

Bit-Width Analysis for General Applications

Yang Ding, Weng Fai Wong
Singapore-MIT Alliance, National University of Singapore

Abstract—It has been widely known that a significant part

of the bits are useless or even unused during the program
execution. Bit-width analysis targets at finding the minimum
bits needed for each variable in the program, which ensures
the execution correctness and resources saving.

In this paper, we proposed a static analysis method for
bit-widths in general applications, which approximates
conservatively at compile time and is independent of runtime
conditions. While most related work focus on integer
applications, our method is also tailored and applicable to
floating point variables, which could be extended to transform
floating point number into fixed point numbers together with
precision analysis. We used more precise representations for
data value ranges of both scalar and array variables. We also
suggested an alternative for the standard fixed-point iterations
in bi-directional range analysis. These techniques are
implemented on Trimaran compiler structure and tested on a
set of benchmarks to show the results.

Index Terms —bit-width analysis, compiler optimization,
flow analysis, range analysis

I. INTRODUCTION
IT-WIDTH analysis aims to get the minimum bits

needed in the program for variables, with the guarantee
of program correctness. It has been widely known that a
significant part of the variable bits are useless or even
unused during the program execution. On one hand, this is
because programmers tend to ignore the difference between
using compatible data types. For example, integers are used
in some programs to represent ASCII characters. Moreover,
it is generally hard and error-prone for human being to
detect variable bit-width across various complex
calculations. On the other hand, high level programming
languages and data-paths and buses in hardware usually
have not enough support for declarations and manipulation
on sub-word structures.

It is necessary to distinguish two concepts first: bit-width
analysis and range analysis. For integers, the range of a
variable can easily infer how many bits are needed and vise
versa. Whereas for floating point numbers, range is only one
aspect of bit-width, and precision is a dominant factor. In
this paper, our focus is the range information part.

Bit-width information can be used in a variety of contexts,
including compiler optimization, program checking and

verification. [1] As new architectures nowadays expose
sub-word control, such as SIMD support in ISA and data
path gating off sections, several areas have been shown to
benefit a lot from the bit-width analysis recently, including
DSP applications and Multimedia applications. For example,
[2] shows impressive advantages taken by silicon
compilation with bit-width information. When the source
programs are translated to the hardware implementation,
FPGA area can be reduced and power consumption can be
saved largely, together with other performance
improvements.

Y. Ding, and W.F. Wong are with the Singapore-MIT Alliance, National

University of Singapore, Email: {dingy, wongwf}@comp.nus.edu.sg

We can approximately divide the current approaches of
bit-width analysis into two sets: static analysis at compile
time and dynamic profiling or analysis at runtime.

Static techniques use iterative forward and backward data
flow analysis to infer bit-width information and detect
useless bits by using heuristics such as program constants,
loop counts, array bounds, type conversions and masking
operations. The worst case is considered in static analysis
thus the bit-width information is conservative. We choose
this to develop our system for general applications, which
may require highly reliable information and applicable to all
possible runtime environment. The scope of interest is
extended to more areas than those proved useful in the past
work.

Runtime profiling and analysis can be more aggressive.
Profiling during the execution and statistical methods are
used. These methods are more practical and also generate
good results. [3] presented a novel stochastic bit-width
approximation technique using Extreme Value Theory with
statistical random sampling. The approximation estimates
the bit-width with a finite overflow or underflow probability
specified by users from 0.1 to infinitesimal levels.

Most of the past work in bit-width analysis has been done
for integers. However, floating point programs can also
make use of such information. Value range and precision of
variables have been analyzed in converting the
floating-point representation to the fixed-point
representation in some applications [4], [5]. Such work has
the limitation of depending on the profiling approach. This
motives us to develop a general static analysis approach of
bit-width, also taking into special properties of floating
point numbers into account.

B

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. BIT-WIDTH ANALYSIS

A. Objective and Overview
Given a source program, the programmers have already

defined the default bit-width as per data types, such as
integers are 32 bits wide in most platforms. Our objective is
to track each variable individually and determine the least
bits needed that won't change the behavior and results of the
original program.

This objective sets static analysis different from quite a
lot dynamic methods in the concept of "useful bits". Take
the instruction (AND a1, b1, 0xAF) for example, if it is the
only use of b1's last definition, b1 can just use 8 bits in the
current dependence chain. Such information cannot be
easily caught only by profiling. Thus, the profiling results
may not be the limit of performance as some people assume
due to the suboptimal programming style. Static analysis
can have better results sometimes.

For integers, getting the value ranges is enough. For
floating point numbers, bit-width analysis is to translate
them into fixed point numbers, resulting in much simpler
logic. Conforming to IEEE 754 floating point standard,
every floating point number comprises exponent and
mantissa. The maximum value of exponent determines the
range of legal numbers, whereas the maximum value of
mantissa determines the precision. Thus, the analysis must
incorporate precision analysis. Our mechanism and
algorithms are discussed and explained later in detail.

B. Range Analysis
Compiler analysis of the value ranges for variables have

been studied for a long time. The source programs are
transformed into certain Intermediate Representation (IR)
first. Later on, the IR structure incorporates the Static Single
Assignment (SSA) form, i.e. each use of a variable is
reached by a single definition.

Range analysis is carried out based on basic blocks in the
CFG with SSA form. For each basic block, a local
variable-range table is maintained. Every variable that is def
or use within the basic block has an entry in the local table.
Each entry includes the variable name and its range in that
basic block. All the ranges are initialized to the maximum
range decided by the data type constraints in the beginning
unless otherwise indicated by the programmer.

After building up the data flow graph, we can tight up the
na?ve ranges though range propagation and analysis. The
analyzer traverses the basic blocks to propagate range
information, ending up with result ranges. A forward
analysis phase starts from the start node in the program CFG,
visiting basic block follows topological sorting regardless of
the back edges. All the paths are covered in this analysis.

The analyzer extracts range information from the
arithmetic operations or the expression constraints such as
array index variables. Such range information is used to
update entries in the local variable-range table. Once the
analysis in one basic block is done, the range results are

passed on to all the successors that use its variable
definitions. The successors update the ranges for variable
uses before the analyzer continues to manipulate another
basic block. The first forward analysis continues until it
finishes the traverse at the end node.

After that, new range information may trigger the further
refinement both from source operands to destination
operands and in the opposite direction. The def-use
information is extremely important during such analysis.
This is illustrated in the implementation section.

C. Precision Analysis
Precision analysis is independent from range analysis. It

aims to come up with minimum number of bits for mantissa
in floating point numbers while attaining "economy" and
"correctness". "Correct" is a relative concept, defined by the
users of the applications.

Automatic differentiation has been employed in [10] to
automate the sensitivity analysis. However, they didn't
consider much about the order of variable-specific precision
inference. For example, if the result is calculated by several
variables. The order we choose bit-width for each
arguments matters. The straight forward choice is to use
brute force and return the most desirable combination. But it
is obviously impractical when the problem scales up. We are
also planning to leverage on automatic differentiation.
Different from others, we want to develop comprehensive
knowledge based on multi-variable differentiation, thus, we
could avoid or at least alleviate the enormous computation
problem.

[13], [14] introduce a static error analysis technique,
based on smart interval methods from affine arithmetic, to
help designers translate DSP codes from full-precision
floating-point to smaller finite-precision formats. The
technique gives results for numerical error estimation
comparable to detailed simulation, but achieves speedups of
three orders of magnitude by avoiding actual bit-level
simulation. This is another approach to try.

III. IMPLEMENTATION

A. Introduction
We implement the bit-width analyzer using Trimaran

compiler infrastructure. [8] The optimization works on the
Intermediate Representation based on the ELCOR
implementation in Trimaran.

The control flow and data flow information are available
for use for any source program. ELCOR also provide the
def-use information together with other standard tools.

In the rest part of this section, we introduce several
implementation choices we have made that make our
analysis different from others.

B. Value Range Representation
There are a few choices to represent the value range. Data

range and bit vector are two common used choices.
Data range keeps the upper and lower bound of the value

a variable can assume. It allows range propagation on
arithmetic expressions precisely and easily. An obvious
shortcoming is that it only permits elimination of the most
significant bits in a word.

Bit level builds its base on the fact that some of the bits
might stay unchanged during the program execution. Each
range is represented by a bit vector. Each bit in the vector is
assigned to one the following values: X-don't care,
U-unknown, always 1 and always 0. Addition, subtraction
and bit-wise operations are not difficult. But multiplication
and division can easily leads to bit value saturation, where
all the bits can be 0 or 1.

We use a set of intervals instead of a single interval to
represent the range for each variable. On one hand, because
the range information is likely to propagate far, the precise
choice can possibly avoid magnified errors. On the other
hand, different operations may need different accuracy such
as division in the following example. In this example, no
significant results can be found if we only use one interval to
record the range for variable a. By using multiple, a precise
value range can easily be inferred.

if (a>0)

a = a + 1; // a: [1, ∞)
else

a = a -1; // a: (-∞, -1]
b = 2/a; //a: (-∞, -1]U[1, ∞), b: [-2, 2]

An important thing in this representation is the number of

intervals. There is a trade-off between granularity and
complexity. We provided several ways to limit and
compress the set of range intervals. Firstly, we allow the
user to specify the maximum cardinality of set. Secondly,
we provide the tools to merge certain intervals as requested
during the range propagation.

C. Transfer functions
The actually range propagation is made by applying the

transfer functions, which have been shown in many past
work such as [2]. The only different in our approach is that
we are handling multiple intervals. Thus, all the intervals
will be considered separately.

Due to the space limitation, we only show two examples
of the transfer functions as following. The arrow indicates
whether the range information is propagated from RHS to
LHS (arrow down) or LHS to RHS (arrow down). Each
variable has a set of intervals as the range.

Multiplication: a = b * c

a↓ = b↓ * c↓ =

 I UU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⊗

=

l

k
kk

ji
jjii aualnjmicuclbubl

1),(

],[)...1,...1(],[],[

b↑ = a↑ / c↑ =

 I UU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==Θ

=

m

i
ii

jk
jjkk bublnjlkcuclaual

1),(

],[)...1,...1(],[],[

c↑ = a↑ / b↑ =

 I UU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==Θ

=

n

j
jj

ki
iiki cucllkmibublaual

1),(

],[)...1,...1(],[],[

Division: a = b / c
a↓ = b↓ / c↓ =

b↑ = a↑ * c↑ =

c↑ = b↑ / a↑ =

Note:

I UU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==Θ

=

l

k
kk

ji
jjii aualnjmicuclbubl

1),(

],[)...1,...1(],[],[

I UU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⊗

=

m

i
ii

jk
jjkk bublnjlkcuclaual

1),(

],[)...1,...1(],[],[

I UU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==Θ

=

n

j
jj

ki
kkii cucllkmiaualbubl

1),(

],[)...1,...1(],[],[

Θ⊗ are operations defined for intervals multiplication
and division. The details for these two operations follow:

[a,b] ⊗ [c,d] a<=b<=0 a<=0<=b 0<=a<=b
c<=d<=0 [bd, ac] [bc, ac] [bc, ad]
c<=0<=d [ad, ac] [min{ad, bc},

max{ac, bd}]
[ad, bd]

0<=c<=d [ad, bc] [ad, bd] [ac, bd]

aActually the result range is [a/c, 0) U (0, b/c]. In our application, it is
simpler and still correct to use [a/c, b/c].

[a,b] Θ [c,d] a<=b<=0 a<=0<=b 0<=a<=b
c<=d<=0 [b/c, a/d] [b/d, a/d] [b/d, a/c]
c<=0<=d [-∞,b/d] U

[b/c,+∞]
[-∞,+∞] [-∞, a/c] U

[a/d, +∞]
0<=c<=d [a/c, b/d] [a/c, b/c]a [a/d, b/c]

D. Analysis Integration
It is necessary to apply the bi-directional analysis for

range propagation. If we get heuristic information for the
result of an operation, such information may infer changes
in the sources. For example,

a = b - 10;
arr[a] = sin(a);

If arr is known to be an array with subscript from 0 to 100
and assume the program is correct, b's range must be within
10 to 110 according to the transfer functions. This
refinement to b may not be achieved in forward data range
propagation.

Thus, range analysis usually implements the standard
bi-directional analysis, which alternate between forward
analysis and backward analysis until reaching the
fixed-point. In the case of range analysis, the fixed-point
means the ranges remain stable or no more range refinement

happen. Fixed-point iterations have the disadvantage of low
efficiency.

In viewing of this problem, we proposed a new algorithm
uses a Working Set as the container of new range
information to drive the range propagation. After the range
initialization, further changes are local to the dependence
chains. We call the following propagation update. The
working set changes dynamically during backward update
and forward update.

Forward working set and backward working set are both
initialized as empty first. During the first pass of forward
range propagation, if range refinement is found by heuristic
functions for certain variable, its definition instruction is
added to the backward working set.

When either working set is not empty, further range
propagation is needed. For backward update, the backward
transfer functions are used to find whether the sources can
be refined. If so, the sources' definitions are added into the
working set. This method runs recursively. Forward update
works similarly, except that instructions which use updated
definition are added into the forward working set. Backward
update and forward update alternates until both are empty.

We show this process with a short piece of codes follows:
1: int a[5]={0, 4, 8, 6, 5};
2: int b, c, d, e, f;
3: scanf("%d%d", &c, &d);
4: b = c + 10;
5: f = b * 2;
6: scanf("%d", &e);
7: c = e * 2;
8: b = c;
9: e = b;
10: if (a[b] > 5)
11: return 1;
Heuristic information is found in instruction 10 for the

use of variable b, so b's definition instruction 8 is added to
the backward working set. When processing instruction 8,
instruction 9 and 10 which use its definition is added to
forward working set. The changing sequence of Backward
Working Set is {} -> {10} -> {8} -> {7} -> {6} -> {} -> {}
-> {}. The sequence of Forward Working Set is {} -> {} -> {}
-> {9, 10} -> {8, 9, 10} -> {9, 10} -> {10} -> {}.

Using this method, it is easy to see that the analyzer
doesn't need to do the forward and backward analysis one
more time at the end of iterations to confirm that no more
chances would happen. More importantly, during the
updating, only the instructions in the working set are
processed. Not all the operations are extracted and
calculated in each forward or backward updating pass. The
working set also provides an estimation of how the updating
progress goes.

E. Array Handling
Besides scalar variables, array variables also play an

important role in almost all the programs. Most past work
associates a single range to the whole array for simplicity.
However, array elements are always closely correlated in
loop structures. Element level analysis is necessary to get

precise ranges.
The following example gives some hints about it:

int a[11];
for (i=1; i<11; i++)

a[i] = i;
for (i=0; i<9; i++)

a[i] = a[i] + a[i+1];
a[10] *= a[10];

If we treat an array with same range for each element,
after the first loop, the range is [1, 10], after the second loop,
the best result we can get is [1, 100]. Obviously taking each
element as a single variable can generate the most precise
result. But it cannot scales up even for the simple case
because array can usually contain tens of thousands of
elements. Thus, to compress the representation is necessary.
The idea is similar to what we discuss about the set of
intervals.

We represent the data range for array with pairs of data
ranges. The first range is the subscript. The second range is
the value range. If we consider the above example in
element level and divide array a's elements into 5 subscript
ranges: [1, 2] [3, 4] [5, 6] [7, 8] [9, 10]. After the program
execution, the results are still more useful than
non-element-level method. Note that compressions of
ranges are used.

[1, 2]: [1, 2] x [1, 2, 3, 4] = [1, 2, 3, 4, 6, 8] = [1, 8]
[3, 4]: [3, 4 x [3, 6] = [9, 24]
[5, 6]: [5, 6] x [5, 8] = [25, 48]
[7, 8]: [7, 8] x [7, 10] = [49, 80]
[9, 10]: [9, 10] x [9, 10] = [81, 100]
If the subscript value of certain array element access is

available, the analyzer does the range propagation for the
corresponding range pair. Otherwise, range propagation is
carried out on each range pair.

F. Loop Handling
Loop is an important concern in data flow analysis. We

use a preliminary method. Our method runs the loop
iteration for several times to observe the changes of the data
ranges, if it is monotonically decreasing, we assume the
range won't expend as iterations. Notice that this may be
aggressive. Meanwhile, we try to detect the counted loop. If
the number of loop iterations is small enough, we iterate
over for such times regardless of the monotonicity to get the
precise ranges.

IV. RESULTS
We test several benchmarks under the Trimaran platform.

As the analyzer has not completed the precision analysis
part and bit-width information is not further used in the
lower level applications such as FPGA design. We compare
the bits used by registered in the program execution. The
comparison assumes each variable is assigned to its own
register. This is implemented in Elcor by using virtual
registers. We show the bits elimination result for scalar
variables and array variables separately.

Notice that for each variable, the maximum of its

bit-width through out the program is counted. This makes
the bits elimination in partial execution invisible. The
following table shows the percentage of bit-widths that are
identified, with respect to the number of bits indicated by the
source programs.

Name bilinterp sha median Intmatmul
Source MMX MIT UTdsp Raw
Bit-width% 70.9 96.8 61.6 95.4

These figures show reasonable amount of the bits saved

but it is still a gap with what we can get optimal bit-widths.
Heuristic is rather important in the final benefit achieved
from the bi-directional range propagation. We are still
adding some machine dependent constraints to get better
approximation. Note that these benchmarks may have
bit-width results in other publications. However, because
we are doing the analysis at different level and platform it is
not comparable.

We also test the array separately, the benchmark of

fib_mem is a good example.

#include <stdio.h>
#include <stdlib.h>
int a[100];

int main (int argc, char *argv[])
{
 int i,n;

 if (argc < 2) {
 printf("Usage: fib <n>\n");
 exit(1);
 }
 n = atoi(argv[1]);

 a[0] = 0;
 a[1] = 1;
 for (i=2 ; i <= n ; i++)
 a[i] = a[i-1] + a[i-2];
 printf("fib %d = %d\n", n, a[n]);
 exit(0);
}

Static analysis find the input of n is less than 100 because

it is used as subscript of a. Notice that fib(49) and larger n
incur overflow for the integers. Due to saturation strategy
chosen, the bit-width is 32 if overflow happens. 20.3%
bit-width elimination for array a is achieved even when
using range compression.

For floating point numbers, we only have the range
information now. One way to show the result is to see the
difference of bit-width requirements for exponent in
floating point numbers. But only 8 bits are needed for the
single precision floating point numbers. The difference is
not significant. Thus we don't show the result here.

V. FUTURE WORK
Compile time analysis is constrained by the fact that the

operand range may vary drastically over the execution
depending on the input data. Some of the applications of
bit-width analysis such as operand-gating and instruction
parallelization won't get significant benefit from the
conservative approximation. In such cases, the runtime
analysis is useful which can infer ranges depending on the
input values. Thus, compile time analysis can be augmented
with dynamically techniques as also suggested in future
work in [9]

Using data ranges as the range representation has the
shortcoming of losing the information for least significant
bits. For example, in the instruction (AND a1, b1, 0xAF),
some of the bits if either fixed or "don't care". Combining bit
vector representation and data ranges can provide more
bit-width information. Again, the meaning of this work is
decided by how the bit-width information is used at last.

Loop handling is simple and aggressive. However,
sometimes it will still compromise due to the dependency on
monotonicity. Close-form solution is a good method in
certain cases which uses sequence identification and
classification. [11] We could add it in our loop handler,
though close form solution cannot solve certain situations
such as branches inside the loop.

Precision analysis is necessary for floating point numbers
bit-width. We will finish the automatic differentiation
approach. Recently work also suggests an interesting
approach by profiling the expected input to estimate errors
[15].

VI. CONCLUSIONS
In this paper, we did a short survey on the bit-width

analysis and proposed compiler analysis of bit-widths in
general applications. The static analysis method provides
conservative but precise approximation regardless of the
runtime conditions. Our work has targeted at both integer
applications and floating point applications. We used more
precise representations for data value ranges. Furthermore,
we introduced the element level analysis for array variables.
To make the range propagation more efficient, we suggested
an alternative for the standard fixed-point iterations in
bi-directional range analysis. The bit-width analyzer is
implemented and tested on Trimaran compiler structure,
which shows the applicability and effectiveness.

REFERENCES
[1] William H. Harrison. Compiler analysis of the value ranges for

variables. In IEEE Transactions on Software Engineering, pp.
243-250. IEEE Computer Society, May 1977.

[2] M. Stephenson, J. Babb and S. Amarasinghe: Bitwidth Analysis with
Application to Silicon Compilation, Proceedings of the SIGPLAN '00,
Conference on Program Language Design and Implementation,
Vancouver, Canada, June 2000

[3] Emre Ozer, Andy P. Nisbet, and David Gregg. Stochastic bit-width

approximation using Extreme Value Theory for customizable
processors", In CC2004, LNCS 2985, pp. 250-264, 2004

[4] S. Kim, K. Kum, and W. Sung. Fixed-point Optimization Utility for C
and C++ Based Digital Signal Processing Programs. In IEEE
Transactions on Circuits and Systems, Vol. 45, No. 11, Nov 1998

[5] M. Willems, V. B¨¹rsgens , H. Keding , T. Gr?tker , and H. Meyr.
System level fixed-point design based on an interpolative approach, in
Proceedings of the 34th annual conference on Design automation
conference, pp.293-298, June 09-13, 1997, Anaheim, California,
United States

[6] D. Stefanovi and M. Martonosi. On Availability of Bit-narrow
Operations in General-purpose Applications, In the 10th International
Conference on Field Programmable Logic and Applications, Aug
2000

[7] M. Budiu, S. Goldstein, M. Sakr, and K. Walker. BitValue inference:
Detecting and exploiting narrow bitwidth computations. In
Proceedings of the EuroPar 2000

[8] Trimaran. The Trimaran Compiler Research Infrastructure for
Instruction Level Parallelism. The Trimaran Consortium, 1998.
http://www.trimaran.org.

[9] D. Brooks and M. Martonosi, Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance, In
Proceedings' of the 5th International Symposium on
High-Performance Computer Architecture, January 1999.

[10] Altaf A. Gaffar, Oskar Mencer, Wayne Luk, Peter Y.K. Cheung, and
Nabeel Shirazi. Floating Point Bitwidth Analysis via Automatic
Differentiation, In IEEE Conference on Field Programmable
Technology, Hong Kong, Dec. 2002

[11] Michael P Gerlek, Eric Stoltz and Michael Wolfe. Beyond induction
variables: Detecting and classifying sequences using demand-driven
ssa form. In ACM Transactions on Programming Languages and
Systems, Volume 17, Number 1, pp 85--122, 1995.

[12] A. Nayak , M. Haldar , A. Choudhary , and P. Banerjee. Precision and
error analysis of MATLAB applications during automated hardware
synthesis for FPGAs, In Proceedings of the conference on Design,
automation and test in Europe, p.722-728, March 2001, Munich,
Germany

[13] Claire F. Fang, Rob A. Rutenbar, M. Puschel and Tsuhan Chen.
Towards efficient static analysis of finite precision effects in DSP
applications via affine arithmetic modeling, In Design Automation
Conference, 2003.

[14] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen. Fast, accurate
static analysis for fixed-point finite precision effects in DSP designs.
In Proc. ICCAD, 2003.

[15] S. Roy and P. Banerjee. An Algorithm for Converting Floating Point
Computations to Fixed Point Computations in MATLAB based
Hardware Design, in Proc. Design Automation Conference (DAC
2004), San Diego, Jun. 2004.

	INTRODUCTION
	Bit-width Analysis
	Objective and Overview
	Range Analysis
	Precision Analysis

	Implementation
	Introduction
	Value Range Representation
	Transfer functions
	Analysis Integration
	Array Handling
	Loop Handling

	Results
	Future Work
	Conclusions

