution) position of the
part’s centroid in the object’s coordinate frame, using the

object’s orientation to determine that part’s centroid in the
global viewing frame, and then returning the z coordinate.

We will additionally be optimizing over a height and a
dimension parameter. To initialize, we use the expected
dimensions of the parts and choose heights that would ex-
plain the observed (projected) dimensions. This may be
quite far from the truth, since the actual dimensions may
be far from the mean of the distribution, but is a reason-
able starting point.

Expected face match: Given the number of free parame-
ters in early, highly partial hypotheses, and the optimistic
nature of the search heuristic, we find that the recognition
search can be very slow, because by optimizing the free pa-
rameters, almost every initial hypothesis can be made to
seem very plausible. The parameter optimization is fairly
expensive, and so we wish to reduce the number of hy-
potheses that we optimize carefully.

Consider a situation in which we have a single input face
matched to the seat of a chair model. Given the orienta-
tion chosen for the match, and the signs of the heights, we
can predict the position, orientation, and size of the projec-
tions of the legs and back in the input. These predictions
may be fairly inaccurate, depending on the quality of the
parameter estimation so far, and the amount of variance in
the model. Nevertheless, it ought to enable us to check, for
example, whether the legs are sticking up (as predicted) or
down.

We will develop a new heuristic function, H4, in which
some of the parameters describing the positions of the un-
matched parts, xk+1, . . . , xn, are set, independently for
each part, based on the input face “nearest” the projec-
tion of the part in image.

The definition of “nearest” is a bit tricky. Given the
class model, Ci, and at least one assigned part, we have
a distribution on the centroid of each part. This distri-
bution is Gaussian in the tangent space, but not in our
three-dimensional space. To get the centroid of a face, we
can add a random variable representing the box dimen-
sions to the part centroid. We could then transform it into
the view frame. Then, ideally, we would find the centroid
of the input face that had the highest likelihood in this
distribution. But because the transformed distribution is
not Gaussian, this is too expensive, so instead we use the
expected location of the centroid of a part’s face in 3D.
Then, we take each of the centroids of the faces in the in-
put, and transform them into the object’s frame, with the
z parameter set in order to make it as close as possible to
the part face centroid, roughly maximizing its likelihood
over the free z parameter. We choose the combination of
a part face and an input face that minimizes this distance.

From this assignment, we infer the position of the ex-
pected centroid of the part. From this, we estimate the
expected position of the part’s centroid by simply translat-
ing the part’s centroid over, by the mean dimension of the
object (this is a gross approximation; it would be better,
but slower, to convolve with the dimension distribution).
This process tells us an approximate position of each un-
matched part which would correspond to some input face.



Note that it does not constrain the rotation or the dimen-
sion of the part. We can use this estimated position to set
some of the unassigned parameters in the PDQ distribu-
tion. We will indicate these partially filled in parameters
describing the unassigned parts as F (xk+1, . . . , xn) in the
new heuristic:

H4(P̂ ) = max
Θ

max
F (xk+1,...,xn)

ln Pr(B(P̂ ,Θ), F (xk+1, . . . , xn))|Ci)

(4)
Note that given this, there is no need to assess an “opti-
mism penalty”.

Noisy input: Our solutions so far have assumed that the
two-dimensional input points were exactly correct. Be-
cause we expect to get two-dimensional input either from
a human-generated sketch or from image processing, there
will certainly be noise in the locations of the input points.

Let P be the “true” input points; that is, the projections
of the vertices of the boxes in the three-dimensional scene.
And let P̂ be the observed input points, corrupted by noise.
Let us further assume that the noise process is independent
of the object class. Then

Pr(P̂ |Ci) =
∫

P

Pr(P,P̂ |Ci)

=
∫

P

Pr(P̂ |P,Ci)Pr(P |Ci)

=
∫

P

Pr(P̂ |P )Pr(P |Ci)

≈ max
P

Pr(P̂ |P )Pr(P |Ci) .

Again, it is too costly to integrate out P , so we use the
maximum instead. Now, Pr(P̂ |P ) is a noise model, and
Pr(P |Ci) is the generative model of the “true” appearance
of items in class Ci, as discussed in section B.

This analysis leads us to add the parameters P to the
list of variables to optimize over when trying to find an
interpretation of a collection of image points as a member
of class Ci. We assume, for computational convenience,
that the noise is Gaussian and independent for each point.
Letting pj be the ith “true” input point and the p̂j the
corresponding measured point, we arrive at the final form
of our heuristic function:

H5(P̂ ) = max
pj

H4(P )−
∑

j

(pj − p̂j)2 . (5)

C. Results and Discussion

We have tested the approach described above on a vari-
ety of sketches of office furniture. Figures 6, 7, and 8 show
a sequence of sketches in the top row of each figure; the
computed model instance for the sketch is shown below.
Each sketch is made up of 6 “faces”. Note that the faces
are not even close to being proper projections of actual
model faces and that the geometric relationships are quite
variable. The system can cope robustly with this type of
variation.

The strength of the system is in reconstructing the most
likely three-dimensional interpretation of a sketch. In addi-
tion, in most cases we have tried, the likelihood of a sketch

Fig. 6. Three-dimensional interpretations (bottom row) for chair
sketches (top row).

given the correct model is higher than those of incorrect
models. But not always. The system as it currently stands
is prone to false positives, especially when models are sub-
sets of each other. For example, a very distorted chair
could be interpreted as a table by ignoring the back. We
expect that this can be improved with additional train-
ing data but this also suggests that a better approach to
comparing interpretations of different subsets of the data
might be required.

We are currently pursuing a number of extensions of
the approach described here. When dealing with a large
number of possible models, one would like to avoid having
to match the data against each model sequentially; we are
pursuing rapid ways to retrieve plausible models based on
relationships among observations. We plan to extend the
approach to deal with actual images of objects, not just
sketches; this requires a way of processing the images to
identify potential matches to the object parts.
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