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Abstract— In this paper, we develop a novel index structure to
support efficient approximate k-nearest neighbor (KNN) query
in high-dimensional databases. In high-dimensional spaces, the
computational cost of the distance (e.g., Euclidean distance)
between two points contributes a dominant portion of the overall
query response time for memory processing. To reduce the
distance computation, we first propose a structure (BID) using
BIt-Difference to answer approximate KNN query. The BID
employs one bit to represent each feature vector of point and
the number of bit-difference is used to prune the further points.
To facilitate real dataset which is typically skewed, we enhance
the BID mechanism with clustering, cluster adaptedbitcoder and
dimensional weight, named the BID+. Extensive experiments are
conducted to show that our proposed method yields significant
performance advantages over the existing index structures on
both real life and synthetic high-dimensional datasets.

Index Terms— High-dimensional index structure, approximate
KNN query, memory processing, bit difference

I. I NTRODUCTION

With an increasing number of new database applications
such as multimedia content-based retrieval, time series and
scientific databases, the design of efficient indexing and query
processing techniques over high-dimensional datasets becomes
an important research area. These applications employ the so
called feature transformation which transforms important fea-
tures or properties of data objects into high-dimensional points,
i.e. each feature vector consists ofD values, which correspond
to coordinates in aD-dimensional space. Searching for objects
based on these features is thus a search of points in this feature
space. In these applications, one of the most frequently used
and yet expensive operations is to find objects in the database
that are similar to a given query object. K-nearest neighbor
search is a central requirement in such cases.

There is a long stream of research on solving the k-nearest
neighbor search problem, and many multidimensional indexes
have been proposed [5], [2], [3], [9], [10], [12], [17], [20], [21].
These techniques focused on getting exact results from queries,
where exactness is defined in terms of the feature vectors
and a distance function between them. However, the exact
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answer is highly subjective in some data applications, such
as multimedia content-based retrieval application. In this case,
the feature vectors themselves are approximate representations
of image features such as color, texture and shape. There
do not exist a feature extraction mechanism or a distance
evaluation method which mimic similarity measurement based
on human perception. On the other hand, computing exact
nearest neighbors in high-dimensional space is costly because
of the expensive distance computation. However, it has been
shown that by computing nearest neighbors approximately,
it is possible to achieve significantly shorter execution time
with a relatively small error ratio, and that users would
find approximate answers acceptable with faster response.
Approximate KNN query allows the user to select a maximum
error factor, thus providing a tradeoff between accuracy and
response time. Approximate query-answering techniques have
recently received many attentions [14], [19], [8], [15], [18],
[1], [11].

These index structures have largely been studied in the
context of disk-based systems where it is assumed that the
databases are too large to fit in main memory. This assumption
is increasingly being challenged as RAM gets cheaper and
larger. This has prompted renewed interest in research in
main memory databases [6], [13], [16]. As random access
memory gets cheaper, it becomes increasingly affordable to
build computers with large main memories, and it is possible
to store the whole database in memory for faster system
response. But main memory data processing is not as simple
as increasing the buffer pool size, minimizing L2 cache misses
and computation cost has been an active area of research.
Especially since the high-dimensional distance computation is
CPU intensive, an efficient main memory query mechanism
should minimize the distance computation to improve the
performance.

In this paper, we propose a novel index structure to support
approximate KNN search by exploiting bit mapping and bit-
difference, called the BID. Each dimension of the point is
represented by a single bit and the bit value is generated
by comparing the point coordinates with the mean of the
dimensional domain, which is calledbitcoder. For example,
if the domain of each dimension is [0, 1], a bit value is set
to 1 if the value is larger than 0.5, and 0 otherwise. Since
only one bit is used to code each dimension, the compression
of BID file is very efficient, i.e. only 1

32 of the original file
size. Thus the real vectors can be represented by an array
of bit-strings. When a query is issued, we generate the bit-
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string of the query point, and scan the bit-strings of data. The
query result is determined by the bit-difference of the query
point and data. Using the bit comparison, we can not only
reduce the cache misses, but also avoid the expensive distance
computation and hence reduce the response time. Note that,
although the VA-file [20] also uses bit compression, it has to
compute the distance based on the approximation file.

To support real-life datasets which are typically skewed and
clustered, we enhance the BID with some modifications and
call it the BID+. First, we partition the dataset into clusters,
and each cluster has differentbitcoder according to the
respective data distributions. The coordinates of cluster center
are used asbitcoder for each cluster in our implementation.
The bit-strings in the same cluster are stored in memory
consecutively. Second, the dimensions with larger variance are
more important, as the distance in such dimensions generally
dominates the overall distance between two points, therefore
we evaluate the variance of each dimension and give the
dimensions different weights. The BID+ method starts the
query from the nearest clusters and thus can avoid scanning the
whole bit-strings. To ease the presentation, we consider only
the Euclidean distance metric. However the proposed method
can be easily extended to support other metrics such asL1 or
L∞.

We present a detailed experimental evaluation of our pro-
posed BID and BID+, and compare the proposed schemes
against some existing index structures. The results show that
our methods can handle approximate KNN queries more
efficiently for different high-dimensional datasets.

The remainder of this paper is organized as follows. In the
next section, we present the approximate quality metrics and
review some related work. In Section III, we introduce our
newly proposed BID and BID+ structures. We also present
the approximate KNN search and construction operations on
the structures. Section IV reports the findings of an exten-
sive experimental study conducted to evaluate the proposed
schemes. Finally, in section 5 we draw some conclusions and
indicate future directions for this work.

II. RELATED WORK

A. Approximation quality metrics

For similarity queries, the quality of the result set is tradi-
tionally measured by a combination of two important quality
metrics: recall and precision. They can be described as com-
pleteness of retrieval and purity of retrieval respectively. Recall
is a measure of how well the retrieval method finds all relevant
objects, and precision is a measure of how well such a system
finds the relevant objects. The irrelevant objects in the result
set are called false hits and the relevant objects that are not in
the result set are false dismissals. For approximate KNN query,
the number of false hits and the number of false dismissals
become the same value. In other words, if the approximation
causes some false dismissals, these dismissals are replaced by
false hits. Computing the number of false hits, or dismissals,
is enough to capture the traditional error metric, which we
will refer to as theratio of false dismissals (RFD). We
use the metric RFD as one of our metrics in the evaluation of

the proposed techniques. LetNNi, wherei ∈ [1, K], be the
i-th nearest neighbor (NN) in the accurate result set,ANNi

be thei-th NN in the approximate result set,Q be the query
point, andDistance K be theK-th nearest neighbor distance
of accurate result. Obviously, an approximate result is good
if it contains most NNs of the accurate result, i.e. fewer false
dismissal. Theratio of false dismissals can be defined as
follows:

RFD =
1
K

K∑
1

{
1 distance(ANNi, Q) >DistanceK
0 otherwise

(1)

Values of RFD close to 0 indicate a high quality of the result.
However, the value of RFD does not fully capture important

information about the quality of the approximations. With
this metric, two techniques may get two different answer sets
which have the same RFD value, but it cannot differentiate the
qualities of these two answer sets where one may include some
far away points. Therefore, we also employ a metric which
takes into account the quality of the answers with respect to
closeness to the query object. This alternative error metric is
particularly useful for approximate KNN search, and we refer
to it as theratio of distance errors (RDE) which can be
defined as follows:

RDE = 1−
∑K

1 distance(NNi, Q)∑K
1 distance(ANNi, Q)

(2)

Values of RDE close to 0 also indicate a high quality of the
result.

B. Existing approximate KNN algorithms

Approximate query-answering techniques have recently re-
ceived many attentions [14], [19], [8], [15], [18], [1]. Below,
we will review two state of arts techniques that are used for
comparison in our experimental study.

In [19], the authors investigated approximate KNN query
evaluation techniques based on the VA-file [20]. The VA-file is
a vector approximation scheme for high-dimensional indexing.
It divides the data space into a2b rectangular cells, whereb
denotes a user specified number of bits. The scheme allocates
a unique bit-string of lengthb for each cell, and approximates
data points that fall into a cell by that bit-string. The VA-
file itself is simply an array of these approximations. When
searching for the nearest neighbors, the entire approximation
file is scanned and the upper and lower distance bounds to the
query point Q can easily be determined based on the cell
represented by the approximations. After the filtering step,
a small set of candidates remain. These candidates are then
visited and the actual distances toQ are determined, i.e. the
exact KNN answers. To develop approximate query-evaluation
techniques, they derive formulae for the distribution of the
error of the bounds and the duration of the different phases
of query evaluation. Based on these results, two different
approximate query evaluation techniques are developed. The
first one adapts the bounds to have a more rigid filtering,
named VA-BND; the second one skips computation of the
exact distances, i.e. the vectors with theK smallest lower
bounds are retrieved as the approximate results, named VA-
LOW.
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More recently, a general framework for approximate nearest
neighbor queries was proposed in [8]. The current approaches
for nearest neighbor query processing can be categorized based
on either their ability to reduce the data set that needs to be
examined (retrieved set reduction), or their ability to reduce
the representation size of each data object (representative size
reduction). The authors first proposed modifications to existing
techniques to support the progressive processing of approxi-
mate nearest neighbor queries. After that, a new technique
was proposed, which effectively combines the two class of
approaches into a single framework, i.e. by reducing the size
of the retrieved set and feature vector sizes for efficient approx-
imate searching. First, a dimensionality reduction is performed
on each data point in the data set. Second, the retrieved portion
of data is reduced by the help of a clustering technique, which
is an adaptation of K-means clustering method, and the feature
vectors within a cluster are organized to support interactive
approximate searching.

III. A PPROACHES FORAPPROXIMATE KNN QUERY

In this section, we give the motivation and develop new
index structures and algorithms that facilitate fast approximate
KNN search in main memory environment. We start by
presenting the basic structure of BIt-Difference (BID). Then
we will discuss how it can be improved to support skewed
(clustered) dataset.

A. The BIt-Difference (BID)

The VA-file [20] is proposed to deal with queries for high-
dimensional databases. The VA-file works well for uniformly
distributed data in disk-based environment, because it can
reduce disk I/O significantly compared with sequential scan.
However the VA-file incurs three cost overheads: the first is
decoding cost, because the bit-string must be decoded for
distance calculation; the second is computation cost, both
upper and lower bounds of the distance to the query point
must be determined; the third cost is data access cost as the
VA-file needs to access the real data set to get exact distances.
Since disk I/O cost is dominant in disk-based environment,
these cost overheads do not affect the performance of VA-
file much. However, high-dimensional KNN search cost is
bounded by CPU cost in main memory system. The higher
computational cost incurred by VA-file makes it less attractive
for main memory databases. Although the variant VA-LOW
proposed in [19] can reduce the computational cost, it has to
scan the whole approximation file to compute the low-bound
distance.

On the other hand, following [2], we can determine the
expected distance of the query point to the actual nearest
neighbor in the database. For simplicity, let us consider
uniformly distributed data in a normalized data space[0, 1]D

having a volume of 1 and the data size is N. The nearest
neighbor distance may then be approximated by the volume
of the sphere which, on average, contains one data point. The
data space with radiusr can be calculated by

spd(r) =

√
πd

Γ(d/2 + 1)
· rd

whereΓ(n) is the gamma function (Γ(x+1) = x·Γ(x), Γ(1) =
1 andΓ(1/2) =

√
π). Since

spd(distnn) =
1
N

we can get the expected nearest neighbor distance

distnn(N, d) =
1√
π
· d

√
Γ(d/2 + 1)

N

Based on this formula, we can determine thatdistnn can
become larger than 1 when the dimensionality is beyond 40.
Because of the large NN distance, it is almost impossible to
partition the data space well, thus tree-like index structures
cannot be efficient for uniform datasets. The index-based
search needs to access all the data when the dimension is more
than 60. From the above analysis, we can see that sequential
scan is a good choice when the dimensionality is high, because
it avoids complicated tree operations, although it also has
to compute the distance between query point and the whole
datasets.

As discussed in the above cases, the expensive distance
computations are inevitable. Thus, we want to use a fast
distance filter to prune out most of the points which are less
possible to be KNN before we access the real vectors, although
we may not get the exact KNN. While the VA-file uses a
filter step in its operations, it can reduce the disk accesses but
leads to higher computational cost. A more efficient filter that
can reduce the distance computational cost is needed in main
memory systems.
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Fig. 1. Bits for 2 dimensional random data

Figure 1 shows the random data in a 2-dimensional space.
We use one bit to represent each dimension, and the whole
dataspace can be split into four partitions, represented by ”00”,
”01”, ”10” and ”11” respectively. In general, ”0” represents
the vector value ”0-0.5” and ”1” represents the vector value
”0.5-1”. We call the mean value 0.5 thebitcoder. Suppose
we have a 2-d point ”0.3, 0.1”, we can simply represent it
by a bit-string ”00”. Using this method, we generate the bit-
strings for all data points. Looking at the figure, we get the first
impression that the points with same bit-string representation
are generally nearby. Furthermore the partitions with less bit-
difference are also nearer, e.g. partition ”00” is nearer to ”01”
or ”10” than partition ”11”. With the bit-strings, we can filter
the potential far points only using bit comparisons and avoid
expensive distance computation. Of course, there exists some
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exceptions, e.g. the points near the border. However, since our
scheme is to find the approximate KNN, this trade-off between
quality and processing time is promising if we can provide
high approximation quality.

Bit−strings

Real Vectors

Fig. 2. The structure of BID

The structure of the BID is shown in Figure 2. The first level
is the bit-strings of the real vectors, which is a flat directory.
Each bit-string is related to a real data vector, all the bit-strings
are stored in memory consecutively.

Figure 3 shows the algorithm to construct a BID structure.
Since the first level of BID index is a flat directory with each
record a bit-string, the construction algorithm is straightfor-
ward. For each real vector in the dataset, we compare the
vector values with thebitcoder 0.5 and determine the bit value
in the bit-stringB. The process stops when all the data points
have been transformed into bit-strings.

Algorithm build BID()
Input: Dataset
Output: BID index B

1. For i = 1 to N
2. For j = 1 to D
3. if (point(i) j ≥ 0.5)
4. B(i) j = 1;
5. else
6. B(i) j = 0;
7. return BID index B;

Fig. 3. The algorithm of BID construction

Figure 4 shows the algorithm to search for approximate
KNN using the BID. In the first stage, we initialize the ap-
proximate KNN candidate list and the pruning bit-difference,
i.e the dimensionalityD (lines 1-2). Next we transform the
query pointQ to a bit-stringQB with lengthD (line 3). After
that, we repeat the operations in lines 5-8 until the whole bit-
string level of BID structure has been scanned. In this filter
step, we compare two bit-strings, i.e.B(i) and QB and get
number of bits with different values. As we have discussed,
the distance between two points is generally larger when they
have more different bits. For each bit-stringB(i), we calculate
the bit-difference fromQB. If the bit-difference is less than
the pruning bit-difference, we insert thei into the candidate
list and update theprune BID if necessary, which is always
equal to the bit-difference between the query point and the K-
th nearest neighbor candidate. Finally, we access real vectors
of the dataset to get results.

The number of approximate KNN candidates selected in
the filter step can affect the approximation quality. This
number is determined by the pruning bit-difference. Suppose
we need to find K approximate nearest neighbors, the bit-
differenceM is needed to pick at least K candidates in the
filter step. However these candidates may not have sufficient

Algorithm AKNN()
Input: Dataset, BID index, Query point Q, K
Output: approximate K nearest neighbors

1. AKNN C = Newlist();
2. pruneBID = D;
3. Transform Q to bit-string QB;
4. For i = 1 to N
5. Bit dif = Get BID(B(i), QB);
6. if (Bit dif <= pruneBID)
7. insertion i into AKNNC;
8. pruneBID = Bit dif;
9. Access the dataset to get real vectors;
10. Return approximate K nearest neighbors;

Fig. 4. The algorithm of approximate KNN search with BID

approximation quality. Thus we can relax this constraint, e.g.
using the bit-difference valueM + 2. In other words, more
candidates are retrieved after filtering. Finally, we provide K
best answers after accessing the real dataset. The additional
cost is more data access and distance computation of the real
vectors. Clearly, the quality of approximation can be improved.
We show more details in the experimental study.

B. The BID+: an enhancement of the BID

Although the BID is expected to reduce the number of
distance computations, it has several limitations. First, the BID
inherently assumes that the data is uniformly distributed and
uses mean value 0.5 to split each dimension. However, in
real datasets, value distribution could be skewed. Second, each
dimension has the same weight in BID, but some dimensions
are more important in real applications. Third, real datasets
are typically not globally distributed, and they may appear
as clusters. We need to address these limitations to facilitate
different kinds of high-dimensional datasets.
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Fig. 5. Bits for skewed data

Figure 5 shows an example for skewed data. Unlike Fig-
ure 1, the data only occupies a small area of the data space.
The data value extension is [0.1, 0.96] (Ex) on dimensionx
and [0.24, 0.5] (Ey) on dimensiony respectively. Clearly on
dimensiony, the bit representation is0 for all the point if we
use 0.5 as a split criterion. The solution is that we use the
mean value of extension as abitcoder, e.g.Mx 0.53 andMy

0.37 in the Figure 5.
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On the other hand, the bit information of dimensionx is
more important than that of dimensiony, as the dimensionx
has much large variance. Furthermore, even if two points have
the same bit value on a certain dimension, it does not mean
that the distance on this dimension is equal to 0. Therefore,
we propose the square of average distance to set the bit weight
since we apply the Euclidean distance metric. Now we present
how to compute the weight.

a

a

a+b

a+b

YX

0

(b)

(a)
YX

0

Fig. 6. An example for weight calculation

Suppose pointsX andY have the same bit value, i.e. falling
in [0, a] as shown in Figure 6 (a). Give a pointX, the average
distance betweenX and a random pointY , Dist0, is

Dist0 =
∫ a

0
|x−y|dy

a =
∫ x

0
(x−y)dy+

∫ a

x
(y−x)dy

a

= a
2 − x + x2

a

(3)

The average distance between two random points,
Ave dist0, is

Ave dist0 =

∫ a

0
(a
2 − x + x2

a )dx

a
=

a

3
(4)

Thus we can get the weight that two points have the same
bit value,Weight0 is (a

3 )2.
Suppose pointsX and Y have different bit values, i.e.

falling in [0, a] and [a, a+b] respectively as shown in Figure 6
(b). Give a pointX, the average distance betweenX and a
random pointY , Dist1, is

Dist1 =

∫ a+b

a
(y − x)dy

b
= a +

b

2
− x (5)

The average distance between two random points,
Ave dist1, is

Ave dist1 =

∫ a

0
(a + b

2 − x)dx

a
=

a + b

2
(6)

The weight that two points have the different bit value,
Weight1, is (a+b

2 )2. Note that both the weights are precom-
puted when we build the BID structure, so the weight cal-
culation does not introduce any computational cost overhead
during query processing. The sum of weights over the full
dimensionalities,

∑D
1 weight, can be used to filter the points,

whereweight can beWeight0 or Weight1 according to the
bit comparison.

The BID scheme exploits the samebitcoder to generate the
bit-strings, however this method is not optimal as the real data
could be clustered as shown in Figure 7. In this case the global
bit-string representation will not yield good performance. As
shown in [8], clustering is a good approach for approximate
KNN query as it can reduce the retrieved set. The BID scheme
benefits more from clustering as we can createbitcoder for
each cluster with respect to the cluster distribution, and hence
the bitcoder is much more efficient. In Figure 7, we use

x

y
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00 10

01 11

11

Cluster 1

Cluster 2

Fig. 7. Bits for clustered data

different bitcoders for cluster1 and cluster2. In this paper, we
employ the K-means clustering scheme to generate the clusters
before we generate the bit-strings, and each cluster utilizes the
cluster center asbitcoder.

We refer the BID scheme with the above enhancements as
BID+, and the structure of BID+ is shown in Figure 8. The
first level is a flat directory which store the cluster information.
Each entry is a 4-tuple(c, r, w, ptr), wherec is the cluster
center and the coordinates ofc are used asbitcoder, r is
the radius of the cluster,w represents the dimensional weight
which is a 2D array, andptr is a pointer to the generated
bit-strings.

Real Vectors

Cluster1 Cluster2

Bit−strings Bit−strings Bit−strings

.....

............

Cluster n

Fig. 8. The structure for BID+

Algorithm build()
Input: Dataset
Output: BID+ index B

1. Clustering dataset;
2. for each cluster
3. init(U[D], L[D]);
4. for each point P in the cluster
5. for i = 1 to D
6. if (Pi > Ui)
7. Ui = Pi;
8. elseif (Pi < Li)
9. Li = Pi;
10. if (Pi ≥ Ci)
11. b i = 1;
12. else
13. b i = 0;
14. Compute weights;
15. Return index B
Fig. 9. The algorithm of BID+ construction

Figure 9 shows the algorithm for constructing a BID+ struc-
ture. At first, we partition the dataset into clusters using the
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K-means method. Meanwhile, we get the cluster information,
such as cluster center, cluster size and radius. After that, we
can process each cluster separately (lines 3-14). In Line 3, we
initialize the upper boundU [D] and lower boundL[D] of the
extension of each dimension, e.g.Ui = 1 andLi = 0 where
i ∈ [1, D]. For each point in the cluster, we have two tasks:
first we update the upper and lower bound of the dimensional
extension; second, we compare the vector values withbitcoder
(cluster center) and determine the bit value in the bit-string.
Finally, we compute the weights for each dimension of cluster
using the value ofU [D] and L[D], and store the weights in
the top level directory.

Algorithm AKNN +()
Input: Dataset, BID+ structure, query point Q, K
Output: Approximate K nearest neighbors

1. AKNN C = Newlist();
2. pruneweight sum =∞;
3. prunedist =∞;
4. scan the cluster directory;
5. sort the cluster using dist(c, Q);
6. for each cluster
7. if (dist(c, Q) - r)< prunedist
8. Transform Q to bit-string QB;
9. for each bit-string
10. weightsum = 0;
11. for i = 1 to D
12. if (Bit values are same)
13. weightsum += Weight0i;
14. else
15. weightsum += Weight1i;
16. if (weight sum<= pruneweight sum)
17. insertion ID into AKNNC;
18. pruneweight sum = K-th weightsum;
19. prunedist = the K-th exact distance;
20. Access the dataset to get real vectors;
21. Return approximate K nearest neighbors;
Fig. 10. The algorithm of approximate KNN search with BID+

We summarize the approximate KNN algorithm of BID+

in Figure 10. In the first step, we initialize approximate KNN
candidate list, the pruning weight sum and pruning distance
(lines 1-3), where the weight sum is used within the cluster but
the pruning distance used to filter clusters. Next we scan the
top level cluster directory, and sort the cluster by the distance
between cluster centers and the query point. After that, we
repeat the operations in lines 6-19 until all the qualified
clusters have been examined. Note that the nearer clusters
have the higher priority for processing. We transform the query
point into bit-string using the clusterbitcoder (line 8), then
scan the bit-strings for bit comparison. For each dimension,
if the point and query pointQ have the same bit value, the
weight sum is added byWeight0; else the distance is added
by weight1. If this approximate distance is less than the
prune weight sum, we insert the record ID into the AKNN
list and update theprune weight sum if necessary, which
is always equal to theweight sum between the query point
and the K-th nearest neighbor candidate. Once the cluster has
been scanned, we compute the prunedist by accessing the
K-th real vector. This Distance is used to decide whether
we need to continue processing other clusters. After all the

qualified clusters have been checked, we access the real vectors
to determine the approximate KNN answer. Similar to the
BID, the prune weight sum can be tuned to control the
approximation quality of the BID+. To improve the quality,
we just relax this filtering constraint, e.g. using 120% of
K-th weight sum as a filter parameter. By retrieving more
candidates and refining KNN after real vector accesses, we
can provide the approximate KNN with higher quality.

IV. PERFORMANCESTUDY

In this section, we present an experimental study to evaluate
the proposed approximate KNN search structures, the BID and
BID+. The performance of each technique is measured by
the average execution time, and the number of cache misses
over 100 different approximate KNN queries. We use the
Perfmon tool [7] to count the L2 cache misses. All the
experiments are conducted on a SUN E450 machine with
450 MHz CPU, 4 GB RAM and 2 MB L2 cache with 64
bytes block size. The machine runs SUN OS 5.7. All the data
and index structures are loaded into the main memory before
each experiment begins. We demonstrate the results on random
dataset, synthetical clustered dataset and real-life dataset.

The experimental study includes two parts. First, we
tune the performance of the BID and BID+ and investi-
gate the tradeoff between the execution time and the ap-
proximation quality. We apply two quality metrics as dis-
cussed in Section 2,ratio of false dismissals (RFD)
and ratio of distance errors (RDE). Second, we compare
them with some existing techniques for approximate KNN
search in high-dimensional space. We use three reference
techniques for the comparison: the approximate KNN-query
evaluation technique based on the VA-file (VA-LOW) [19],
the general framework for approximate KNN proposed in [8]
(Clustering) and Sequential Scan. For clarity of presentation,
we use some default parameters for these structures, e.g. 4 bits
for the VA-LOW, and 10 clusters for the Clustering.
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Fig. 11. The approximation quality for different bit-difference

A. Tuning the BID and BID+

In this experiment, we first generate a uniformly distributed
data set with 100 dimensions, the data size is 100,000. Since
our methods use only one bit to represent each dimension,
and hence there surely exists some information loss. However
we can tune the bit-difference in the filtering step. If the
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Fig. 12. The execution cost for different bit-difference
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Fig. 13. The execution cost for different dimensionality

approximate quality is not sufficient, we can retrieve more
candidates using a larger value of bit-difference, and finally
finalize the answer after examining the exact distance.

Figure 11 shows the approximation quality by varying the
numbers of bit-difference for 100-NN query. Note that all
the dimensions have the same weights because of uniformly
distributed data, hence the BID and BID+ yields similar per-
formance, and we only show the bit-difference as evaluation
criterion for the clarity of presentation. The smallest value
of bit-difference, 34, can guarantee finding 100 approximate
nearest neighbors in the bit comparison step in this experiment.
Although theratio of distance errors (RDE) is only 4%, the
ratio of false dismissals (RFD) is as high as 75% which
means only 25% exact nearest neighbors are retrieved. Because
we use one bit to represent the information of a feature vector
(float), bit-difference does not mean the real distance between
two points and too much information loss was incurred during
the filtering. For example, 0.51 and 0.49 have the different bit
value, but the real distance is very small, only 0.02. On the
other hand, we observe that as the number of bit-difference
which is used for filtering increases, the approximation quality
can be improved significantly, especially RFD. The RFD value
decreases to 20% and 10% when we use 38 and 40 bit-
difference respectively. The larger bit-difference introduces
more KNN candidates retrieval, and hence the higher execu-
tion cost. The results are shown in Figure 12.

Both the execution time and the cache misses increases
when we use larger bit-difference value. We need to retrieve
more real vectors for distance evaluation. The real vector ac-

cesses incur more cache misses and computational cost. These
cost overhead are traded for higher approximation quality.
The BID+ performs a bit worse than the BID because of the
computation ofweight sum. We use the Sequential Scan as
a reference. The results clearly demonstrate the superiority of
the proposed schemes over the Sequential Scan: the BID and
BID+ are more than 100% better in all the cases, even when
both RFD and RDE are approaching 0, e.g. the number of
bit-difference is 44.

B. Comparing with other structures

In this section, we compare the proposed structures with
some existing methods on different datasets, such as VA-LOW,
Clustering and Sequential Scan. To ensure a fair comparison,
we exploit partial dataset access to meet the same approx-
imation quality criterion for VA-LOW and Sequential Scan.
For example, the Sequential Scan access only a portion of the
dataset and answer the query based on the portion that is read,
e.g. access 80% of the dataset if RFD is set as 20%.

1) On uniformly distributed dataset:In this experiment,
we first generate a uniformly distributed dataset with 50 to
100 dimensions. The data size is 100,000 points. We set the
RFD and RDE at 20% for approximate 100-NN query, and
the results are summarized in Figure 13.

The figure shows that our proposed BID and BID+ yield
the best performance for this dataset. The BID can filter
most of the points with less possibility to be the nearest
neighbors without expensive distance computation, where only
bit operations are involved. Additionally, since we only use
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one bit to represent each dimension, the space cost of bit
representations is only132 of original data. The number of
real vector accesses is limited by the filtering, and hence the
BID can reduce the cache misses significantly. The BID+ is
a bit worse than the BID, because the structure of BID+

is more complicated and the enhancement of BID+ cannot
benefit from the uniformly distributed data.

The Sequential Scan needs 200% more response time than
the BID. It has to access the majority of the data and compute
the distance. The VA-LOW is about 5% better than the
Sequential Scan. In the filter step of KNN searching, we
must scan the entire approximations, decode the approximated
bit-string and calculate the lower bounds on the distance to
the query point. Although the VA-LOW is also computation
sensitive scheme, it incurs much less cache misses than the
Sequential Scan as shown in Figure 13 (b), and hence the
overall execution time is not so expensive. However the KNN
search cost is bounded by the computational cost in main
memory environment, thus the schemes based on VA-file are
not optimal for memory processing. The Clustering method
is worst among these methods, as it cannot partition uniform
dataset efficiently and have to access most of the data.
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Fig. 14. The performance for different RFD

Figure 14 shows the approximate 100-NN performance for
different RFD from 5% to 25%. The dimensionality is fixed
as 100. Since all the methods can provide high quality RDE,
we do not present the details here. When the RFD increases,
all the methods yield better performance, as lower demand
of approximation quality can reduce the data access and
distance calculations. For the VA-LOW, it can use fewer bits
representation, i.e. fewer cache misses. The BID and BID+ are
superior in all the cases because of their low computational
cost and cache misses.

2) On skewed dataset:In many applications, data points
are typically skewed in some ways. In this set of experiments,
we evaluate these methods on skewed datasets with 100
dimensions. We use a method similar to that of [4] to generate
the skewness in subspaces of different dimensionalities. The
dataset has 100,000 points. The performance of BID+ is
affected by the number of clusters when the data is skewed or
clustered, which is different to the random dataset. For the
fair comparison, we adapt the same cluster number as the
Clustering scheme throughout the experimental study.

Figure 15 shows the approximate 100-NN performance for
different RFD from 5% to 25%. Clearly the performances are

different from the uniform data. The Sequential Scan and VA-
LOW perform worse than other methods, because it have to
access most of the items and compute the distance regardless
of data distribution. The BID degrades in this experiment
because of lower filtering efficiency. Since the vector values of
points are skewed, the BID cannot prune the point efficiently
and introduce much more false hits, e.g. many points may
have same bit value on a certain dimension. Therefore, the
BID has to access more real data and compute the distance to
determine the KNN, i.e. more cache misses and computational
cost.

The BID+ and Clustering provide much better results. The
skewed dataset can be efficiently partitioned by clustering
algorithm, thus these two methods only need to access some
nearest clusters to get the approximate KNN. The BID+ is
about 35% better than the Clustering, because it can prune the
majority data in the filtering step. Although the data is skewed,
the enhanced coding mechanism and dimensional weight cal-
culation can improve the filtering efficiency compared with
BID.

3) On real dataset:In this experiment, we evaluate the vari-
ous schemes on a real-life data, which contains 64-dimensional
color histograms extracted from 70,100 images. We test the
performance of KNN search with different approximation
quality.

Figure 16 shows the approximate 100-NN performance by
varying the value of RFD from 5% to 25%. These results
are similar to the synthetic dataset in previous experiment and
clearly show the effectiveness of the BID+. The BID+ is about
40% faster than the Clustering method and more than 200%
better than other methods in terms of execution time cost. The
real-life datasets are typically skewed and clustered, and hence
the BID cannot prune the data efficiently during the filtering
step. Because the real vectors are skewed, many bits may have
same bit value when we transform the float to one bit, the
bit-difference cannot distinguish the distance well. The BID+

and Clustering are the best two choices for this dataset, as
the color histogram dataset can be clustered and some nearest
clusters can provide the enough approximate KNN. With the
bit-difference comparison, the BID+ can further decrease the
computational cost and cache misses.

V. CONCLUSION

In this paper, we have revisited the problem of accessing
high-dimensional data and develop a novel index structure to
support efficient approximate KNN query in main memory
environment. To reduce the distance computation, we first
proposed a methodology using Bit-Difference (BID) to answer
approximate KNN query. The BID employs bit-string to
represent each point and the bit-difference is used to prune
to the data points. To facilitate skewed dataset, we proposed
an improved structure, named BID+, which is enhanced with
clustering, cluster adaptedbitcoder and dimensional weights.
Extensive experiments are conducted to show that the BID+

scheme yields significant performance advantages over the
existing index structures on both real life and synthetic high-
dimensional datasets.
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Fig. 15. The execution cost for RFD
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Fig. 16. The execution cost for RFD

In future work, we want to investigate the effect of weight,
cluster number and pruning constraint (bit-difference and
weight sum) over the approximation quality, including the-
oretical analysis and cost model. We also plan to adapt our
technique into real life application such as indexing large
image database.
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