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Abstract— Caches are known to consume up to half of all sys- In this paper, we propose a third approach. First, the
tem power in embedded processors. Co-optimizing performance application is simulated over a specific number of cache con-
and power consumption of the cache subsystem is therefore angiy rations, namely that for direct mapped and fully associative

important step in the design of embedded systems, especially : . .
those employing application specific instruction processors. One caches. We then introduce an analytical modelifi¢erpolat-

of the main difficulty in such attempts is that cache behaviors INg these data points so as to span all set-associativity. For
are application as well as cache-structure specific. The two the SPEC benchmarks, we found that our model is typically
general approaches to tackling this problem is to either use aple to achieve a coefficient of determination above 0.9 with
exhaustive simulation or analytical modeling. The former is yaghact to full simulation. We believe this degree of accuracy

too time-consuming while the latter often lacks the required f ds that of vtical del found in the literat
accuracy. In this paper, we introduce a novel third approach. ar exceeds that ot any analytical model found in the fiterature.

We propose an analytical cache model thatinterpolates data By coupling our cache performance model with a well-
from runs with direct mapped and fully associative caches so known cache power model, we have a means of very quickly

that the entire parameter space involving all set-associativity is exploring the entire space of cache parameters in order to
spanned. Validation against full trace-driven simulations shows obtain pareto-optimal design points of interest

that our model has a very high degree of fidelity, but requires . . . L
significantly less simulation time than exhaustive simulation. ~ ThiS paper is organized as follows. In Section Il we
Furthermore, the model works for instruction, data or unified shall first introduce our cache performance model, showing

caches. Finally, we show how the model can be coupled with aits derivation from first principles. Section Ill discusses the
power model for caches so that one can very quickly decide on \aligation of our model against full simulation. In Section 1V,
gsgif'gfslrgrﬂtmrformance'power design points for rapid design .o show how the performance model can be coupled with

the CACTI cache power model [18] and how the combined
model can be easily used for design space exploration. We will
compare our work with that representative published works in
Section V. This is followed by a conclusion.

Index Terms— Cache, Analytical Model, Performance, Power,
Simulation.

I. INTRODUCTION

It is well-known that processor caches significantly improve
the performance of applications. However, caches are major
consumers of power, taking up to 50% of system power [9]. In the following, cache may refer to instruction, data or
For embedded systems in which power is a significant copnified cache. Let” be the size of a set associative cache.
straint, optimizing the cache parameters so as to obtain therhe cache is divided intblocksor lines; letB be the block
best performance-power tradeoff is therefore an importagite. These blocks are grouped irstetsof equal size. Letd
problem. In order to do this, it is necessary first to have & the size of a set, i.e. the degreeas$ociativity hence, the
accurate model of what happens in the cache as the applicaigghe is said to be-way set associative. L&t be the number
executes. Unfortunately, this is non-trivial because such gpsets. It follows thatC = ABS.

interaction is dependent on the application as well as theThe cache iglirect-mappedf A = 1; it is fully-associative
cache’s structure. if $=1.

There are generally two ways of_overcomlng the above \ye can number the blocks, and model references to cache
proble_m, namely exhaustive S|mL_JIat|o_n or k_)y means of 3y atracethat is a sequence of block numbers, like in Fig. 1.
analytical cache model. Exhaustive simulation requires theWe then adopt Quong’s definition ofgap[11]: namely, the

application to be simulated over potentially all possible cachgmper of different references between consecutive references
structures. This is very time consuming. Analytical models

generally use some features of the application to predict their
performance on various cache structures. The main problem s X,3,3,1,4,1,2,4,3, 1, X,

with this approach is that analytical moldels proposed thus flarﬁ 1. In this fragment of a trace, the gap between references t& is
are not accurate enough to be used widely. 4.
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to the same block. For example, in Fig. 1, the gap betwe®e fit a given set of S, P) data with the model through an

the two references t& is 4. iteration, with g initialized to 0.1 and incremented by 0.001,;
for each g, we substitute the measured to get a(z,y)
A. Direct mapped cached(= 1) data set, calMATLABto obtain the regression constarnts

For a direct-mapped cache, we start by assuming (like@nd coefficient of determinatioR?, then select the that
Quong did for the instruction cache) that references afaximizesk?. o
independently and uniformly distributed. Consider a bigek ~ Fig- 2 shows the result of this fitting process for thec

in cache. Then, by uniformity, trace in SPEC2000, when it is simulated with direct mapped
1 data, instruction and unified caches. The fit for data and
Prob(next reference does not replace X) =1 — 5 unified caches is excellent; the fit for instruction cache is good

too, considering that no effort is made to model the looping
behavior, the function calls, etc.

Note that, in the fitting process, we do not use the measured
P, to fix d. Rather, we obtaid from the regression and use it

Q) . .
to calculateP;. Fig. 2 shows that the calculated value is close
To extend Eqn. 1 to all blocks, let now refer to theaverage to the measured, in all three cases.

gap over all blocks. We then get

By independence,

1
Prob(next g references do not replace X) = (1 — g)g

1

S)g' (2) B. Fully associative cacheS(= 1)
In reality, references have spatial and temporal locality, so argOur r]:nodeldfpr a fully aSSdOC'atlr\]/e cache is similar to tfhe onhe
neither independent nor uniformly distributed. For exampl ove for a direct mapped cache. Now, we assume first that

sequential references can increase the miss probability _Eﬂckzreplacement is random when there is a miss, so (like
effect similar to decreasing in Egn. 2; on the other hand, a qn. 2)

Prob(a repeated reference is a miss ) = 1—(1—

. T . ; 1
qup can reduce the miss probability — similar to mcreasmgpmb(a repeated reference is a miss ) = 1 — (1 _ 7)g.
Sin Egn. 2 A

We therefore model locality by first introducing a parametaf/e then introduce another parameferto model reference
[, thus: locality and replacement policy (least-recently used, etc.).

Prob tod rof . . _1 1 1.4 Specifically, we assume that the effect of locality and replace-
rob(a repeated reference is a miss ) = 1 — (1 - ﬁ) ment policy is equivalent to that of random replacement plus
a change in4 to A"; i.e.

In other words, the model assumes that locality is equivalent 1
to uniform access plus a changesnto S7. Prob(a repeated reference is a miss ) =1 — (1 — —h)g.
With Eqgn. 3, a repeated reference will miss with probability A

1if S =1 (i.e. the direct mapped cache has just 1 block). Thifter refining this equation withP; (for A = 1) and factoring
may not be so, since it is possible that consecutive referendegold misses, we get
are to the same block. To model this, we introduce another P,

g
parametetP; to Eqn. 3: P=a+(1l-a)(1- (1~ ﬁ) )- )
Prob(a repeated reference is a miss ) = 1 — (1 — 71)9; _ To test whgther this fully associative mc_)del_ gives a good
St fit for simulation data, we use regression like in the case for

the direct map model. Fig. 3 shows that the fit is excellent for

4
i.e. Py is the miss probability ifS = 1. gee, but not as good fogzip .

When a block is referenced for the first time, it is not
repeated reference, and it causesold or compulsorymiss. o
Let « =Prob(cold miss). From Eqn. 4, we now get mis&- Set associative cache (generaland S)

probability For set associative caches, we look for a generalization of
Py the equation forP that reduces to Eqn. 5 wheh =1 and to
P=a+(l-a)l-(1- g) )- (5)  Egn. 7 whenS = 1. The simplest possibility is
For a trace and a cache configuration, one can measure B P4
P, and, in principleg. However, it took days for us to measure P=a+(1-a)1- (1 - SfAh) )- (8)

trace in the SPEC2000 benchmark (the full trace is about 10

times longer). We therefore determigethrough regression, y=fr1+hra+d )
by using the following equivalent form of Eqgn. 5:

where
y=fx+d (6) 1 =1logS and =z, =IogA,
where and use regression to determifieg, h and P;.
1—-P.1 We will test the efficacy of Egn. 8 this way in the next
y=log (1—( )¢),x =1log S and d = log P. section.
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I11. USING THE MODEL TO PREDICT CACHE MISSES where:

o fower,dynamic = cache_hits x power_hit+
We now demonstrate one application of the model, namely —

to predict cache misses. We do this in three steps: cache-misses x power-miss

power_miss = power_of fchip_access+

(Step 1) Measure misses (including cold migsfor direct
map and fully associative caches.

(Step 2) Combine the measurements from Step 1 into one power_static = cycles x power_static_per_cycle
data set and fit it with Eqn. 9, to obtaify g, h
and P;.

(Step 3) Substituter from Step 1 andf, g, h and P; from
Step 2 into Eqgn. 8 and evaluafe for any A and
S values.

power_uP_stall + power_cache_block_fill

The underline terms are those we obtain through mea-
surements or simulations. We computachehits and
cachemissesby running SimpleScalar simulations for each
cache configuration. We compufmwerhit of each cache
configuration by using CACTI.

Fig. 4 shows that, applying these three steps togbe Determing the powermiss term is challenging. The
workload, we obtain from the direct map and fully associatiieoweroffchip.accessvalue is the power of accessing off-
data a good prediction of the cache misses for set associatiép memory and thepoweruP_stall is the power con-
caches of siz&' = 1Kbytes andC' = 16Kbytes.. sumed when the microprocessor is stalled while waiting

However, the graphs also show that tgec workload for the memory system to provide an instruction or data.
has miss probabilities that are roughly constant for a fixdpwercacheblockfill is the power for writing a block

cache size, regardless of associativity. (This is similarly trd@f0 the cache. The challenge stems from the fact that
of gzip .) the first two terms are highly dependent on the particular

To test the model's predictive ability against a workload"¢Mo"y a_g? rrtucroprtl)cetssor Pe'”|9 uged. To be accur;dte,
that has greater variation in miss probability, we use sonlje!S Possible to evaluate a ‘real” microprocessor system

data published by Gee et al. [4]. Their data did not givand to determine the values for those terms. While accurate,

fully associative misses, so we replace Step 1 by estimatimé)se 'results may not apply to pther systems, which may
o and using their measurements for direct map 46— use different processors, memories, and caches. Therefore,

9K, A =2),(C = 4K, A =4),(C = 8K, A = 8). Z_h”angs method is to choose instead to create a "realis-
Fia. 5 sh d ¢ bet ¢ tic”, system, and then to vary that system to see the im-
th '9. q SI ows (?_O? afgree(:jmten gwe_(;_n dmeasrl:rem(in _%%gt across a range of different systems. They examined
Ce_mlc(; I? S grg f ';5'16 I? r data gn u;n |<Ie, ]flzact_es 0 .S; fie three terms opower offchip.access poweruP_stall, and
b _h kag ¢ - » using >ee et al.s floating poin powercacheblockfill for typical commercial memories and
enchmark data. microprocessors, and found th@bwermiss ranged from
50 to 200 times bigger tharpowerhit. Thus, we redefined
powermissas:
IV. APPLICATION TO PERFORMANCEPOWER DESIGN . . .
power_miss = k_miss_power x power _hit (12)
SPACE EXPLORATION

and we considered the situation kimisspower equal to 50

Since cache consumes more than half power of all systé?nz_oo- _
power in embedded systems, reducing power consumption ofinally, cyclesis the total number _of cycles for th(_a bench-
cache is equally important as improving cache performance.Ti'k to execute, as computed by SimpleScalar, using a cache
order to compute the power consumption of the cache desijiih Single cycle access on a hit and using 20 cycles on a miss.
and analyses the pareto-optimal performance-power Cawetstgtlaper,cycle is th'e total static power consumed per
design, we combine a cache power model (CACTI) into og¥cle. This value is also highly system dependent, so we again
analytical model. The power consumption of cache consists@nsider a variety of possibilities, by defining this value as a
the static consumption and the dynamic power consumptid?ﬁrce”tage of total power including both dynamic and static
The static power consumption is due to current leakage aR@Wer:
the dynamic power co.nsumpt.ion is due to logic _SWitChir‘]l%ower,statz’c,per,cycle = k_static x power_total_per_cycle
and the charging and discharging of the load capacitance. (12)
CACTI power model, however, just concerns one part of thegiaricis a percentage that we can set. We definektiseatic
dynamlc power consumption, namgly that due to the charging 30% to 50% of the total power.
and discharging of the I_oad capacitance. In order to accoumAccording to Eqn. 10, we compute the power consumption
for all power consumption of the cache, we adopt Zhangig, sptainingcachehits and cachemissesfrom SimpleScalar
equations [19] which considers both static and dynamic powgjation andpowerhit from CACTI simulation. Fig. 6 and
consumption. Thus, the equation we use for computing t\‘l?g. 7 show the power consumed by SPEC2000 benchmarks,
total power due to memory access is as follows: wherek_misspoweris set to50% andk_static is set t030%.
The results indicate that cache consumes more power as the
power_mem = power_dynamic + power_static ~ (10) set associativity increases when the cache size is fixed.



V. RELATED WORKS VI. CONCLUSION

In the paper, we present an analytical model that interpolates

data from runs with direct-mapped and fully associative caches

One of the earliest analytical models was a power-lag that entire parameter space involving all set-associativity is

model proposed by Chow [2]. Rao [12] proposed the Indgpanned. Our analytical results highly agree with the results
pendent Reference Model based on probabilistic principlgrem full trace-driven simulations on cache miss-ratio. Fur-
Voldman [17] and Thébaut [15] appliedractal geometryto  thermore, our analytical model can be coupled with a power

the prediction of the cache miss ratio. With this baCkgrOUnﬁ—)ode| for programmab|e caches such that one can very qu|Ck|y

the seminal paper of Agarwal, Hennessy, and Horowitz [Hecide on pareto-optimal performance-power design points for
introduced a probabilistic cache model. The technical rep@gpid design space exploration.

of Fricker and Robert [3] also proposed a probabilistic cache
model which is claimed to extend Agarwal’'s model and pro- ACKNOWLEDGMENT

vide a more systematic study of the parameters that influence._, . . . :
the behavior of a cache. While both Agarwal’s model anderhIS work is funded by Singapore-MIT Alliance. And the

Fricker's model need to take some parameter values fro%Hthors wish to thank Dr Yongxin Zhu for his helpful work

the trace-driven simulation, LaMarca and Ladner’s analyticgp cache power model.
model [8] uses an algorithm instead of trace data as input.
Ghosh, Martonosi and Malik [5] provided methods for gen-
erating and solving cache miss equations that give a detailét] A. Agarwal, J. Hennessy, and M. Horowitz. An analytical cache model.
representation of the cache misses in loop-oriented scientifL% ACM Trans. Comput. Sysf(2):184-215, 1989.

(3]
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Comparison of miss measurements and predictions using the
3-step process for set associative data cache misses. The errors are less
than 10%.
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