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Abstract—It has been widely known that a significant part 

of the bits are useless or even unused during the program 
execution. Bit-width analysis targets at finding the minimum 
bits needed for each variable in the program, which ensures 
the execution correctness and resources saving.  

In this paper, we proposed a static analysis method for 
bit-widths in general applications, which approximates 
conservatively at compile time and is independent of runtime 
conditions. While most related work focus on integer 
applications, our method is also tailored and applicable to 
floating point variables, which could be extended to transform 
floating point number into fixed point numbers together with 
precision analysis. We used more precise representations for 
data value ranges of both scalar and array variables. We also 
suggested an alternative for the standard fixed-point iterations 
in bi-directional range analysis. These techniques are 
implemented on Trimaran compiler structure and tested on a 
set of benchmarks to show the results. 
 

Index Terms —bit-width analysis, compiler optimization, 
flow analysis, range analysis 
 

I. INTRODUCTION 
IT-WIDTH analysis aims to get the minimum bits 

needed in the program for variables, with the guarantee 
of program correctness. It has been widely known that a 
significant part of the variable bits are useless or even 
unused during the program execution. On one hand, this is 
because programmers tend to ignore the difference between 
using compatible data types. For example, integers are used 
in some programs to represent ASCII characters. Moreover, 
it is generally hard and error-prone for human being to 
detect variable bit-width across various complex 
calculations. On the other hand, high level programming 
languages and data-paths and buses in hardware usually 
have not enough support for declarations and manipulation 
on sub-word structures. 

It is necessary to distinguish two concepts first: bit-width 
analysis and range analysis. For integers, the range of a 
variable can easily infer how many bits are needed and vise 
versa. Whereas for floating point numbers, range is only one 
aspect of bit-width, and precision is a dominant factor. In 
this paper, our focus is the range information part. 

Bit-width information can be used in a variety of contexts, 
including compiler optimization, program checking and 

verification. [1] As new architectures nowadays expose 
sub-word control, such as SIMD support in ISA and data 
path gating off sections, several areas have been shown to 
benefit a lot from the bit-width analysis recently, including 
DSP applications and Multimedia applications. For example, 
[2] shows impressive advantages taken by silicon 
compilation with bit-width information. When the source 
programs are translated to the hardware implementation, 
FPGA area can be reduced and power consumption can be 
saved largely, together with other performance 
improvements. 
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We can approximately divide the current approaches of 
bit-width analysis into two sets: static analysis at compile 
time and dynamic profiling or analysis at runtime. 

Static techniques use iterative forward and backward data 
flow analysis to infer bit-width information and detect 
useless bits by using heuristics such as program constants, 
loop counts, array bounds, type conversions and masking 
operations. The worst case is considered in static analysis 
thus the bit-width information is conservative. We choose 
this to develop our system for general applications, which 
may require highly reliable information and applicable to all 
possible runtime environment. The scope of interest is 
extended to more areas than those proved useful in the past 
work. 

Runtime profiling and analysis can be more aggressive. 
Profiling during the execution and statistical methods are 
used. These methods are more practical and also generate 
good results. [3] presented a novel stochastic bit-width 
approximation technique using Extreme Value Theory with 
statistical random sampling. The approximation estimates 
the bit-width with a finite overflow or underflow probability 
specified by users from 0.1 to infinitesimal levels. 

Most of the past work in bit-width analysis has been done 
for integers. However, floating point programs can also 
make use of such information. Value range and precision of 
variables have been analyzed in converting the 
floating-point representation to the fixed-point 
representation in some applications [4], [5]. Such work has 
the limitation of depending on the profiling approach. This 
motives us to develop a general static analysis approach of 
bit-width, also taking into special properties of floating 
point numbers into account.  
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II. BIT-WIDTH ANALYSIS 

A. Objective and Overview 
Given a source program, the programmers have already 

defined the default bit-width as per data types, such as 
integers are 32 bits wide in most platforms. Our objective is 
to track each variable individually and determine the least 
bits needed that won't change the behavior and results of the 
original program. 

This objective sets static analysis different from quite a 
lot dynamic methods in the concept of "useful bits". Take 
the instruction (AND a1, b1, 0xAF) for example, if it is the 
only use of b1's last definition, b1 can just use 8 bits in the 
current dependence chain. Such information cannot be 
easily caught only by profiling. Thus, the profiling results 
may not be the limit of performance as some people assume 
due to the suboptimal programming style. Static analysis 
can have better results sometimes. 

For integers, getting the value ranges is enough. For 
floating point numbers, bit-width analysis is to translate 
them into fixed point numbers, resulting in much simpler 
logic. Conforming to IEEE 754 floating point standard, 
every floating point number comprises exponent and 
mantissa. The maximum value of exponent determines the 
range of legal numbers, whereas the maximum value of 
mantissa determines the precision. Thus, the analysis must 
incorporate precision analysis. Our mechanism and 
algorithms are discussed and explained later in detail. 

B. Range Analysis 
Compiler analysis of the value ranges for variables have 

been studied for a long time. The source programs are 
transformed into certain Intermediate Representation (IR) 
first. Later on, the IR structure incorporates the Static Single 
Assignment (SSA) form, i.e. each use of a variable is 
reached by a single definition. 

Range analysis is carried out based on basic blocks in the 
CFG with SSA form. For each basic block, a local 
variable-range table is maintained. Every variable that is def 
or use within the basic block has an entry in the local table. 
Each entry includes the variable name and its range in that 
basic block. All the ranges are initialized to the maximum 
range decided by the data type constraints in the beginning 
unless otherwise indicated by the programmer. 

After building up the data flow graph, we can tight up the 
na?ve ranges though range propagation and analysis. The 
analyzer traverses the basic blocks to propagate range 
information, ending up with result ranges. A forward 
analysis phase starts from the start node in the program CFG, 
visiting basic block follows topological sorting regardless of 
the back edges. All the paths are covered in this analysis. 

The analyzer extracts range information from the 
arithmetic operations or the expression constraints such as 
array index variables. Such range information is used to 
update entries in the local variable-range table. Once the 
analysis in one basic block is done, the range results are 

passed on to all the successors that use its variable 
definitions. The successors update the ranges for variable 
uses before the analyzer continues to manipulate another 
basic block. The first forward analysis continues until it 
finishes the traverse at the end node. 

After that, new range information may trigger the further 
refinement both from source operands to destination 
operands and in the opposite direction. The def-use 
information is extremely important during such analysis. 
This is illustrated in the implementation section. 

C. Precision Analysis 
Precision analysis is independent from range analysis. It 

aims to come up with minimum number of bits for mantissa 
in floating point numbers while attaining "economy" and 
"correctness". "Correct" is a relative concept, defined by the 
users of the applications. 

Automatic differentiation has been employed in [10] to 
automate the sensitivity analysis. However, they didn't 
consider much about the order of variable-specific precision 
inference. For example, if the result is calculated by several 
variables. The order we choose bit-width for each 
arguments matters. The straight forward choice is to use 
brute force and return the most desirable combination. But it 
is obviously impractical when the problem scales up. We are 
also planning to leverage on automatic differentiation. 
Different from others, we want to develop comprehensive 
knowledge based on multi-variable differentiation, thus, we 
could avoid or at least alleviate the enormous computation 
problem. 

[13], [14] introduce a static error analysis technique, 
based on smart interval methods from affine arithmetic, to 
help designers translate DSP codes from full-precision 
floating-point to smaller finite-precision formats. The 
technique gives results for numerical error estimation 
comparable to detailed simulation, but achieves speedups of 
three orders of magnitude by avoiding actual bit-level 
simulation. This is another approach to try. 

 

III. IMPLEMENTATION 

A. Introduction 
We implement the bit-width analyzer using Trimaran 

compiler infrastructure. [8] The optimization works on the 
Intermediate Representation based on the ELCOR 
implementation in Trimaran.  

The control flow and data flow information are available 
for use for any source program. ELCOR also provide the 
def-use information together with other standard tools. 

In the rest part of this section, we introduce several 
implementation choices we have made that make our 
analysis different from others. 

B. Value Range Representation 
There are a few choices to represent the value range. Data 



 
 

range and bit vector are two common used choices. 
Data range keeps the upper and lower bound of the value 

a variable can assume. It allows range propagation on 
arithmetic expressions precisely and easily. An obvious 
shortcoming is that it only permits elimination of the most 
significant bits in a word. 

Bit level builds its base on the fact that some of the bits 
might stay unchanged during the program execution. Each 
range is represented by a bit vector. Each bit in the vector is 
assigned to one the following values: X-don't care, 
U-unknown, always 1 and always 0. Addition, subtraction 
and bit-wise operations are not difficult. But multiplication 
and division can easily leads to bit value saturation, where 
all the bits can be 0 or 1. 

We use a set of intervals instead of a single interval to 
represent the range for each variable. On one hand, because 
the range information is likely to propagate far, the precise 
choice can possibly avoid magnified errors. On the other 
hand, different operations may need different accuracy such 
as division in the following example. In this example, no 
significant results can be found if we only use one interval to 
record the range for variable a. By using multiple, a precise 
value range can easily be inferred. 

 
if (a>0) 

a = a + 1; // a: [1, ∞)  
else 

a = a -1; // a: (-∞, -1] 
b = 2/a;   //a: (-∞, -1]U[1, ∞), b: [-2, 2] 

 
An important thing in this representation is the number of 

intervals. There is a trade-off between granularity and 
complexity. We provided several ways to limit and 
compress the set of range intervals. Firstly, we allow the 
user to specify the maximum cardinality of set. Secondly, 
we provide the tools to merge certain intervals as requested 
during the range propagation. 

C. Transfer functions 
The actually range propagation is made by applying the 

transfer functions, which have been shown in many past 
work such as [2]. The only different in our approach is that 
we are handling multiple intervals. Thus, all the intervals 
will be considered separately.  

Due to the space limitation, we only show two examples 
of the transfer functions as following. The arrow indicates 
whether the range information is propagated from RHS to 
LHS (arrow down) or LHS to RHS (arrow down). Each 
variable has a set of intervals as the range.  

 
Multiplication: a = b * c  

a↓ = b↓ * c↓ = 
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b↑ = a↑ / c↑ = 
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c↑ = a↑ / b↑ = 
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Division: a = b / c 
a↓ = b↓ / c↓ = 

b↑ = a↑ * c↑ = 

c↑ = b↑ / a↑ = 

Note:
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Θ⊗ are operations defined for intervals multiplication 
and division. The details for these two operations follow: 

 

[a,b] ⊗ [c,d] a<=b<=0 a<=0<=b 0<=a<=b
c<=d<=0 [bd, ac] [bc, ac] [bc, ad]
c<=0<=d [ad, ac] [min{ad, bc}, 

max{ac, bd}]
[ad, bd]

0<=c<=d [ad, bc] [ad, bd] [ac, bd]
 

aActually the result range is [a/c, 0) U (0, b/c]. In our application, it is 
simpler and still correct to use [a/c, b/c]. 

[a,b] Θ [c,d] a<=b<=0 a<=0<=b 0<=a<=b 
c<=d<=0 [b/c, a/d] [b/d, a/d] [b/d, a/c]
c<=0<=d [-∞,b/d] U 

[b/c,+∞] 
[-∞,+∞] [-∞, a/c] U 

[a/d, +∞]
0<=c<=d [a/c, b/d] [a/c, b/c]a [a/d, b/c]

 

D. Analysis Integration 
It is necessary to apply the bi-directional analysis for 

range propagation. If we get heuristic information for the 
result of an operation, such information may infer changes 
in the sources. For example, 

a = b - 10; 
arr[a] = sin(a); 

If arr is known to be an array with subscript from 0 to 100 
and assume the program is correct, b's range must be within 
10 to 110 according to the transfer functions. This 
refinement to b may not be achieved in forward data range 
propagation. 

Thus, range analysis usually implements the standard 
bi-directional analysis, which alternate between forward 
analysis and backward analysis until reaching the 
fixed-point. In the case of range analysis, the fixed-point 
means the ranges remain stable or no more range refinement 



 
 

happen. Fixed-point iterations have the disadvantage of low 
efficiency. 

In viewing of this problem, we proposed a new algorithm 
uses a Working Set as the container of new range 
information to drive the range propagation. After the range 
initialization, further changes are local to the dependence 
chains. We call the following propagation update. The 
working set changes dynamically during backward update 
and forward update. 

Forward working set and backward working set are both 
initialized as empty first. During the first pass of forward 
range propagation, if range refinement is found by heuristic 
functions for certain variable, its definition instruction is 
added to the backward working set.  

When either working set is not empty, further range 
propagation is needed. For backward update, the backward 
transfer functions are used to find whether the sources can 
be refined. If so, the sources' definitions are added into the 
working set. This method runs recursively. Forward update 
works similarly, except that instructions which use updated 
definition are added into the forward working set. Backward 
update and forward update alternates until both are empty. 

We show this process with a short piece of codes follows: 
1:  int a[5]={0, 4, 8, 6, 5}; 
2:  int b, c, d, e, f; 
3:  scanf("%d%d", &c, &d); 
4:  b = c + 10; 
5:  f = b * 2; 
6:  scanf("%d", &e); 
7:  c = e * 2; 
8:  b = c; 
9:  e = b; 
10:  if ( a[b] > 5 ) 
11:   return 1; 
Heuristic information is found in instruction 10 for the 

use of variable b, so b's definition instruction 8 is added to 
the backward working set. When processing instruction 8, 
instruction 9 and 10 which use its definition is added to 
forward working set. The changing sequence of Backward 
Working Set is {} -> {10} -> {8} -> {7} -> {6} -> {} -> {} 
-> {}. The sequence of Forward Working Set is {} -> {} -> {} 
-> {9, 10} -> {8, 9, 10} -> {9, 10} -> {10} -> {}. 

Using this method, it is easy to see that the analyzer 
doesn't need to do the forward and backward analysis one 
more time at the end of iterations to confirm that no more 
chances would happen. More importantly, during the 
updating, only the instructions in the working set are 
processed. Not all the operations are extracted and 
calculated in each forward or backward updating pass. The 
working set also provides an estimation of how the updating 
progress goes. 

E. Array Handling 
Besides scalar variables, array variables also play an 

important role in almost all the programs. Most past work 
associates a single range to the whole array for simplicity. 
However, array elements are always closely correlated in 
loop structures. Element level analysis is necessary to get 

precise ranges. 
The following example gives some hints about it:  

int a[11]; 
for (i=1; i<11; i++) 

a[i] = i; 
for (i=0; i<9; i++) 

a[i] = a[i] + a[i+1]; 
a[10] *= a[10]; 

If we treat an array with same range for each element, 
after the first loop, the range is [1, 10], after the second loop, 
the best result we can get is [1, 100]. Obviously taking each 
element as a single variable can generate the most precise 
result. But it cannot scales up even for the simple case 
because array can usually contain tens of thousands of 
elements. Thus, to compress the representation is necessary. 
The idea is similar to what we discuss about the set of 
intervals. 

We represent the data range for array with pairs of data 
ranges. The first range is the subscript. The second range is 
the value range. If we consider the above example in 
element level and divide array a's elements into 5 subscript 
ranges: [1, 2] [3, 4] [5, 6] [7, 8] [9, 10]. After the program 
execution, the results are still more useful than 
non-element-level method. Note that compressions of 
ranges are used. 

[1, 2]: [1, 2] x [1, 2, 3, 4] = [1, 2, 3, 4, 6, 8] = [1, 8] 
[3, 4]: [3, 4 x [3, 6] = [9, 24] 
[5, 6]: [5, 6] x [5, 8] = [25, 48] 
[7, 8]: [7, 8] x [7, 10] = [49, 80] 
[9, 10]: [9, 10] x [9, 10] = [81, 100] 
If the subscript value of certain array element access is 

available, the analyzer does the range propagation for the 
corresponding range pair. Otherwise, range propagation is 
carried out on each range pair. 

F. Loop Handling 
Loop is an important concern in data flow analysis. We 

use a preliminary method. Our method runs the loop 
iteration for several times to observe the changes of the data 
ranges, if it is monotonically decreasing, we assume the 
range won't expend as iterations. Notice that this may be 
aggressive. Meanwhile, we try to detect the counted loop. If 
the number of loop iterations is small enough, we iterate 
over for such times regardless of the monotonicity to get the 
precise ranges.  

 

IV. RESULTS 
We test several benchmarks under the Trimaran platform. 

As the analyzer has not completed the precision analysis 
part and bit-width information is not further used in the 
lower level applications such as FPGA design. We compare 
the bits used by registered in the program execution. The 
comparison assumes each variable is assigned to its own 
register. This is implemented in Elcor by using virtual 
registers. We show the bits elimination result for scalar 
variables and array variables separately. 

Notice that for each variable, the maximum of its 



 
 

bit-width through out the program is counted. This makes 
the bits elimination in partial execution invisible. The 
following table shows the percentage of bit-widths that are 
identified, with respect to the number of bits indicated by the 
source programs. 

 
Name bilinterp sha median Intmatmul 
Source MMX MIT UTdsp Raw 
Bit-width% 70.9 96.8 61.6 95.4 
 
These figures show reasonable amount of the bits saved 

but it is still a gap with what we can get optimal bit-widths. 
Heuristic is rather important in the final benefit achieved 
from the bi-directional range propagation. We are still 
adding some machine dependent constraints to get better 
approximation. Note that these benchmarks may have 
bit-width results in other publications. However, because 
we are doing the analysis at different level and platform it is 
not comparable. 

 
We also test the array separately, the benchmark of 

fib_mem is a good example. 
 
#include <stdio.h> 
#include <stdlib.h> 
int a[100]; 
 
int main (int argc, char *argv[]) 
{ 
  int i,n; 
 
  if (argc < 2) { 
    printf("Usage: fib <n>\n"); 
    exit(1); 
  } 
  n = atoi(argv[1]); 
 
  a[0] = 0; 
  a[1] = 1; 
  for (i=2 ; i <= n ; i++) 
    a[i] = a[i-1] + a[i-2]; 
  printf("fib %d = %d\n", n, a[n]); 
  exit(0); 
} 
 
Static analysis find the input of n is less than 100 because 

it is used as subscript of a. Notice that fib(49) and larger n 
incur overflow for the integers. Due to saturation strategy 
chosen, the bit-width is 32 if overflow happens. 20.3% 
bit-width elimination for array a is achieved even when 
using range compression. 

For floating point numbers, we only have the range 
information now. One way to show the result is to see the 
difference of bit-width requirements for exponent in 
floating point numbers. But only 8 bits are needed for the 
single precision floating point numbers. The difference is 
not significant. Thus we don't show the result here. 

 

V. FUTURE WORK 
Compile time analysis is constrained by the fact that the 

operand range may vary drastically over the execution 
depending on the input data. Some of the applications of 
bit-width analysis such as operand-gating and instruction 
parallelization won't get significant benefit from the 
conservative approximation. In such cases, the runtime 
analysis is useful which can infer ranges depending on the 
input values. Thus, compile time analysis can be augmented 
with dynamically techniques as also suggested in future 
work in [9] 

Using data ranges as the range representation has the 
shortcoming of losing the information for least significant 
bits. For example, in the instruction (AND a1, b1, 0xAF), 
some of the bits if either fixed or "don't care". Combining bit 
vector representation and data ranges can provide more 
bit-width information. Again, the meaning of this work is 
decided by how the bit-width information is used at last. 

Loop handling is simple and aggressive. However, 
sometimes it will still compromise due to the dependency on 
monotonicity. Close-form solution is a good method in 
certain cases which uses sequence identification and 
classification. [11] We could add it in our loop handler, 
though close form solution cannot solve certain situations 
such as branches inside the loop. 

Precision analysis is necessary for floating point numbers 
bit-width. We will finish the automatic differentiation 
approach. Recently work also suggests an interesting 
approach by profiling the expected input to estimate errors 
[15]. 

 

VI. CONCLUSIONS 
In this paper, we did a short survey on the bit-width 

analysis and proposed compiler analysis of bit-widths in 
general applications. The static analysis method provides 
conservative but precise approximation regardless of the 
runtime conditions. Our work has targeted at both integer 
applications and floating point applications. We used more 
precise representations for data value ranges. Furthermore, 
we introduced the element level analysis for array variables. 
To make the range propagation more efficient, we suggested 
an alternative for the standard fixed-point iterations in 
bi-directional range analysis. The bit-width analyzer is 
implemented and tested on Trimaran compiler structure, 
which shows the applicability and effectiveness. 
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