Advanced Nuclear Energy Systems:Heat Transfer Issues and Trends

Michael Corradini
Wisconsin Institute of Nuclear Systems
Nuclear Engr. & Engr. Physics
University of Wisconsin - Madison

ENERGY SUSTAINABILITY

Conditions Needed for Energy Sustainability:

- **◆** Economically feasible technology
- **◆ Minimal by-product streams**
- **◆** Acceptable land usage
- **◆** "Unlimited" supply of energy resource
- ◆ Neither the power source nor the technology to exploit it can be controlled by a few nations/regions

Nuclear energy systems meet these conditions and can be part of the solution for future energy growth (Electricity growth estimates range 1 - 4.5%/yr)

Evolution of Nuclear Power Systems

Generation I

Early Prototype Reactors

- Shippingport
- •Dresden,Fermi-I
- Magnox

Generation II

Commercial Power Reactors

- •LWR: PWR/BWR
- CANDU
- •VVER/RBMK

Generation III

Advanced LWRs

- •System 80+ •AP1000
- •ABWR •ESBWR

Generation IV

- Enhanced Safety
- More economical
- Minimized Wastes
- Proliferation
 Resistance

Advanced Light Water Reactors: AP1000-Enhanced Passive Safety

Advanced Light Water Reactors: ESBWR-Simplified Operation & Safety

Advanced Light Water Reactors: Multiphase Heat Transfer Issues

- Passive systems can simplify construction and operation but may complicate engr. analyses
- Natural-circulation multiphase flow in complex geometries (plant geom. dependent)
- Condensation heat transfer with non-condensible gases in reactor containment
- Multiphase/multicomponent heat transfer in safety analyses beyond the ALWR design base
 - ◆ In-vessel lower head cooling & Ex-vessel debris coolability
 - **♦** Multiphase/multicomponent direct-contact heat-exchange

A More Advanced LWR

The next logical step in path toward simplification?

SUPERCRITICAL WATER REACTOR

Heat Transfer in SCW Reactor:

SCW Flow Control and Instabilities

Wisconsin Institute of Nuclear Systems

Liquid-Metal-Cooled Fast Reactor (e.g. LFR)

Characteristics

- Pb or Pb/Bi coolant
- 550°C to 800°C outlet temperature
- 120-400 MWe

Key Benefit

 Waste minimization and efficient use of uranium resources

Liquid Metal-Water Direct Contact HX

Advantages:

scons in Ing.

- Vigorous interaction between the liquid metal and the water
- Excellent contact so smaller volume is required to transfer the same amount of energy.
- Potential replacement of IHX loop.
- => Need to determine the local heat transfer coefficient and flow stability for a range of flow rates and regimes.

Very-High-Temperature Reactor (VHTR)

Characteristics

- · Helium coolant
- 1000°C outlet temp.
- 600 MWth
- Water-cracking cycle

Key Benefit

zeonsin h,

 Hydrogen production by water-cracking

02-GA50807-0

GAS-COOLED REACTOR

Process Heat for Hydrogen Production

Wisconsin Institute of Nuclear Systems

Micro-Nuclear Power Applications (NAE-Blanchard)

Direct Conversion (Electricity from radiation used to create ion-hole pair in PN Jnc)

Micro Thermoelectric or Thermionic Generator

Self-Reciprocating Cantilever Wireless Transmitter

