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Abstract— Caches are known to consume up to half of all sys-
tem power in embedded processors. Co-optimizing performance
and power consumption of the cache subsystem is therefore an
important step in the design of embedded systems, especially
those employing application specific instruction processors. One
of the main difficulty in such attempts is that cache behaviors
are application as well as cache-structure specific. The two
general approaches to tackling this problem is to either use
exhaustive simulation or analytical modeling. The former is
too time-consuming while the latter often lacks the required
accuracy. In this paper, we introduce a novel third approach.
We propose an analytical cache model thatinterpolates data
from runs with direct mapped and fully associative caches so
that the entire parameter space involving all set-associativity is
spanned. Validation against full trace-driven simulations shows
that our model has a very high degree of fidelity, but requires
significantly less simulation time than exhaustive simulation.
Furthermore, the model works for instruction, data or unified
caches. Finally, we show how the model can be coupled with a
power model for caches so that one can very quickly decide on
pareto-optimal performance-power design points for rapid design
space exploration.

Index Terms— Cache, Analytical Model, Performance, Power,
Simulation.

I. I NTRODUCTION

It is well-known that processor caches significantly improve
the performance of applications. However, caches are major
consumers of power, taking up to 50% of system power [9].
For embedded systems in which power is a significant con-
straint, optimizing the cache parameters so as to obtain the
best performance-power tradeoff is therefore an important
problem. In order to do this, it is necessary first to have an
accurate model of what happens in the cache as the application
executes. Unfortunately, this is non-trivial because such an
interaction is dependent on the application as well as the
cache’s structure.

There are generally two ways of overcoming the above
problem, namely exhaustive simulation or by means of an
analytical cache model. Exhaustive simulation requires the
application to be simulated over potentially all possible cache
structures. This is very time consuming. Analytical models
generally use some features of the application to predict their
performance on various cache structures. The main problem
with this approach is that analytical models proposed thus far
are not accurate enough to be used widely.

In this paper, we propose a third approach. First, the
application is simulated over a specific number of cache con-
figurations, namely that for direct mapped and fully associative
caches. We then introduce an analytical model forinterpolat-
ing these data points so as to span all set-associativity. For
the SPEC benchmarks, we found that our model is typically
able to achieve a coefficient of determination above 0.9 with
respect to full simulation. We believe this degree of accuracy
far exceeds that of any analytical model found in the literature.

By coupling our cache performance model with a well-
known cache power model, we have a means of very quickly
exploring the entire space of cache parameters in order to
obtain pareto-optimal design points of interest.

This paper is organized as follows. In Section II we
shall first introduce our cache performance model, showing
its derivation from first principles. Section III discusses the
validation of our model against full simulation. In Section IV,
we show how the performance model can be coupled with
the CACTI cache power model [18] and how the combined
model can be easily used for design space exploration. We will
compare our work with that representative published works in
Section V. This is followed by a conclusion.

II. M ODEL

In the following, cache may refer to instruction, data or
unified cache. LetC be the size of a set associative cache.

The cache is divided intoblocksor lines; letB be the block
size. These blocks are grouped intosetsof equal size. LetA
be the size of a set, i.e. the degree ofassociativity; hence, the
cache is said to beA-way set associative. LetS be the number
of sets. It follows thatC = ABS.

The cache isdirect-mappedif A = 1; it is fully-associative
if S = 1.

We can number the blocks, and model references to cache
by a trace that is a sequence of block numbers, like in Fig. 1.

We then adopt Quong’s definition of agap [11]: namely, the
number of different references between consecutive references

. . . , X, 3, 3, 1, 4, 1, 2, 4, 3, 1, X, . . .

Fig. 1. In this fragment of a trace, the gap between references toX is
4.
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to the same block. For example, in Fig. 1, the gap between
the two references toX is 4.

A. Direct mapped cache (A = 1)

For a direct-mapped cache, we start by assuming (like
Quong did for the instruction cache) that references are
independently and uniformly distributed. Consider a blockX
in cache. Then, by uniformity,

Prob(next reference does not replace X) = 1− 1
S

.

By independence,

Prob(next g references do not replace X) =
(
1− 1

S

)g
.

(1)
To extend Eqn. 1 to all blocks, letg now refer to theaverage
gap over all blocks. We then get

Prob(a repeated reference is a miss ) = 1−(
1− 1

S

)g
. (2)

In reality, references have spatial and temporal locality, so are
neither independent nor uniformly distributed. For example,
sequential references can increase the miss probability — an
effect similar to decreasingS in Eqn. 2; on the other hand, a
loop can reduce the miss probability — similar to increasing
S in Eqn. 2

We therefore model locality by first introducing a parameter
f , thus:

Prob(a repeated reference is a miss ) = 1− (
1− 1

Sf

)g
.

(3)
In other words, the model assumes that locality is equivalent
to uniform access plus a change inS to Sf .

With Eqn. 3, a repeated reference will miss with probability
1 if S = 1 (i.e. the direct mapped cache has just 1 block). This
may not be so, since it is possible that consecutive references
are to the same block. To model this, we introduce another
parameterP1 to Eqn. 3:

Prob(a repeated reference is a miss ) = 1− (
1− P1

Sf

)g;
(4)

i.e. P1 is the miss probability ifS = 1.
When a block is referenced for the first time, it is not a

repeated reference, and it causes acold or compulsorymiss.
Let α =Prob(cold miss). From Eqn. 4, we now get miss
probability

P = α + (1− α)(1− (
1− P1

Sf

)g). (5)

For a trace and a cache configuration, one can measureα,
P1 and, in principle,g. However, it took days for us to measure
the average gap in the first 8 million references of thegzip
trace in the SPEC2000 benchmark (the full trace is about 10
times longer). We therefore determineg through regression,
by using the following equivalent form of Eqn. 5:

y = fx + d (6)

where

y = log
(
1− (1− P

1− α

) 1
g
)
, x = log S and d = log P1.

We fit a given set of(S, P ) data with the model through an
iteration, withg initialized to 0.1 and incremented by 0.001;
for each g, we substitute the measuredα to get a (x, y)
data set, callMATLABto obtain the regression constantsf ,
d and coefficient of determinationR2, then select theg that
maximizesR2.

Fig. 2 shows the result of this fitting process for thegcc
trace in SPEC2000, when it is simulated with direct mapped
data, instruction and unified caches. The fit for data and
unified caches is excellent; the fit for instruction cache is good
too, considering that no effort is made to model the looping
behavior, the function calls, etc.

Note that, in the fitting process, we do not use the measured
P1 to fix d. Rather, we obtaind from the regression and use it
to calculateP1. Fig. 2 shows that the calculated value is close
to the measuredP1 in all three cases.

B. Fully associative cache (S = 1)

Our model for a fully associative cache is similar to the one
above for a direct mapped cache. Now, we assume first that
block replacement is random when there is a miss, so (like
Eqn. 2)

Prob(a repeated reference is a miss ) = 1− (
1− 1

A

)g
.

We then introduce another parameterh to model reference
locality and replacement policy (least-recently used, etc.).
Specifically, we assume that the effect of locality and replace-
ment policy is equivalent to that of random replacement plus
a change inA to Ah; i.e.

Prob(a repeated reference is a miss ) = 1− (
1− 1

Ah

)g
.

After refining this equation withP1 (for A = 1) and factoring
in cold misses, we get

P = α + (1− α)(1− (
1− P1

Ah

)g). (7)

To test whether this fully associative model gives a good
fit for simulation data, we use regression like in the case for
the direct map model. Fig. 3 shows that the fit is excellent for
gcc , but not as good forgzip .

C. Set associative cache (generalA and S)

For set associative caches, we look for a generalization of
the equation forP that reduces to Eqn. 5 whenA = 1 and to
Eqn. 7 whenS = 1. The simplest possibility is

P = α + (1− α)(1− (
1− P1

SfAh

)g). (8)

Again, we can rewrite Eqn. 8 as

y = fx1 + hx2 + d (9)

where
x1 = log S and x2 = log A,

and use regression to determinef , g, h andP1.
We will test the efficacy of Eqn. 8 this way in the next

section.
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III. U SING THE MODEL TO PREDICT CACHE MISSES

We now demonstrate one application of the model, namely
to predict cache misses. We do this in three steps:

(Step 1) Measure misses (including cold missα) for direct
map and fully associative caches.

(Step 2) Combine the measurements from Step 1 into one
data set and fit it with Eqn. 9, to obtainf , g, h
andP1.

(Step 3) Substituteα from Step 1 andf , g, h andP1 from
Step 2 into Eqn. 8 and evaluateP for any A and
S values.

Fig. 4 shows that, applying these three steps to thegcc
workload, we obtain from the direct map and fully associative
data a good prediction of the cache misses for set associative
caches of sizeC = 1Kbytes andC = 16Kbytes..

However, the graphs also show that thegcc workload
has miss probabilities that are roughly constant for a fixed
cache size, regardless of associativity. (This is similarly true
of gzip .)

To test the model’s predictive ability against a workload
that has greater variation in miss probability, we use some
data published by Gee et al. [4]. Their data did not giveα and
fully associative misses, so we replace Step 1 by estimating
α and using their measurements for direct map and(C =
2K, A = 2), (C = 4K, A = 4), (C = 8K,A = 8).

Fig. 5 shows good agreement between measurement and
the model’s prediction for data and unified caches of size
C = 16K and C = 256K, using Gee et al.’s floating point
benchmark data.

IV. A PPLICATION TO PERFORMANCE-POWER DESIGN

SPACE EXPLORATION

Since cache consumes more than half power of all system
power in embedded systems, reducing power consumption of
cache is equally important as improving cache performance. In
order to compute the power consumption of the cache design
and analyses the pareto-optimal performance-power cache
design, we combine a cache power model (CACTI) into our
analytical model. The power consumption of cache consists of
the static consumption and the dynamic power consumption.
The static power consumption is due to current leakage and
the dynamic power consumption is due to logic switching
and the charging and discharging of the load capacitance. The
CACTI power model, however, just concerns one part of the
dynamic power consumption, namely that due to the charging
and discharging of the load capacitance. In order to account
for all power consumption of the cache, we adopt Zhang’s
equations [19] which considers both static and dynamic power
consumption. Thus, the equation we use for computing the
total power due to memory access is as follows:

power mem = power dynamic + power static (10)

where:

power dynamic = cache hits ∗ power hit+

cache misses ∗ power miss

power miss = power offchip access+

power uP stall + power cache block fill

power static = cycles ∗ power static per cycle

The underline terms are those we obtain through mea-
surements or simulations. We computecachehits and
cachemissesby running SimpleScalar simulations for each
cache configuration. We computepowerhit of each cache
configuration by using CACTI.

Determing the powermiss term is challenging. The
poweroffchip accessvalue is the power of accessing off-
chip memory and thepoweruP stall is the power con-
sumed when the microprocessor is stalled while waiting
for the memory system to provide an instruction or data.
powercacheblock fill is the power for writing a block
into the cache. The challenge stems from the fact that
the first two terms are highly dependent on the particular
memory and microprocessor being used. To be ”accurate,”
it is possible to evaluate a ”real” microprocessor system
to determine the values for those terms. While accurate,
those results may not apply to other systems, which may
use different processors, memories, and caches. Therefore,
Zhang’s method is to choose instead to create a ”realis-
tic” system, and then to vary that system to see the im-
pact across a range of different systems. They examined
the three terms ofpoweroffchip access, poweruP stall, and
powercacheblock fill for typical commercial memories and
microprocessors, and found thatpowermiss ranged from
50 to 200 times bigger thanpowerhit. Thus, we redefined
powermissas:

power miss = k miss power ∗ power hit (11)

and we considered the situation ofk misspower equal to 50
to 200.

Finally, cyclesis the total number of cycles for the bench-
mark to execute, as computed by SimpleScalar, using a cache
with single cycle access on a hit and using 20 cycles on a miss.
powerstatic per cycle is the total static power consumed per
cycle. This value is also highly system dependent, so we again
consider a variety of possibilities, by defining this value as a
percentage of total power including both dynamic and static
power:

power static per cycle = k static ∗ power total per cycle
(12)

k static is a percentage that we can set. We define thek static
as30% to 50% of the total power.

According to Eqn. 10, we compute the power consumption
by obtainingcachehits and cachemissesfrom SimpleScalar
simulation andpowerhit from CACTI simulation. Fig. 6 and
Fig. 7 show the power consumed by SPEC2000 benchmarks,
wherek misspower is set to50% andk static is set to30%.
The results indicate that cache consumes more power as the
set associativity increases when the cache size is fixed.
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V. RELATED WORKS

One of the earliest analytical models was a power-law
model proposed by Chow [2]. Rao [12] proposed the Inde-
pendent Reference Model based on probabilistic principles.
Voldman [17] and Thíebaut [15] appliedfractal geometryto
the prediction of the cache miss ratio. With this background,
the seminal paper of Agarwal, Hennessy, and Horowitz [1]
introduced a probabilistic cache model. The technical report
of Fricker and Robert [3] also proposed a probabilistic cache
model which is claimed to extend Agarwal’s model and pro-
vide a more systematic study of the parameters that influence
the behavior of a cache. While both Agarwal’s model and
Fricker’s model need to take some parameter values from
the trace-driven simulation, LaMarca and Ladner’s analytical
model [8] uses an algorithm instead of trace data as input.
Ghosh, Martonosi and Malik [5] provided methods for gen-
erating and solving cache miss equations that give a detailed
representation of the cache misses in loop-oriented scientific
code. They also used the equations to guide code optimizations
for improving cache performance.

Since inter-process conflicts cause noticeable effect on the
cache performance, Agarwal’s model also includes cache miss
equations for inter-process conflicts. Thiébaut and Stone [16]
developed an analytical model for cache-reload transients
when a process is invoked periodically. Suh, Devadas, and
Rudolph [14] presented an analytical model for the behavior of
a cache in the multiprocessing system. Their model is claimed
to work for any time quanta and needs only the isolated miss-
rate curves for cache process,compared to Agarwal’s model
which works only for long enough time quanta and requires
some parameters which is hard to be collected.

Unlike the analytical models where formulas are deduced
mathematically, Higbie [6] proposed a computational model
where performance equations are derived from extensive
empirical data. It is well known that cache simulation can
provide more accurate performance results than the analytical
models do, but it is time intensive. In order to reduce the
simulation time, some cache simulation algorithms [7] [13]
take advantage of two properties,inclustion(that larger caches
contain a superset of the blocks in smaller caches [10]) and
set-refinement(that blocks mapping to the same set in larger
caches map to the same set in smaller sets), to generate cache
miss ratios of more than one cache configurations in single
pass simulation.

Different from above analytical models, our analytical
model predicts the cache miss ratio and interpolates data from
runs with direct mapped and fully associative caches so that
the entire parameters space involving all set-associativity is
spanned. Moreover, our model can be coupled with a power
model, for example the CACTI model, to get pareto-optimal
performance-power design points for rapid cache design space
exploration which can be used to guide the design of pro-
grammable cache. Malik, Moyer and Cermak [9] described
one type of such programmable caches which provides certain
features for power and performance tuning.

VI. CONCLUSION

In the paper, we present an analytical model that interpolates
data from runs with direct-mapped and fully associative caches
so that entire parameter space involving all set-associativity is
spanned. Our analytical results highly agree with the results
from full trace-driven simulations on cache miss-ratio. Fur-
thermore, our analytical model can be coupled with a power
model for programmable caches such that one can very quickly
decide on pareto-optimal performance-power design points for
rapid design space exploration.
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(a) data cache
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gcc in SPEC2000, instruction cache, direct−mapped, 200.i input, block size = 8bytes

measured result
predicted result
alpha = 0.000001361
g = 5.02
f = 0.5109
P1 = 0.999992
CD = 0.9764

(b) instruction cache
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gcc in SPEC2000, unified cache, direct−mapped, 200.i input, block size = 8bytes

measured result
predicted result
alpha = 0.0001215
g = 2.921
f = 0.3773
P1 = 0.9998
CD = 0.9903

(c) unified cache

Fig. 2. Eqn. 5 gives a good fit for measured miss probability for a direct
map cache; the workload isgcc .
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alpha = 0.0004369
g = 0.349
h = 0.3210
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(b) gzip

Fig. 3. Using Eqn. 7 to fit the measured miss probability for a fully
associative data cache. The fit is good forgcc , but not as good forgzip .
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(a) 1-Kbyte set associative cache
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gcc in SPEC2000, data cache, set−associative, 200.i input, block size = 8bytes, Cache size = 16K, get g, f, h , P1 from direct−map & full−associative

measured result
predicted result
alpha = 0.0004945
g = 0.424
f = 0.1192
h = 0.1330
P1 = 0.9995

(b) 16-Kbyte set associative cache

Fig. 4. Comparison of miss measurements and predictions using the
3-step process for set associative data cache misses. The errors are less
than 10%.
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(a) 16KByte and 256KByte set associative data cache
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GeeHill, unified cache, set−associative, block size = 16bytes, get g, f, h , P1 from previous experiment

measured result for C=16K
predicted result for C=16K
measured result for C=256K
predicted result for C=256K
alpha = 0.0060
g = 4.2
f = 0.7008
h = 0.8666
P1 = 0.9990

(b) 16KByte and 256KByte set associative unified cache

Fig. 5. Comparison of miss measurements and predictions for Gee et
al.’s data. (Their data for instruction cache were rounded off toP = 0
for the larger cache sizes, making it impossible to estimate the cold miss
α.)
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(b)gcc

Fig. 6. Power consumed by the set associative data cache for gzip and
gcc
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Fig. 7. Power consumed by the set associative cache for SPEC
benchmarks


