

Applications of Lean Ideas to the Aerospace Industry Professor Deborah Nightingale, MIT Lean Thinking Strategies and Applications June 25, 2004

- Lean Aerospace Initiative origin and mission
- Functional lean successes
- Successes through interaction between functions
- Success through enterprise integration and value creation
- Total enterprise integration of all stakeholders
- Enterprise transformation insights

Lean Aerospace Initiative (LAI)

1993 Genesis of the Lean Aerospace Initiative

US Air Force asked:

Can the concepts, principles and practices of the Toyota Production System be applied to the military aircraft industry?

Yes!

Historical Industrial Paradigms

1885	1913	1955-1990	1993	
Craft Production	Mass Production	Toyota Production System	Lean Enterprise	
Machine then harden Fit on assembly Customization	Parts inter- changeability Moving production line Production engineering	Worker as problem solver Worker as process owner enabled by:	"Lean" applied to all functions in enterprise value stream	
Highly skilled workforce Low production rates High cost	"Workers don't like to think" Unskilled labor High production rates Low cost Persistent quality problems Inflexible models	Training Upstream quality Minimal inventory Just-in-time Eliminate waste Responsive to change	Optimization of value delivered to all stakeholders and enterprises in value chain	
			Low cost Improving	
		Low cost Improving productivity High quality product	High quality product Greater value for stakeholders	

"Lean" is elimination of waste and efficient creation of enterprise value

web.mit.edu/lean

 $\ensuremath{\textcircled{\sc 0}}$ 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 5

Lean Aerospace Initiative

Consortium

- > Airframe, engine, avionics, missile and space companies
- > Air Force agencies and System Program Offices (C-17, F-22)
- >NASA, Army, Navy
- > Pentagon—OSD, AF Secretariat
- International Association of Machinists
- > Massachusetts Institute of Technology

LAI Consortium ... a venue for collaboration on Aerospace challenges

LEAN AEROSPACE INITIATIVE AVIONICS/MISSILES

BAE SYSTEMS North America Northrop Grumman Electronic Systems Raytheon Co. Raytheon RMS, NCS, SAS Rockwell Collins, Inc. Textron Systems Corp Lockheed Martin Systems Integration Group L3 Com

Space

Aerojet-General Corp. Lockheed Martin Space Systems Co. Northrop Grumman Space Technology

Airframe

Boeing Integrated Defense Systems Boeing Commercial Airplanes Boeing Phantom Works Lockheed Martin Aeronautics Company Northrop Grumman Integrated Systems Sikorsky Bell Helicopter

MIT

Center for Technology, Policy, and Industrial Development School of Engineering: Aerospace Mechanical Sloan School of Management

Other Participants

IAM AIA DAU IDA International Collaborations: Linköping University Warwick, Bath, Cranfield Nottingham Universities

Propulsion/Systems

Rolls Royce (N.A.) Pratt & Whitney Hamilton Sundstrand Curtiss-Wright Flight Systems Harris Government Comm. (N United Defense Ground Systems Div. Aerospace Testing Alliance

US Air Force

SAF/AQ Aeronautical Systems Center Air Force Research Laboratory (Materials and Manufacturing Directorate) v. Space and Missile Center Electronic Systems Center

Other Government

DCMA NASA NAVAIR AMCOM OUSD(AT&L)

web.mit.edu/lean

SPOS: F202 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 7

LAI Mission and Goals

LAI Mission: Research, develop and promulgate knowledge, principles, practices and tools to enable and accelerate the envisioned transformation of the greater US aerospace enterprise through people and processes.

- 1. Support the on-going lean transformation of industry
- 2. Enable lean value-creating supplier base
- 3. Support lean transformation of the government
- 4. Educate and train stakeholders in value-creating lean principles and practices
- 5. Improve effectiveness of organizations and all the employees across the total enterprise
- 6. Support member lean implementation efforts by sustaining tools and knowledge base and by sponsoring outreach events

LAI Has Expanded to a Total Enterprise Focus

Functional Lean Successes •Manufacturing •Product Dev. •Supplier Network Successes Through Interaction Between Functions

Lean Applied to Enabling Processes •HR

•IT, etc.

Transition from Waste Minimization to Value Creation Success Through Enterprise Integration

- Success Through Total Enterprise Integration of All Stakeholders •Industry •Government
- •Suppliers
- Employees

"Islands" of Success

Functional Lean Successes

Functional Lean Successes •Manufacturing •Product Dev. •Supplier Network Successes Through Interaction Between Functions

Lean Applied to Enabling Processes •HR

•IT, etc.

Transition from Waste Minimization to Value Creation Success Through Enterprise Integration

- Success Through Total Enterprise Integration of All Stakeholders •Industry •Government
- •Suppliers
- Employees

"Islands" of Success

Lean Works Everywhere

- Export licensing:
 - 56 steps to 21 steps
 - 52 handoffs to 5 handoffs
 - Cycle time from 60 days to 30 days
 - 50% 1st pass yield to >90% 1st pass yield
- Payroll:
 - Reduced non-value added steps by 50%
 - 15 forms to 1 form
 - Reduced signatures/ approvals by 25%
- Recruiting:
 - Cycle time from 14 days to 48 hours
 - 50% reduction of paper resumes

- **Proposal**:
 - Cycle time from 30.6 days to 7 days
- Program support:
 - \$3M savings
- Interface management:
 - Proposal, contract, billing, and collection steps
 - Generated \$21M additional cash
- Engineering order release:
 - Cycle time from 76 to 4 days
 - Total queue time from 56 days to 60 minutes
- Process definition:
 - Work package completion cycle from 4 months to 3 wks
- Financial reporting:
 - 13 weeks to 3 weeks

Lean Engineering Case Studies

web.mit.edu/lean

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 12

• "Invention is 1% inspiration and 99% perspiration" - TA Edison

- Engineering processes often poorly defined, loosely followed (LAI Case Studies)
- 40% of design effort "pure waste" 29% "necessary waste" (LAI Workshop Survey)
- 30% of design charged time "setup and waiting" (Aero and Auto Industry Survey)

Engineering & Manufacturing Have Similarities and Differences

	Manufacturing	Engineering
Define Value	Visible at each step, defined goal	Harder to see, emergent goals
Identify Value Stream	Parts and material	Information & knowledge
Make process flow	Iterations are waste	Iterations often beneficial
Customer pull	Driven by Takt time	Driven by needs of enterprise
Perfection	Process repeatable without errors	Process enables innovation and cuts cvcle time

The Seven Info-Wastes

1. Over-production	Creation of unnecessary data and information; Information over-dissemination; Pushing, not pulling, data
2. Inventory	Lack of control; Too much in information; Complicated retrieval; Outdated, obsolete information
3. Transportation	Information incompatibility; Software incompatibility; Communications failure; Security issues
4. Unnecessary Movement	Lack of direct access;Reformatting
5. Waiting	Late delivery of information; Delivery too early (leads to rework)
6. Defective Products	Haste; Lack of reviews, tests, verifications; Need for information or knowledge,data delivered
7. Processing	Unnecessary serial production; Excessive/custom formatting; Too many iterations

Engineering Requires the Seamless Flow of Information and Knowledge

- Information can be an IT problem - solutions exist, but are not easy
- Knowledge is a people problem - requires communication - this is hard!

Program Phase

From Hoult et al., "Cost Awareness in Design: The Role of Data Commonality", 1995.

- Flow cannot be achieved until engineering processes move and communicate without errors or waiting
 - 62% of tasks idle at any given tin (detailed member company study)
 - 50-90% task idle time found in Kaizen-type events (case studies)

Co-Location Improves Integration

Scope: Class II, ECP Supplemental, Production Improvements, and Make-It-Work Changes Initiated by Production Requests

Value stream simplified, made sequential/concurrentSingle-piece flow implemented in co-located "Engineering cell"Priority access to resources

Category	% Reduction
Cycle-Time	75%
Process Steps	40%
Number of Handoffs	75%
Travel Distance	90%

Case Results for Engineering Release Process

- Value stream mapped and bottlenecks found
- Process rearranged for sequential flow
- Waiting and delays removed
- Reduced Cycle time by 73%
- Reduced Rework of Released Engr. from 66% to <3%
- Reduced Number of Signatures 63%

Successes Through Interaction Between Functions

Functional Lean Successes •Manufacturing •Product Dev. •Supplier Network Successes Through Interaction Between Functions

Lean Applied to Enabling Processes •HR •IT, etc. Transition from Waste Minimization to Value Creation Success Through Enterprise Integration

- Success Through Total Enterprise Integration of All Stakeholders •Industry •Government
- Suppliers
- Employees

Product Dev.
 Supplier Network
 "Islands" of Success

Supplier Network Case Studies

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 21

F/A-22 Raptor Supplier Network Illustrates Central Challenge

F/A-22 is supported by an extensive multi-tiered supplier network

web.mit.edu/lean

SOURCE: From Don Handellus Firs 22s War One Cost of polateing Lean ambridge Executive Workshop - 22 Aerospace Initiative Plenary Conference, March 26, 2002.

Lean Supply Chain Management Differs Sharply from Conventional Practices

ILLUSTRATIVE CHARACTERISTICS	CONVENTIONAL MODEL	LEAN MODEL
Number & structure	Many; vertical	Fewer; clustered
Procurement personnel	Large	Limited
Outsourcing	Cost-based	Strategic
Nature of interactions	Adversarial; zero -sum	Cooperative; positive -sum
Relationship focus	Transaction -focused	Mutually -beneficial
Selection criteria	Lowest price	Performance
Contract length	Short-term	Long-term
Pricing practices	Competitive bids	Target costing
Price changes	Upward	Downward
Quality	Inspection -intensive	Designed-in
Delivery	Large quantities	Smaller quantities (JIT)
Inventory buffers	Large	Minimized; eliminated
Communication	Limited; task -related	Extensive; multi -level
Information flow	Directive; one -way	Collaborative; two -way
Role in development	Limited; build -to-print	Substantial

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 23

Boeing 737 "Next Generation"-- Synchronized Work Flow throughout the Enterprise Value stream to Support Moving Line

- Focus on pull, not push
- Quality ➡Process Kaizen ➡ System Kaizen
- Value stream focus;Nine step lean process
- Breakthrough process redesign
- Entire system synchronized to support moving line

AFTER

BEFORE

- Reliable & delivered on time, but at what cost?
- Quality emphasis; push system; point solutions
- Imperative (1996): Increase production from 10 to 28 planes per month to keep up with jump in demand & meet delivery commitments -- never before done

Another Example: Engine Parts Casting Supplier Worked with Customer Company to Achieve Synchronized Flow

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 25

Case Study Shows Significant Performance Improvements through Supplier Partnerships

Case study: Major producer of complex airframe structures

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 26

Supplier Partnerships Driven by Strategic Corporate Thrust to Develop Integrated Supplier Networks

KEY PRACTICES	BEFORE	AFTER
Reduced and streamlined supplier base		
 Number of direct production suppliers 		162
Improved procurement efficiency		
 Procurement personnel as % of total employment (%) 	4.9	1.9
 Subcontracting cycle time (days) 	13	7
Improved supplier quality and schedule		
 Procurement (dollars) from certified suppliers (%) 		75
 Supplier on-time performance (% of all shipments) 	76.4*	83.0
Established strategic supplier partnerships		
 Procurement dollars under long-term agreements(%) 		95
 "Best value" subcontracts as % all awards 	50.0	100.0

Early supplier integration into design delivers best value to the customer

- Early and major supplier role in designing complex products with integral system architecture in a collaborative design process -- IPTs; joint configuration control
- Up-front integration of product development, manufacturing processes and supplier networks
- Delegation of progressively greater responsibility for designing, testing and producing more and more complex parts/components
- Leveraging a wealth of in-depth supplier-based technical knowledge and innovative capacity
- Value analysis and target costing to achieve substantial cost reductions
- Product lifecycle commitment & incentivized contracting

Arm's length; interfaces totally Collaborative; but constrained by collaborative and seamlessly prior workshare arrangements integrated, enabling architectural innovation

ARCHITECTURAL INNOVATION: Major modification of how components in a system/product are linked together

- Significant improvement in system/product architecture through changes in form/structure, functional interfaces or system configuration
- Knowledge integration over the supplier network (value stream perspective ; primekey suppliers-subtiers; tapping supplier technology base)

Fostering Innovation across Supplier Networks Ensures Continuous Delivery of Value to all Stakeholders

- **Research:** Case studies on F-22 Raptor avionics subsystems -- what incentives, practices & tools foster innovation across suppliers?
- Major finding: Innovation by suppliers is hampered by many factors. This seriously undermines weapon system affordability.
 - Excessive performance and testing requirements that do not add value
 - One-way communication flows; concern for secrecy; "keyhole" visibility by suppliers into product system architecture
 - Little incentive to invest in process improvements due to program uncertainty; limited internal supplier resources
 - Yearly contract renegotiations wasteful & impede longer-term solutions
- Recommendations:
 - Use multiyear incentive contracting & sharing of cost savings
 - Improve communications with suppliers; share technology roadmaps
 - Make shared investments in selected opportunity areas to reduce costs
 - Provide government funding for technology transfer to subtiers web.mit.edu/lean

Case Study on Electronic Integration of Supplier Networks

Challenge: Electronic integration of supplier networks for technical data exchange as well as for synchronization of business processes

- Important success factors include:
 - Clear business vision & strategy
 - Early stakeholder participation (e.g., top management support; internal process owners; suppliers ; joint configuration control)
 - Migration/integration of specific functionality benefits of legacy systems into evolving new IT/IS infrastructure
 - Great care and thought in scaling-up experimental IT/IS projects into fully-functional operational systems
- Electronic integration of suppliers requires a process of positive reinforcement -- greater mutual information exchange helps build increased trust, which in turn enables a closer collaborative relationship and longer-term strategice partnership Nightingale Cambridge Executive Workshop - 31

Lean Effect on Aerospace (LEAP) Case Studies

web.mit.edu/lean

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 32

Purpose and Approach

- Purpose: Conduct an exploratory study to respond to an LAI Executive Board request:
 - What has been the impact of lean on the US aerospace industry?
 - To what degree have lean principles diffused through the industry?
- Approach:
 - **Survey:** Broad overview -- both impact & diffusion
 - Focused case studies: Selected cases of lean transformation; diverse set of programs & products; site visits & structured interviews; common method

Assess accomplishments

Identify key enablers and future challenges

Case Studies

Phalanx

AMRAAM Commercial Aviation Electronics Sources: www.lockheedmartin.com, www.boeing.com, www.rockwellcollins.com, www.raytheon.com © 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 34

737 Fuselage Boeing Commercial Airplane Group, Wichita, KS 1996-2001

Results:

1996 Imperative:

Challenge:

25% decrease in unit cost 50% decrease in labor hours/unit (1998-2000) Reduced flow time by 21% (from "classic" to "Next Generation" models) Keep up with jump in demand –from 10 to 28 planes/mo. Reliability & on-time delivered, but at what cost? Need to reduce flow time.

- Quality ➡Process Kaizen ➡ System Kaizen
- Value stream focus Nine step lean process
- Breakthrough process redesign
- Senior leadership commitment
- Worker education Knowledge at all levels
- Lean maturity assessment
- Supply chain partnerships

Lockheed Martin Aeronautics Company, Ft. Worth, TX 1992 - 2001

F-16 Falcon

Constant price with decreasing production rates (180/yr to 24/yr) and significantly

improved capability

Continuous customer-focused improvements

1992 Turning Point:

Results:

Quality problems; cost-overruns Pressure from Air Force customer for change Need to reduce number & cost of non-conformances

Results:

Turning Point: Oct 1998-Sept '99

Challenge:

Commercial Aviation Electronics

Rockwell Collins - Melbourne, FL 2000-2002

1st test yield improved by as much as 50%

37% increase in labor productivity

98% responsiveness & customer acceptance no longer good enough

Improve cycle time & cost beyond what current processes could deliver; respond to competitive pressures

- Value stream mapping Enterprise-wide
- Creation of single-piece flow in product work cells
- Work cells for simple products, then for more complex products learning feedback
- Committed leadership & worker solidarity
- Closely-linked relationships with suppliers

Aggressive learning process in lean implementation leading to significant productivity improvements

Phalanx *Raytheon Missile Systems, Louisville, KY* 1999 - 2000

Results:

Turning Point: 1996 Challenge:

Integration of repair and upgrade with new system delivery 50% reduction in cycle time Production & profitability problems

Make program more than marginally profitable complex product; difficult to produce; high % of parts produced internally; long lead times

- 1996-'98: Overcame initial hurdles; built on Agile basics
- Phalanx adopts Hughes Agile program; Raytheon acquires Hughes
- Navy privatizes depot; production moves from Tucson to Louisville
- 1999-'02: Integration of program enterprise
- Combined new production & sustainment at the same site
- Fusion of Agile/Six-Sigma/Lean principles
- Cultural transformation trust-based relationships

Expanding Raytheon Six Sigma throughout the enterprise (to customers and sustainment infrastructure)

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 38

AMRAAM

Raytheon Missile Systems (RMS), Tucson, AZ 1992-2001

Results:

"...cut cost of a missile from \$1 million to \$250,000 in 7 years, doubled deliveries in 12 months, improved reliability to three times what RMS contracted for."*

Integration of production and sustainment

1996 Turning Point:

g Point: Tough competition between Hughes & Raytheon; need to eliminate waste & create capability to quickly react to changing environment

- Collocated development, production, repair & upgrade operations
- Six Sigma/Lean
- Enterprise-wide transformation focus; empowered workers; extensive training
- Parts count reduction; closely-linked relationships with suppliers
- Trust-based relationship with customer

Six Sigma/Lean tools institutionalized enterprise-

wide

Atlas Lockheed Martin Astronautics, Littleton, CO 1995-2000

Results: Production cycle time reduced by 50% (from 48 mo. to 24) Booster of Atlas III has 11,000 fewer parts than booster of Atlas IIAS

1995

Turning point: Customer demand to reduce cycle time (48 to 24 mo.)

- Challenge: Double production capacity without doubling the facility Reduce cycle time & cost while maintaining mission success
 - Emphasis on cycle time reduction
 - LM-21 Initiative; Kaizen events; value relationships with suppliers
 - Committed & engaged leadership
 - Reorganization around value streams
 - Significantly reduced parts count
 - Engaging workforce in self-reinforcing learning process
 - Continued efforts to evolve high-performance supplier network
 - Pulling LAI tools/knowledge

- Strong evidence of successful lean transformation in aerospace -- acceleration of progress since 1997
- Significant progress made on factory floor but also noticeable diffusion of lean beyond the factory floor
- Based on survey, diffusion of lean to supplier base seriously lagging
- Case studies show that common achievements embrace quality improvements, cycle time reduction, improved customer satisfaction and COST REDUCTION

 significant benefits of lean even across enterprise boundaries
- Case studies underscore importance of enterprise-wide systemic change initiatives & committed top-down leadership
- Customer engagement in change process as a key stakeholder shown to accelerate change process
- Lean and Six Sigma two mutually complementary change initiatives merging across the industry into a unified enabler for systemic change

Future Challenges

- Wide recognition of need to continue expanding achievements beyond the factory floor -- engineering, human resources, finance, IT/IS
- Need for greater integration across functional groups & organizational interfaces throughout the program value stream (e.g., with customers, supplier networks)
- Challenge of greater integration within multi-program enterprises along multiple value streams (e.g., design commonality, process standardization)

Success Through Enterprise Integration and Value Creation

Functional Lean Successes •Manufacturing •Product Dev. •Supplier Network Successes Through Interaction Between Functions

Lean Applied to Enabling Processes •HR

•IT, etc.

Transition from Waste Minimization to Value Creation Success Through Enterprise Integration

- Success Through Total Enterprise Integration of All Stakeholders •Industry •Government
- •Suppliers
- Employees

|· | | |

"Islands" of Success

Lean Journey: From the Factory Floor to the Total Enterprise

"A lean enterprise is an integrated entity that efficiently creates value for its multiple stakeholders by employing lean principles and practices."

> - Lean Enterprise Value, Murman et al.

Lean Enterprise Value Principles

- Create lean value by doing the right job and doing the job right
- Deliver value only after identifying stakeholder value and constructing robust value propositions
- Fully realize lean value only by adopting an enterprise perspective
- Address interdependencies across enterprise levels to increase lean value
- People, not just processes, effectuate lean value

Enterprise Stakeholders

web.mit.edu/lean

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 46

Creating Value

Delivering what stakeholders want and need. For example:

- Timely, quality products at a reasonable price to customers
- Competitive returns on investments to shareholders
- Rewarding work environment, stable jobs for workforce
- Early and informed involvement of suppliers
- Environmental and civic responsibility to the public

Value Creation Framework

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 48

web.mit.edu/lean

From the Beginning...

- Acquisition Reform Pilot Program
- Minimum Requirements
 - Performance Related Few Specs, CDRLs
- Waivers from Most FARs Allowed Commercial Suppliers to Join the Team
- Strong Integrated Product Team with Boeing, SPO and Suppliers

Lean Goes in First

- Supplier Team Helped Refine
 Partitioning of Design (Traded Work
 Share for Team Benefit)
- **Big Picture Look at Kitting**
 - Batteries Shipped to Actuator Supplier
 - Containers Shipped to Strake Supplier

Total System Design (Product and Process) Supports Lean

New Start on Factory Design

Performance Characteristic		"Business- As-Usual" Forecast
Cycle Time	Hrs	48
Touch Labor	Min	300
Floorspace	Ft ²	60,000
People Travel	Ft	1600
		(to/from dock)
Two-Man Ops	Min	36
Inventory Turns	-	3
Safety & Health	-	Heavy Lifts

- EMD Hardware Produced in Batch & Queue Factory
- "Just-in-Time" Learning Used To Set Up New Factory

Single Classification Co-Located Support
Point Of Use Delivery Returnable Containers
Moving Line Ergonomic Lift Assists
Continuous with Kanbans Daily Plans & Measures

Dismal Forecasts Prior to New Production System

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 52

Boeing Factory Today*

Huge Improvements from Business-As-Usual!!! * Until Next Accelerated Improvement Workshop

Improve It Again

August Workshop Results

- 40% Increased Throughput
- Removing Work Content & Balancing Line

Accelerated Improvement Workshop Tackled Challenge of Meeting Production Rates

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 54

Improving Downstream

- Mantech Provided Contract Support to Drive Lean Through the Value Stream
- Small and Medium Enterprise Initiative (SMEI)
 - Six JDAM Suppliers Participate in 4-Year Program
 - Training, Action Plans, Metrics
- Pilot Supplier Development Tools
- Incentive for Commercial Suppliers to Take a Risk on DoD Contract
- "Success" Means Supplier Owns the Vision

- Lean is a Long Term Commitment
 - Cannot Let Job Rotations Weaken the Drive
- We Will Never Be Lean Enough
- Lean Gains Importance as Complexity Increases
- Lean is Not a Launch and Leave Tool
 - With a Lean Factory, Scrap Can be Created at Alarming Rates if Suppliers Lose Their Edge or Process Control Moves to the Back Burner
- Lean is not for the Feint of Heart
 - Trust and Relationships Matter

Traditional Value Chair

web.mit.edu/lean

Establish A Lean JDAM Enterprise

S

- ID Value Stream/Customers
- Maintain Alignment **Across Organizations**
- Est. Performance Metrics to Gage
- Ime Tasks
- ID Value to All Customers
- Eliminate Casual Interactions
- Pursuit of Excellence

Total Enterprise Integration of All Stakeholders

Successes Through Interaction Between Functions Lean Applied to

•IT, etc.

Enabling Processes

Transition from Waste Minimization to Value Creation Success Through Enterprise Integration

- Success Through Total Enterprise Integration of All Stakeholders •Industry •Government
- Suppliers
- Employees

"Islands" of Success

Air Force Lean Now Initiative Established in Collaboration with LAI

What: Lean Transformation of Air Force Material Command

- Why: Provide On Time, Effects Based Capability to the War Fighter
- Who: Lean Aerospace Initiative Consortium Members Teamed with AFMC within the LAI venue

LAI Has Provided Lean Now Deployment Venue

- **AFMC Leadership**
- Industry Members Provided Strong Support
 - Many Members Provide Near "Full time" SMEs at no cost

Supporting LAI Members

 Boeing, Lockheed Martin, MIT, Northrop Grumman, Pratt and Whitney, Raytheon, Rockwell Collins, Rolls-Royce, Textron

Lean Now Workshop Developed by LAI Industry Members, MIT and Air Force Team ... The Best of the Best!

One Week Facilitator Course Developed...LAI Industry Members, MIT, Air Force...The Best of the Best!

LAI Developed Tools Deployed
 LESAT, GLESAT, PDVSMA, LEV Simulation Game, Enterprise TTL
 MIT Process to develop feedback of tools and methods

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 63

Prototype Focus...the Interfaces

Alpha Contracting (Global Hawk) Northrop-Grumman Raytheon MIT LAI Global Hawk SPO

Contract Closeout (F-16) LAI SME MIT/LAI F-16 SPO DCMA, DCAA, DFAS LM Aero

Procurement Request (Ogden ALC) MIT LAI Discipline Experts

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 64

Local Results and Behavior Change... New Capabilities and Skills,

CTF OFP Load (F/A-22) Selected improvements within processes:

- Software Install Time Reduced from 97 hours to 46 hours
 - Validated on the F/A-22
- 50-95% Span Time Reduction
- 56% reduction in non-value added steps
- 91% reduction in part traveled distance
- Implemented web based spares ordering system Process improvements:
 - Parts purging within CTF compound
 - Dedicated parts research

CTF deploying lean (VSM, Kaizens, Internal Coaches, etc...)

Alpha Contracting (Global Hawk)

- 37% Initial cycle time reduction for Alpha Contracting
- Created Enterprise Level Tier I and Production Tier II VSM's
- Project Plans Ongoing (10 Major Events Completed):
 - ISS \$2M savings per ship set / \$49M life cycle savings
 - AICS/GICS \$33.8M life cycle savings
 - 38% Production delivery cycle time reduction per BL-10
 - Additional \$5M Est. Savings for Producibility Initiatives

AEDC Groundbreaking Initiative:

- Total Enterprise Approach Not Program Specific
- Numerous Organizational Interfaces
 - Government-industry
 - Tri-service: Army, Navy, And Air Force
 - Cross Functional: S&T, Ground Test, Flight Test, Program Office, Depot Maintenance, Logistics, OEM Design And Manufacture
- Embedded Contractor (ATA) In AEDC Daily Operations
 - Recently Joined LAI as Full Member

Enabling Capabilities of Lean Enterprise Transformation

Enterprise **Assessment &** Implementatio n Insights

Integrated Enterprise

Process Architecture View of Lean Enterprise

Enterprise Process Architecture

Life Cycle Processes

- Business Acquisition and Program Management
- Requirements Definition
- Product/Process Development
- Supply Chain Management
- Production
- Distribution and Support

Enabling Infrastructure Processes

- Finance
- Information Technology
- Human Resources
- Quality Assurance
- Facilities and Services
- Environment, Health, and Safety

Enterprise Leadership Processes

- Strategic Planning
- Business Models
- Managing Business Growth
- Strategic Partnering
- Organizational Structure and Integration
- Transformation Management

What Is LESAT?

- A tool for self-assessing the present state of "leanness" of an enterprise and its readiness to change
- Comprised of:
 - Capability maturity model for enterprise leadership, life cycle and enabling processes
 - Supporting materials: (Facilitator's Guide, Glossary, etc.)

Source: Lean Aerospace Initiative, MIT © 2001

web.mit.edu/lean

LESAT Structure is Consistent with Enterprise Architecture

Source: Lean Aerospace Initiative, MIT © 2001

web.mit.edu/lean

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 73

LESAT as a Leading Indicator of Improved Enterprise Value Delivery

web.mit.edu/lean

@ 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 74

Leading Indicator Relations in Lean Enterprise Transformation

Findings: Leadership Drives Transformation of Life Cycle Processes

Source: Cory Hallam, 2003

web.mit.edu/lean

 $\ensuremath{\textcircled{\sc 0}}$ 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 76

Findings: Leadership Drives Transformation of Enabling Processes

@ 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 77

Findings: Strong Infrastructure Enables Lifecycle Transformation

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 78

Main Empirical Findings

- Industry is in its lean enterprise infancy
- There are significant correlations in the lean maturity of enterprise processes
- Leadership commitment is critical to lean enterprise transformation
- Infrastructure processes such as IT and HR are critical lean enterprise enablers
- Management information feedback is present in high lean maturity enterprises

"The soft stuff is the hard stuff"

-Chris Cool, VP, Lean Enterprise Northrop Grumman, ISS Sector

- Transformation is continuous and takes years, not months
- Senior executive leadership, commitment, and involvement are critical success factors in enterprise transformation
- Biggest challenge is institutionalizing lean and sustaining the change
- Enterprises must be viewed as a holistic system

Enterprise leader *must* lead a change initiative of this magnitude -- cannot be delegated!

"The notion that you can drive lean from the bottom up is 'pure bunk'."

-Mike Rother Becoming Lean,1998

Enterprise Leadership

- Major undertaking to transform enterprise from massproduction orientation to one based on Lean
- Comprehensive change initiative touches every person and process in the organization
- Enterprise Leader *must* lead a change initiative of this magnitude
- Success depends upon the personal involvement, understanding, and leadership of enterprise leader
- CANNOT BE DELEGATED

Implications for Industry

- Establish senior leadership commitment to begin transformation
- Improve maturity in leadership/transformation practices
- Create formal information feedback mechanisms to
 - prioritize strategically important lean improvement efforts
 - build on lean capabilities
 - build leadership support for continued lean change/operations

Evolution of Lean: Total Integrated Enterprise

web.mit.edu/lean

Questions

web.mit.edu/lean

© 2004 Massachusetts Institute of Technology Nightingale Cambridge Executive Workshop - 86