View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace@MIT

A DHT-Based Grid Resource Indexing and
Discovery Scheme

Yong Meng TEQ:2, Verdi Marci¥ and Xianbing Want

ISingapore-MIT Alliance?Department of Computer Science, National University of Singapore

Abstract—This paper presents a DHT-based grid resource cooperate to form a distributed information system. Index
indexing and discovery (DGRID) approach. With DGRID, servers can be organized as an unstructured overlay network or
resource-information data is stored on its own administrative gy,ctyred overlay network. In unstructured networks, it is hard

domain and each domain, represented by an index server, ist th tically b dth look f int
virtualized to several nodes (virtual servers) subjected to the 0 theoretically boun € average lookup performance, in term

number of resource types it has. Then, all nodes are arranged as Of number of hops in the overlay network. Structured overlay
a structured overlay network or distributed hash table (DHT). network or distributed hash table (DHT) aims to provide

Comparing to existing grid resource indexing and discovery efficient and scalable lookup performance in a distributed
schemes, the benefits of DGRID include improve security of gystem |t also provides a stronger result guarantee than un-
domains, increase availability of data, and elimination of stale
data. structured overlay networks. However, the lookup performance
and stronger result guarantee can be achieved only if the
structured overlay network is well-maintained.
DHT works by organizing nodes as a topology and distrib-
uting data to designated nodes — the owner of data cannot
. INTRODUCTION interfere with the placement of data. The grid information
Grid computing facilitates resource sharing and collaborgystem can be implemented using DHTs such as [13], [14],
tion across muItipIe administrative domains. Agdministrative [17], where data is an index to a resource type in an ad-
domainis a collection of grid resources maintained by a singl@inistrative domain and a node is an index server that stores
administrative authority. A Computational grid, which COﬂSiSt@ata of the same type regardless the origin of the data. Not
of compute resources distributed across administrative dshly this raises the security issue, but also (i) to increase the
mains, allows the execution of compute-intensive applicatioggailability of data, a node needs to replicate all its data to
across domain. Each domain deploys a publicly-accessiier nodes, otherwise when the node fails, all resources of
index server such as Globus MDS [2], which registers rer certain type cannot be discovered, (ii) data may point to a
sources and maintains resource information such as procesggfain disconnected from the grid due to network failure,
memory, operating system, number of compute nodes, etcjn which resources in the disconnected domain cannot be
Resource discovery is an important step in grid resourgglized anyway, and (iii) users need to separately query the
management [6], [12], [18]. A grid scheduler determines thRdex server in the resource’s domain for detailed resource
set of resources to match the application execution requifgformation.
ments. This requires an information system that supportsskipNet [8] enforcescontent localityto control the data
the efficient indexing and discovery of grid resources. Thlacement to address the security and proper-usage issues.
information system must be scalable in the presence of maaywever, users must know the data domain when searching
administrative domains. as SkipNet prefixes data identifier with a domain name. In a
MDS [2], an OGSI [3] implementation of information computational grid, users should be allowed to search multi-

services, uses the centralized architecture to aggregate infgé resources of the same type without enumerating domain
mation from various sources. The scalability of centralizeghmes.

architecture limits MDS to a small number of administrative pHT-based Grid Resource Indexing and Discovery

domains in a small grid. DGRID) is a DHT-based framework for indexing grid

A highly scalable information system should be decentrglesources. The main features of DGRID are (i) data resides
ized, where index servers from various administrative domaigg the domain that owns it instead of redistributed in the

Yong Meng TEO is with the Department of Computer Science, School #iformation system infrastructure, (i) supports lookups
Computing, 3 Science Drive 2, National University of Singapore, Singapofer resources that span multiple administrative domains
117543, and Singapore-MIT Alliance, 4 Engineering Drive 3, National Uniyithout specifying domain names. and (iii) reuse existing
versity of Singapore, Singapore 117576 (e-mail: teoym@comp.nus.edu.s%/ . . . '

Verdi March is with the Department of Computer Science, School ata-lndexmg and DHTs algorlthms.

Computing, 3 Science Drive 2, National University of Singapore, Singapore DGRID makes two assumptions: (i) the total number of
117543 (email: verdimar@comp.nus.edu.sg). ___compute-resource types in a computational grid is small, i.e.

Xiangbing Wang is with Singapore-MIT Alliance, 4 Engineering . T g
Drive 3, National University of Singapore, Singapore 117576 (e-maiﬁeveraI thousands or less, and _there“'s a significant overlap
wangxb@comp.nus.edu.sg). of resource types across domains; (ii) the total number of

Index Terms— Grid, resource indexing and discovery, DHT,
availability

https://core.ac.uk/display/4384354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

compute-resourcéypesper administrative domain is smaller
than the number of possible compute-resource types.

DGRID virtualizes an index server into a number of nodes
(virtual servers) subjected to the number of resource types
registered on it. Then, nodes are arranged as a DHT.

The contributions of this paper are the design of DGRID
framework, a DGRID implementation using Chord, theoretical
analysis for the overhead and lookup performance of Chord-
based DGRID, and an evaluation of Chord-based DGRID via 1G]
simulations. @

The rest of this paper is organized as follows. Section I
describes the design of DGRID and its Chord-based imple-
mentation, section Il presents our theoretical analysis, sectio
IV presents an experimental evaluation and discussion. Section
V describes the related works, and section VI concludes th{s |qantifier Definition
paper.

ﬂ 1. Virtualizing Index Servers — Collisions must be Avoided

To avoid nodes collision, we split the node identifier into
. DGRID two parts: a prefix denotes a data identifier and a suffix denotes

Let a computational gnd;‘ = {d} whered represents an an index-server identifier (figure 2). Given nodeepresenting
administrative domain. Each administrative domain is definéd= (¢, d), them-bit identifier ofr is the combination of-bit
asd = (S, R7 T) wheresS is an index server such as MDS [2],|dent|f|er of t, where: < m, and m — ¢-bit identifier of S,
R is a set of compute resources, afidis a set ofresource Which is expressed agl,, (n) = idi(t) @ id,—i(5). DGRID
types T = {t} and |T| < |R|. A resource is characterizedguarantees that aild,,(n) are unique, give any two nodes,
by the resource type= {a} wherea(attr_type, attr_value) their identifiers differ either in their prefixes or suffixes.
represents a static attribute, sucH@®PU Speed, 1 GHz)
or (Memory, 1 GB) . A ICodmputeresource

Index serverS contains indices to all resource types in the [] tndextorsaurcctype

¢ % Indexing server
e

administrative domain$ = {r}. An indexr is defined as = € Node carumtseren o sie e e

(t,d), which denotes that is an index to resource typein ey G — . ldm &

administrative domaid. There is a one-to-on(e.:.)corref‘p.oréldence A l,\ § \ @70001
, (i) each index 3

r € S corresponds to exactly one resource tygeT’, and (iii) ,,,,,,, . . - @“’"1

eacht € T is represented by exactly one index S. Since a P E> E>

lookup targets and fetches indices, indices are also referred as | A. i Rl [oo

datawhere the key is the resource typéEach data is assigned @ '\S;'i \ZT’ ‘1110

an identifier based on its key such thd(r) = id(t). Methods el } 4 sy

to produce data identifier given a key are given in [4], [15]. In m= 4t Asion i) = 40 mdid (5 Create nodes

a computational grid, there can be many domains providing i =2bi ’

resources of type, and hence, many index servers storlngIg 5

Node Identifier Comprised of Identifiers of Data and Index Server
indices identified byid(t).

A The DGRID Scheme Since DGRID controls the generation éf,,(n), the un-
derlying DHT must not dynamically modifyd,,(n). There-
DGRID is a DHT-based node-organizing framework th%re DHT such as CAN [13] cannot be used directly as
supports two additional constraints: the underlying DHT for DGRID framework because CAN
1) Data is stored at its originated location, ire= (t,d) dynamically modifies the node identifier. Modifications on

must be stored oi$y, the index serves of domaind. CAN are required to implement DGRID, but this is beyond
2) Allow users to perform lookup without specifying do-the scope of this paper.

main name.

Given a domaind = (S, R,T'), DGRID virtualizes a index
serversS into |T| nodes (virtual servers): each node represerits S€tuP of DGRID
one indexr € S. The virtualization of index servers ensures setup is the process required by an index senfito
that data are not redistributed to other domains. However, Wwecome a part of a grid information system. In DGRID,
need to ensure that virtualization avoid nodes collision (figusetup is the virtualization of an index serve$ into |T|
1). virtual servers. Each virtual server joins a DGRID system to

The index server of a domain is responsible for organizingecome a node in the DGRID system; this process is referred
resource information within the domain, similar as MDS [2]as join . Thus, asetup in DGRID consists of{T| join
In DGRID, each index server only need to provide the typésgure 3 shows how$ joins a DGRID system via an existing
and the number of resources of each type to others. nodee.

setup(IndexServerS, Nodee)
for eachr € S do
Let n := virtual server ofS that stores
join(n, r, e) //Perform collision avoidance

fied byid;(t) is translated t@’, a query for data identified with
idm(q") = id;(t) ® 0. This is becauséd;(t) is i-bit length,
whereas the identifier space is-bit length. Therefore, we
need to padd;(t) with (m —4)-bit digits to produce am-bit
identifier. With this scheme, the lookup cost is bounded by the
lookup cost of the underlying DHT (e.@(log N) in Chord).

The join operation ensures that the node identifiers d%everal optimizations can k,)e pgrformeq fgr the lookup:
1) Not only the node identified withid;(t) & 0 pro-

not collide, by combiningid;(t) andid,,—;(S) as the node ides th for’. but al q h
identifier. Then, the node joins the DGRID using the join vi es_ t ? answer -oq, ut also any node: whose
protocol of the underlying DHTjoinDHT . Figure 4 shows prefiti(idm(n)) = id;(t). .

If node n is associated to a index served and

Fig. 3. DGRID Setup Operation

2)

the join operation, which delegates the rest of the join s i .
process to the underlying DHT's join protocol, which is Chord. ~ Prefizi(n) # idi(t), thenn can check if.5 owns
r = (t,d) whereid;(r) = id;(t). If so, thenq' is
completed at sincen contains the answer fay'.
join(Node n, ResourceType, Nodee) 3) When deciding the node wherg will be forwarded,
::e: i = if‘_d%xtserv_ec; gSSOCiated with node n checks if its routing table contains’ whose
nﬁoi'n[(ﬁ_)'f(e)' ()//ghIOIgd% join operation pre]/”ix(id(n'?) = id(t). If n’ exists, then forwards’
to n/, otherwise, forward,’ to the node chosen with the
Fig. 4. DGRID Join Operation routing protocol of the underlying DHT.
4) Noden can checks all the routing tables (each routing

table correspond to one node) maintained by its asso-
ciated index servefS. This increases the flexibility of
path selection.
Figure 6 shows the lookup algorithm of Chord-based
GRID. In this algorithm, node is asked to perform a lookup

D. Lookup Services

To facilitate searching, DGRID provideget(key) in-
terface similar to the one provides by other DHTs. DGRID
will route each query to any nodes that hold the answét
Additional constraints related to more advance query procedC data of typet.

ing, i.e. answers must be provided by the least-loaded nod

es

or physically-nearby nodes, can be implemented on top
DGRID. Although DGRID allows users to search resourcg
without specifying domains, DGRID must also support use
who needn resources of typé, but the resources must be
provided by domains specified i, = d. To efficiently
support such lookup requests, we modify DGRID so that i
index serverS of domaind is identified byid! _.(S)
id;(d) @ idp—i—;(S), 7 < (m —i). Then,q is routed to a
noden that maps taS whereprefiz;(id,,_;(s)) = id;(d),
deD,.

Getidy(t) = 3 > Get id, () = 12

Node 9:
o Node 13 (1101,) in finger table
o Jump to node 13

Node 1:
o No node with prefix 11, in finger table
o Search for id,(t) = 12 (1100,

Fig. 5. Lookup in Chord-based DGRID

e,

9et(Noden, ResourceType)
Ol if (¢ := containsDatat, ¢)) > O then
2S return a
rs else if (f := fingerContainsData(, ¢t)) > 0 then
get(f, ¢)
else
Let succ := n.find_successot(® id.,—i(0))
an get(suce, t)
containsDatgNode n, ResourceType)
Let S := index server identified by suffix(ie])
Let A := list of data stored at
for i := 1 to|A| do
if id(A[¢]) = id(t) then
return Ali]

return -1
fingerContainsData(Node n, ResourceType)
Let F' := finger table ofn
fori:=1to |F| do
Let fid = id(F[i])
if prefix(fid) = id(t) then
return fid,

return -1;

Fig. 6. DGRID Lookup Operation

In DGRID, nodes with the same prefix are located together
in a segment. This eases the processing of lookups whose
answers come from many index servers. Suppose there is
a query ¢ to find |R,| resources of type identified by
id;(t). DGRID convertsq to ¢’, a query for resource type
identified byid,,(t) = id;(t) ® 0. Eventually,q’ will arrive

Figure 5 illustrate the lookup operation of Chord-baseat n whoseprefiz;(id,(n)) = id;(t) and the index server

DGRID. To lookup data, a query for a resource type identi-

S associated witln has|R,,| resources|R,,| < |R,|. To find

the rest|R,| — |R,| resourcesp can simply propagate to noden is the successor of + 2°~!, which amounts ta)(1)
nodes in segmentd;(n), which means all nodes’ whose node. In C-DGRID, the successor®ftan be any node whose
prefiz;(id,(n')) = prefiz;(id,,(n)) = id;(t). It can be shares the same prefimre fiz(id(n)). Thei® finger of node
guaranteed that all nodes within the same segment correspomdsan be any node within the segmentefixz(n + 2¢71),
to different index servers. which amounts ta) (M) nodes.

. ANALYSIS E. Incoming Edges to Data

In this section, we analyze the performance of a Chord-There are more incoming edges to data in C-DGRID than in
based DGRID, subsequently referred as C-DGRID, and co@hord. In Chord, data is available in a particular node and the
pare it to a scheme that uses Chord to manage the resoyiége has)(log N) incoming edges. In Chord-based DGRID,
index and discovery, subsequently referred simply as Chothta is available in a segment. Since a segment consists of
One main issue with Chord is unbalanced data distributien A7) nodes, a segment h&(M - log N) incoming edges.
when the number of total resource types is small. Table | showswever, some of the edges come from nodes within the
the comparison between Chord and C-DGRID. Let the totgégment itself. More incoming edges increases the reachability

number of nodes a8’ = 2™, the total number of resourceof the segment and reduces the path length taken by lookup
types asY = 2' wherei < m, the total number of nodesrequests.

per segment a3/ = &, and the average number resource
T)}ﬂ)e_s ;)er domain a8 < g <Y, i.e. given domaini(S, T, R), E. Availability
' C-DGRID increases the availability of data as each data
type is available aD (M) nodes of a particular segment. As
A. Setup Cost each node holds only one copy per data, the number of data
In Chord, the setup cost equals@glog* N+g-log N+X), stored isO(M). In Chord, we need to replicate all data to

which equals to one DHT join operatiopstores, and possibly several neighbors. The benefits of our design are:
redistributions of copies of data to the joining node. The costsl) Increase fault tolerance.

of one join and one store a®(log® N) and O(log N), If a node of a segment fails, there are sBl{M — 1) in
respectively, and possibly distribute some data to the joining e segment; all of which provide the same data as the
node andX denotes the cost. one provided by the failed node.

In C-DGRID, the setup cost equals@{g-log® N) because 2) No overhead of replication, because only one copy of
the virtualization of one domain requirgsnode joins and the each resource information exists in C-DGRID.
cost of one join isO(log® N). 3) Eliminates stale data.

In Chord, data is stored not at its originated domain.

B. Add a New Resource Type Hence, if the originated node fails, clients may get stale

In Chord, adding a new resource type is equivalent to a dat@. In C-DGRID, data is stored at its originated do-
store operation, which i§(log N). In C-DGRID, adding a main. If the_domam fqlls, ch_en_ts will never be glven_data
new resource to a domain that already has the resource type [1om the failed domain. This is useful in computational
will only refresh the resource information in the index server, ~ 9rid because clients cannot utilize resources in the failed
However, adding a new resource type causes a new node to domain as pointed by the stale data.
join the C-DGRID system, which i©)(log> N). However,
the number of resources with the same type may chan@e Lookup Cost

more _frequently than adding_a new resource type within a|n computational grid, a client may issue a lookup for
domain. So, the store operation of Chord would be invokgdsource type and expectC' copies of answers — each copy

more frequently than the join operation in C-DGRID. describes one domain that provides resources of tyfiée
lookup cost essentially captures the cost to reach the nodes
C. Total States per Indexing Server that store the data (number of hops).

In Chord, each indexing server maintai@glog N) states In Chord, the cost to reach the node that stores the data is
(fingers). In C-DGRID, an index server maintaifigg-log N) O(log N). No additional hops are needed because all copies

because it is virtualized t9 nodes and each node maintaian the data are StOTed on one node. Hence, for any value of
O(log N) states. C, the lookup cost is alway®(log N).

In C-DGRID, the cost to reach theegment representing
) e the data isO(log Y'). Since a node may not hold copies,
D. Finger Flexibility the lookup request needs to be propagated'te 1 nodes in
Although each domain in C-DGRID maintains more statdhe segment, which require3(C) hops. Hence, the lookup
than in Chord, it is not necessary for nodes in C-DGRID toost become®)(log Y + C). If the client wants to retrieve
maintain the same level of correctness as nodes in Chord. Tdmy one copy, the lookup cost becom@$log V'), otherwise
reason is as follows. In Chord, the successonaé n’ > n if the client wants to retrieve all copies, then the lookup cost
and non' exists such that < n” < n’. Thei* finger of becomes)(log Y + M).

TABLE |
CosTSCOMPARISON

Operation Chord Chord-based DGRID
Join O(log® N) O(log® N)
Setup O(log? N4+ g-log N+ X) | O(g-log® N)
Add new resource type O(log N) O(log® N)
Total state per server | O(log N) O(g-log N)
Finger flexibility o(1) O(M)
Find one O(log N) O(log Y)
Find all O(log N) O(log Y + M)

The cost of reaching a segment is 0llylog Y) is because U’ is the proper successors in successor list, and:y is
every node maintains fingers(log Y') segments. Therefore,a constant{ < |U’| < maxy). The it" proper finger and
C-DGRID routes a lookup request from one segment guccessor of: is the immediate successor of + 2¢~1) and
another segment, and each time halves the distance (in térm-i), respectively. Suppose that at timiene,, thei*" proper
of segmerjtto the destination. The formal proof then followdinger and successor efis n, andn;, respectively. Ifz. joins
the one given in [17]. at time time; > timeg and (n + 271) < n. < n,, thenn,

The reason node maintains fingers t@(log Y) segments will become thei*" proper finger ofn. Similarly, if ny4 joins
is as follows. OfO(log N) n's finger, up tolog M points at timetime; > timeg and (n + i) < ng < ng, thenng will
to the same segmerst. The rest of the fingers will point to become the'” proper successor of. If n updates its proper
different segments, e.g. théog M + z)** finger points to a finger and successor te, and ny at time time, > time,
node in segmen$ + 22—, Obviously, the distance betweéh thens, < 1 during the intervakimes — time;.
and the segment pointed by thieg M + z)*" finger is twice The convergence timef the system is defined as =
the distance betweefi and the segment pointed W0log M + times — timeastarrivar WHEre timeast_arrivar 1S the time
x — 1)t finger. when the last node arrives anénes is the time when the

system reaches the desir8d
V. SIMULATION The simulations to compare the stabilization convergence

To further study the performance of DGRID, we modifiedn Chord and C-DGRID are performed as follows. Index
the Chord simulator [1] to simulate C-DGRID. We compar&ervers enter a Chord or C-DGRID system according to a
the overhead, lookup performance, and resilience to failuresfisson process with 1 second mean arrival rate. Each index
Chord and C-DGRID. In both Chord and C-DGRID simulasServers has U[2, 5] number of resource types, which results in
tors, we disable the caching of fingers and modify how lookug®Proximately 175,000 nodes in C-DGRID. Each node joins
are processed (see section IV-B for more detail). We simuldf§ough a randomly chosen existing node. Each node maintains
a grid of 50,000 domains; each domain has on averagePn€ successor pointemgzy = 1). Each nodes invokes the
distinct resource types and is represented by one index ser§&bilization mechanism for evefy).5p, 1.5p] seconds interval
We usem = 24-bit andi = 8-bit (Y = 256). The request (uniform distribution). To measure the convergence timee
forwarding between physical index servers is penalized 50 fRlculateS every 1 hours. _ _
(exponentially distributed) and the request processing by eacHable 1l shows the average bootstrap time in Chord and
node is penalized by [5, 15] ms (uniformly distributed). ~ Chord-DGRID, under various (secs).

TABLE |I

A. Overhead AVERAGE BOOTSTRAP TIMEb (SEC9

To evaluate the overhead of Chord and C-DGRID, we
measure the average bootstrap time and the convergence time. go CholrdS C'DGRéDO

The bootstrap time of node n is defined asb, = 240 41.4 65.8
LiMerecognized — tiMearrive, Weretimeg,rive = time when 960 | 6718 2,033.8
n arrives andimerccognizea = time whenn is recognized by
another node’, i.e. n becomes the predecessorrdf Figure 7 shows the convergence timeof both systems,

The stabilization degree of the whole system is defined aghich implies the overhead of Chord and C-DGRID. Due to
the larger number of nodes, C-DGRID requires a largdran

N-1
S — 2in=g Sn 0<S5<1 Chord to reach the sam§. However, in definingS we do
N not consider the finger flexibility of C-DGRID, which means
whereN is the total number of nodes. Tlstabilization degree the overhead of C-DGRID presented here is the worst-case
of noden is defined as overhead. In addition, with sufficiently smali, C-DGRID
0 if » has an incorrect,, successor can keep its structured overlay network nearly on par with
Sp = |F'|+|U’| Chord, given the same amount of time after the last join.
mtmazy With p = 60 seconds, after the last joir§cpnorq = 0.96

where0 < s,, < 1, F' is the proper fingers in finger table,and Sc_pgrrp = 0.95. After one hour,Scho.q = 1 and
max g is the length of node identifiel0(< |F'| < maxr), Sperrp = 0.99. With p = 960 seconds, after the last join,

servers. This is because the expected average path length in C-
DGRID is %log Y =4 as there ar& segments and the node
identifiers are randomly distributed. As the average number of
resource types per domain is doubled from U[2, 5] to U[4, 10],
the average path length in C-DGRID decreases to 2.8 (30%
smaller thar%log Y) because 1) each domain, on average, is

Stakilization Degree (52

a.4 _ virtualized to 7 nodes instead of 3.5 nodes so that it will be
p = EB secs (Chord) —— o X .
p = 248 secs (Chord) —— visited more during lookups, and 2) the probability that each
a.2 p = 968 secs (Chord) —8— | | - . 256 .
p = &8 secs (DGRID) —H— node can answer a lookup requeskis;z:>~ = 0.028 instead
p = 248 secs (DGRID) —a—0 256
. . . p = 960 secs (DGRID) —=— of In 5z2%= = 0.014.
Y 2m ts o8 120 158 158 =is 24s @ Note that table 11l merely shows the lower bound of lookup
Time after the last join Chours? cost in C-DGRID. For lookups where answers are provided

by |D| domains, there aréD| additional hops besides the
bath length to reach the first node in a particular segment. For
instance, if a lookup must be satisfied by 3 domains, then the
average path length must be added by 3 hops.

Fig. 7. Convergence time (Chord), measured every 5 hours from the las
join operation

Schora = 0.33 and S¢_pgrip = 0.21. However, while

Chord requires 133 hours to readh,..q = 0.99, C-DGRID C. Resilience to Random Simultaneous Failures and Leaves
requires 239 hours to reactc_pcrrp = 0.99, almost twice To evaluate the resilience of C-DGRID under simultaneous
the time required in Chord. random failures and leaves, we simulated lookups when a

It is obvious that C-DGRID requires more overhead becaufigction of the network fails or leaves simultaneously. We
it virtualizes each index server into multiple nodes to trangaeasure the average path length, the number of failed lookups,
parently avoiding data redistribution, increasing the availabilignd the average number of timeouts.
of data by positioning an index server in multiple segments We start with Chord and C-DGRID networks of 50,000
in the identifier space, and bounding the query processingddmains (each domain hasU[2, 5] resource types, yielding
each domain subjected to the resource types in the domaif. = 3.5) and let the systems reach a predefitedThen, a
fraction of domainsfails or leaves simultaneougland the
stabilization is deactivated, followed by followed by 500,000
simple lookups (1 seconds Poisson mean arrival rate). For

_To evaluate the lookup performance of both systems, Word, when a domain fails, it does not have a chance to move
simulated lookups on differenf. The measurements are thgjata stored to its successor. However, when a node leaves, it
average path length (hops), and the number of failed lookURsstantly moves all data stored to its successor, which is an
The average path length includes only requests forwardgghimistic assumption. For C-DGRID, data redistribution is
between physical index servers. not required when a domain fails or leaves.

FirSt, Chord and C-DGRID networks of 50,000 domains are For a |OOkUp in Chord to be considered SUCCGSSfUl, in
constructed with every node performs the stabilization evegydition to the criteria described earlier in section IV-B, the
p = 960 sec$. Then, we perform 500,000 simple lookups (hode that provide the answer to the lookup request must store
second Poisson mean arrival rate). A simple lookup refers 4 |east one non-stale data describing the requested resource
a lookup that can be satisfied by one administrative domafpe, otherwise the lookup is considered failed. Stale data is
Each lookup looks for a randomly chosen data and is initiateé index to a resource type in a domains that has failed or left
by a randomly chosen node. In Chord, a lookup for resourggs system.

type ¢ is successful if the lookup request arrives at nade Taple IV shows the results when vary the degrees of node
where either: is the immediate successor ©br x represents faj| and node leave. The fourth and sixth columns in both
a domain with resources of type In C-DGRID, a lookup taples, labeled afailed, refer to the total number of failed
for resource type is successful if the lookup request arrivegookups (false negatives). In most cases, C-DGRID has a lower
at nodev where eitherprefiz;(iditm(v)) = idi(t) or v average path length and fewer failed lookups, except for some
represent a virtual server of a domain who owns resourc€sses where = 0.8.
of type . For simultaneous fails, C-DGRID outperforms Chord in
In table 1ll, we vary the number of resource types pagrm of the number of failed lookups. This is because the
domain. The number of resource types is generated usingRord networks only has a small number of designated nodes
uniform distribution. The results show that in both cases, @ompared to the total number of nodes. Since data identifier
DGRID has shorter average path length (hops) and fewer failgduniformly distributed within [0,28) and node identifier is
lookups for variousS (except when the average resource typefiformly distributed within [0,224), on the ideal condition
per domain~ U[2, 5] and S = 0.33) although the C-DGRID (5 = 1) there are at most two designated nodes and each
networks have more nodes (about 175,000 nodes) than f&ignated node is responsible for many types of data. If
Chord network (50,000 nodes) given the same number of indg¥ ratio between designated nodes and total nodes is very

B. Lookup Performance

1we choose this number to construct networks with I§w 2In C-DGRID, one domain fail/leave results in several node fails/leaves.

TABLE Il
LOOKUP PERFORMANCE WITHVARIOUS STABILIZATION DEGREES

resource type per domain~ U[2, 5] || resource type per domain~ U[4, 10]
S Chord C-DGRID Chord C-DGRID

Hops | Failed | Hops Failed Hops | Failed | Hops Failed
0.33 21.9 185 34 212 11.6 155 2.8 19
0.40 16.7 162 4.2 86 7.9 144 2.8 10
0.60 6.9 149 3.4 12 7.1 1,434 2.8 2
0.80 7.3 0 3.4 0 7.1 0 2.8 0
1.00 7.3 0 3.4 0 7.1 0 2.8 0

TABLE IV

LOOKUP PERFORMANCE UNDERRANDOM SIMULTANEOUS FAILS AND LEAVES

: Chord C-DGRID
YbFailed o Hops | Failed Lookups || Hops | Failed Lookups
0.33 15.8 173,835 54 755
20 0.40 15.2 140,094 45 231
0.80 7.9 0 4.6 41
0.33 9.8 366,172 7.0 5,197
40 0.40 10.2 375,704 6.0 817
0.80 8.6 383,378 6.1 180

Chord C-DGRID
YeLeave o Hops | Failed Lookups || Hops | Failed Lookups
0.33 19.6 139,778 5.3 386
20 0.40 15.1 134,222 45 125
0.80 7.9 0 4.6 3
0.33 18.0 345,387 6.7 1,794
40 0.40 10.6 330,103 5.9 466
0.80 8.6 1 6.0 101

small, then it is sufficient to bring down some designatess C-DGRID at lowelS, because Chord cannot route lookup
nodes to cause the majority of lookups to fail. Table V showgquests to the designated nodes. On the other hand, C-DGRID
DN, the number of designated nodes, aAd= %, the system incorporates the fact that there are many nodes that
ratio between designated nodes and total nodes, in variguevide a certain resource type to increase its finger flexibility,

stabilization degreé. which increases the reachability to the resource type.
TABLE V
DESIGNATED NODES IN CHORD UNDERVARIOUS STABILIZATION V. RELATED WORKS
DEGREES Routing-transferring model [11] and lamnitchi et. al [9],
[10] are decentralized information systems for grid, based on

S _| DN A unstructured overlay network. Nodes periodically exchange re-
8:23 ig 8:88832 source information with each other. The resource information
0.80 4 | 0.00005 is the basis for the routing table at each node. The main issue

with these schemes is lookups are not theoretically bounded.
In some cases, there is no designated node to fail, as is B@RID is based on DHT to enable efficient, scalable, and
case where 20% of nodes fail in a Chord network with= theoretically-bounded lookups.
0.80. In this case, Chord significantly reduce the number of Both XenoSearch [16] and self-organizing Condor pools [5]
failed lookups. The reason no designated node fails is becaage decentralized information systems for grid, based on Pastry
the probability to choose a designated node to fail or leave[is4] — one of DHT algorithms. XenoSearch [16] stores grid-
also very small. WithS = 0.80, the ratio between the numberresource information on nodes arranged as Pastry network,
of designated nodes and the total number of nodesds; = ignoring the relationship between data domain and node do-
8 -10°. Assume we randomly choosé% of nodes to fail main. Self-organizing Condor pools [5] uses Pastry to replicate
or leave, the probability that a designated node fails or leavessource information (advertisements) to physically-nearby
is 13—5 (nearly zero) whereas the probability that an ordinafgcation, subjected by time-to-live (TTL). Because replications
node fails or leaves isz -Z-. are subjected to time-to-live (TTL), self-organizing Condor
In Chord, when a node leaves the system, it redistributpsol has a weaker result guarantee as pools may not be
stored data to its successor. If its successor is not a designaedre of some resource advertisements. DGRID ensures that
node, the successor will become a designated node after thgource information belongs to domains stored on a node
data have been redistributed. Hence, the numbers of designditech domaind, at the expense of increased maintenance cost
nodes before and after the random simultaneous leaves areahte overlay network. In addition, DGRID provides the same
same. However, folS = 0.33 and S = 0.40, some lookups level of result guarantee as other DHTs whereby nodes can
still fail. This implies that the routing in Chord is not as robuslocate any existing resource information in the system.

SkipNet [8] is a structured overlay network that support$4] A. Andrzejak, Z. Xu, Scalable, Efficient Range Queries for
content localitywhere data can be explicitly stored at the Grid Information ServicgsProceedings of the™? International

desired node (e.g. data and node must be the same domain),ggnrgrfsggr? é’onog’eer-to-Peer Computing (P2P 2002), pp. 33-40,
However, content locality is not transparent since users neféj A %_ Butt. R. Zhang Y. C. HUA Self-Organizing Flock of

to enumerate domains when searching. To enforcediatde Condors Proceedings of the ACM/IEEE SC2003 Conference,
stored at node:, SkipNet assigns an identifier tbsuch that pp. 42, November 2003.

id(d) = id(n) ® key(a). A query for this data is formulated [6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,_ S. Martin,
asq = id(n) & key(a). If a distributed information system W. Smith, S. TueckeA Resource Management Architecture for

e . Metacomputing System®roceedings of theé'” International
for grid is implemented on top of SkipNet, then users need Workshop on Job Scheduling Strategies for Parallel Processing

to enumerate existing domains in the grid if they require (1ppS/SPDP'98), pp. 62-82, March 1998.
resources from many domains. With DGRID, controlled dat§r] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, |. Stoi¢éde-

placement is transparent to users; they need not enumerate Area Cooperative Storage with CF®roceedings of thai"

domain names when doing lookups ACM Symposium on Operating Systems Principles (SOSP’01),
. -) o . pp. 202-215, October 2001.

CFS [7] is a distributed storage where a file is stored |rFB] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, A. Wolman,

many servers; each server store one or more blocks of the file. skipNet: A Scalable Overlay Network with Practical Locality
CFS allows the virtualization of stronger servers to balance Properties Proceedings of the 4 USENIX Symposium on
the load as 1) blocks may not occupy the identifier space in Internet Technologies and and Systems (USITS'03), pp. 113—-
a uniformly distributed manner, which causes some servers tg 126: March 2003. : . :
A. lamnitchi, Resource Discovery in Large Resource-Sharing
store zero blocks, and _2) stronger .servers should'store MOr€ EnyvironmentsPh.D. Thesis, Department of Computer Science,
blocks. DGRID automatically virtualizes each indexing server The University of Chicago, December 2003.
subjected to the number of resource types in the administrat[¥€] A. lamnitchi, M. Ripeanu, I. Fostet,ocating Data in (Small-
domain. Assuming that a richer domain contains more type World?) Peer-to-Peer Scientific Collaboratign®roceedings
of resources, its indexing server can afford more storage to ()IL'}'kI]:’eS’l()Z Interr;%tlzor;ellllwl\jrksnogogzn Peer-to-Peer Systems
store data} and can sustain the c_)verhead of \./i_rtualization. (i[.ﬁ] (vv Li, Z.)>'<5,p'|:. D;ng’ 3. grr;mgsrid Resource Discovery
more routing tables to be maintained). In addition, we believe ~ Based on a Routing-Transferring Mod@lroceedings of tha"*
that the overhead will not be very high as each domain has International Workshop on Grid Computing (GRID 2002), pp.

a limited number of resource types, especially we can devise 145-156, November 2002.

; ; ;] Z. Németh, V. SunderanGharacterizing Grids: Attributes, Def-
a hierarchical naming scheme for resource type that propeﬂg initions, and FormalismsJournal of Grid Computing, 1(1):9-23,

maps to the identifier space. 2003.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Sherker,
Scalable Content- Addressable NetwoRtoceedings of ACM
SIGCOMM 2001, pp. 161-172, August 2001.

We have presented DGRID, a DHT-based indexing scheddé] A. Rowstron, P. DruschePRastry: Scalable, Distributed Object

; ; ; PSR Location and Routing for Large-Scale Peer-to-Peer Systems
for computational grid without data redistribution. DGRID Proceedings of IFIPJACM Intemnational Conference on Dis-

increases security and availability, and improves performance ip ted Systems Platforms (Middleware 2001), pp. 329-350,
by directing lookups only to administrative domains that owns November 2001.

the requested resources. Through simulations, we show t1&] C. Schmidt, M. Parashaflexible Information Discovery in
Chord-based DGRID compensates its higher overhead with Decentralized Distributed SystemBroceedings of thel2™
smaller average path length (hops) and fewer number of failed IEEE International Symposium on High Performance Distrib-

. - S uted Computing (HPDC-12), pp. 226-235, June 2003.
lookups, even if a fraction of the network fails simultaneousl| 16] D. Spence, T. HarriskenoSearch: Distributed Resource Dis-

In addition, DGRID is more tolerant to the single point of ~ covery in the XenoServer Open Platforroceedings of the
failure of designated nodes. Finally, DGRID guarantees that 1_2“1 IEEE International Symposium on High Performance Dis-
no stale data are returned to clients. tributed Computing (HPDC-12), pp. 216-225, June 2003.

. . R - 7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrish-
Ongoing work includes designing parallel algorithms tél nan,Chord: A Scalable Peer-to-peer Lookup Service for Internet

look up many resources with the same type within a request Applications Proceedings of ACM SIGCOMM 2001, pp. 149—
and investigating the performance of DGRID when looking up 160, August 2001.

many resources of the same type, comparing the performafit® S. S. Vadhiyar, J. Dongaréh Metascheduler for the Grid
of DGRID with other existing grid resource management ap- Proceedings of thé1'" IEEE Symposium on High Performance
proaches, and investigating efficient grid scheduling schemes Distributed Computing (HDPC-11), pp. 343-351, July 2002.
using DGRID.

VI. CONCLUSION

REFERENCES

[1] The Chord Project http://www.pdos.lcs.mit.edu/
chord/#downloads

[2] Globus Toolkit — Information Service http://www.
globus.org/mds/

[3] OGSI: Open Grid Services Infrastructyrettps://forge.
gridforum.org/projects/ogsi-wg

