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Abstract— This paper presents a DHT-based grid resource
indexing and discovery (DGRID) approach. With DGRID,
resource-information data is stored on its own administrative
domain and each domain, represented by an index server, is
virtualized to several nodes (virtual servers) subjected to the
number of resource types it has. Then, all nodes are arranged as
a structured overlay network or distributed hash table (DHT).
Comparing to existing grid resource indexing and discovery
schemes, the benefits of DGRID include improve security of
domains, increase availability of data, and elimination of stale
data.

Index Terms— Grid, resource indexing and discovery, DHT,
availability

I. I NTRODUCTION

Grid computing facilitates resource sharing and collabora-
tion across multiple administrative domains. Anadministrative
domainis a collection of grid resources maintained by a single
administrative authority. A computational grid, which consists
of compute resources distributed across administrative do-
mains, allows the execution of compute-intensive applications
across domain. Each domain deploys a publicly-accessible
index server such as Globus MDS [2], which registers re-
sources and maintains resource information such as processor,
memory, operating system, number of compute nodes, etc.

Resource discovery is an important step in grid resource
management [6], [12], [18]. A grid scheduler determines the
set of resources to match the application execution require-
ments. This requires an information system that supports
the efficient indexing and discovery of grid resources. The
information system must be scalable in the presence of many
administrative domains.

MDS [2], an OGSI [3] implementation of information
services, uses the centralized architecture to aggregate infor-
mation from various sources. The scalability of centralized
architecture limits MDS to a small number of administrative
domains in a small grid.

A highly scalable information system should be decentral-
ized, where index servers from various administrative domains
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cooperate to form a distributed information system. Index
servers can be organized as an unstructured overlay network or
structured overlay network. In unstructured networks, it is hard
to theoretically bound the average lookup performance, in term
of number of hops in the overlay network. Structured overlay
network or distributed hash table (DHT) aims to provide
efficient and scalable lookup performance in a distributed
system. It also provides a stronger result guarantee than un-
structured overlay networks. However, the lookup performance
and stronger result guarantee can be achieved only if the
structured overlay network is well-maintained.

DHT works by organizing nodes as a topology and distrib-
uting data to designated nodes – the owner of data cannot
interfere with the placement of data. The grid information
system can be implemented using DHTs such as [13], [14],
[17], where data is an index to a resource type in an ad-
ministrative domain and a node is an index server that stores
data of the same type regardless the origin of the data. Not
only this raises the security issue, but also (i) to increase the
availability of data, a node needs to replicate all its data to
other nodes, otherwise when the node fails, all resources of
a certain type cannot be discovered, (ii) data may point to a
domain disconnected from the grid due to network failure,
in which resources in the disconnected domain cannot be
utilized anyway, and (iii) users need to separately query the
index server in the resource’s domain for detailed resource
information.

SkipNet [8] enforcescontent locality to control the data
placement to address the security and proper-usage issues.
However, users must know the data domain when searching
as SkipNet prefixes data identifier with a domain name. In a
computational grid, users should be allowed to search multi-
ple resources of the same type without enumerating domain
names.

DHT-based Grid Resource Indexing and Discovery
(DGRID) is a DHT-based framework for indexing grid
resources. The main features of DGRID are (i) data resides
on the domain that owns it instead of redistributed in the
information system infrastructure, (ii) supports lookups
for resources that span multiple administrative domains
without specifying domain names, and (iii) reuse existing
data-indexing and DHTs algorithms.

DGRID makes two assumptions: (i) the total number of
compute-resource types in a computational grid is small, i.e.
several thousands or less, and there is a significant overlap
of resource types across domains; (ii) the total number of
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compute-resourcetypesper administrative domain is smaller
than the number of possible compute-resource types.

DGRID virtualizes an index server into a number of nodes
(virtual servers) subjected to the number of resource types
registered on it. Then, nodes are arranged as a DHT.

The contributions of this paper are the design of DGRID
framework, a DGRID implementation using Chord, theoretical
analysis for the overhead and lookup performance of Chord-
based DGRID, and an evaluation of Chord-based DGRID via
simulations.

The rest of this paper is organized as follows. Section II
describes the design of DGRID and its Chord-based imple-
mentation, section III presents our theoretical analysis, section
IV presents an experimental evaluation and discussion. Section
V describes the related works, and section VI concludes this
paper.

II. DGRID

Let a computational gridG = {d} whered represents an
administrative domain. Each administrative domain is defined
asd = (S, R, T ) whereS is an index server such as MDS [2],
R is a set of compute resources, andT is a set ofresource
types, T = {t} and |T | ≤ |R|. A resource is characterized
by the resource typet = {a} wherea(attr type, attr value)
represents a static attribute, such as(CPU Speed, 1 GHz)
or (Memory, 1 GB) .

Index serverS contains indices to all resource types in the
administrative domain,S = {r}. An indexr is defined asr =
(t, d), which denotes thatr is an index to resource typet in
administrative domaind. There is a one-to-one correspondence
betweenS and T , which means (i)|S||T |, (ii) each index
r ∈ S corresponds to exactly one resource typet ∈ T , and (iii)
eacht ∈ T is represented by exactly one indexr ∈ S. Since a
lookup targets and fetches indices, indices are also referred as
datawhere the key is the resource typet. Each data is assigned
an identifier based on its key such thatid(r) = id(t). Methods
to produce data identifier given a key are given in [4], [15]. In
a computational grid, there can be many domains providing
resources of typet, and hence, many index servers storing
indices identified byid(t).

A. The DGRID Scheme

DGRID is a DHT-based node-organizing framework that
supports two additional constraints:

1) Data is stored at its originated location, i.e.r = (t, d)
must be stored onSd, the index serverS of domaind.

2) Allow users to perform lookup without specifying do-
main name.

Given a domaind = (S, R, T ), DGRID virtualizes a index
serverS into |T | nodes (virtual servers); each node represents
one indexr ∈ S. The virtualization of index servers ensures
that data are not redistributed to other domains. However, we
need to ensure that virtualization avoid nodes collision (figure
1).

The index server of a domain is responsible for organizing
resource information within the domain, similar as MDS [2].
In DGRID, each index server only need to provide the types
and the number of resources of each type to others.

Fig. 1. Virtualizing Index Servers – Collisions must be Avoided

B. Identifier Definition

To avoid nodes collision, we split the node identifier into
two parts: a prefix denotes a data identifier and a suffix denotes
an index-server identifier (figure 2). Given noden representing
r = (t, d), them-bit identifier ofn is the combination ofi-bit
identifier of t, where i ≤ m, and m − i-bit identifier of S,
which is expressed asidm(n) = idi(t) ⊕ idm−i(S). DGRID
guarantees that allidm(n) are unique, give any two nodes,
their identifiers differ either in their prefixes or suffixes.

Fig. 2. Node Identifier Comprised of Identifiers of Data and Index Server

Since DGRID controls the generation ofidm(n), the un-
derlying DHT must not dynamically modifyidm(n). There-
fore, DHT such as CAN [13] cannot be used directly as
the underlying DHT for DGRID framework because CAN
dynamically modifies the node identifier. Modifications on
CAN are required to implement DGRID, but this is beyond
the scope of this paper.

C. Setup of DGRID

setup is the process required by an index serverS to
become a part of a grid information system. In DGRID,
setup is the virtualization of an index serverS into |T |
virtual servers. Each virtual server joins a DGRID system to
become a node in the DGRID system; this process is referred
as join . Thus, asetup in DGRID consists of|T | join .
Figure 3 shows howS joins a DGRID system via an existing
nodee.



setup(IndexServerS, Nodee)
for each r ∈ S do

Let n := virtual server ofS that storesr
join(n, r, e) //Perform collision avoidance

Fig. 3. DGRID Setup Operation

The join operation ensures that the node identifiers do
not collide, by combiningidi(t) and idm−i(S) as the node
identifier. Then, the node joins the DGRID using the join
protocol of the underlying DHT,joinDHT . Figure 4 shows
the join operation, which delegates the rest of the join
process to the underlying DHT’s join protocol, which is Chord.

join (Noden, ResourceTypet, Nodee)
Let S := index server associated withn
Let id(n) := id(t) ⊕ id(S)
n.joinDHT(e) //Chord’s join operation

Fig. 4. DGRID Join Operation

D. Lookup Services

To facilitate searching, DGRID providesget(key) in-
terface similar to the one provides by other DHTs. DGRID
will route each query to any nodes that hold the answer.
Additional constraints related to more advance query process-
ing, i.e. answers must be provided by the least-loaded nodes
or physically-nearby nodes, can be implemented on top of
DGRID. Although DGRID allows users to search resources
without specifying domains, DGRID must also support users
who needn resources of typet, but the resources must be
provided by domains specified inDu = d. To efficiently
support such lookup requests, we modify DGRID so that an
index serverS of domain d is identified by id′m−i(S) =
idj(d) ⊕ idm−i−j(S), j < (m − i). Then, q is routed to a
noden that maps toS whereprefixj(id′m−i(s)) = idj(d),
d ∈ Du.

Fig. 5. Lookup in Chord-based DGRID

Figure 5 illustrate the lookup operation of Chord-based
DGRID. To lookup data, a queryq for a resource type identi-

fied byidi(t) is translated toq′, a query for data identified with
idm(q′) = idi(t) ⊕ 0. This is becauseidi(t) is i-bit length,
whereas the identifier space ism-bit length. Therefore, we
need to padidi(t) with (m− i)-bit digits to produce anm-bit
identifier. With this scheme, the lookup cost is bounded by the
lookup cost of the underlying DHT (e.g.O(log N) in Chord).
Several optimizations can be performed for the lookup:

1) Not only the node identified withidi(t) ⊕ 0 pro-
vides the answer forq′, but also any noden whose
prefixi(idm(n)) = idi(t).

2) If node n is associated to a index serverS and
prefixi(n) 6= idi(t), then n can check if S owns
r = (t, d) where idi(r) = idi(t). If so, then q′ is
completed atn sincen contains the answer forq′.

3) When deciding the node whereq′ will be forwarded,
node n checks if its routing table containsn′ whose
prefix(id(n′)) = id(t). If n′ exists, then forwardsq′

to n′, otherwise, forwardq′ to the node chosen with the
routing protocol of the underlying DHT.

4) Noden can checks all the routing tables (each routing
table correspond to one node) maintained by its asso-
ciated index serverS. This increases the flexibility of
path selection.

Figure 6 shows the lookup algorithm of Chord-based
DGRID. In this algorithm, noden is asked to perform a lookup
for data of typet.

get(Noden, ResourceTypet)
if (a := containsData(n, t)) ≥ 0 then

return a
else if (f := fingerContainsData(n, t)) ≥ 0 then

get(f , t)
else

Let succ := n.find successor(t⊕ idm−i(0))
get(succ, t)

containsData(Noden, ResourceTypet)
Let S := index server identified by suffix(id(n))
Let A := list of data stored atS
for i := 1 to |A| do

if id(A[i]) = id(t) then
return A[i]

return -1
fingerContainsData(Noden, ResourceTypet)

Let F := finger table ofn
for i := 1 to |F | do

Let fid := id(F [i])
if prefix(fid) = id(t) then

return fid;

return -1;

Fig. 6. DGRID Lookup Operation

In DGRID, nodes with the same prefix are located together
in a segment. This eases the processing of lookups whose
answers come from many index servers. Suppose there is
a query q to find |Rq| resources of typet identified by
idi(t). DGRID convertsq to q′, a query for resource type
identified by idm(t) = idi(t) ⊕ 0. Eventually,q′ will arrive
at n whoseprefixi(idm(n)) = idi(t) and the index server
S associated withn has|Rn| resources,|Rn| < |Rq|. To find



the rest|Rq| − |Rn| resources,n can simply propagateq to
nodes in segmentidi(n), which means all nodesn′ whose
prefixi(idm(n′)) = prefixi(idm(n)) = idi(t). It can be
guaranteed that all nodes within the same segment corresponds
to different index servers.

III. A NALYSIS

In this section, we analyze the performance of a Chord-
based DGRID, subsequently referred as C-DGRID, and com-
pare it to a scheme that uses Chord to manage the resource
index and discovery, subsequently referred simply as Chord.
One main issue with Chord is unbalanced data distribution
when the number of total resource types is small. Table I shows
the comparison between Chord and C-DGRID. Let the total
number of nodes asN = 2m, the total number of resource
types asY = 2i where i < m, the total number of nodes
per segment asM = N

Y , and the average number resource
types per domain as0 ≤ g ≤ Y , i.e. given domaind(S, T, R),
|T | = g.

A. Setup Cost

In Chord, the setup cost equals toO(log2 N+g·log N+X),
which equals to one DHT join operation,g stores, and possibly
redistributions of copies of data to the joining node. The costs
of one join and one store areO(log2 N) and O(log N),
respectively, and possibly distribute some data to the joining
node andX denotes the cost.

In C-DGRID, the setup cost equals toO(g ·log2 N) because
the virtualization of one domain requiresg node joins and the
cost of one join isO(log2 N).

B. Add a New Resource Type

In Chord, adding a new resource type is equivalent to a
store operation, which isO(log N). In C-DGRID, adding a
new resource to a domain that already has the resource type
will only refresh the resource information in the index server.
However, adding a new resource type causes a new node to
join the C-DGRID system, which isO(log2 N). However,
the number of resources with the same type may change
more frequently than adding a new resource type within a
domain. So, the store operation of Chord would be invoked
more frequently than the join operation in C-DGRID.

C. Total States per Indexing Server

In Chord, each indexing server maintainsO(log N) states
(fingers). In C-DGRID, an index server maintainsO(g ·log N)
because it is virtualized tog nodes and each node maintains
O(log N) states.

D. Finger Flexibility

Although each domain in C-DGRID maintains more states
than in Chord, it is not necessary for nodes in C-DGRID to
maintain the same level of correctness as nodes in Chord. The
reason is as follows. In Chord, the successor ofn is n′ ≥ n
and non′′ exists such thatn ≤ n′′ < n′. The ith finger of

noden is the successor ofn + 2i−1, which amounts toO(1)
node. In C-DGRID, the successor ofn can be any node whose
shares the same prefix,prefix(id(n)). The ith finger of node
n can be any node within the segmentprefix(n + 2i−1),
which amounts toO(M) nodes.

E. Incoming Edges to Data

There are more incoming edges to data in C-DGRID than in
Chord. In Chord, data is available in a particular node and the
node hasO(log N) incoming edges. In Chord-based DGRID,
data is available in a segment. Since a segment consists of
O(M) nodes, a segment hasO(M · log N) incoming edges.
However, some of the edges come from nodes within the
segment itself. More incoming edges increases the reachability
of the segment and reduces the path length taken by lookup
requests.

F. Availability

C-DGRID increases the availability of data as each data
type is available atO(M) nodes of a particular segment. As
each node holds only one copy per data, the number of data
stored isO(M). In Chord, we need to replicate all data to
several neighbors. The benefits of our design are:

1) Increase fault tolerance.
If a node of a segment fails, there are stillO(M − 1) in
the segment; all of which provide the same data as the
one provided by the failed node.

2) No overhead of replication, because only one copy of
each resource information exists in C-DGRID.

3) Eliminates stale data.
In Chord, data is stored not at its originated domain.
Hence, if the originated node fails, clients may get stale
data. In C-DGRID, data is stored at its originated do-
main. If the domain fails, clients will never be given data
from the failed domain. This is useful in computational
grid because clients cannot utilize resources in the failed
domain as pointed by the stale data.

G. Lookup Cost

In computational grid, a client may issue a lookup for
resource typet and expectC copies of answers – each copy
describes one domain that provides resources of typet. The
lookup cost essentially captures the cost to reach the nodes
that store the data (number of hops).

In Chord, the cost to reach the node that stores the data is
O(log N). No additional hops are needed because all copies
of the data are stored on one node. Hence, for any value of
C, the lookup cost is alwaysO(log N).

In C-DGRID, the cost to reach thesegment representing
the data isO(log Y ). Since a node may not holdC copies,
the lookup request needs to be propagated toC − 1 nodes in
the segment, which requiresO(C) hops. Hence, the lookup
cost becomesO(log Y + C). If the client wants to retrieve
only one copy, the lookup cost becomesO(log Y ), otherwise
if the client wants to retrieve all copies, then the lookup cost
becomesO(log Y + M).



TABLE I

COSTSCOMPARISON

Operation Chord Chord-based DGRID
Join O(log2 N) O(log2 N)
Setup O(log2 N + g · log N + X) O(g · log2 N)
Add new resource type O(log N) O(log2 N)
Total state per server O(log N) O(g · log N)
Finger flexibility O(1) O(M)
Find one O(log N) O(log Y )
Find all O(log N) O(log Y + M)

The cost of reaching a segment is onlyO(log Y ) is because
every node maintains fingers toO(log Y ) segments. Therefore,
C-DGRID routes a lookup request from one segment to
another segment, and each time halves the distance (in term
of segment) to the destination. The formal proof then follows
the one given in [17].

The reason noden maintains fingers toO(log Y ) segments
is as follows. OfO(log N) n’s finger, up tolog M points
to the same segmentS. The rest of the fingers will point to
different segments, e.g. the(log M + x)th finger points to a
node in segmentS +2x−1. Obviously, the distance betweenS
and the segment pointed by the(log M +x)th finger is twice
the distance betweenS and the segment pointed by(log M +
x− 1)th finger.

IV. SIMULATION

To further study the performance of DGRID, we modified
the Chord simulator [1] to simulate C-DGRID. We compare
the overhead, lookup performance, and resilience to failures of
Chord and C-DGRID. In both Chord and C-DGRID simula-
tors, we disable the caching of fingers and modify how lookups
are processed (see section IV-B for more detail). We simulate
a grid of 50,000 domains; each domain has on averageg
distinct resource types and is represented by one index server.
We usem = 24-bit and i = 8-bit (Y = 256). The request
forwarding between physical index servers is penalized 50 ms
(exponentially distributed) and the request processing by each
node is penalized by [5, 15] ms (uniformly distributed).

A. Overhead

To evaluate the overhead of Chord and C-DGRID, we
measure the average bootstrap time and the convergence time.

The bootstrap time of node n is defined asbn =
timerecognized − timearrive, wheretimearrive = time when
n arrives andtimerecognized = time whenn is recognized by
another noden′, i.e. n becomes the predecessor ofn′.

The stabilization degree of the whole system is defined as

S =
∑N−1

n=0 sn

N
0 ≤ S ≤ 1

whereN is the total number of nodes. Thestabilization degree
of noden is defined as

sn =

{
0 if n has an incorrect1st successor
|F ′|+|U ′|
m+maxU

where0 ≤ sn ≤ 1, F ′ is the proper fingers in finger table,
maxF is the length of node identifier (0 ≤ |F ′| ≤ maxF ),

U ′ is the proper successors in successor list, andmaxU is
a constant (0 ≤ |U ′| ≤ maxU ). The ith proper finger and
successor ofn is the immediate successor of(n + 2i−1) and
(n+i), respectively. Suppose that at timetime0, theith proper
finger and successor ofn is na andnb, respectively. Ifnc joins
at time time1 > time0 and (n + 2i−1) ≤ nc < na, thennc

will become theith proper finger ofn. Similarly, if nd joins
at time time1 > time0 and (n + i) ≤ nd < nb, thennd will
become theith proper successor ofn. If n updates its proper
finger and successor tonb and nd at time time2 > time1,
thensn < 1 during the intervaltime2 − time1.

The convergence timeof the system is defined asc =
timeS − timelast arrival where timelast arrival is the time
when the last node arrives andtimeS is the time when the
system reaches the desiredS.

The simulations to compare the stabilization convergence
in Chord and C-DGRID are performed as follows. Index
servers enter a Chord or C-DGRID system according to a
Poisson process with 1 second mean arrival rate. Each index
servers has U[2, 5] number of resource types, which results in
approximately 175,000 nodes in C-DGRID. Each node joins
through a randomly chosen existing node. Each node maintains
one successor pointer (maxU = 1). Each nodes invokes the
stabilization mechanism for every[0.5p, 1.5p] seconds interval
(uniform distribution). To measure the convergence timec, we
calculateS every 1 hours.

Table II shows the average bootstrap time in Chord and
Chord-DGRID, under variousp (secs).

TABLE II

AVERAGE BOOTSTRAP TIMEb (SECS)

p Chord C-DGRID
60 1.5 3.0

240 41.4 65.8
960 671.8 2,033.8

Figure 7 shows the convergence timec of both systems,
which implies the overhead of Chord and C-DGRID. Due to
the larger number of nodes, C-DGRID requires a largerc than
Chord to reach the sameS. However, in definingS we do
not consider the finger flexibility of C-DGRID, which means
the overhead of C-DGRID presented here is the worst-case
overhead. In addition, with sufficiently smallp, C-DGRID
can keep its structured overlay network nearly on par with
Chord, given the same amount of time after the last join.
With p = 60 seconds, after the last join,SChord = 0.96
and SC−DGRID = 0.95. After one hour,SChord = 1 and
SDGRID = 0.99. With p = 960 seconds, after the last join,



Fig. 7. Convergence timec (Chord), measured every 5 hours from the last
join operation

SChord = 0.33 and SC−DGRID = 0.21. However, while
Chord requires 133 hours to reachSChord = 0.99, C-DGRID
requires 239 hours to reachSC−DGRID = 0.99, almost twice
the time required in Chord.

It is obvious that C-DGRID requires more overhead because
it virtualizes each index server into multiple nodes to trans-
parently avoiding data redistribution, increasing the availability
of data by positioning an index server in multiple segments
in the identifier space, and bounding the query processing of
each domain subjected to the resource types in the domain.

B. Lookup Performance

To evaluate the lookup performance of both systems, we
simulated lookups on differentS. The measurements are the
average path length (hops), and the number of failed lookups.
The average path length includes only requests forwarded
between physical index servers.

First, Chord and C-DGRID networks of 50,000 domains are
constructed with every node performs the stabilization every
p = 960 secs1. Then, we perform 500,000 simple lookups (1
second Poisson mean arrival rate). A simple lookup refers to
a lookup that can be satisfied by one administrative domain.
Each lookup looks for a randomly chosen data and is initiated
by a randomly chosen node. In Chord, a lookup for resource
type t is successful if the lookup request arrives at nodex
where eitherx is the immediate successor oft or x represents
a domain with resources of typet. In C-DGRID, a lookup
for resource typet is successful if the lookup request arrives
at nodev where eitherprefixi(idi+m(v)) = idi(t) or v
represent a virtual server of a domain who owns resources
of type t.

In table III, we vary the number of resource types per
domain. The number of resource types is generated using a
uniform distribution. The results show that in both cases, C-
DGRID has shorter average path length (hops) and fewer failed
lookups for variousS (except when the average resource types
per domain∼ U[2, 5] andS = 0.33) although the C-DGRID
networks have more nodes (about 175,000 nodes) than the
Chord network (50,000 nodes) given the same number of index

1We choose this number to construct networks with lowS

servers. This is because the expected average path length in C-
DGRID is 1

2 log Y = 4 as there areY segments and the node
identifiers are randomly distributed. As the average number of
resource types per domain is doubled from U[2, 5] to U[4, 10],
the average path length in C-DGRID decreases to 2.8 (30%
smaller than1

2 log Y ) because 1) each domain, on average, is
virtualized to 7 nodes instead of 3.5 nodes so that it will be
visited more during lookups, and 2) the probability that each
node can answer a lookup request isln 256

256−7 = 0.028 instead
of ln 256

256−3.5 = 0.014.
Note that table III merely shows the lower bound of lookup

cost in C-DGRID. For lookups where answers are provided
by |D| domains, there are|D| additional hops besides the
path length to reach the first node in a particular segment. For
instance, if a lookup must be satisfied by 3 domains, then the
average path length must be added by 3 hops.

C. Resilience to Random Simultaneous Failures and Leaves

To evaluate the resilience of C-DGRID under simultaneous
random failures and leaves, we simulated lookups when a
fraction of the network fails or leaves simultaneously. We
measure the average path length, the number of failed lookups,
and the average number of timeouts.

We start with Chord and C-DGRID networks of 50,000
domains (each domain has∼ U[2, 5] resource types, yielding
g = 3.5) and let the systems reach a predefinedS. Then, a
fraction of domainsfails or leaves simultaneously2 and the
stabilization is deactivated, followed by followed by 500,000
simple lookups (1 seconds Poisson mean arrival rate). For
Chord, when a domain fails, it does not have a chance to move
data stored to its successor. However, when a node leaves, it
instantly moves all data stored to its successor, which is an
optimistic assumption. For C-DGRID, data redistribution is
not required when a domain fails or leaves.

For a lookup in Chord to be considered successful, in
addition to the criteria described earlier in section IV-B, the
node that provide the answer to the lookup request must store
at least one non-stale data describing the requested resource
type, otherwise the lookup is considered failed. Stale data is
an index to a resource type in a domains that has failed or left
the system.

Table IV shows the results when vary the degrees of node
fail and node leave. The fourth and sixth columns in both
tables, labeled asFailed, refer to the total number of failed
lookups (false negatives). In most cases, C-DGRID has a lower
average path length and fewer failed lookups, except for some
cases whereS = 0.8.

For simultaneous fails, C-DGRID outperforms Chord in
term of the number of failed lookups. This is because the
Chord networks only has a small number of designated nodes
compared to the total number of nodes. Since data identifier
is uniformly distributed within [0,28) and node identifier is
uniformly distributed within [0,224), on the ideal condition
(S = 1) there are at most two designated nodes and each
designated node is responsible for many types of data. If
the ratio between designated nodes and total nodes is very

2In C-DGRID, one domain fail/leave results in several node fails/leaves.



TABLE III

LOOKUP PERFORMANCE WITHVARIOUS STABILIZATION DEGREES

S
resource type per domain∼ U[2, 5] resource type per domain∼ U[4, 10]

Chord C-DGRID Chord C-DGRID
Hops Failed Hops Failed Hops Failed Hops Failed

0.33 21.9 185 3.4 212 11.6 155 2.8 19
0.40 16.7 162 4.2 86 7.9 144 2.8 10
0.60 6.9 149 3.4 12 7.1 1,434 2.8 2
0.80 7.3 0 3.4 0 7.1 0 2.8 0
1.00 7.3 0 3.4 0 7.1 0 2.8 0

TABLE IV

LOOKUP PERFORMANCE UNDERRANDOM SIMULTANEOUS FAILS AND LEAVES

%Failed S
Chord C-DGRID

Hops Failed Lookups Hops Failed Lookups

20
0.33 15.8 173,835 5.4 755
0.40 15.2 140,094 4.5 231
0.80 7.9 0 4.6 41

40
0.33 9.8 366,172 7.0 5,197
0.40 10.2 375,704 6.0 817
0.80 8.6 383,378 6.1 180

%Leave S
Chord C-DGRID

Hops Failed Lookups Hops Failed Lookups

20
0.33 19.6 139,778 5.3 386
0.40 15.1 134,222 4.5 125
0.80 7.9 0 4.6 3

40
0.33 18.0 345,387 6.7 1,794
0.40 10.6 330,103 5.9 466
0.80 8.6 1 6.0 101

small, then it is sufficient to bring down some designated
nodes to cause the majority of lookups to fail. Table V shows
DN , the number of designated nodes, andA = DN

N , the
ratio between designated nodes and total nodes, in various
stabilization degreeS.

TABLE V

DESIGNATED NODES IN CHORD UNDERVARIOUS STABILIZATION

DEGREES

S DN A
0.33 14 0.00028
0.40 13 0.00026
0.80 4 0.00005

In some cases, there is no designated node to fail, as is the
case where 20% of nodes fail in a Chord network withS =
0.80. In this case, Chord significantly reduce the number of
failed lookups. The reason no designated node fails is because
the probability to choose a designated node to fail or leave is
also very small. WithS = 0.80, the ratio between the number
of designated nodes and the total number of nodes is4

50,000 =
8 · 10−5. Assume we randomly chooseZ% of nodes to fail
or leave, the probability that a designated node fails or leaves
is 8Z

10−7 (nearly zero) whereas the probability that an ordinary
node fails or leaves is≈ Z

100 .
In Chord, when a node leaves the system, it redistributes

stored data to its successor. If its successor is not a designated
node, the successor will become a designated node after the
data have been redistributed. Hence, the numbers of designated
nodes before and after the random simultaneous leaves are the
same. However, forS = 0.33 and S = 0.40, some lookups
still fail. This implies that the routing in Chord is not as robust

as C-DGRID at lowerS, because Chord cannot route lookup
requests to the designated nodes. On the other hand, C-DGRID
system incorporates the fact that there are many nodes that
provide a certain resource type to increase its finger flexibility,
which increases the reachability to the resource type.

V. RELATED WORKS

Routing-transferring model [11] and Iamnitchi et. al [9],
[10] are decentralized information systems for grid, based on
unstructured overlay network. Nodes periodically exchange re-
source information with each other. The resource information
is the basis for the routing table at each node. The main issue
with these schemes is lookups are not theoretically bounded.
DGRID is based on DHT to enable efficient, scalable, and
theoretically-bounded lookups.

Both XenoSearch [16] and self-organizing Condor pools [5]
are decentralized information systems for grid, based on Pastry
[14] – one of DHT algorithms. XenoSearch [16] stores grid-
resource information on nodes arranged as Pastry network,
ignoring the relationship between data domain and node do-
main. Self-organizing Condor pools [5] uses Pastry to replicate
resource information (advertisements) to physically-nearby
location, subjected by time-to-live (TTL). Because replications
are subjected to time-to-live (TTL), self-organizing Condor
pool has a weaker result guarantee as pools may not be
aware of some resource advertisements. DGRID ensures that
resource information belongs to domaind is stored on a node
from domaind, at the expense of increased maintenance cost
of the overlay network. In addition, DGRID provides the same
level of result guarantee as other DHTs whereby nodes can
locate any existing resource information in the system.



SkipNet [8] is a structured overlay network that supports
content localitywhere data can be explicitly stored at the
desired node (e.g. data and node must be the same domain).
However, content locality is not transparent since users need
to enumerate domains when searching. To enforce datad to be
stored at noden, SkipNet assigns an identifier tod such that
id(d) = id(n) ⊕ key(a). A query for this data is formulated
as q = id(n) ⊕ key(a). If a distributed information system
for grid is implemented on top of SkipNet, then users need
to enumerate existing domains in the grid if they require
resources from many domains. With DGRID, controlled data
placement is transparent to users; they need not enumerate
domain names when doing lookups.

CFS [7] is a distributed storage where a file is stored in
many servers; each server store one or more blocks of the file.
CFS allows the virtualization of stronger servers to balance
the load as 1) blocks may not occupy the identifier space in
a uniformly distributed manner, which causes some servers to
store zero blocks, and 2) stronger servers should store more
blocks. DGRID automatically virtualizes each indexing server
subjected to the number of resource types in the administrative
domain. Assuming that a richer domain contains more type
of resources, its indexing server can afford more storage to
store data and can sustain the overhead of virtualization (i.e.
more routing tables to be maintained). In addition, we believe
that the overhead will not be very high as each domain has
a limited number of resource types, especially we can devise
a hierarchical naming scheme for resource type that properly
maps to the identifier space.

VI. CONCLUSION

We have presented DGRID, a DHT-based indexing scheme
for computational grid without data redistribution. DGRID
increases security and availability, and improves performance
by directing lookups only to administrative domains that owns
the requested resources. Through simulations, we show that
Chord-based DGRID compensates its higher overhead with
smaller average path length (hops) and fewer number of failed
lookups, even if a fraction of the network fails simultaneously.
In addition, DGRID is more tolerant to the single point of
failure of designated nodes. Finally, DGRID guarantees that
no stale data are returned to clients.

Ongoing work includes designing parallel algorithms to
look up many resources with the same type within a request
and investigating the performance of DGRID when looking up
many resources of the same type, comparing the performance
of DGRID with other existing grid resource management ap-
proaches, and investigating efficient grid scheduling schemes
using DGRID.
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