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Abstract—In this paper, we develop a novel index structure to answer is highly subjective in some data applications, such
support efficient approximate k-nearest neighbor (KNN) query as multimedia content-based retrieval application. In this case,
in high-dimensional databases. In high-dimensional spaces, the 6 feature vectors themselves are approximate representations
computational cost of the distance (e.g., Euclidean distance) .
between two points contributes a dominant portion of the overall of image Teatures such as quor’ texture .and shape: There
query response time for memory processing. To reduce the dO not exist a feature extraction mechanism or a distance
distance computation, we first propose a structure (BID) using evaluation method which mimic similarity measurement based
Bit-Difference to answer approximate KNN query. The BID on human perception. On the other hand, computing exact
employs one bit to represent each feature vector of point and nearest neighbors in high-dimensional space is costly because

the number of bit-difference is used to prune the further points. f th ve dist tati H it has b
To facilitate real dataset which is typically skewed, we enhance of the expensive distance computation. However, it has been

the BID mechanism with clustering, cluster adaptedbitcoder and  Shown that by computing nearest neighbors approximately,
dimensional weight, named the BID". Extensive experiments are it is possible to achieve significantly shorter execution time
conducted to show that our proposed method yields significant with a relatively small error ratio, and that users would
performance advantages over the existing index structures on fing anproximate answers acceptable with faster response.
both real life and synthetic high-dimensional datasets. A imate KNN I th t lect .
Index Terms— High-dimensional index structure, approximate pproximate que.ry. allows the user 1o select a maximum
KNN query, memory processing, bit difference error factor, thus providing a tradeoff between accuracy and
response time. Approximate query-answering techniques have
recently received many attentions [14], [19], [8], [15], [18],
I. INTRODUCTION [1], [11].
With an increasing number of new database applications''€S€ ;ng'e)li struc;ures have Iﬁrgely been St“d'ﬁd r:n tr;]e
such as multimedia content-based retrieval, time series a text of disk-base SVS‘?'K"S where It is assume that t e
abases are too large to fit in main memory. This assumption

scientific databases, the design of efficient indexing and quety. alv bei hall q RAM h q
processing techniques over high-dimensional datasets beco ggcreasingly being challenged as R gets_ cheaper an
er. This has prompted renewed interest in research in

an important research area. These applications employ th g
called feature transformation which transforms important fegiain memory databasgs [6], [13], .[16]' Afg random access
tures or properties of data objects into high-dimensional poinE@?mory gets cheaper, it becomes increasingly affordable to
i.e. each feature vector consistsidfvalues, which correspond uild computers with large main memories, and it is possible
to coordinates in @&-dimensional space. Searching for objectts.O store the whole database in memory for faster system
based on these features is thus a search of points in this featGr®

onse. But main memory data processing is not as simple
space. In these applications, one of the most frequently udsyincreasing the buffer pool size, minimizing L2 cache misses

and yet expensive operations is to find objects in the databgﬁéj C(_)mput.at|on COSF has_ been an a_ctlve area of res_ear_ch.
that are similar to a given query object. K-nearest neighb pecially since the high-dimensional distance computation is
search is a central requirement in such cases. PU intensive, an efficient main memory query mechanism

There is a long stream of research on solving the k—nearégpmd minimize the distance computation to improve the

neighbor search problem, and many multidimensional index%(glrforhmance. lind
have been proposed [5], [2], [3], [9], [10], [12], [17], [20], [21]. n this paper, we prop%sE a n0\1e_ in et>)<_ structure to sgpt;gort
These techniques focused on getting exact results from quer roximate KNN search by exploiting bit mapping and bit-

where exactness is defined in terms of the feature vect§fac €Nce called thg BID..Each dlmen'S|on of t'he point Is
%presented by a single bit and the bit value is generated

and a distance function between them. However, the ex% X _ . :
y comparing the point coordinates with the mean of the
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string of the query point, and scan the bit-strings of data. Thiee proposed techniques. L8tN;, wherei € [1, K], be the
query result is determined by the bit-difference of the queiyth nearest neighbor (NN) in the accurate result g6 N,
point and data. Using the bit comparison, we can not onhe thei-th NN in the approximate result sef) be the query
reduce the cache misses, but also avoid the expensive distgmmiat, andDistance_K be theK-th nearest neighbor distance
computation and hence reduce the response time. Note tlafitaccurate result. Obviously, an approximate result is good
although the VA-file [20] also uses bit compression, it has bit contains most NNs of the accurate result, i.e. fewer false
compute the distance based on the approximation file. dismissal. Theratio of false dismissals can be defined as
To support real-life datasets which are typically skewed arfidllows:
clustered, we enhance the BID with some modifications and 1
call it the BID". First, we partition the dataset into clusters, RFD = )7a
and each cluster has differemttcoder according to the
respective data distributions. The coordinates of cluster cent@iues of RFD close to 0 indicate a high quality of the result.
are used a#itcoder for each cluster in our implementation. However, the value of RFD does not fully capture important
The bit-strings in the same cluster are stored in memoinformation about the quality of the approximations. With
consecutively. Second, the dimensions with larger variance #inés metric, two techniques may get two different answer sets
more important, as the distance in such dimensions generallyich have the same RFD value, but it cannot differentiate the
dominates the overall distance between two points, therefepgalities of these two answer sets where one may include some
we evaluate the variance of each dimension and give tfa# away points. Therefore, we also employ a metric which
dimensions different weights. The BiDmethod starts the takes into account the quality of the answers with respect to
query from the nearest clusters and thus can avoid scanningditeseness to the query object. This alternative error metric is
whole bit-strings. To ease the presentation, we consider oplgrticularly useful for approximate KNN search, and we refer
the Euclidean distance metric. However the proposed methadit as theratio of distance errors (RDE) which can be
can be easily extended to support other metrics sudhyas defined as follows:
L. K ‘
We present a detailed experimental evaluation of our pro- RDE =1 - ZKl C,hsmnce(NN“Q)
posed BID and BID, and compare the proposed schemes 21 distance(ANN;, Q)
against some existing index structures. The results show tNatues of RDE close to 0 also indicate a high quality of the
our methods can handle approximate KNN queries mofresult.
efficiently for different high-dimensional datasets. o . )
The remainder of this paper is organized as follows. In tfe EXisting approximate KNN algorithms
next section, we present the approximate quality metrics andApproximate query-answering technigues have recently re-
review some related work. In Section lll, we introduce outeived many attentions [14], [19], [8], [15], [18], [1]. Below,
newly proposed BID and BID structures. We also presentwe will review two state of arts techniques that are used for
the approximate KNN search and construction operations camparison in our experimental study.
the structures. Section IV reports the findings of an exten-In [19], the authors investigated approximate KNN query
sive experimental study conducted to evaluate the proposadluation techniques based on the VA-file [20]. The VA-file is
schemes. Finally, in section 5 we draw some conclusions amgtector approximation scheme for high-dimensional indexing.

1)

i 1 distance(ANN;, Q) >DistanceK
0 otherwise

)

indicate future directions for this work. It divides the data space into2d rectangular cells, wherg
denotes a user specified number of bits. The scheme allocates
Il. RELATED WORK a unique bit-string of length for each cell, and approximates

data points that fall into a cell by that bit-string. The VA-
file itself is simply an array of these approximations. When
For similarity queries, the quality of the result set is tradisearching for the nearest neighbors, the entire approximation
tionally measured by a combination of two important qualitfile is scanned and the upper and lower distance bounds to the
metrics: recall and precision. They can be described as coguery point@ can easily be determined based on the cell
pleteness of retrieval and purity of retrieval respectively. Recalipresented by the approximations. After the filtering step,
is a measure of how well the retrieval method finds all relevaatsmall set of candidates remain. These candidates are then
objects, and precision is a measure of how well such a systeisited and the actual distances @pare determined, i.e. the
finds the relevant objects. The irrelevant objects in the resahtact KNN answers. To develop approximate query-evaluation
set are called false hits and the relevant objects that are noténhniques, they derive formulae for the distribution of the
the result set are false dismissals. For approximate KNN quegyror of the bounds and the duration of the different phases
the number of false hits and the number of false dismissaf query evaluation. Based on these results, two different
become the same value. In other words, if the approximatiapproximate query evaluation techniques are developed. The
causes some false dismissals, these dismissals are replacefirétyone adapts the bounds to have a more rigid filtering,
false hits. Computing the number of false hits, or dismissalsamed VA-BND; the second one skips computation of the
is enough to capture the traditional error metric, which wexact distances, i.e. the vectors with the smallest lower
will refer to as theratio of false dismissals (RFD). We bounds are retrieved as the approximate results, named VA-
use the metric RFD as one of our metrics in the evaluation bOW.

A. Approximation quality metrics



More recently, a general framework for approximate nearesherel’(n) is the gamma functiod{(z+1) = z-I'(x), (1) =
neighbor queries was proposed in [8]. The current approacheandI'(1/2) = /7). Since
for nearest neighbor query processing can be categorized based 1
on either their ability to reduce the data set that needs to be sp’(dist™") = ~
examined (retrieved set reduction), or their ability to reduce : :
. . ; .~ We can get the expected nearest neighbor distance
the representation size of each data object (representative siZe
reduction). The authors first proposed modifications to existing =~ 1 4/T(d/2+1)
techniques to support the progressive processing of approxi- dist™(N,d) = ﬁ NN

mate nearest neighbor queries. After that, a new techniqye . . .
9 9 Oigfa\sed on this formula, we can determine tllast"™ can

was proposed, which effectively combines the two class E come larger than 1 when the dimensionality is beyond 40
approaches into a single framework, i.e. by reducing the si ecause of the large NN distance, it is almost impossible to

of the retrieved set and feature vector sizes for efficient approx- . . Lo
. . . . . . N ggrtmon the data space well, thus tree-like index structures
imate searching. First, a dimensionality reduction is perform

on each data point in the data set. Second, the retrieved portcl;glrrlmOt be efficient for uniform datasets. The index-based

of data is reduced by the help of a clustering technique, whi ﬁarzcgone;gfnt?haec;i?vzlLt:ael d:i‘;a wzecna;hiedelr?ﬁgtsfg Ijerst(i)gle
is an adaptation of K-means clustering method, and the featile ' ysIs, q

L . : .scan is a good choice when the dimensionality is high, because
vectors within a cluster are organized to support interactive " : . ;
. ) It”avoids complicated tree operations, although it also has
approximate searching.

to compute the distance between query point and the whole
I1l. A PPROACHES FORAPPROXIMATE KNN QUERY datasets. , o

hi . ve th o 4 devel As discussed in the above cases, the expensive distance
In this section, we give the motivation and develop ne‘f’,/omputations are inevitable. Thus, we want to use a fast

index structures and algorithms that facilitate fast approxima\[ﬁ%tance filter to prune out most of the points which are less

KNN sgarch in m.ain memory enviro_nment. We start b ossible to be KNN before we access the real vectors, although
presenting the basic structure of Blt-Difference (BID). The,

i ; X e may not get the exact KNN. While the VA-file uses a
we will discuss how it can be improved to support skew ter step in its operations, it can reduce the disk accesses but
(clustered) dataset. leads to higher computational cost. A more efficient filter that
can reduce the distance computational cost is needed in main

The VA-file [20] is proposed to deal with queries for high-
dimensional databases. The VA-file works well for uniformly y
distributed data in disk-based environment, because it can 1

reduce disk 1/O significantly compared with sequential scan.
However the VA-file incurs three cost overheads: the first is

decoding cost, because the bit-string must be decoded for ‘oo - L 1'1, :

distance calculation; the second is computation cost, both 05!

upper and lower bounds of the distance to the query point

must be determined; the third cost is data access cost as the

VA-file needs to access the real data set to get exact distances. . 10'

Since disk 1/0O cost is dominant in disk-based environment,
these cost overheads do not affect the performance of VA- 0 05 1 x
file much. However, high-dimensional KNN search cost iéi 1
bounded by CPU cost in main memory system. The highe?' ’
computational cost incurred by VA-file makes it less attractive

) . Fi 1sh h in a 2-di ional :
for main memory databases. Although the variant VA-LOW, gure & Shows the random data n a (jlmensmna space
We use one bit to represent each dimension, and the whole

proposed in [19] can rgducg th? computational cost, it has(} taspace can be split into four partitions, represented by "00”,
scan the whole approximation file to compute the low-boun, 17, "10” and "11” respectively. In general, "0” represents

distance.
. . the vector value "0-0.5" and "1” represents the vector value
On the other hand, following [2], we can determine th 5-1”. We call the mean value 0.5 thigtcoder. Suppose

expected distance of the query point to the actual neargvset have a 2-d point "0.3, 0.1”, we can simply represent it

neighbor in the database. For simplicity, let us consid%g/ a bit-string "00”. Using this method, we generate the bit-

i istri i i D
uniformly distributed data in a normalized data spie] st{ings for all data points. Looking at the figure, we get the first

having a volume of 1 and the data size is N. The neare|rsnpression that the points with same bit-string representation

neighbor d|stanc9 may then be approglmated by the yolum?e generally nearby. Furthermore the partitions with less bit-
of the sphere which, on average, contains one data point.

data space with radius can be calculated b fference are also nearer, e.g. partition "00” is nearer to "01”
P y or "10” than partition "11". With the bit-strings, we can filter

Bits for 2 dimensional random data

dpN Vrd d the potential far points only using bit comparisons and avoid
sp(r) = rdz+1) " expensive distance computation. Of course, there exists some



exceptions, e.g. the points near the border. However, since npu{_'tggtffsg\“\é(l)[) index, Query point O, K

scheme is to find the approximate KNN, this trade-off betwees|ipyt: approximate K nearest neighbors
guality and processing time is promising if we can provide
high approximation quality. 1. AKNN_C = Newlist();
2. pruneBID = D;
o 3. Transform Q to bit-string QB;
| Bit-strings | 4. Fori=1toN

5. Bit_dif = GetBID(B(i), QB);
6. if (Bit_dif <= pruneBID)
7. insertion i into AKNNC;

‘ Real Vectors ‘

8. pruneBID = Bit_dif;
Fig. 2. The structure of BID 9. Access the dataset to get real vectors;
10. Return approximate K nearest neighbors;
The structure of the BID is shown in Figure 2. The first level
is the bit-strings of the real vectors, which is a flat directoryig- 4. The algorithm of approximate KNN search with BID
Each bit-string is related to a real data vector, all the bit-strings
are stored in memory consecutively. L . . .
Figure 3 shows the algorithm to construct a BID structur@‘.p.prox'matlon quality. Thus we can relax this constraint, e.g.

Since the first level of BID index is a flat directory with eacﬁjsmdg. dthte blt-dlffe:e_nce dva#JMf_?: 2.' In ghelrl words, mc_)(;e K
record a bit-string, the construction algorithm is straightfo -andidates are retrieved atier Tiering. Hinafly, we provice

ward. For each real vector in the dataset, we compare st answers after accessing the real dataset. The additional

vector values with théitcoder 0.5 and determine the bit valueCOSt is more data access and distance computation of the real

in the bit-stringB. The process stops when all the data poir]étictors. Clearly, the quality of approximation can be improved.

have been transformed into bit-strings. 'e show more details in the experimental study.

Algorithm build _BID() B. The BID": an enhancement of the BID

gﬁft;tpgtfg'?;dex 5 Although the BID is expected to reduce the number of
put: distance computations, it has several limitations. First, the BID

1. Fori=1to N inherently assumes that the data is uniformly distributed and
2 Forj=1toD uses mean value 0.5 to split each dimension. However, in
3. if (point(i)-j > 0.5) real datasets, value distribution could be skewed. Second, each
g" eIseB(I)J =L dimension has the same weight in BID, but some dimensions
6. B(i)j = 0: are more important in real applications. Third, real datasets
7. return BID index B; are typically not globally distributed, and they may appear

as clusters. We need to address these limitations to facilitate
Fig. 3. The algorithm of BID construction different kinds of high-dimensional datasets.

Figure 4 shows the algorithm to search for approximate y
KNN using the BID. In the first stage, we initialize the ap- 1
proximate KNN candidate list and the pruning bit-difference,

i.e the dimensionalityD (lines 1-2). Next we transform the

query point@ to a bit-string@ B with length D (line 3). After

that, we repeat the operations in lines 5-8 until the whole bit-

string level of BID structure has been scanned. In this filter 05 o e
step, we compare two bit-strings, i.8(i) and QB and get i 01 L 11 L E My(37)
number of bits with different values. As we have discussed, di 0. 10
the distance between two points is generally larger when they 024p——— '

have more different bits. For each bit-striftf), we calculate Ex

the bit-difference fromQ B. If the bit-difference is less than
the pruning bit-difference, we insert theinto the candidate
list and update therune_BID if necessary, which is alwaysFig. 5. Bits for skewed data

equal to the bit-difference between the query point and the K-

th nearest neighbor candidate. Finally, we access real vectorfigure 5 shows an example for skewed data. Unlike Fig-
of the dataset to get results. ure 1, the data only occupies a small area of the data space.

The number of approximate KNN candidates selected irhe data value extension is [0.1, 0.9&],{ on dimensionz
the filter step can affect the approximation quality. Thiand [0.24, 0.5] £,) on dimensiony respectively. Clearly on
number is determined by the pruning bit-difference. Suppodamensiony, the bit representation & for all the point if we
we need to find K approximate nearest neighbors, the bitse 0.5 as a split criterion. The solution is that we use the
difference M is needed to pick at least K candidates in thmean value of extension asbécoder, e.9.M, 0.53 andM,
filter step. However these candidates may not have sufficién87 in the Figure 5.

0 01 096 1 X



On the other hand, the bit information of dimensions y
more important than that of dimensian as the dimension 1
has much large variance. Furthermore, even if two points have Cluster 1
the same bit value on a certain dimension, it does not mean o
that the distance on this dimension is equal to 0. Therefore,
we propose the square of average distance to set the bit weight
since we apply the Euclidean distance metric. Now we present
how to compute the weight.

Cluster 2

X Y

@ 0 a atb

0 1 X

(b) . .
0 a atb Fig. 7. Bits for clustered data
Fig. 6. An example for weight calculation
differentbitcoders for clusterl and cluster2. In this paper, we
Suppose pointX andY” have the same bit value, i.e. fallingemploy the K-means clustering scheme to generate the clusters

in [0, a] as shown in Figure 6 (a). Give a poilit the average before we generate the bit-strings, and each cluster utilizes the

distance betweeX and a random poinY’, Distg, is cluster center asitcoder.
‘ [f ey [T @y)dy+ [ g-x)dy We refer the BID scheme with the aboye eljhancements as
Distg = 2 T p (3) BIDT, and the structure of BID is shown in Figure 8. The
=5-—r+ = first level is a flat directory which store the cluster information.

fcach entry is a 4-tuple( r, w, ptr), wherec is the cluster

The average distance between two random points$ ) ) :
center and the coordinates ofare used asitcoder, r is

Ave_distg, IS ) ° ‘ >
u ) the radius of the clustety represents the dimensional weight
Ave_disty = Jo (5 —x+ 5 )da _a @) which is a2D array, andptr is a pointer to the generated
a 3 bit-strings.
Thus we can get the weight that two points have the same
blt Value,WeightO iS (%)2_ \Clusterl \ Clusterz\ ----- \Clustern\
Suppose pointsX and Y have different bit values, i.e.
falling in [0, a] and [a, a+b] respectively as shown in Figure 6 [ Bit-strings| [ Bit-strings] - [ Bit-strings|

(b). Give a pointX, the average distance betwe&nhand a
random pointY’, Disty, is

‘ Real Vectors ‘

a+b
. Jo  (y—ax)dy b
Disty = -y ¢ Ty ©) Fig. 8. The structure for BID
The average distance between two random points,
Ave_disty, is . .
fa( ) d ) Algorithm build()
., Jolatg—w)dr a+ Input: Dataset
Ave_dist; = p Y (6) Output: BID' index B

The weight that two points have the different bit valuel_ Clustering dataset:
Weightl, is (%£2)2. Note that both the weights are precoms for each cluster
puted when we build the BID structure, so the weight ca. init(U[D], L[D));
culation does not introduce any computational cost overhed  for each point P in the cluster

during query processing. The sum of weights over the fult fori=1toD
dimensionalitiest7 weight, can be used to filter the points,7' i (PD?ZUIS').
whereweight can beWeight0 or Weight1 according to the g’ elseif (R < L;)
bit comparison. 9. L, = P;
The BID scheme exploits the sarb&coder to generate the 10. if (P, > C;)
bit-strings, however this method is not optimal as the real dak. hi=1;
could be clustered as shown in Figure 7. In this case the glo él elsem o

bit-strin_g representat.ion yvill not yield good performancg. Asy Compute weights:

shown in [8], clustering is a good approach for approximaig Return index B

KNN query as it can reduce the retrieved set. The BID scherrig. 9. The algorithm of BID construction

benefits more from clustering as we can cregteoder for

each cluster with respect to the cluster distribution, and henceFigure 9 shows the algorithm for constructing a BiBtruc-

the bitcoder is much more efficient. In Figure 7, we usdure. At first, we partition the dataset into clusters using the



K-means method. Meanwhile, we get the cluster informatiogualified clusters have been checked, we access the real vectors
such as cluster center, cluster size and radius. After that, teedetermine the approximate KNN answer. Similar to the
can process each cluster separately (lines 3-14). In Line 3, B, the prune_weight_sum can be tuned to control the
initialize the upper bound [D] and lower bound.[D] of the approximation quality of the BID. To improve the quality,
extension of each dimension, elg; = 1 andL; = 0 where we just relax this filtering constraint, e.g. using 120% of

i € [1, D]. For each point in the cluster, we have two task¥-th weightsum as a filter parameter. By retrieving more
first we update the upper and lower bound of the dimensiorandidates and refining KNN after real vector accesses, we
extension; second, we compare the vector valueshiftloder can provide the approximate KNN with higher quality.

(cluster center) and determine the bit value in the bit-string.

Finally, we compute the weights for each dimension of cluster IV. PERFORMANCESTUDY

using the value of/[D] and L[D], and store the weights in

, In this section, we present an experimental study to evaluate
the top level directory.

the proposed approximate KNN search structures, the BID and
BIDT™. The performance of each technique is measured by
the average execution time, and the number of cache misses
over 100 different approximate KNN queries. We use the
Per fmon tool [7] to count the L2 cache misses. All the

Algorithm AKNN *()
Input: Dataset, BID structure, query point Q, K
Output: Approximate K nearest neighbors

1. AKNN_C = Newlist(); experiments are conducted on a SUN E450 machine with
2. pruneweightsum =oo; 450 MHz CPU, 4 GB RAM and 2 MB L2 cache with 64

i- ggl;rr‘]etdh'ztczluﬁier directory: bytes block size. The machine runs SUN OS 5.7. All the data
5 sort the cluster using dist,(c, Q); and index structures are loaded into the main memory before
6. for each cluster each experiment begins. We demonstrate the results on random
7. if (dist(c, Q) - r) < prunedist dataset, synthetical clustered dataset and real-life dataset.

8. Transform Q to bit-string QB; The experimental study includes two parts. First, we
26 for each rt]"t's"'”_g o tune the performance of the BID and BtDand investi-

1 ‘f’;?'?:siutrgs ’ gate the tradeoff between the execution time and the ap-
12. if (Bit values are same) proximation quality. We apply two quality metrics as dis-
13. weightsum += Weight@; cussed in Section 2ratio of false dismissals (RFD)

14. else _ and ratio of distance errors (RDE). Second, we compare
ig- f (e hVZSeL%:‘tj"im r*;ﬂ(‘:ﬁe?hﬁisum) them with some existing techniques for approximate KNN
17 inser?ion D into EKNNC; 9 search in high-dimensional space. We use three reference
18. pruneweightsum = K-th weightsum: techniques for the comparison: the approximate KNN-query
19. prunedist = the K-th exact distance; evaluation technique based on the VA-file (VA-LOW) [19],
20. Access the dataset to get real vectors; the general framework for approximate KNN proposed in [8]
21. Return approximate K nearest neighbors; (Clustering) and Sequential Scan. For clarity of presentation,

Fig. 10. The algorithm of approximate KNN search with BID .
9 9 PP we use some default parameters for these structures, e.g. 4 bits

) ) i for the VA-LOW, and 10 clusters for the Clustering.
We summarize the approximate KNN algorithm of BID

in Figure 10. In the first step, we initialize approximate KNN

candidate list, the pruning weight sum and pruning distance RFD —o—
(lines 1-3), where the weight sum is used within the cluster but 80 | RDE —v—
the pruning distance used to filter clusters. Next we scan the
top level cluster directory, and sort the cluster by the distance
between cluster centers and the query point. After that, we
repeat the operations in lines 6-19 until all the qualified
clusters have been examined. Note that the nearer clusters
have the higher priority for processing. We transform the query
point into bit-string using the clustéritcoder (line 8), then Y i S A T
scan the bit-strings for bit comparison. For each dimension, Eal 36 38 40 42 B

if the point and query point) have the same bit value, the_ _ Numberof bit«fference

weight_sum is added byW eight0; else the distance is addedFlg' 11. The approximation quality for different bit-difference

by weightl. If this approximate distance is less than the

prune_weight_sum, we insert the record ID into the AKNN )

list and update therune_weight_sum if necessary, which A. Tuning the BID and BID

is always equal to theveight_sum between the query point In this experiment, we first generate a uniformly distributed
and the K-th nearest neighbor candidate. Once the cluster Hata set with 100 dimensions, the data size is 100,000. Since
been scanned, we compute the praigt by accessing the our methods use only one bit to represent each dimension,
K-th real vector. This Distance is used to decide whethand hence there surely exists some information loss. However
we need to continue processing other clusters. After all tee can tune the bit-difference in the filtering step. If the
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approximate quality is not sufficient, we can retrieve moreesses incur more cache misses and computational cost. These
candidates using a larger value of bit-difference, and finalgost overhead are traded for higher approximation quality.
finalize the answer after examining the exact distance. The BID* performs a bit worse than the BID because of the
Figure 11 shows the approximation quality by varying theomputation ofweight_sum. We use the Sequential Scan as
numbers of bit-difference for 100-NN query. Note that af reference. The results clearly demonstrate the superiority of
the dimensions have the same weights because of uniforrifi¢ proposed schemes over the Sequential Scan: the BID and
distributed data, hence the BID and BftDyields similar per- BID*™ are more than 100% better in all the cases, even when
formance, and we only show the bit-difference as evaluati®®th RFD and RDE are approaching 0, e.g. the number of
criterion for the clarity of presentation. The smallest valukit-difference is 44.
of bit-difference, 34, can guarantee finding 100 approximate
nearest neighbors in the bit comparison step in this experimeBt. Comparing with other structures
Although theratio of distance errors (RDE) is only 4%, the | this section, we compare the proposed structures with
ratio of false dismissals (RFD) is as high as 75% which some existing methods on different datasets, such as VA-LOW,
means only 25% exact nearest neighbors are retrieved. Becagggtering and Sequential Scan. To ensure a fair comparison,
we use one bit to represent the information of a feature vectQe exploit partial dataset access to meet the same approx-
(float), bit-difference does not mean the real distance betwegihtion quality criterion for VA-LOW and Sequential Scan.
two points and too much information loss was incurred duringor example, the Sequential Scan access only a portion of the
the filtering. For example, 0.51 and 0.49 have the different bjhtaset and answer the query based on the portion that is read,
value, but the real distance is very small, only 0.02. On theg. access 80% of the dataset if RFD is set as 20%.
other hand, we observe that as the number of bit-difference1) On uniformly distributed datasetin this experiment,
which is used for filtering increases, the approximation qualitye first generate a uniformly distributed dataset with 50 to
can be improved significantly, especially RFD. The RFD valugo0 dimensions. The data size is 100,000 points. We set the
decreases to 20% and 10% when we use 38 and 40 IRED and RDE at 20% for approximate 100-NN query, and
difference respectively. The larger bit-difference introducefe results are summarized in Figure 13.
more KNN candidates retrieval, and hence the higher execuThe figure shows that our proposed BID and BlRield
tion cost. The results are shown in Figure 12. the best performance for this dataset. The BID can filter
Both the execution time and the cache misses increasesst of the points with less possibility to be the nearest
when we use larger bit-difference value. We need to retriemeighbors without expensive distance computation, where only
more real vectors for distance evaluation. The real vector diit operations are involved. Additionally, since we only use



one bit to represent each dimension, the space cost of different from the uniform data. The Sequential Scan and VA-
representations is onl)é% of original data. The number of LOW perform worse than other methods, because it have to
real vector accesses is limited by the filtering, and hence thecess most of the items and compute the distance regardless
BID can reduce the cache misses significantly. The BiB of data distribution. The BID degrades in this experiment
a bit worse than the BID, because the structure of BIDbecause of lower filtering efficiency. Since the vector values of
is more complicated and the enhancement of BIBannot points are skewed, the BID cannot prune the point efficiently
benefit from the uniformly distributed data. and introduce much more false hits, e.g. many points may
The Sequential Scan needs 200% more response time thame same bit value on a certain dimension. Therefore, the
the BID. It has to access the majority of the data and comp¢D has to access more real data and compute the distance to
the distance. The VA-LOW is about 5% better than thdetermine the KNN, i.e. more cache misses and computational
Sequential Scan. In the filter step of KNN searching, weost.
must scan the entire approximations, decode the approximate@he BID" and Clustering provide much better results. The
bit-string and calculate the lower bounds on the distance skewed dataset can be efficiently partitioned by clustering
the query point. Although the VA-LOW is also computatioralgorithm, thus these two methods only need to access some
sensitive scheme, it incurs much less cache misses than ribarest clusters to get the approximate KNN. The BIB
Sequential Scan as shown in Figure 13 (b), and hence #isout 35% better than the Clustering, because it can prune the
overall execution time is not so expensive. However the KNMajority data in the filtering step. Although the data is skewed,
search cost is bounded by the computational cost in mafre enhanced coding mechanism and dimensional weight cal-
memory environment, thus the schemes based on VA-file anglation can improve the filtering efficiency compared with
not optimal for memory processing. The Clustering methdgiiD.
is worst among these methods, as it cannot partition uniform3) On real datasetin this experiment, we evaluate the vari-
dataset efficiently and have to access most of the data.  ous schemes on a real-life data, which contains 64-dimensional
color histograms extracted from 70,100 images. We test the
performance of KNN search with different approximation

quality.
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Figure 16 shows the approximate 100-NN performance by
varying the value of RFD from 5% to 25%. These results
are similar to the synthetic dataset in previous experiment and
clearly show the effectiveness of the BtDThe BID" is about
40% faster than the Clustering method and more than 200%
better than other methods in terms of execution time cost. The

real-life datasets are typically skewed and clustered, and hence
the BID cannot prune the data efficiently during the filtering
step. Because the real vectors are skewed, many bits may have
same bit value when we transform the float to one bit, the
bit-difference cannot distinguish the distance well. The BID
Figure 14 shows the approximate 100-NN performance fand Clustering are the best two choices for this dataset, as
different RFD from 5% to 25%. The dimensionality is fixedhe color histogram dataset can be clustered and some nearest
as 100. Since all the methods can provide high quality RDElusters can provide the enough approximate KNN. With the
we do not present the details here. When the RFD increasgis.difference comparison, the BiDcan further decrease the
all the methods yield better performance, as lower demap@mputational cost and cache misses.
of approximation quality can reduce the data access and
distance calculations. For the VA-LOW, it can use fewer bits
representation, i.e. fewer cache misses. The BID and B2
superior in all the cases because of their low computationalln this paper, we have revisited the problem of accessing
cost and cache misses. high-dimensional data and develop a novel index structure to
2) On skewed datasettn many applications, data pointssupport efficient approximate KNN query in main memory
are typically skewed in some ways. In this set of experimentnvironment. To reduce the distance computation, we first
we evaluate these methods on skewed datasets with J06posed a methodology using Bit-Difference (BID) to answer
dimensions. We use a method similar to that of [4] to generapproximate KNN query. The BID employs bit-string to
the skewness in subspaces of different dimensionalities. Tiepresent each point and the bit-difference is used to prune
dataset has 100,000 points. The performance of Bl® to the data points. To facilitate skewed dataset, we proposed
affected by the number of clusters when the data is skewedaor improved structure, named BiDwhich is enhanced with
clustered, which is different to the random dataset. For tlokustering, cluster adaptddtcoder and dimensional weights.
fair comparison, we adapt the same cluster number as tetensive experiments are conducted to show that theBID
Clustering scheme throughout the experimental study. scheme yields significant performance advantages over the
Figure 15 shows the approximate 100-NN performance fekisting index structures on both real life and synthetic high-
different RFD from 5% to 25%. Clearly the performances amimensional datasets.
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Fig. 14. The performance for different RFD
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n future work, we want to investigate the effect of weight;10]

cluster number and pruning constraint (bit-difference and
weightsum) over the approximation quality, including the[ll]
oretical analysis and cost model. We also plan to adapt our
technique into real life application such as indexing kqua
image database.
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