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Abstract

Numerous psychophysical experiments have shown an important role for attentional modulations in vi-
sion. Behaviorally, allocation of attention can improve performance in object detection and recognition
tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stim-
ulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how
the visual system could be “tuned” in a task-dependent fashion to improve task performance. To answer
this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We
modulated firing rates of model neurons in accordance with experimental results about effects of feature-
based attention on single neurons and measured changes in the model’s performance in a variety of object
recognition tasks. It turned out that recognition performance could only be improved under very limited
circumstances and that attentional influences on the process of object recognition per se tend to display
a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the
observed attention-related neural response modulations.

Copyright c©Massachusetts Institute of Technology, 2004

This report describes research done within the Center for Biological & Computational Learning in the Department of Brain &
Cognitive Sciences and in the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology.

This research was sponsored by grants from: Office of Naval Research (DARPA) under contract No. N00014-00-1-0907, Na-
tional Science Foundation (ITR) under contract No. IIS-0085836, National Science Foundation (KDI) under contract No. DMS-
9872936, and National Science Foundation under contract No. IIS-9800032.

Additional support was provided by: AT&T, Central Research Institute of Electric Power Industry, Center for e-Business
(MIT), Eastman Kodak Company, DaimlerChrysler AG, Compaq, Honda R&D Co., Ltd., ITRI, Komatsu Ltd., Merrill-Lynch,
Mitsubishi Corporation, NEC Fund, Nippon Telegraph & Telephone, Oxygen, Siemens Corporate Research, Inc., Sumitomo
Metal Industries, Toyota Motor Corporation, WatchVision Co., Ltd., and The Whitaker Foundation. R.S. is supported by grants
from the German National Scholarship Foundation, the German Academic Exchange Service and the State of Bavaria. M.R. is
supported by a McDonnell-Pew Award in Cognitive Neuroscience.

1



1 Introduction

At any given time, much more information enters the
visual system via the retina than is actually behaviorally
relevant. A first selection mechanism is already pro-
vided by the fovea, endowing stimuli at the center of
the visual field with much higher acuity and dispropor-
tionately large representation. However, more sophis-
ticated mechanisms are needed to allow an animal to
focus in a more abstract way, on what is important in
a given situation or for a certain task. Attention is de-
signed to accomplish just this, to both avoid being over-
whelmed by vast amounts of visual input and to find
the currently relevant elements in it.

A large body of literature, both theoretical and exper-
imental, has dealt with the phenomenon of attention in
recent years and explored its effects on subjects’ perfor-
mance in behavioral tasks as well as on neural activ-
ity (for reviews, see [9, 25, 59]). At first, it might seem
difficult to “measure” attention, and it can of course
never be determined with absolute certainty what a hu-
man being or a monkey is actually attending to at any
given moment. Deployment of attention can, however,
be controlled by requiring a subject to perform signif-
icantly above chance in a behavioral task, e.g., judging
orientation differences between bar stimuli or detecting
a cued picture. Then, changes in behavioral or neural
response to the same stimulus when it is relevant or ir-
relevant to the task (i.e., , as can be assumed, attended
or unattended, respectively) can be attributed to atten-
tional effects.

Such experiments indicate, for example, that human
observers can increase their performance at discrimi-
nating visual stimuli according to their orientation or
spatial frequency when they direct attention to the re-
spective stimulus dimension [52] and that focusing at-
tention on a color stimulus is equivalent to an increase
in its color saliency [7]. Furthermore, experiments with
rapid serial visual presentations (RSVP) have shown
that subjects perform better at detecting a given target
object in a rapid stream of images when they are in-
formed about what to look for, rather than when they
have to judge after the presentation whether a certain
image has been shown in it or not [41]. Performance
improves further with more specific cuing information,
i.e., knowing the basic-level category of a target ob-
ject (e.g., “dog”) in advance facilitates target detection
more than merely knowing the superordinate category
it belongs to (e.g., “animal”) [21]. It might be asked if
these results for more complex stimuli are also caused
by attention directed to certain stimulus features about
which the subject is informed in advance.

Single-neuron studies, on the other hand, have estab-
lished that attention modulates responses of neurons in
visual cortex [39, 43] such that neurons whose preferred
stimulus is attended to respond more strongly while the
activity of neurons coding for nonattended stimuli is at-

tenuated. Moreover, an attended stimulus determines a
neuron’s response even in the presence of other stim-
uli. That is, a stimulus that by itself elicits only a weak
response will do so even if a more optimal stimulus
for the neuron under study is present in its receptive
field, as long as the nonpreferred stimulus is attended
to, and vice versa for preferred stimuli. These effects
have been described mostly for extrastriate areas of the
ventral visual stream (which is considered crucial for
the processes of object recognition), namely V2, V4 [43]
and inferotemporal cortex (IT) [10], but they have also
been found in primary visual cortex [49] and in the dor-
sal stream, usually associated with processing motion
information [60].

Thus far, both physiology and psychophysics sug-
gest that attention increases the perceptual saliency of
stimuli. However, it has not yet been examined sys-
tematically whether the neuronal firing rate changes
observed in physiological experiments with feature at-
tention actually influence the processes of object recog-
nition, and whether they can explain the increases in
discrimination and recognition performance observed
in behavioral experiments. Modeling studies provide
good opportunities to test such hypotheses about brain
function. They can yield constraints for further theo-
ries and show what might work in the brain and what
might not, in a rigorously defined and well-understood
framework. Some modeling has already been done in
the field of attention, but usually rather with a focus
on the neural mechanisms alone, without regard to ob-
ject recognition [62, 63]. On the other hand, the HMAX
model of object recognition in visual cortex [45] (see Fig-
ure 1) has been explicitly designed to model this task,
but so far has not been used to model attention. Its out-
put model units, the view-tuned units (VTUs) at the top
of the hierarchy in Figure 1, show shape tuning and in-
variance properties with respect to changes in stimu-
lus size and position which are in quantitative agree-
ment with properties of neurons found in inferotem-
poral cortex by Logothetis et al. [28]. This is achieved
by a hierarchical succession of layers of model units
with increasingly complex feature preferences and in-
creasing receptive field sizes. Model units in successive
layers use either one of two different mechanisms of
pooling over afferent units: a “template match” mecha-
nism generates feature specificity (by combining inputs
from different simple features), while response invari-
ance to translation and scaling is increased by a MAX-
like pooling mechanism that picks out the activity of the
strongest input among units tuned to the same features
at different positions and scales. The model is compar-
atively simple in its design, and it allows quantitative
predictions that can be tested experimentally.

HMAX has turned out to account, at least to some
degree, for a number of crucial properties of informa-
tion processing in the ventral visual stream of humans
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Figure 1: Schematic of the HMAX model. See Methods.

and macaques (see [27, 44, 46–48]), including view-
tuned representation of three-dimensional objects [28],
response to mirror images [29], performance in clutter
[37], and object categorization [15]. So far, processing
in HMAX is purely feedforward, without the feedback
connections usually considered to be the mediators of
attentional modulations, whose sources are assumed in
areas such as prefrontal cortex or the frontal eye fields
[25]. In this study, we investigate the effects of introduc-
ing attentional top-down modulations of model unit ac-
tivity in HMAX, to learn about the possible role of such
modulations in the processes of object recognition.

Before turning to the implementation of models of at-
tentional effects in HMAX, we discuss possible mecha-
nisms of attentional modulation, in order to situate our
modeling efforts within the relevant literature and to
delineate constraints for modeling attention on the basis
of experimental evidence. As a foundation for the simu-
lations employing attentional modulations, we also ex-
amine the behavior of HMAX without attentional ef-
fects for stimuli at low contrasts and in cluttered dis-
plays, the circumstances in which attention would be
expected to aid object recognition most. Different mod-
els of attentional effects on neuronal responses are then
investigated with respect to their potential of increasing
object recognition performance in HMAX under such
circumstances. Based on the results of these simula-
tions, we finally attempt to formulate a possible role for
attention in object recognition.

1.1 Spatial and featural attention

Attention can be directed to a spatial location (spatial
attention) or to a certain object (object or feature atten-
tion), independent of where it might appear in the vi-
sual field. While the underlying neural mechanisms of
these two kinds of attention are probably similar (see
section 1.3), they are distinct phenomena that can be
discerned, for example, by the different patterns they
elicit in EEG recordings [19, 20]. In our study, we fo-
cus on modeling feature attention, without prior knowl-
edge about the location where a target will appear, as it
is employed in visual search or RSVP experiments. Spa-
tial attention may be modeled in a relatively straightfor-
ward fashion in HMAX, for example, by only or prefer-
entially considering visual input from an attended lo-
cation which might be determined by advance cuing or
based on especially salient features in the image [65].

However, it is far less clear how attention to features
might be implemented in the brain or in a model. How
can the visual system be “tuned” if only an abstract cue
is given, i.e., how can elementary visual features be se-
lected for preferred processing if the actual visual ap-
pearance of the target object is unknown? Moreover,
even in the ideal case if the target’s identity is known
exactly, how can this be translated into “tuning” of
complex features along the processing hierarchy of the
ventral visual stream? To our knowledge, no previous
modeling efforts have addressed this problem; simula-
tions usually featured populations of model units that
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were defined to code for certain target objects relevant
for the model task and thus were easily identifiable as
recipients of attentional activity increases [26, 62, 63].
Possible solutions to this problem and their viability in
the context of object recognition are the focus of this
study.

1.2 Early and late selection

While the aforementioned findings of neuronal activity
modulations caused by attention and of detection per-
formance improvements for cued stimuli can be con-
sidered established [22, 25], there has long been a ma-
jor controversy between two conflicting theories about
how attention acts on perception, known as the early
and late selection hypotheses of attention. The question
here is whether attention acts before object recognition
occurs, operating on representations of features, not of
whole objects and effectively “tuning” the organism to
expected stimuli in advance [8], or whether attention
acts on neuronal representations of stimuli that have al-
ready been processed up to the level of recognition of
individual objects [21].

An important constraint to our work comes from re-
sults about the time course of visual processing in hu-
mans and monkeys. ERP recordings suggest that recog-
nition or categorization of objects, even in complex real-
world scenes, can be accomplished in as little as 150 ms
[14, 58], which is on the order of the latency of the vi-
sual signal in inferotemporal cortex (about 100 – 130
ms [50, 56]). This leaves little or no time for elabo-
rate feedback processes. Consequently, if attention in-
fluences object recognition per se, it can only do so by
means of pre-stimulation “tuning” processes that allow
subsequent recognition in a single feedforward pass of
information through the visual pathway.

Since this study focuses on the possible effects of
feature attention on object recognition performance, it
by definition deals with early selection mechanisms
of attention. We thus model top-down influences on
neuronal representations of features that occur before
recognition of individual objects is accomplished or
even before visual stimulation begins. As mentioned
above, this entails that features have to be selected for
preferred processing in advance, which poses a prob-
lem if the cue about the target stimulus is a rather gen-
eral one. For this case, solutions have to be devised and
tested with respect to their effectiveness and specificity
for a target stimulus.

1.3 Physiology of attentional modulations

Earlier work has hypothesized that the physiological
effect of attention on a neuron might be to shrink its
receptive field around the attended stimulus [38] or
to sharpen its tuning curve [17]. However, a recep-
tive field remapping, possibly implemented by way of
shifter circuits [1], would likely only be appropriate for

spatial attention, where the locus of the object of in-
terest is known in advance, and not for early selection
mechanisms of feature attention. A sharpening of tun-
ing curves, on the other hand, is not observed if cells’
responses are corrected for baseline firing [33].

More likely mechanisms are rapid changes in synap-
tic weights that selectively increase input gain for the
neuron population responding to the attended stimu-
lus, as assumed in the Biased Competition model [43],
or direct excitatory top-down input to cells coding for
the attended stimulus, a mechanism often used in mod-
eling studies [62, 63], causing increased activity or prob-
ably disinhibition in those cells [35]. It has been dis-
cussed to some extent whether the result of attentional
modulation on a neuron’s firing rate is better described
as multiplicative, increasing high firing rates more than
low rates [33], or by a contrast-gain model, which as-
sumes that attention causes a leftward shift of a neu-
ron’s contrast-response function, yielding the most sig-
nificant increases in firing rate when the neuron’s activ-
ity is close to baseline [42]. Both have been observed
experimentally—in different paradigms, however. The
two viewpoints can be reconciled by assuming that a
neuron’s tuning curve, i.e., the function describing its
responses to different stimuli at the same contrast, is en-
hanced in a multiplicative way by attention, such that
responses to more preferred stimuli increase more (in
absolute terms), while the neuron’s contrast response
function, i.e., the function describing its response to a
given stimulus at varying contrast, is shifted to the left,
leading to more prominent activity increases for stimuli
at low and intermediate contrasts [42].

There is broad consensus in the literature that there
are not only increases in firing rates of cells whose pre-
ferred stimulus is attended, but also suppression of cells
that code for nonattended stimuli, at least in areas V2,
V4 and IT [10, 11, 39, 59]. This also fits the picture of
attention as a means to increase stimulus salience (or,
more specifically, effective contrast) selectively. How-
ever, these studies usually report attenuated firing rates
in those cells whose preferred stimulus is present in the
image but not being attended. It is not clear whether
this extends to cells with other stimulus preferences – a
question calling for further electrophysiological inves-
tigations. However, it seems relatively unlikely that
all cells in a visual cortical area except those coding
for attended stimuli would be actively suppressed. On
the other hand, in an early selection, pre-recognition
paradigm, the question arises which features should be
selected, this time for suppression. This problem seems
especially difficult, if not impossible to solve for distrac-
tor stimuli (i.e., other stimuli appearing together with
the target object). Usually, no information at all is avail-
able about their characteristic features in advance.

In our simulations, we attempt to cover a broad range
of possible implementations of attentional modulation
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in HMAX, examining the effects of multiplicative and
contrast-gain modulations with and without concurrent
suppression of other model units. Before turning to the
details of implementation and possible solutions to the
problem of selecting model units for attentional modu-
lation, we first introduce the model in its basic feedfor-
ward configuration.

2 Methods

2.1 The HMAX model

The HMAX model of object recognition in the ventral
visual stream of primates has been described in detail
elsewhere [45]. Briefly, input images (we used greyscale
images 128× 128 or 160× 160 pixels in size) are densely
sampled by arrays of two-dimensional Gaussian filters,
the so-called S1 units (second derivative of Gaussian,
orientations 0◦, 45◦, 90◦, and 135◦, sizes from 7× 7 to
29 × 29 pixels in two-pixel steps) sensitive to bars of
different orientations, thus roughly resembling proper-
ties of simple cells in striate cortex. At each pixel of
the input image, filters of each size and orientation are
centered. The filters are sum-normalized to zero and
square-normalized to 1, and the result of the convolu-
tion of an image patch with a filter is divided by the
power (sum of squares) of the image patch. This yields
an S1 activity between -1 and 1.

In the next step, filter bands are defined, i.e., groups
of S1 filters of a certain size range (7 × 7 to 9 × 9 pix-
els; 11× 11 to 15× 15 pixels; 17× 17 to 21× 21 pixels;
and 23× 23 to 29× 29 pixels). Within each filter band, a
pooling range is defined (variable poolRange) which de-
termines the size of the array of neighboring S1 units
of all sizes in that filter band which feed into a C1 unit
(roughly corresponding to complex cells of striate cor-
tex). Only S1 filters with the same preferred orientation
feed into a given C1 unit to preserve feature specificity.
As in [45], we used pooling range values from 4 for the
smallest filters (meaning that 4× 4 neighboring S1 fil-
ters of size 7× 7 pixels and 4× 4 filters of size 9× 9 pix-
els feed into a single C1 unit of the smallest filter band)
over 6 and 9 for the intermediate filter bands, respec-
tively, to 12 for the largest filter band. The pooling oper-
ation that the C1 units use is the “MAX” operation, i.e., a
C1 unit’s activity is determined by the strongest input
it receives. That is, a C1 unit responds best to a bar of
the same orientation as the S1 units that feed into it, but
already with an amount of spatial and size invariance
that corresponds to the spatial and filter size pooling
ranges used for a C1 unit in the respective filter band.
Additionally, C1 units are invariant to contrast reversal,
much as complex cells in striate cortex, by taking the
absolute value of their S1 inputs (before performing the
MAX operation), modeling input from two sets of sim-
ple cell populations with opposite phase. Possible firing
rates of a C1 unit thus range from 0 to 1. Furthermore,

Figure 2: Examples of the car and paperclip stimuli
used.

the receptive fields of the C1 units overlap by a certain
amount, given by the value of the parameter c1Overlap.
We mostly used a value of 2 (as in [45]), meaning that
half the S1 units feeding into a C1 unit were also used as
input for the adjacent C1 unit in each direction. Higher
values of c1Overlap indicate a greater degree of overlap.

Within each filter band, a square of four adjacent,
nonoverlapping C1 units is then grouped to provide
input to a S2 unit. There are 256 different types of
S2 units in each filter band, corresponding to the 44

possible arrangements of four C1 units of each of four
types (i.e., preferred bar orientation). The S2 unit re-
sponse function is a Gaussian with a mean value, called
s2Target, of 1 (i.e., {1, 1, 1, 1}) and standard deviation 1,
i.e., an S2 unit has a maximal firing rate of 1 which is
attained if each of its four afferents responds at a rate
of 1 as well. S2 units provide the feature dictionary of
HMAX, in this case all combinations of 2× 2 arrange-
ments of “bars” (more precisely, C1 units) at four possi-
ble orientations.

To finally achieve size invariance over all filter sizes
in the four filter bands and position invariance over the
whole visual field, the S2 units are again pooled by a
MAX operation to yield C2 units, the output units of the
HMAX core system, designed to correspond to neurons
in extrastriate visual area V4 or posterior IT (PIT). There
are 256 C2 units, each of which pools over all S2 units of
one type at all positions and scales. Consequently, a C2
unit will respond at the same rate as the most active S2
unit that is selective for the same combination of four
bars, but regardless of its scale or position.

C2 units in turn provide input to the view-tuned
units (VTUs), named after their property of respond-
ing well to a certain two-dimensional view of a three-
dimensional object, thereby closely resembling the
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view-tuned cells found in monkey inferotemporal cor-
tex by Logothetis et al. [28]. A VTU is tuned to a
stimulus by taking the activities of the 256 C2 units
in response to that stimulus as the center ~w of a 256-
dimensional Gaussian response function as given in the
following equation:

y = exp
(
−‖~x− ~w‖2

2σ2

)
(1)

This yields a maximal response y = 1 for a VTU in
case the C2 activation pattern ~x exactly matches the
C2 activation pattern evoked by the training stimulus.
The σ value of a VTU can be used as an additional
parameter specifying response properties of a VTU. A
smaller σ value yields more specific tuning since the re-
sultant Gaussian has a narrower half-maximum width.
To achieve greater robustness in case of cluttered stim-
ulus displays, only those C2 units may be selected as
afferents for a VTU that respond most strongly to the
training stimulus [44]. Apart from simulations where
we took all 256 C2 units as afferents to each VTU, we
ran simulations using only the 40 or 100 most active C2
units as afferents to a VTU.

2.2 Stimuli

Cars We used the “8 car system” described in [47],
created using a 3D multidimensional morphing system
[55]. The system consisted of morphs based on 8 proto-
type cars. In particular, we created lines in morph space
connecting each of the eight prototypes to all the other
prototypes for a total of 28 lines through morph space,
with each line divided into 10 intervals. This created a
set of 260 unique cars and induced a similarity metric:
any two prototypes were spaced 10 morph steps apart,
and a morph at morph distance, e.g., 3 from a prototype
was more similar to this prototype than another morph
at morph distance 7 on the same morph line. Every car
stimulus was viewed from the same angle (left frontal
view).

Paperclips In addition, we used 75 out of a set of 200
paperclip stimuli (15 targets, 60 distractors) identical to
those used by Logothetis et al. in [28], and in [45]. Each
of those was viewed from a single angle only. Unlike in
the case of cars, where features change smoothly when
morphed from one prototype to another, paperclips lo-
cated nearby in parameter space can appear very dif-
ferent perceptually, for instance, when moving a ver-
tex causes two previously separate clip segments to
cross. Thus, we did not examine the impact of para-
metric shape variations on recognition performance for
the case of paperclips. Examples of car and paperclip
stimuli are provided in Figure 2.

Faces For simulations with a VTU population code
(see section 2.6), we used a dataset of 200 frontal-view
face stimuli provided by Thomas Vetter [6]. For 10 of

these faces, analogous to the car stimuli, morphed faces
were available that connected any two of them by a
morph line divided into 10 intervals. The remaining 190
face stimuli were unrelated to the 10 morphable faces.

Contrast The contrast measure we used was 0% when
all pixels in the image had the same (background)
value, and 100% when the maximum deviation of a
pixel value from the background value was as large as
the background value itself. This was achieved by first
setting the mean pixel value img of the image matrix
img to zero and then applying the following operation
to each image pixel img(i, j):

img′(i, j) = − c · bg
min(img)

· img(i, j) + bg (2)

with c denoting the desired contrast value (from 0 to 1),
bg the background pixel value, which was always set to
128, and min the minimum operation. This procedure
yielded absolute pixel values ranging from 0 to a maxi-
mum of about 300 for paperclip stimuli; maximal pixel
values for cars and faces were usually well below that
(around 200).

Stimulus presentations For simulations examining
contrast-invariant recognition, the 260 cars and 75 pa-
perclips (each at a size of 64× 64 pixels) were presented
individually at the center of a 128 × 128 or 160 × 160
pixel image, at contrasts from 0% to 100% in steps of
10%. Otherwise, as a simple model of clutter, two stim-
uli from the same object class were presented in con-
junction, each again sized 64 × 64 pixels, at positions
(50|50) and (110|110) within a 160 × 160 pixel image,
where, for example, (50|50) denoted that the center of
the stimulus was positioned 50 pixels to the right and
50 pixels downward from the upper left corner of the
image. The positions were chosen such that the same
stimulus elicited the same response in all C2 units at
both positions and that the target stimulus to be rec-
ognized appeared at the same position as during VTU
training, to exclude possible effects of stimulus posi-
tion on recognition performance [53]. The two stimuli
were also spaced far enough apart to exclude interac-
tions within a single S1 unit receptive field. One of the
two stimuli was always a target stimulus to which a
VTU had been trained previously (presented in isola-
tion at position (50|50) and size 64× 64 pixels, at 100%
contrast), i.e., one of the 8 car prototypes or one of the
15 selected target paperclips. The other stimulus could
be, for a car target, any morphed car stimulus from one
of the 7 morph lines leading away from that particu-
lar target, including the 7 other prototypes. For each
paperclip target, any of the 60 randomly selected dis-
tractor paperclips was presented as the second stimu-
lus in the display. Target and distractor contrast were
varied independently; target contrast was usually be-
low its training value of 100%, in accordance with the
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experimental finding that attention changes neural re-
sponses only for low and intermediate contrast levels
[42].

2.3 Recognition tasks

To assess recognition performance, we used two differ-
ent recognition paradigms, corresponding to two differ-
ent behavioral tasks.

2.3.1 “Most Active VTU” paradigm

In the first paradigm, a target was said to be recog-
nized if the VTU tuned to it responded more strongly
in response to a display containing this target than
all other VTUs tuned to other members of the same
stimulus set (i.e., the 7 other car VTUs in case of cars,
or the 14 other paperclip VTUs in case of paperclips).
This paradigm corresponded to a psychophysical task
in which subjects are trained to discriminate between
a fixed set of targets, and have to identify which of
them appears in a given presentation. We will refer to
this way of measuring recognition performance as the
“Most Active VTU” paradigm.

If stimuli were presented in isolation, recognition per-
formance in the Most Active VTU paradigm reached
100% if for all presentations of prototypes the VTU
tuned to the respective prototype was more active than
any other VTU. If displays with a target and a distrac-
tor were used, each VTU had to be maximally active
for any presentation of its preferred stimulus, regard-
less of the second stimulus present in the display, in
order to reach 100% recognition performance. Thus,
for perfect recognition of paperclips in clutter, each of
the 15 VTUs tuned to paperclips had to respond more
strongly than all other VTUs in response to all 60 pre-
sentations of its preferred paperclip (one presentation
for each distractor paperclip). For car stimuli, the sim-
ilarity metric over the stimuli could be used to group
distractors according to their morph distance to the tar-
get and thus plot recognition performance as a function
of target-distractor similarity. 100% recognition perfor-
mance for a given morph distance between target and
distractor in this paradigm was reached if each VTU
was the most active VTU for all presentations of its pre-
ferred stimulus in conjunction with a distractor car at
this morph distance from the target. For each prototype
and any given morph distance, there were 7 such dis-
tractor cars, corresponding to the 7 morph lines leading
away from each prototype to the 7 other prototypes.

Chance performance in the Most Active VTU
paradigm was always the inverse of the number of
VTUs (i.e., prototypes), since for any given stimulus
presentation, the probability for a VTU to be more ac-
tive than all other VTUs is 1 over the number of VTUs.
This resulted in chance levels of 12.5% for cars and 6.7%
for paperclips.

2.3.2 “Stimulus Comparison” paradigm

Alternatively, a target stimulus could be considered
recognized if the VTU tuned to it responded more
strongly to a display that contained this target than to
another display without it. This corresponded to a two-
alternative forced-choice behavioral task in which sub-
jects are presented with a sample stimulus (chosen from
a fixed set of targets) and two choice stimuli, only one
of which contains the sample target, and subjects then
have to indicate which of the two choice stimuli is iden-
tical to the sample. We will refer to this paradigm as the
“Stimulus Comparison” paradigm.

When only one stimulus was presented at a time, as
in the simulations regarding the contrast-response be-
havior of HMAX, responses of individual VTUs to their
target stimulus were compared with their responses to
each of the 60 distractor paperclips if the target was
a paperclip (as in [45]), or with their responses to all
morphs on morph lines leading away from the target if
the target was a car stimulus. 100% recognition perfor-
mance in this paradigm then entailed that all VTUs al-
ways responded more strongly to their respective target
than to any of these other stimuli. For two-stimulus dis-
plays of paperclips, all VTUs were required to respond
more strongly to all 60 displays of their target paper-
clip with a distractor paperclip than to any of the other
(14 × 60) displays not containing their respective tar-
get in order to achieve 100% recognition performance.
For two-stimulus displays of cars, comparisons were
only made between displays in which the morph dis-
tances between target and distractor were identical, to
again enable quantification of recognition performance
depending on the similarity of a distractor to a target.
That is, perfect recognition performance in the Stimu-
lus Comparison paradigm for cluttered car stimuli and
a given morph distance between target and distractor
was reached if all car VTUs responded more strongly to
all 7 displays of their target prototype car with a distrac-
tor at the selected morph distance than to any display
of another prototype car with a distractor at that morph
distance.

In the Stimulus Comparison paradigm, chance level
was reached at 50% performance. This value entailed
that the response of a VTU to a display that did not
contain its preferred stimulus was equally likely to be
stronger or weaker than its response to a display con-
taining its target stimulus. Such a VTU was thus unable
to differentiate between displays that contained its pre-
ferred stimulus and displays that did not.

2.3.3 ROC analysis

Recognition performance in the Stimulus Compari-
son paradigm was plotted in the form of ROC curves
(Receiver Operating Characteristic). An ROC curve evalu-
ates the capability of a signal detection system (here, of
VTUs) to differentiate between different types of signals
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(here, target and other stimuli), regardless of a specific
threshold an observer might use to judge which sig-
nal was detected by the system. To generate an ROC,
all responses of a VTU for displays containing its pre-
ferred stimulus (“target displays”) and for the other dis-
plays used for comparison in the Stimulus Comparison
paradigm (“nontarget displays”) were considered. The
difference between the maximum and the minimum re-
sponses of the VTU to this set of stimuli was divided
into a given number of intervals (we mostly used 30).
For each activity value at the boundary of two intervals
(“threshold”), the percentage of the VTU’s responses to
target displays that were above this threshold was cal-
culated, yielding the “hit rate” for this threshold value,
as well as the percentage of its responses to nontar-
get displays that were above the threshold value, the
so-called “false alarm rate”. Plotting hit rates against
false alarm rates for all threshold values then yielded
the ROC curve. As is true for all ROCs, it always
contained the points (0%|0%) (first figure: false alarm
rate, the abscissa value; second figure: hit rate, the
ordinate value) and (100%|100%) for threshold values
above the maximum or below the minimum VTU re-
sponse, respectively. Perfect recognition performance
in the Stimulus Comparison paradigm (i.e., a VTU al-
ways responded more strongly to displays containing
its preferred stimulus than to any other display) lead
to an ROC curve that contained the point (0%|100%),
i.e., there was at least one threshold value such that all
responses of the VTU to target displays were greater
and all its responses to nontarget displays were smaller
than this threshold value. Chance performance, on the
other hand, yielded a linear ROC through the points
(0%|0%) and (100%|100%), i.e., for any given threshold
value, there was an equal chance that the firing rate of
the VTU in response to a target or nontarget display was
higher or lower than this threshold value. ROCs in this
study were always averaged across all VTUs of a stim-
ulus class (8 for cars, 15 for paperclips).

2.4 Attentional modulations

The units whose activities were changed by atten-
tional effects in our simulations were either C2 units
or VTUs. Since these model units received input from
the whole visual field and represented complex stim-
uli, they were most suitable for simulation of nonspa-
tial, object-directed attention. Furthermore, C2 units
and VTUs were designed to correspond to neurons in
visual areas V4 and IT, respectively, where the earliest
and strongest effects of feature attention are observed
[34]. Since model output was interpreted in terms of
recognition of objects, any modulation of neural activ-
ities before readout by definition corresponded to an
early selection mechanism of attention, i.e., a form of
attention that influences the processes of object recogni-
tion per se.

2.4.1 Facilitation

We addressed the problem of selecting appropriate
features for attentional modulation, in the simplest case,
by simulating attention directed to a single target ob-
ject (one of the 8 cars or 15 paperclips) whose visual ap-
pearance is known, and for which a dedicated VTU (a
“grandmother cell”, see section 2.6 for the more gen-
eral population coding case) has been trained. Activity
modulations were then applied to the C2 afferents of
these VTUs. This corresponded to a top-down modu-
lation of V4 cell activities by object- or view-tuned cells
in inferotemporal cortex. We used VTUs with 40 or 100
C2 afferents. For VTUs connected to all 256 C2 units,
modulations of their afferents’ firing rates would have
affected all VTUs, which would have been at odds with
the idea of specifically directing attention to a certain
object. We used this situation, however, to compare the
effects of nonspecific activity increases with the more
specific attentional effects achieved for fewer afferents
per VTU.

One method to increase activity values of model units
coding for attended features was to multiply them with
a factor between 1.1 and 2 (section 3.3), corresponding
to findings of McAdams and Maunsell [33] and Mot-
ter [39] that attention led to an increase in neuronal re-
sponse gain. Another method we used was to lower
the mean value of the S2 (and, in turn, C2) units’ Gaus-
sian response function, s2Target, such that a given C1
input into a S2 unit yielded a greater response (section
3.4). This corresponded to the leftward shift of the con-
trast response function of V4 neurons that has been re-
ported as attentional effect by Reynolds et al. [42], yield-
ing higher contrast sensitivity and earlier saturation in
neurons whose preferred stimulus was attended to. In-
stead of the s2Target value of 1 we used in all other simu-
lations, we selected two slightly lower values (0.945 and
0.9275) that, on average, yielded response increases that
closely matched the loss of activity encountered by C2
units upon a decrease in stimulus contrast from 100% to
60% (for car stimuli). We then applied these shifts in the
S2 / C2 response function selectively to the 40 afferent
C2 units of the VTU tuned to a target stimulus. Since the
new mean values were optimized for car stimuli at 60%
contrast, we applied this boosting method only to car
stimuli with the target car at this contrast level. We also
made sure that no C1 unit could possibly respond at
a rate higher than the respective mean of the Gaussian
response function, which would have caused a lower
response from the corresponding C2 unit for a higher
firing rate of the C1 unit.

In the Stimulus Comparison paradigm, for each tar-
get stimulus, responses for all stimulus combinations
(target and distractor) of a given stimulus class (cars or
paperclips) were calculated with attention directed to
this target stimulus, regardless of whether it was actu-
ally present in the image. This made sure that responses
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of a VTU to displays with and without its preferred
stimulus were comparable and permitted the analysis
of false alarms, i.e., erroneous recognition of a stimulus
that had been cued but was not present in an image.
ROC curves were then averaged over the results for all
VTUs tuned to objects of a class. An analogous control
for false alarms in the Most Active VTU paradigm was
to apply activity increases to the C2 afferents of a VTU
whose preferred stimulus was not shown in the image
under consideration. The percentage of cases in which
this VTU nevertheless ended up as the most active VTU
among those tuned to objects from the same class could
then be considered the false alarm rate in this paradigm.
This control experiment is discussed in section 3.8.

More complex situations with more than one VTU or
their afferents as recipients of attentional activity mod-
ulations are discussed in section 2.6.

2.4.2 Suppression

In addition to attentional activity enhancements, sup-
pression of neurons not coding for the attended stimu-
lus was also modeled. In some experiments, the units
selected for suppression were the C2 afferents of the
most active among those VTUs that did not code for the
target stimulus; in other simulations, all C2 units not
connected to the VTU coding for the target were sup-
pressed. The first mechanism could, strictly speaking,
not be considered an early selection mechanism, since
to determine the most active nontarget VTU, a HMAX
run had to be completed first. The second mechanism,
on the other hand, could be applied in advance, but
suppression of all neurons not directly relevant for the
representation of a stimulus seems to be rather effort-
ful and probably an unrealistic assumption, as men-
tioned in section 1.3. However, in our model, these
two were the most intuitive implementations of sup-
pressive mechanisms, and they could also be expected
to be the most specific ones. If suppression can at all en-
hance object recognition performance, it should do so
especially if the most salient neural representation of a
nontarget stimulus or all nontarget representations are
suppressed. In all cases, suppressive mechanisms were
modeled by multiplication of activity values with a fac-
tor smaller than 1.

2.5 Alternative coding schemes

Saturation tuning. We implemented two alternative
coding schemes in HMAX that were designed to im-
prove the model’s contrast invariance properties and
to allow for more robust attentional activity modifica-
tions. In the first alternative coding scheme we investi-
gated, the VTUs were tuned such that they responded
maximally (i.e., at a rate of 1) if all their afferents re-
sponded at or above their activity levels during train-
ing, instead of displaying reduced activity again if any
afferent C2 unit responded more strongly than during

presentation of the VTU’s preferred stimulus at full con-
trast. This kind of encoding, which we will refer to
as “saturation tuning”, provided for an effectively sig-
moidal VTU response function and saturation of VTUs.
It was achieved by setting to zero the exponent of a
VTU’s Gaussian response function whenever all of its
afferents were either as active as or more active than
during training, as can be seen from the Saturation Tun-
ing response function:

y = exp
(
−
∑
i[min(xi −wi, 0)]2

2σ2

)
(3)

where i runs over the VTU’s afferent C2 units.

Relative rate tuning. Another alternative coding
scheme was to have that VTU respond most strongly
whose C2 afferents were most active, instead of the
VTU whose preferred C2 activity matched the actual C2
activation pattern best. This was achieved by a VTU
tuning similar to the S2 / C2 units’ tuning to their C1
afferents: the same weight value w (i.e., mean value of a
one-dimensional Gaussian response function) was used
for all afferent units, and it was equal to or greater than
the maximum possible response of any afferent unit,
such that a VTU would respond maximally if all its af-
ferents responded at their maximum rate. This relation
is given in the following formula:

y = exp
(
−
∑
i(xi −w)2

2σ2

)
(4)

with the sum running over all C2 afferents again.
This means that the most active VTU was determined

by which set of afferents responded most strongly, even
if absolute activity levels of C2 units were very low,
e.g., due to low stimulus contrast. Specificity, on the
other hand, was only conferred through the selection of
a VTU’s afferents, not through matching their activity
pattern to its training value. We will refer to this coding
scheme as “relative rate tuning”.

For both alternative coding schemes, recognition per-
formance was examined as in the experiments with
standard HMAX encoding, with cars and paperclips as
stimuli and a target and a distractor in each presenta-
tion, using both Most Active VTU paradigm and Stim-
ulus Comparison paradigm. Multiplicative activity in-
creases were used to model attentional effects.

2.6 Population coding

To study the more general case in which stimuli are rep-
resented in the brain by the activities of populations of
neurons rather than of single neurons (see section 3.7),
we performed simulations where stimuli were encoded
by activation patterns over several VTUs. For these ex-
periments, we used a dataset of face stimuli [6] that
had a number of advantages over the car and paperclip
stimuli in this context. For ten faces, morphed stimuli
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Figure 3: Example of the face stimuli used for popula-
tion code experiments.

were available that smoothly changed any one of these
faces into any other of them, such that morph similarity
of a distractor to a target could be added as an extra pa-
rameter in our simulations, as was the case for car stim-
uli. However, unlike in our car dataset, 190 more faces
unrelated to the 10 morphable faces were available. We
were thus able to tune a VTU to each of these 190 faces
and calculate the response of this population of face-
tuned VTUs to two-stimulus presentations consisting of
one of the 10 morphable face prototypes as target and
one morphed face as distractor. It is important here that
none of the units in the VTU population was tuned to
any of the morphable faces we presented as test stimuli.
This allowed us to model the response of a population
of neurons selective for a certain stimulus class to new
members of the same object class, i.e., to test generaliza-
tion. Such populations have been described in temporal
cortex [13, 61, 66, 67]. All face stimuli, as was the case
for cars and paperclips, were 64× 64 pixels in size and
presented within an image of size 160× 160 pixels.

We read out the response of the VTU population by
means of a second level of VTUs which were tuned to
the activation pattern over the VTU population when
one of the target stimuli (the 10 morphable face proto-
types) was presented to the model in isolation. That is,
a second-level VTU responded at a maximum rate of 1
when its afferent VTUs in the population (we selected
the 10, 40 or 100 population VTUs that were most ac-
tive in response to the target stimulus) displayed the
same activation pattern as during presentation of the
target stimulus alone and at full contrast. The second-
level VTUs were not designed as models of certain neu-
rons in the brain, but rather used as a simple method to
evaluate population responses. In a population code, a
given stimulus is considered recognized if neural activ-
ity across the population matches the reference activity
pattern elicited by this stimulus closely enough. In our
model, the response of a second level of VTUs could
be used as a convenient measure of the similarity of

two activity patterns of the VTU population. With the
second-level VTUs, we could use essentially the same
means of quantifying recognition performance as for
the single VTU coding scheme. Recognition was either
considered accomplished if the second-level VTU tuned
to the target stimulus was the most active second-level
VTU overall (i.e., if the VTU population response resem-
bled the response to the target stimulus more than it re-
sembled the response to any other face prototype; Most
Active VTU paradigm) or if this second-level VTU re-
sponded more strongly to a display containing its target
than to a display without its target (i.e., the VTU popu-
lation reliably distinguished between stimulus displays
containing different target stimuli; Stimulus Compari-
son paradigm). As in previous sections, comparisons
in this paradigm were made between responses to all
displays containing a given target and responses to all
other presentations, grouped according to the morph
distance between the two stimuli in the displays.

A fundamental problem associated with task-
dependent tuning in a processing hierarchy is how to
translate modulatory signals at higher levels into mod-
ulations of units at lower levels. Attentional modula-
tions in this population coding scheme were applied
to C2 units or VTUs. Target objects were the 10 pro-
totype faces to which the second-level VTUs had been
trained. To model attention directed to one of these tar-
gets, either all population VTUs connected with the cor-
responding second-level VTU were enhanced in their
activity (by multiplication) or a selected number of their
C2 afferents. This selection of C2 units could either sim-
ply consist of all C2 afferents of these VTUs or only of
those among them that did not at the same time project
to other VTUs in the population as well. This was to
test different possible solutions—with different degrees
of specificity—to the problem of selecting neurons for
attentional activity enhancements. Again, in the Stim-
ulus Comparison paradigm, only responses with atten-
tion directed to the same target object were compared,
regardless of whether this object actually appeared in a
display, to make sure that correct values for false alarm
rates were obtained.

Suppression of units not coding for the current target
stimulus was also tested with population coding. Ei-
ther all VTUs from the population that did not project to
the second-level VTU which coded for the target were
suppressed, or certain C2 units—either all C2 units not
affected by attentional activity enhancement, or the C2
afferents of those population VTUs that were connected
to the most active unit among the second-level VTUs
that did not code for the target stimulus. Thus, the se-
lection of suppressed C2 units was done in an analo-
gous fashion as in the experiments using “grandmother
cell” encoding based on a single VTU.
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Figure 4: Contrast response behavior of C2 units and VTUs, plotted for car prototype 3 at varying levels of contrast.
(a) Mean contrast response curve of all 256 C2 units. (b) Responses of all C2 units for varying contrast. Each line
represents the responses of all 256 C2 units to car prototype 3 for a given contrast value, indicated by the values at
the end of the arrows. Model units are sorted according to their response strength for contrast 1.0, i.e., the response
of any given C2 unit is always plotted at the same x-axis position for all contrasts. (c) Responses of the VTU tuned to
car prototype 3 to its preferred stimulus at different contrasts. Values in the legend indicate the number of afferents
for this VTU (40 or 256) and its σ value (0.1 or 0.4).

3 Results

3.1 Effects of contrast changes on recognition
performance

Figure 4 shows the contrast-response behavior of C2
units and of a typical VTU for a car stimulus. Response
of C2 model units, the output units of the HMAX core
module, is obviously dependent on stimulus contrast,
in accordance with properties of V4 neurons, which
the C2 units are designed to model [42]. The aver-
age C2 contrast response for this stimulus (Figure 4 a)
was nearly, although not perfectly, linear within the
range of contrasts used in our experiments. In physi-
ological terms, we were thus operating within the dy-
namic range of the C2 model units. However, clearly
there were different slopes of the different C2 units’ con-
trast response curves, corresponding to cells displaying
stronger or weaker activation for a given stimulus at full
contrast (see Figure 4 b). Of course, all C2 units had the
same response function, a Gaussian centered at 1 and
with a standard deviation of 1, as mentioned in section
2.1. In response to a given stimulus, however, different
units exhibited different response strengths, and since
all C2 units had the same baseline response for zero
contrast, the slopes of their response curves drawn as a
function of this particular stimulus’ contrast varied, de-
pending on the stimulus. To avoid confusion, we will
call the function describing a C2 unit’s response in rela-
tion to the contrast of a certain stimulus the “contrast
response curve”, while the basic and for all C2 units

identical function describing C2 output in relation to in-
put from afferent C1 units will be called the “response
function”.

Since the view-tuned units were tuned to a certain ac-
tivity pattern of all or some C2 units, their activities also
changed with changing stimulus contrast. The roughly
linear C2 contrast response curve gave rise to a “sig-
moidal” VTU activity profile for different contrast lev-
els (see Figure 4 c). Strictly speaking, the VTU response
curve was a Gaussian, not sigmoidal; however, since we
were not interested in the saturating regime the Gaus-
sian response was a good model for the sigmoidal re-
sponse found in the experiment (see section 3.6.1). VTU
response curves were steeper for greater numbers of af-
ferent C2 units and smaller VTU σ values, since these
parameter settings provided for a more specific VTU
tuning to a certain C2 activity pattern.

Figure 5 shows recognition performance in the Most
Active VTU paradigm and ROCs for cars and paper-
clips at different contrasts. Obviously, object recogni-
tion in HMAX is not contrast-invariant; most notably
for cars, performance for contrasts below the train-
ing value quickly dropped to very low levels in both
paradigms (a, b). Even limiting the number of a VTU’s
afferents to the 40 C2 units that responded best to
its preferred stimulus did not improve performance
here. However, for paperclip stimuli, recognition per-
formance in HMAX at low contrasts was significantly
better than for car stimuli, at least for 40 C2 afferents
per VTU (see Figure 5 a, c). Thus, the representations of
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Figure 5: Recognition of car and paperclip stimuli for varying contrasts. (a) Recognition performance in the Most
Active VTU paradigm for single cars and paperclips and contrasts from 0% to 100%. Legend indicates stimulus
class and number of VTU afferents (40 or 256). Chance performance is 12.5% for cars and 6.7% for paperclips. (b)
ROC curves for recognition of single cars in the Stimulus Comparison paradigm at different contrasts, as indicated
in the legend, for 40 VTU afferents. (c) Same as (b), but for single paperclips.

paperclips in HMAX were more “well-behaved” than
those of cars, i.e., they scaled more regularly with con-
trast. The reason for this difference can be found in the
set of features used in HMAX. The features detected by
S2 / C2 units consist of four adjacent bars, an arrange-
ment which appears well matched to the actual features
displayed by paperclips. While this also caused S2 and
C2 units to exhibit a stronger overall response to paper-
clip stimuli, higher firing rates were not so much the
reason for better contrast-invariant recognition of this
stimulus class in HMAX. It was much more critical that
different paperclips elicited C2 activation patterns that
were more different from each other than were the pat-
terns elicited by different car stimuli (see also section
3.2). Consequently, even for small overall C2 activity
levels due to low stimulus contrast, different paperclips
could still be distinguished quite well by the model.
This makes clear that invariant recognition for differ-
ent contrasts is aided by a suitable set of features for
the respective stimulus class. A suitable feature in this
case need not be a specialized feature for a certain ob-
ject class, but it should reflect stimulus properties better
than the current S2 / C2 features do in case of cars. Such
features can be extracted from natural images by learn-
ing algorithms (see [54]).

Of course, there are methods by which HMAX re-
sponses can be made invariant to changes in contrast
as we have defined it. For example, by normalizing
the mean of each image patch that is processed by a
S1 unit to zero, all changes in stimulus contrast effec-
tively become multiplicative changes to pixel values,
which are compensated for by the sum-normalization

the S1 units perform. However, the biological plausi-
bility of such input normalization is questionable, and
it would rid C2 unit responses of any contrast depen-
dence, in contrast to data from physiology [42] and
recent fMRI results from V4 cortex [2]. Furthermore,
attentional modulations of neural activity are usually
observed with low or intermediate stimulus contrasts
and, consequently, firing rates well below saturation
[31, 42]. Since C2 units responded nearly linearly within
the range of contrasts used in our simulations, i.e., in a
similar fashion as real, e.g., V4 neurons when their fir-
ing rate can be modulated by attention, we retained the
contrast dependence of C2 units. Their response lin-
earity also allowed for straightforward multiplicative
firing rate increases to be used as models for the in-
creases in effective contrast which are commonly asso-
ciated with attentional effects [42] (see section 3.3).

3.2 Addition of a distractor stimulus

As described in the Methods section, clutter in our ex-
periments was modeled by the presence of a distractor
stimulus of the same object class. Ideally, adding a dis-
tractor would not interfere with the recognition of the
target stimulus. In the Most Active VTU paradigm this
would mean that the VTU tuned to the target still re-
sponded most strongly among the set of VTUs tuned to
individual members of the stimulus class, excluding the
VTU tuned to the distractor. For successful recognition
of a stimulus in the Stimulus Comparison paradigm, on
the other hand, we demanded that a VTU responded
more strongly to a two-stimulus display that contained
its preferred stimulus than to any of the two-stimulus
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Figure 6: Recognition of cars in the presence of a distractor car. (a) Recognition performance in the Most Active VTU
paradigm at varying target and distractor contrasts for 40 C2 afferents to each VTU. Legend indicates target (first
value) and distractor contrast (second value). (b) Same as (a), but for 100 afferents. (c) ROC curves for car stimulus
recognition in clutter according to the Stimulus Comparison paradigm, 40 C2 afferents to each VTU. The distractor
was always at morph distance 5 from the target. Legend indicates target (first value) and distractor contrast (second
value). (d) Same as (c), but for distractors at maximum morph distance (10).
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Figure 7: Recognition of paperclips in the presence of a distractor paperclip. (a) Recognition performance in the
Most Active VTU paradigm at varying distractor contrast levels (abscissa values). Legend indicates target contrast
(first value) and number of VTUs’ afferents (second value). (b) ROC curves for paperclip recognition in clutter
(Stimulus Comparison paradigm), 40 C2 afferents to each VTU. Legend indicates target (first value) and distractor
contrast (second value). (c) Same as (b), but for 100 afferents.
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displays containing distractor objects only.

From Figures 6 and 7, it can be seen that a distractor
did in fact interfere with recognition of a target stimu-
lus, if its contrast was equal to or greater than that of the
target stimulus. For cars, due to the low contrast invari-
ance exhibited by HMAX for this stimulus class, perfor-
mance quickly reached chance level at contrasts lower
than the training value, and a distractor did not change
that result any more. For target stimuli at 100% con-
trast, interference was greater, and performance lower,
if the distractor car was more dissimilar with respect to
the target (i.e., if the distractor’s morph distance to the
target was greater), but no dependence of performance
on the number of afferents was apparent (compare Fig-
ures 6 a and b), as opposed to paperclips (see Figure
7 a). This might seem surprising; one would expect a
dissimilar distractor to interfere less with the neuronal
representation of a target stimulus than a more simi-
lar one, and for paperclips, it has already been shown
in [44] that HMAX recognition performance in clutter
is more robust if fewer C2 afferents to the VTUs are
used. However, a close look at the C2 representations
of the eight car prototypes revealed a considerable de-
gree of overlap between them. If 40 afferents to a VTU
were used, only 63 out of 256 C2 units constituted all
the afferents to the eight car prototype VTUs, i.e., differ-
ent VTUs mostly shared the same afferent C2 units. In
short, rather than activating different sets of units most
strongly, different car stimuli activated the same units
differently, and thus, for cars, interference was greater
for more dissimilar distractors. This high degree of
overlap was also the reason why recognition perfor-
mance for cars hardly at all depended on the number of
a VTU’s afferents. Already for small numbers of affer-
ents, the sets of afferents of different VTUs overlapped
to a great extent. Thus, adding a distractor car to the
display affected firing rates of even the most robust tar-
get VTU afferents, giving smaller sets of afferents no ad-
vantage over larger ones in terms of recognition perfor-
mance.

For paperclips, on the other hand, the relation be-
tween number of afferents and robustness of recogni-
tion in clutter was as expected: the more afferents a
VTU used, the higher the probability that a distrac-
tor stimulus significantly affected the firing rates of at
least some of them, and the more recognition perfor-
mance dropped (see Figure 7 a). This relation is in
agreement with previous findings [44]. It held for pa-
perclips because the sets of afferents of VTUs tuned to
paperclips overlapped much less than those of cars. If
again each VTU had 40 afferents, the combined set of
afferents of eight paperclip VTUs (units 1 to 8 in this
case) consisted of 142 C2 units, as opposed to only 63
for eight car VTUs. Thus, for paperclips, recognition
performance was indeed more robust if smaller sets of
afferents were used. It is also evident that recognition

performance for paperclips, even when a distractor was
present, still dropped a lot more slowly with decreasing
target contrast than was the case for cars (compare Fig-
ures 6 a and b with Figure 7 a), just as we found for
single stimuli in section 3.1. Interestingly, ROC analysis
showed little dependence of recognition performance
for paperclips on either target contrast (if distractor con-
trast was lower than target contrast) or number of VTU
afferents (see Figure 7 b, c). This demonstrates that
performance in different tasks can depend on param-
eters such as contrast or number of afferents in differ-
ent ways. As discussed in Methods, in the Stimulus
Comparison paradigm, we measured performance in a
simulated two-alternative forced choice task, while the
Most Active VTU paradigm performance value mea-
sured the ability of the system to distinguish between
a certain number of trained stimuli. Our data indicate
that, even if, at low stimulus contrasts, a neuron does
not fire more strongly than others any more upon pre-
sentation of its preferred stimulus, it might still respond
selectively by firing more strongly when its preferred
stimulus is present than when it is not.

These results confirm that, as has already been dis-
cussed in [44], robust recognition performance in clut-
ter can be achieved in HMAX, even without atten-
tional mechanisms, provided (a) only a subset—the
most strongly activated—of the C2 units are used as
afferents for the VTUs, (b) target contrast and, con-
sequently, model unit activation caused by the target
are high enough to avoid interference by a distractor,
and (c) the neuronal representations of different stim-
uli are sufficiently distinct, as is the case for paperclips.
However, stimuli that share a common shape struc-
ture, like the car images in our experiments, can have
less distinct representations in HMAX feature space,
leading to a loss of recognition performance in clut-
ter. Like HMAX’s weaker performance at contrast-
invariant recognition of car stimuli, this is a conse-
quence of the feature dictionary used in the standard
version of HMAX. As discussed above and in [53], the
standard features appear well-suited for paperclip stim-
uli, but not necessarily for real-world images. While
this performance can be improved by learning object
class-specific feature detectors [54] in a non-attentive
paradigm, we can also expect selective attention to the
features of a target stimulus to increase performance
“on the fly”, i.e., without requiring learning of new fea-
tures. This will be the focus of the following sections.

3.3 Introducing attentional effects: Multiplicative
attentional boosts

We first modeled attentional enhancement of neural ac-
tivity by multiplying firing rates of model units with
a factor greater than 1, corresponding to the hypothe-
sis of McAdams and Maunsell that attention boosts fir-
ing rates of cells coding for attended features in a mul-
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tiplicative fashion [33]. In our experiments, attention
was directed to a stimulus by increasing activity values
of those C2 units that projected to the VTU which had
been trained on this stimulus (see Methods). This corre-
sponded to an attentionally induced activation of a tar-
get stimulus’ stored representation, presumably located
in IT [36], that sensitizes upstream feature detectors in
V4 which are critical for recognition of the target.

Figures 8 to 11 show the results of this kind of atten-
tional priming in terms of recognition performance af-
ter presentation of the stimulus display with target and
distractor and its feedforward processing by the primed
model. Results are shown for both cars and paperclips,
evaluated in the Most Active VTU and Stimulus Com-
parison paradigms. For comparison, results for two
situations were included here that were then excluded
from further study: target stimuli at 100% contrast and
VTUs with 256 C2 afferents. Due to the MAX opera-
tion performed by C2 units, the addition a second stim-
ulus could, if anything, only increase their firing rates
as long as the two stimuli were spaced far enough apart
to exclude interactions at the S1 unit level. With a target
stimulus at 100% contrast, a further increase in C2 ac-
tivity by attentional effects thus changed the C2 activity
pattern even more from its value for 100% target con-
trast without a distractor—to which, after all, the VTU
was trained. Consequently, Figures 8 to 11 always show
declining recognition performance due to attention ef-
fects if the target stimulus was presented at 100% con-
trast. This effect is independent of the specific boost-
ing method used, and thus we will not further discuss
attentional effects for targets presented at full contrast
(except in simulations using alternative coding schemes
or population coding). This is also in accordance with
experiments that do not observe attention effects for
high-contrast stimuli [42]. Thus, our experiments were
performed within the dynamic range of the C2 units; ef-
fects of response saturation due to higher contrast lev-
els and attentional firing rate boosts will be considered
later in section 3.6. On the other hand, attentional ef-
fects applied to C2 units could not be specifically di-
rected to a certain stimulus if all VTUs were connected
with all 256 C2 units, as discussed in the Methods sec-
tion. This situation was only considered in control sim-
ulations to find out whether nonspecific effects could
also affect recognition performance (see below).

The figures show that, in HMAX, recognition perfor-
mance could in fact be increased by attentional activity
modulation, both for cars and paperclips. For certain
boost and stimulus contrast values (e.g., for cars, 1.3 at
60% target contrast and 1.1 at 80% target contrast), the
target’s VTU was more often the most active VTU when
the target was in the stimulus display, and its responses
were more often selective for the target in the sense that
it responded more strongly when the target was present
than when it was not. However, success of this boost-

ing method was highly dependent on exact boost value
in relation to image contrast. For any given target con-
trast, only a small range of boost values actually im-
proved performance; others were either too small to in-
fluence relative VTU activities or actually boosted the
afferents’ firing rates beyond their levels during train-
ing, again reducing absolute and possibly relative ac-
tivity of the target’s VTU. In our model, with the VTUs
tuned to certain levels of activity of their C2 afferents,
whose firing rates are again contrast-dependent, it is
clear that a single attentional boost value cannot im-
prove recognition performance for all stimulus contrast
levels. If, however, it is assumed that units firing below
saturation participate in stimulus encoding, and if the
firing rate carries information about the stimulus—both
of which are realistic assumptions, as also mentioned
in the Methods section—, then the problem is a gen-
eral one. (The case of using saturated units for stimulus
encoding will be considered in section 3.6.) In a pre-
recognition attention paradigm, it also remains unan-
swered how the system should determine in advance
how much attentional activity enhancement it must ap-
ply.

Moreover, this boosting method was not very effi-
cient at resolving the effects of a distractor whose con-
trast was higher than that of the target. Since a high-
contrast distractor could, if anything, only increase fir-
ing rates of some of the target’s C2 afferents due to
the MAX pooling mechanism, as discussed previously,
an attentional boost of all target afferents could not
compensate for this perturbation. In the Most Active
VTU paradigm, performance improvements were ob-
served even if distractor contrast was higher than tar-
get contrast (see, for example, the plot for target con-
trast 60% and distractor contrast 80% in Figure 8 or
the plots for 60% and 80% target contrast in Figure
10). However, it is important to note that this method
of measuring recognition performance did not account
for false alarms (i.e., “hallucinations”), as opposed to
ROC curves. In calculation of ROC curves, events of
erroneous detection of a stimulus that had been cued
(i.e., the C2 afferents of the VTU coding for it had been
increased in their activity) but not presented in the
image were explicitly counted as false alarms. There
was no such false alarm measure incorporated in the
recognition performance value of the Most Active VTU
paradigm. We will discuss a way to account for false
alarms in the Most Active VTU paradigm later in sec-
tion 3.8. The ROC curves, however, with their correc-
tion for false alarms, notably do not show any signif-
icant increases in performance for distractor contrast
values above target contrast (see Figures 9 and 11).

Finally, Figure 12 shows that occasionally a boost of
all C2 units yielded better recognition performance than
a selective boost of the C2 units that were most strongly
activated by the target, even if VTUs with all 256 C2
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Figure 8: Multiplicative attentional boosts of C2 units. Recognition performance (Most Active VTU paradigm) for
target cars in presence of a distractor car (contrasts indicated above each plot), averaged over all target cars, for
different distractor morph distances. Legend in top right plot indicates (for all plots) values of multiplicative boosts
applied to target VTU’s C2 afferents in generation of each graph. All results shown are for 40 C2 afferents to each
VTU.
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Figure 9: Multiplicative attentional boosts of C2 units. ROCs for recognition of target cars in presence of a distractor
car (Stimulus Comparison paradigm), at different contrasts and multiplicative attentional boosts, averaged over all
target cars, for 40 afferents per VTU. Distractors were always at morph distance 5 from the target stimulus. Legend
as in Figure 8.
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Figure 10: Multiplicative attentional boosts of C2 units. Recognition performance (Most Active VTU paradigm) for
target paperclips in presence of a distractor paperclip, averaged over all target paperclips, for different distractor
contrasts (abscissa values). Target contrast and number of afferents per VTU indicated above each plot. Legend
in top right plot indicates (for all plots) values of multiplicative boosts applied to target VTU’s C2 afferents in
generation of each graph.
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Figure 11: Multiplicative attentional boosts of C2 units. ROCs for recognition of target paperclips in presence of a
distractor paperclip (Stimulus Comparison paradigm), at different contrasts and multiplicative attentional boosts,
averaged over all target paperclips, for 40 afferents per VTU. Legend as in Figure 10.
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Figure 12: Multiplicative attentional boosts applied to all 256 C2 units when all 256 cells were used as afferents to
each VTU. (a) ROCs for recognition of target cars in the presence of a distractor car in the Stimulus Comparison
paradigm, averaged over all target cars, with and without a multiplicative boost, as indicated in the legend. Target
and distractor contrast 80%. (b) Same as (a), but for paperclips. Target and distractor contrast 80%.

units as afferents—which are usually less resistant to
clutter—were used. While Figure 10 confirms the in-
tuitive notion that boosting more afferents is less spe-
cific and yields smaller performance gains, it again does
not account for possible false alarms. For enhancing
the response of the target stimulus’ VTU over that of
others, and thus increasing recognition performance in
the Most Active VTU paradigm, boosting only its af-
ferents is of course more effective than boosting all C2
units. However, selectivity of VTU responses to differ-
ent stimuli might in some cases be improved more by
a simple general increase in effective contrast, arguing
against the need for selective feature attention in these
instances.

All in all, results for a multiplicative boost of C2 units
coding for attended features are rather mixed. Our
data show that, even though significant performance
increases are possible, best results are obtained only if
the distractor is presented at a contrast level equal to
or lower than that of the target and if the appropriate
boost value for the target’s contrast level is known. This
problem of the mechanism of attention discussed here
is not unique to our model if it is assumed that units
firing below saturation are used for stimulus encoding
and that exact firing rates of neurons carry information.
Moreover, selectivity of model unit responses seems to
be just as well improved by a nonspecific general C2
activity increase. This might, however, be partly due
to the multiplicative boosting method used here. It in-
creases firing rates of model units already displaying
high levels of activation more than those of units fir-
ing less strongly, by absolute measures. As discussed in
section 1.3, a more realistic assumption might be that at-
tention causes a leftward shift in the response function
of neurons that code for attended features, resulting in
larger activity increases for neurons firing just above

baseline [42]. This will be explored in the following sec-
tion.

3.4 Shifting the response function as attentional
boost

To account for the findings of Reynolds et al. that at-
tention to a stimulus might cause a leftward shift of the
contrast response function of neurons that participate in
the representation of this stimulus [42], we modeled this
behavior in HMAX by selecting a smaller value for the
mean value s2Target of the S2 / C2 units’ Gaussian re-
sponse function, thus shifting it to the left and allowing
for greater C2 firing rates at lower C1 input strengths.
We hypothesized that this method would modulate C2
unit firing rates in a more “natural” way than multipli-
cation with a factor did.

Our results (Figures 13 and 14) were similar to those
for multiplicative boosts. Since we carefully chose the
boost value to fit the stimulus contrast we used (see
Methods), recognition performance increased consider-
ably. Even a slight ROC performance gain for a dis-
tractor of higher contrast (80%) than the target (60%)
was observed. This is no contradiction with our above
claim that boosting methods cannot resolve the effects
of a distractor of higher contrast. As long as a distractor
was presented at a contrast level lower than that used
during training, C2 units activated by both the target
and the distractor did not reach their training activity
level, and further increases in their firing rates by at-
tention had a chance of bringing their activity closer
to the training value, thus increasing probability of tar-
get recognition. This effect could, however, also be ob-
served with a multiplicative gain of appropriate value
(not shown). Thus, it is not a unique characteristic of
the response function shift boosting method to enable
better recognition of a target in the presence of a high-
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Figure 13: Effects of shifts in the C2 response function. Recognition performance (Most Active VTU paradigm) for
target cars in presence of a distractor car (contrasts indicated above each plot), averaged over all target cars, for
different distractor morph distances. Legend in top right plot indicates (for all plots) values of the mean of the
Gaussian response function of the target VTU’s 40 afferent S2 / C2 units used in generation of each graph, with 1
being the normal value used in all other simulations.
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Figure 14: Effects of shifts in the C2 response function. ROCs for recognition of target cars in presence of a distractor
car (Stimulus Comparison paradigm), averaged over all target cars, at varying contrasts, using different values for
the mean of the Gaussian response function of those 40 C2 units that fed into the target stimulus’ VTU, as indicated
in the legend. Distractors were always at morph distance 5 from the target stimulus.
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contrast distractor. Most noteworthy, however, and in
analogy to multiplicative boosting, a shift in the re-
sponse function also had to be exactly appropriate for
the target’s contrast level in order to improve recogni-
tion performance.

Furthermore, as was the case for multiplicative
boosts, simulating uniform attentional activity en-
hancement of all 256 C2 units and using all of them as
afferents to each VTU resulted in a performance gain
similar to that for selective feature attention when an
ROC measure was applied (not shown). Again, no di-
rected attentional effect seemed to be necessary to im-
prove performance. However, the slight performance
increase for target contrast 60% and distractor contrast
80% mentioned above could not be replicated with this
general boost. Thus, if improvement of recognition per-
formance for a target with a higher-contrast distractor
is at all achievable, it is most probably limited to situa-
tions where only a subset of C2 units is used as afferents
to any given VTU.

Our results make clear that a leftward shift in the re-
sponse function of neurons, as reported by Reynolds
et al., can be used in HMAX as a model of attentional
activity enhancement and to improve recognition per-
formance. However, again, the value of the shift has
to be exactly matched to the target’s contrast level and
would have to be known in advance in an early se-
lection paradigm. There is no qualitative difference
with respect to the problem of neutralizing the effects
of a high-contrast distractor, and, as with other boost-
ing methods, a nonspecific general increase in effective
stimulus contrast by equally boosting all C2 units has
effects very similar to our model of selective feature at-
tention. In fact, within the framework of the HMAX
model, both boosting methods we discussed here, as
well as a third method, where we experimented with
constant additive activity boosts, behave very similarly.
Since a leftward shift of the response function is com-
putationally more expensive in our model, and since
an additive constant boost accounts less well for the re-
sponse characteristics of C2 units, we used multiplica-
tive boosts as models of attentional activity modula-
tions in our further simulations. This emulated a shift
in the response function very well since, for the stimuli
and contrast levels we used, firing rates of all C2 units
were relatively closely spaced and within the C2 units’
approximately linear operating range.

3.5 Suppression

So far, we only described activity enhancements of C2
units coding for features of the attended stimulus. We
also performed simulations where we added suppres-
sion of other units, as described in Methods, to account
for the numerous experimental results mentioned in
section 1.3 that find firing rate reductions in cells whose
preferred stimulus is not attended. Typical results of

suppressing the afferents of the most active nontarget
VTU or all C2 units that did not project to the target
VTU are shown in Figures 15 to 18. First of all, it is obvi-
ous that boosting alone or in conjunction with suppres-
sion of all C2 units that had not been boosted yielded
exactly the same ROC curves. After all, calculation of
ROC curves was based solely on the activity of the VTU
tuned to the target stimulus, for different stimulus pre-
sentations, and was thus not influenced by whatever
modification was applied to C2 units that did not feed
into this VTU. This just reflects the fact that the discrim-
ination performance of a neuron can of course not be
changed by modulating the activities of other neurons
that are not connected with it. On the other hand, if,
in addition to an attentional boost of the target’s fea-
tures, suppression of the afferents of the most active
nontarget VTU was added, ROC curves in most cases
actually show performance deterioration, for both pa-
perclips and cars. The reason for this is that the most ac-
tive nontarget VTU very likely had a number of afferent
C2 units in common with the target VTU—especially
for cars, where the sets of afferents overlapped to a
large degree anyway, as discussed in section 3.2, but
also for paperclips. Thus, improvements in discrimi-
nation performance of a single VTU achieved by boost-
ing were diminished by suppression of some of its af-
ferents that had originally been boosted, and perfor-
mance was lower than with the corresponding atten-
tional boost alone, or at least not better than without
any attentional modulation.

On the other hand, in the Most Active VTU paradigm
of measuring recognition performance, where activity
of a VTU with respect to other VTUs in response to the
same stimulus counted, the combination of boost and
suppression was very effective. For paperclips, espe-
cially suppression of all C2 units that were not boosted
yielded near-perfect performance in all circumstances
tested. Firing rate attenuation of those C2 units that
fed into the most active nontarget VTU also led to per-
formance levels equal or superior to that reached with
boosting alone. This means that, even though the sets
of afferents of VTUs tuned to different paperclips over-
lapped enough so that the firing rate of the target’s VTU
was affected by suppression of the afferents of the most
active nontarget VTU, they were still sufficiently dis-
tinct to give the VTU tuned to the target a net advantage
over the other VTUs, despite some of its afferents were
both boosted and suppressed. The effects of boosting
the afferents of a VTU and suppressing those of others
then added and set the firing rate of the boosted VTU
further apart from that of the others.

The situation was different for car stimuli, however.
Still, attenuating all those C2 units that did not feed into
the target’s VTU, in conjunction with boosting the affer-
ents of this VTU, yielded superior performance in the
Most Active VTU paradigm, just as was seen for pa-
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Figure 15: Multiplicative attentional boosts and suppression of C2 units. Recognition performance (Most Active
VTU paradigm) for target cars in presence of a distractor car (contrasts indicated above each plot), averaged over
all target cars, for different distractor morph distances. Legend in top right plot indicates (for all plots) values of
multiplicative boosts and suppression values applied to C2 units in generation of each graph (first value: boost
applied to target VTU’s afferents; second value, if applicable: suppression applied to all other C2 units (“all”) or to
afferents of the most active nontarget VTU (otherwise)). All results shown are for 40 C2 afferents to each VTU.
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Figure 16: Multiplicative attentional boosts and suppression of C2 units. ROCs for recognition of target cars in
presence of a distractor car (Stimulus Comparison paradigm) at different contrasts, averaged over all target cars,
for 40 afferents per VTU. Distractors were always at morph distance 5 from the target stimulus. Legend as in Figure
15.
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Figure 17: Multiplicative attentional boosts and suppression of C2 units. Recognition performance (Most Active
VTU paradigm) for target paperclips in presence of a distractor paperclip, averaged over all target paperclips, for
different distractor contrasts. Target contrast and number of afferents per VTU indicated above each plot. Legend
in top right plot indicates (for all plots) values of boosts and suppression applied to C2 units in generation of each
graph, as in Figure 15.
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Figure 18: Multiplicative attentional boosts and suppression of C2 units. ROCs for recognition of target paperclips
in presence of a distractor paperclip (Stimulus Comparison paradigm), at different contrasts, averaged over all
target paperclips. 40 afferents per VTU. Legend as in Figure 17.
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perclips. However, since the sets of afferents of VTUs
tuned to cars overlapped much more than was the case
for paperclips, suppression of the most active nontarget
VTU’s afferents strongly affected the firing rate of the
VTU tuned to the target. Thus, for cars, performance
with this kind of suppression was actually lower than
when only an attentional boost was applied to the target
VTU’s afferents, except when a distractor at 100% con-
trast was presented (see Figure 15). Here, however, the
reason why performance was not lower than for boost-
ing alone was that, at best, boost and suppression more
or less canceled out and performance for no modulation
at all was restored, which in this case was higher than
with an attentional boost alone.

All in all, our results indicate that suppression
of model units coding for nonattended features can
greatly improve recognition performance when it
comes to deciding which of a set of stimuli appears
in a cluttered scene. In this task, which we modeled
in the Most Active VTU paradigm, a combination of
boost and suppression yielded the most promising re-
sults, even if distractor contrast was higher than target
contrast (compare, for example, Figures 15 and 17 with
Figures 8 and 10). However, apart from the prevailing
problem of having to know in advance which amounts
of boost and suppression should be applied, it is also
difficult to envision a strategy to select suitable features
for suppression. Attenuating the firing rates of neurons
that code for features of a distractor might affect neu-
rons critical for target recognition as well, and advance
knowledge about the possible identity of the distractor
would be needed, which is usually not available. On
the other hand, simply suppressing all but those neu-
rons that participate in the neuronal representation of
the target stimulus is very effective in improving recog-
nition of this target. However, assuming such a large-
scale suppression is probably, if at all, only realistic if
stimuli are drawn from a rather limited set and knowl-
edge about this limitation is provided in advance to the
subject, such that suppressive mechanisms can be ap-
plied in a more directed fashion. Otherwise, one would
have to consider attenuating the activity of practically
all neurons of a cortical processing stage whose firing is
not critical in encoding of the target, which seems to be
a quite effortful mechanism. Moreover, as in previous
sections, our Most Active VTU paradigm of measur-
ing recognition performance does not account for pos-
sible false alarms, which are likely an issue, especially if
the representation of one stimulus is enhanced as much
over others as in the case of combined boost and sup-
pression. We will return to this question in section 3.8.

3.6 Alternative coding schemes

Firing rates of neurons in the ventral visual stream are
not insensitive to stimulus contrast, as is true for model
units in HMAX (see section 3.1) [2]. In HMAX, how-

ever, the exact response levels of individual units are
important for encoding visual stimuli. The details of
how the brain represents sensory information in neural
responses are of course still unknown, but if exact activ-
ity values carry as much information as in HMAX, one
might not be able to expect the high degree of contrast
invariance of object recognition that is observed exper-
imentally [2]. Furthermore, in this case, an early selec-
tion mechanism of attention would not only have to se-
lect appropriate neurons for attentional modulation in
advance, but also determine modulation strength be-
fore stimulus presentation. Otherwise, an attentional
modulation can even excessively increase firing rates of
neurons that respond to the target stimulus—for exam-
ple, if the stimulus is shown at a higher level of contrast
than expected—which can actually have a diminishing
effect on recognition performance (see section 3.3). This
could be avoided, for example, if stimuli were encoded
only by neurons firing at their maximum firing rate.
However, while it is perfectly reasonable to assume that
neurons firing at high rates are important for the repre-
sentation of a stimulus, it would most likely be unre-
alistic to expect that only neurons firing at saturation
participate in stimulus encoding.

To address these problems, we examined alternatives
to standard HMAX encoding of stimuli that relied less
on exact firing rates of C2 units, in order to try to
increase both the model’s contrast invariance proper-
ties and the effectiveness of boosting and suppression
mechanisms. Since, so far, our model units did not ex-
hibit saturation, it was also of special interest whether
introducing saturation of firing rates would influence
recognition performance or alter the effects of atten-
tional modulation. We hypothesized that, with less
dependence of the model’s response on exact C2 unit
activity patterns, recognition performance might drop
less sharply with stimulus contrast than seen in section
3.1, and that the beneficial effects of attentional activ-
ity modulations on recognition performance would be
more robust since it would not be necessary to restore
a certain model unit activity pattern as closely as possi-
ble.

3.6.1 Saturation tuning

The first alternative coding scheme we devised, the
so-called “saturation tuning” scheme, avoided declines
in activities of VTUs if their C2 afferents responded
more strongly than during VTU training with the tar-
get stimulus, as described in Methods. This kind of
encoding is actually very plausible biologically, since
it provides for an effectively sigmoidal VTU response
function and saturation of VTUs, with different possible
saturation levels for different units. However, one also
has to bear in mind that the Gaussian response function
of VTUs was originally designed to perform template
matching in an abstract feature space. Permitting an
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Figure 19: Saturation tuning. Recognition performance (Most Active VTU paradigm) with saturation tuning of all
VTUs, for target cars in presence of a distractor car at different contrasts (as indicated above each plot), averaged
over all target cars. Legend in top right plot indicates (for all plots) multiplicative attentional boosts applied to the
40 C2 afferents of the VTU tuned to the target stimulus in generation of each graph.
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Figure 20: Saturation tuning. ROCs for recognition of target cars in presence of a distractor car (Stimulus Compari-
son paradigm), with saturation tuning of all VTUs, at different contrast levels and multiplicative attentional boosts,
averaged over all target cars. Distractors were always at morph distance 5 from the target stimulus. Legend as in
Figure 19.
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Figure 21: Saturation tuning. Recognition performance (Most Active VTU paradigm) for target paperclips in pres-
ence of a distractor paperclip with saturation tuning of all VTUs, averaged over all target paperclips, for different
distractor contrasts. Target contrast and number of afferents per VTU indicated above each plot. Legend in top
right plot indicates (for all plots) values of multiplicative boosts applied to target VTU’s C2 afferents in generation
of each graph.
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Figure 22: Saturation tuning. ROCs for recognition of target paperclips in presence of a distractor paperclip (Stimu-
lus Comparison paradigm) with saturation tuning of all VTUs, at different contrasts and multiplicative attentional
boosts, averaged over all target paperclips. 40 afferents per VTU. Legend as in Figure 21.
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overshoot of afferent activity without a corresponding
drop in VTU firing rate thus also entails a loss of the
VTU response’s stimulus specificity.

Results for saturation tuning of VTUs are displayed
in Figures 19 to 22. At low contrast levels and with-
out attentional modulations, there were no changes in
performance, for both stimulus classes and recognition
paradigms, since encoding was unaltered for C2 fir-
ing rates below training level. However, if attentional
boosts were employed at low target contrasts, perfect
recognition could be achieved in the Most Active VTU
paradigm, even for distractors of higher than target
contrast, since overshooting of training C2 activity did
not reduce VTU activity any more, but drove VTUs to
saturation. For paperclips, this coding scheme seemed
very well-suited overall, at least if not all 256 C2 units
were used as afferents to the VTUs (see Figures 21 and
22): similar performance was reached as with standard
HMAX encoding, as measured by ROC curves, and
boosting was effective; but at full target contrast, dis-
tractors did not interfere with target recognition, as op-
posed to standard encoding. However, a look at Figures
19 and 20 reveals problems of this coding scheme with
car stimuli. In the Most Active VTU paradigm, very
good results could still be achieved for car stimuli at
low contrasts if attentional boosts were applied. How-
ever, since the sets of afferents of VTUs tuned to cars
overlapped much more than those of VTUs tuned to pa-
perclips, the loss of specificity encountered in switch-
ing from standard encoding to saturation tuning was
much more relevant here, and recognition performance
for full-contrast car stimuli dropped drastically. Even
attentional modulations did not change this result. The
reason was that, for full-contrast stimuli or after atten-
tional boosts, more VTUs than only the one tuned to
the target responded near or at saturation, due to over-
lap of their sets of afferents. Thus, loss of specificity in
this coding scheme makes it inappropriate for stimuli
displaying high degrees of similarity—or, conversely,
saturation tuning may only be useful if specialized fea-
tures for a given object class exist, in order to minimize
overlap between afferents. Then, however, the resultant
more distinct neuronal representations, like those of pa-
perclips in our case, can yield good recognition perfor-
mance even in standard HMAX, so that there seems to
be no need for saturation VTU tuning, except to counter
the effects of high-contrast distractors.

3.6.2 Relative rate tuning

In the second alternative coding scheme for VTUs we
introduced into HMAX, the “relative rate tuning”, the
most active VTU was determined by which set of C2
afferents responded most strongly, even if absolute ac-
tivity levels of C2 units were very low, e.g., due to low
stimulus contrast. Specificity, however, was only con-
ferred through the selection of a VTU’s afferents, not

through matching their activity pattern to its training
value. Hence, this coding scheme gave up even more
specificity than saturation tuning.

Using relative rate tuning and the Most Active VTU
recognition paradigm, cars could be recognized by the
model with a much greater degree of contrast invari-
ance than when standard HMAX encoding was used
(not shown), and attentional boosts resulted in effective
preferred recognition of the stimulus whose critical fea-
tures had been selected by attention. However, from
experiments using the Stimulus Comparison paradigm,
we had to conclude that this encoding method cannot
be considered a serious alternative to standard HMAX
tuning, since individual VTU ability to discriminate be-
tween stimuli in the presence of a distractor was nearly
completely lost (not shown). Only chance performance
levels were reached, with and without attentional mod-
ulations. Quite obviously, disregarding the information
conveyed in the exact firing rates of afferents and re-
lying on relative firing strengths of different sets of af-
ferents only is much too nonspecific for recognition in
cluttered scenes.

All in all, both alternative VTU tuning mechanisms
discussed do not seem to be promising solutions to the
problem of achieving more contrast-invariant recogni-
tion in clutter while at the same time allowing for ef-
fective attentional influence on object recognition. Rel-
ative rate tuning is too nonspecific overall, and sat-
uration tuning, while reducing the influence of high-
contrast distractors, also suffers from a reduction in
specificity for realistic object classes that have many
features in common. Again, more specialized features
for the object class under consideration would very
likely improve performance in both coding schemes,
while preserving their advantages of allowing for bio-
logically plausible saturation of units (saturation tun-
ing) or diminishing the influence of stimulus contrast
on recognition (relative rate tuning), respectively. How-
ever, with sufficiently specialized features, recognition
in clutter can be robust enough even without atten-
tional modulations, as suggested by our results for pa-
perclips in comparison with cars. Thus, so far, none of
the mechanisms we explored seems to actively support
the notion of an attentional mechanism that robustly
improves object recognition performance in an early se-
lection paradigm.

3.7 Population coding

Stimulus encoding in the brain is mostly found to be
distributed: neurons usually participate in representa-
tions of several stimuli [18, 51]. Higher areas of visual
cortex are no exception to this general finding [66, 67].
Such a population code has various advantages over its
opposite, a ”grandmother code” where each stimulus is
encoded in the activity of only a single specialized neu-
ron. Most significantly, having single neurons tuned
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very specifically to single complex stimuli would not al-
low the brain to generalize to novel stimuli from a few
learned example stimuli [47]. Also, a grandmother code
would most likely not be robust with respect to a loss
of neurons; the objects lost neurons code for might no
longer be recognized.

Thus, realistic models of brain functions have to take
into account the distributed nature of stimulus repre-
sentations in the brain. In the simulations described
so far, we used a “grandmother-like” code, each stimu-
lus being encoded by the activity of only a single VTU.
This coding scheme had not been chosen as a realistic
model of the brain’s way of representing stimuli (except
in specialized cases, where the animal is overtrained on
a discrimination task involving a small number of fixed
stimuli [28]), but rather because it was the simplest
and most straightforward method. To investigate at-
tentional modulation for the case of a population code,
we used 190 VTUs trained to different face stimuli as a
model of a neuron population whose responses encode
the presence or absence of face stimuli (see Methods).

As a basis for comparing single-VTU and population
coding, we first assessed recognition performance for
faces with individual VTUs tuned to them, just as was
done in previous sections for cars and paperclips. Per-
formance of the model for this stimulus class and sin-
gle VTU encoding was found to be very similar to re-
sults obtained with car stimuli (not shown). Recogni-
tion performance also turned out to be highly contrast-
dependent, and it improved with attentional enhance-
ment of C2 firing rates, provided target contrast was
lower than training contrast, distractor contrast was not
too high and the correct boosting value was chosen.
As with cars, recognition performance was nearly in-
dependent of the number of C2 afferents each VTU was
connected to, and even if all 256 C2 units were used as
afferents and all of them received the same multiplica-
tive firing rate boost, recognition performance—as mea-
sured by ROC curves—improved about as much as for
smaller sets of afferents.

Figures 23 and 24 show recognition performance
based on the population response of the face-tuned
VTUs, for the smallest number of afferents to the VTUs
and to the second-level VTUs we tested. Higher num-
bers of afferents yielded performance levels equal or
lower to those shown. From the curve drawn from
data generated without employing attentional mecha-
nisms, it is obvious that—at least for the case of deter-
ministic units investigated here—population encoding
achieved no better performance in clutter in our model
than a single VTU coding scheme. Instead, a coding
scheme based on the responses of several VTUs exhib-
ited even higher sensitivity and thus less invariance to
clutter or contrast changes. This was revealed by a look
at the activity values of the second level VTUs we used
to measure the population response. Their firing rates

dropped to very low levels for any deviation of the
VTU population activity pattern from that elicited by
the training stimulus (not shown).

The second lesson learned from Figures 23 and 24
is that attentional boosts applied directly to the pop-
ulation of VTUs can, in general, not improve recogni-
tion performance. Since VTUs display nonlinear behav-
ior, simply increasing their firing rates can not be ex-
pected to restore an activity pattern that has been mod-
ified by contrast changes or distractor stimuli. An ex-
ception to this rule was found for presence of a highly
similar distractor at full contrast. In this special situ-
ation, VTU population activity was not very different
from that during presentation of the target stimulus,
and those VTUs that responded most strongly to this
stimulus (only these were used to generate Figure 23)
were likely to be reduced in their activity, so that boost-
ing their firing rates could in fact improve recognition of
the target stimulus in the Most Active VTU paradigm—
but only if, at the same time, all other VTUs were sup-
pressed. Other than that, however, and especially if
an ROC measure was applied to take account of false
alarms, boosting VTUs did not increase recognition per-
formance above chance levels, even if all other VTUs
were suppressed.

We thus returned to modulating firing rates of C2
units. However, since the VTU representation of the
target stimulus to be recognized was distributed, there
were no sets of C2 afferents clearly identifiable as tar-
gets for boosting and suppression. Since we used sub-
populations of VTUs to code for a stimulus (i.e., those
VTUs that were connected with the second-level VTU
representing this stimulus), we could have selected only
those C2 units for an attentional boost that fed into the
VTUs of such a subpopulation, but that did not at the
same time feed into other VTUs. However, it turned out
that, even if each population VTU had only 40 C2 affer-
ents, hardly any such C2 units could be found (on the
order of 10 or less for any given target stimulus)—too
few to achieve significant changes in recognition perfor-
mance by only modulating firing rates of those C2 units.
This indicates that, in a population coding scheme, it is
even more difficult, if not impossible, to find features
that are both critical for the recognition of a stimulus
and unique to it.

Figures 25 and 26 show results for applying atten-
tional boosts to all afferent C2 units of the VTU subpop-
ulation that coded for a stimulus, regardless of over-
laps between the sets of afferents of different subpop-
ulations. (With 40 C2 afferents for each VTU and 10
VTU afferents to each second-level VTU, this affected,
on average, about 80 of the 256 C2 units.) The effects
were qualitatively identical to and quantitatively some-
what weaker than those obtained in the single VTU cod-
ing scheme. Only for distractors of equal or lower con-
trast than target contrast could performance increases
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Figure 23: VTU population code with attentional modulation of VTUs. Recognition performance (Most Active VTU
paradigm) for target faces in presence of a distractor face. Average taken over all target faces and distractors at each
distractor morph distance. Legend in top left plot indicates (for all plots) values of multiplicative boosts applied
to the VTUs most activated by the target stimulus (first value) and suppression applied to all other VTUs (second
value, if applicable). All results for 40 C2 afferents to each VTU and 10 VTU afferents to each second-level VTU.
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Figure 24: VTU population code with attentional modulation of VTUs. ROCs for recognition of target faces in
presence of a distractor face (Stimulus Comparison paradigm), at different contrasts and multiplicative attentional
boosts and suppression, averaged over all target faces. 40 C2 afferents per VTU and 10 VTU afferents per second-
level VTU. Distractors were always at morph distance 5 from the target stimulus. Legend as in Figure 23.
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Figure 25: Multiplicative C2 boosts and suppression in a VTU population coding scheme. Recognition performance
(Most Active VTU paradigm) for target faces in presence of a distractor face. Average taken over all target faces and
distractors at each distractor morph distance. Legend in top right plot indicates (for all plots) values of multiplica-
tive boosts applied to C2 afferents of the VTUs most activated by the target stimulus (first value) and suppression
applied to all other C2s (second value, if applicable). All results for 40 C2 afferents to each VTU and 10 VTU afferents
to each second-level VTU.
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Figure 26: Multiplicative C2 boosts and suppression in a VTU population coding scheme. ROCs for recognition of
target faces in presence of a distractor face (Stimulus Comparison paradigm). Average taken over all target faces
and distractors. Distractors were always at morph distance 5 from the target stimulus. Legend as in Figure 25.
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Figure 27: Effects of greater numbers of C2 afferents and larger VTU populations in a VTU population coding
scheme. Data plotted for 100 C2 afferents to each VTU and 100 VTU afferents to each second-level VTU. Target and
distractor contrast 60%. Legend indicates values of multiplicative boosts applied to the target VTU population’s
C2 afferents and suppression applied to all other C2 units, if applicable. (a) Recognition performance for faces in
presence of a distractor face in the Most Active VTU paradigm. Average taken over all target faces and distractors at
a given distractor morph distance. (b) ROCs for recognition of faces in presence of a distractor face in the Stimulus
Comparison paradigm. Average taken over all target faces and distractors. Distractors were always at morph
distance 5 from the target stimulus.

be achieved in both paradigms of measuring recogni-
tion performance, and boost values needed to be ad-
justed to the target’s contrast level. The set of C2 affer-
ents of the VTU subpopulation responding best to the
target stimulus overlapped significantly with the set of
afferents of the second most active VTU subpopulation,
so that suppression of the latter largely compensated
for the boost applied to the first, and recognition per-
formance effectively did not change (not shown). At-
tenuating all C2 units that did not receive an attentional
boost further improved recognition performance if the
Most Active VTU paradigm was used for measurement,
but the ROC curve was not influenced. As opposed
to single VTU coding, however, effects of attentional
boosts largely disappeared when more afferents to the
VTUs and larger VTU subpopulations were used (Fig-
ure 27). This again shows that VTU population coding
is in fact more sensitive and less invariant to stimulus
changes than single VTU coding, as mentioned above.

Taken together, a VTU population code yields similar
results for recognition in clutter and effects of attention
in HMAX as a coding scheme based on the firing rates
of individual VTUs. Population coding is very effective
in increasing specificity of neuronal responses, which
is also what we observe in HMAX. However, while
advantageous in a situation where neurons are rather
broadly tuned and susceptible to noise, the added com-
plexity of an extra layer in the representation exacer-
bates the problem of selecting appropriate modulations
for neurons in intermediate levels (e.g., C2/V4). Atten-
tion can be applied in a VTU population coding scheme

in a manner analogous to that used for single VTU en-
coding, but it is also subject to the same limitations as
in a single VTU coding scheme.

3.8 Problems of attentional boosts

In previous sections, we mentioned a number of prob-
lems we encountered when firing rate boosts of model
units were employed to model attentional effects on ob-
ject recognition, i.e., in an early selection paradigm of at-
tention. Apart from the need to match boost strength to
stimulus contrast, the most significant problem turned
out to be a tradeoff between effectiveness of an atten-
tional mechanism on the one hand and its specificity
on the other hand. An attentional boosting mechanism
that is more effective at improving recognition of a tar-
get stimulus also seems more likely to be less specific
for this target stimulus or to exhibit an increased risk
of false alarms, or both. We will end our investigation
with a more detailed look at this issue in this section, re-
turning to standard HMAX stimulus encoding in a sin-
gle VTU coding scheme.

Figure 28 addresses the question of specificity. It
shows, for a multiplicative attentional boost without
suppressive effects, improvements in recognition per-
formance for a paperclip to which actually no attention
was directed. That is, even though VTUs with only
40 C2 afferents each were used, and even though they
were tuned to paperclips, for which the sets of afferents
of different VTUs were found to overlap least (see sec-
tion 3.2), overlap was still significant enough to affect
recognition performance for a stimulus whose defin-
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Figure 28: Improvements in recognition performance for stimuli other than the boosted one. ROCs for recognition of
a paperclip in the presence of a distractor paperclip (Stimulus Comparison paradigm) at various contrasts. Legend
in top right panel indicates multiplicative boosts applied to C2 afferents of another, arbitrarily chosen, VTU different
from the one for which performance was measured here (first value) and suppression applied to all other C2 units
(second value, if applicable). Each VTU had 40 C2 afferents.
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Figure 29: Erroneous recognition, caused by attentional boosts, of paperclip stimuli that are not present in the
display. Figure shows false alarm rates, i.e., relative frequency of the event that the VTU whose afferent C2 units
had been boosted was the most active among all VTUs tuned to paperclips, even though its preferred stimulus was
not shown in the image. Target contrast levels indicated above each panel, distractor contrast varies on the x-axis.
Legend in right panel indicates multiplicative boosts applied to afferents of a VTU whose preferred stimulus was
not in the image presented (first value) and suppression applied to all other C2 units (second value, if applicable).
40 C2 afferents to each VTU.
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ing C2 features (i.e., the afferents of the VTU tuned to
this stimulus) had not been the primary target of the
attentional boost. The increase in performance was ac-
tually comparable to that achieved if the stimulus itself
was the target of attentional modulation. Similar results
could be obtained for most other paperclips as well (not
shown). This makes clear that an effective attentional
modulation need not be specific, or, for that matter,
no targeted attentional mechanisms are required in our
model to improve recognition performance, at least in
the Stimulus Comparison paradigm, which is the basis
for the ROC curves we show.

On the other hand, in the Most Active VTU
paradigm, more targeted attentional modulations were
shown to be more effective in raising firing rates of the
VTU tuned to the target stimulus above those of other
VTUs. Boosting only the afferents of the VTU coding
for the target stimulus and attenuating the activities
of all other C2 units can be considered the most spe-
cific attentional mechanism we explored, since in this
scheme, all VTUs except that tuned to the target experi-
enced attenuation of at least some of their afferents and
thus were very likely to be attenuated in their own fir-
ing. Figure 28 illustrates this: for suppression of all but
the boosted C2 units, the attentional improvement in
recognition performance did not extend to stimuli that
were not explicitly attended. However, the shortcom-
ings of such an attentional mechanism are made very
clear in Figure 29. Here, the afferents of VTUs tuned
to paperclip stimuli that were not shown in the stim-
ulus display were boosted. Percent values on the or-
dinate axis indicate how often the VTU whose affer-
ents had been boosted was the most active among all
VTUs, even though its preferred stimulus did not ap-
pear in the display. Thus, Figure 29 shows false alarm
rates due to attentional modulations in the Most Active
VTU paradigm. It is obvious that already for a mul-
tiplicative attentional boost without suppression, con-
siderable false alarm levels (“hallucinations”) in this
paradigm were reached—for the same combinations of
stimulus contrast and boost strength that had previ-
ously been found to be most effective (see section 3.3
and Figure 10). Especially when we added suppres-
sion of all C2 units that were not boosted, thus increas-
ing specificity of the attentional modulation, false alarm
rates could reach 100%, which means that in these cases,
the cued object was always “detected”, regardless of
which stimuli were actually presented.

Such false alarm rates are of course unacceptable
for a mechanism that is supposed to increase recog-
nition performance. Here, we only examined multi-
plicative attentional boosts with and without suppres-
sion. However, we demonstrated the effective similar-
ity of this mechanism to boosting by shifting the re-
sponse function (see section 3.4), and the alternative
coding schemes we explored, as well as population cod-

ing, suffered from similar problems of trading increased
boosting efficiency for either a loss of specificity or in-
creased false alarm rates. Learning specialized features
for a given object class would very likely improve speci-
ficity for this class, but the problem of cuing and, con-
sequently, recognizing the wrong object would prevail
if attention came into play before completion of object
recognition. Hence, these results further question the
usefulness of early selection mechanisms of attention
for object recognition.

4 Discussion

We have examined a range of experimentally moti-
vated models of feature- or object-directed attention in
HMAX with respect to their suitability for the problem
of increasing object recognition performance in clut-
tered scenes and at low contrast levels. Our primary
objective was to investigate in a biologically plausi-
ble model of object recognition in cortex whether, how,
and under what conditions the visual system could
be “tuned” in a top-down fashion to improve perfor-
mance in object recognition tasks. For both measures
of recognition performance we used, performance im-
provements could in fact be achieved by targeted mod-
ulations of model unit activities. However, success of
these modulations in terms of object recognition perfor-
mance, for all mechanisms we tested, turned out to be
highly dependent on choosing the appropriate amount
by which firing rates were changed with respect to stim-
ulus contrast level, which in general is not known in
advance. Furthermore, our models of attentional mod-
ulation were rather ineffective at compensating for ef-
fects of high-contrast distractors. While this is con-
sistent with experimental findings that attention might
only modulate neuronal responses at low and interme-
diate stimulus contrast levels [42], it cannot explain how
objects at low contrast can still be recognized, even in
the presence of distractors at higher contrast. Alterna-
tive coding schemes we tested (saturation tuning and
relative rate tuning) that were less susceptible to vari-
ations in stimulus contrast and allowed for more ef-
fective attentional boosting were shown to exhibit sig-
nificantly reduced overall stimulus specificity and high
false alarm rates, especially for stimulus classes display-
ing high degrees of similarity. Finally, we have shown
that attentional firing rate changes that proved to be ef-
fective in improving object recognition performance in
HMAX could either equally well be replaced by unspe-
cific general firing rate increases of all C2 units, in order
to make up for lower stimulus contrast levels, or were
prone to potentially dramatic increases in false alarm
rates. A summary of our results for the various mod-
els of attentional modulations we tested can be found
in Table 1.

Apart from the experiments we discussed so far,
we also implemented a scheme for object categoriza-
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Modulation method Effects in Most Effects in Stimulus
Active VTU paradigm Comparison paradigm

Multiplicative /
response function
shift

Performance improvements only
for suitable boost values; false
alarms possible

Performance improvements only
for suitable boost values and dis-
tractor contrast lower than target
contrast; little specificity; similar re-
sult for general increase in effective
contrast

Multiplicative with
suppression

Significant performance improve-
ments possible for suitable boost
values and suppression of all re-
maining C2 units; high specificity;
high false alarm rates

Performance unaltered for suppres-
sion of unrelated C2 units; per-
formance losses for suppression of
nontarget VTU’s C2 afferents due to
overlapping feature sets

Multiplicative with
saturation tuning

Performance improvements and less distractor interference only for
suitable boost values and sufficiently distinct stimuli; performance
losses for similar stimuli, even without attention and at full contrast,
due to less specific encoding

Multiplicative with
relative rate tuning

Performance improvements for
various boost values possible;
greater contrast invariance; high
risk of false alarms

Only chance performance levels
reached due to lack of specificity

Multiplicative with
population code

Performance improvements only for suitable boost values applied to C2
cells; improvements smaller than with single VTU encoding; selection
of features difficult

Table 1: Summary of attentional modulation methods.

tion in clutter in HMAX and examined the effects at-
tentional modulations could have on performance in
this context. In agreement with our previous findings,
no consistent improvements in categorization perfor-
mance could be achieved with simulated early selection
tuning mechanisms. Results were extremely dependent
on small variations in parameter settings and highly un-
predictable. Thus, no indications for the usefulness of
early selection mechanisms of attention could be found
in the model for object categorization, either.

An attentional influence on object recognition is, by
definition, an early selection mechanism. As we have
explained in section 1.2, within the short time inter-
val needed to accomplish object recognition, any atten-
tional effect on it can, if anything, only “tune” the visual
system so that recognition can be completed in a single
feedforward pass of activation through the hierarchi-

cal network. Thus, in such a situation, attention would
usually have to operate without prior knowledge about
exact stimulus contrast levels, not to mention detailed
knowledge about the visual appearance of a target stim-
ulus. An attentional mechanism affecting object recog-
nition would also have to allow for recognition of a tar-
get object even if it appears together with distractors at
higher contrast. It should be selective for a target stim-
ulus or stimulus class to actually filter out unwanted in-
formation, which, after all, is one of the core objectives
of attention, and it should not raise false alarm rates to
unacceptably high levels, but still allow correct recog-
nition of unexpected stimuli. Thus, our results argue
against a role of featural attention, as we modeled it, in
object recognition, as it is modeled in HMAX.

Of course, our simulations can only be taken as in-
dicators for what actually happens in the brain if it
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is assumed that encoding of stimuli there is in any
way comparable to HMAX. However, the challenges
of maintaining specificity and selectivity of attention
while avoiding false alarms are very likely to be en-
countered by any stimulus encoding scheme, provided
attention in fact acts before object recognition occurs.

Thus, our results question the suitability of early se-
lection mechanisms of feature attention for object recog-
nition per se. It has to be pointed out again that spatial
attention is a different issue, as already mentioned in
section 1.1. Experiments find spatial attention effects
early enough so that it can be considered an early se-
lection mechanism of attention; however, it is probably
more relevant for preferential processing of all stimuli
that appear at a cued location [19, 20]. That is, spatial at-
tention can well aid object recognition by reducing the
influence of clutter at other locations, but it does not se-
lect any specific object features for preferred processing,
as featural attention does.

While arguing against a role of featural attention in
the process of object recognition, our results are consis-
tent with the alternative hypothesis that object attention
might rather reflect a process of stimulus selection that
occurs after recognition has been completed. In fact,
much experimental evidence suggests the same. First
of all, as already mentioned in section 1.2, most stud-
ies do not find effects of feature-directed attention on
firing rates in visual areas up to V4 before about 150
ms after stimulus presentation [11, 19, 39, 49]. While
increased delay activities of neurons in IT whose pre-
ferred stimulus has been shown as a cue can be ob-
served before stimulus onset, firing rates with and with-
out attention are identical during the initial burst of
activity, until they begin to diverge after, again, about
150 ms [10]. Since ERP studies suggest that even com-
plex object recognition and categorization tasks on real-
world visual input can be successfully accomplished
within this period of time [58, 64], it can be argued that
neuronal activity during the initial burst, which is not
modulated by object-directed attention, is actually cru-
cial for object recognition [57].

Similar conclusions can be drawn from psychophys-
ical results. It has long been argued that briefly pre-
sented stimuli in RSVP experiments can actually be
recognized and are temporarily stored in a conceptual
short-term form of memory, but are usually rapidly for-
gotten due to processing of following stimuli [41] (for
an overview, see also [12]). Prior information about a
target stimulus to be detected improves performance
greatly over what is observed if subjects are not in-
structed and asked only after viewing an RSVP stream
if a particular stimulus has been presented in it. Fur-
thermore, as we already mentioned, even very abstract
cues that do not entail any information about the ap-
pearance of the target stimulus can significantly im-
prove performance in an RSVP experiment [21]. While

these findings do not exclude an early selection mech-
anism of attention that facilitates processing of features
of the target stimulus in advance, the results for very
general categorical or negative cues about the target in
particular argue against such a mechanism. After all,
performance improvements generally are limited to the
target stimulus, and recognition (or, rather, retention)
of nontarget stimuli is actually lower than without at-
tention to a target [41], while our results would suggest
that very general cues also affect recognition of nontar-
get stimuli (see section 3.8). Moreover, giving a picture
instead of a name cue about the target stimulus does not
increase the probability of erroneous detection of that
stimulus [41], even though this is a much more specific
form of cuing, which in our experiments led to an in-
creased chance of “recognizing” the cued object even
if it was not presented at all (section 3.8). Thus, these
experimental data are diametrically opposed to what
would be expected from our study for an early selec-
tion mechanism of attention.

However, a caveat here is that the RSVP studies cited
usually did not control for distractor similarity, so that
the lack of an increase in false alarm rate and of ef-
fects on nontarget stimulus recognition might also be
due to the use of very dissimilar distractor stimuli with
hardly any overlap between the relevant feature sets.
This would best be tested by an RSVP experiment us-
ing morphed stimuli like those in this study. On the
other hand, an increased false alarm rate for more sim-
ilar stimuli alone would not be proof for an early se-
lection mechanism of attention. One should not expect
the visual system to be able to detect even very subtle
differences between target and distractor stimuli within
cluttered scenes and at high presentation rates. In such
situations, false alarm rates would also be expected to
rise if no pre-recognition attentional mechanisms were
assumed.

Other findings from RSVP studies further corrobo-
rate the idea of rapid recognition without attentional
influences. In RSVP presentations of word streams, a
nontarget word semantically related to the target word
is more likely to be remembered than an unrelated word
[24]. This kind of “semantic priming”, like the effects of
abstract category or negative cues, might also possibly
be explained by an early selection tuning mechanism of
attention, but here, this is even more unlikely since vi-
sual features cannot be used to discern a semantically
related word stimulus, and any such selection mecha-
nism effectively has to operate on a conceptual represen-
tation of the visual input, i.e., after “recognition” of its
semantic content. Moreover, ERP studies indicate that
semantic processing of stimuli occurs even during the
period immediately (up to about 300 ms) after recogni-
tion of a target stimulus in an RSVP experiment, even
though these stimuli are not available for later recall
(which is called the “attentional blink” phenomenon)
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[30]. This strongly suggests that stimuli are in fact
rapidly processed up to a high level of abstraction, even
if they do not enter a processing stage at which they can
be consciously recalled later. Hence, cue-related perfor-
mance improvements in RSVP tasks are likely not ef-
fects of enhanced recognition of stimuli that otherwise
would go unnoticed, but are rather caused by improved
retention of recognized stimuli that would normally be
rapidly forgotten.

There is, however, a point that could be made in fa-
vor of an early selection mechanism of attention based
on findings from RSVP experiments. More specific ad-
vance cues about the target stimulus (e.g., giving ob-
ject name rather than superordinate category), as al-
ready discussed, increase recognition performance and
shorten reaction times [21]. If recognition usually pro-
ceeds to completion anyway at a given presentation
rate, and does so within about 150 ms, there seems to be
no reason why differences in performance or reaction
time should come up for different cue levels, suggest-
ing that attentional mechanisms act before object recog-
nition occurs and can do so more efficiently with more
specific cues. However, as Intraub already pointed out,
“the process of deciding that the cue and the target
picture match increases in complexity as less specific
cues are provided” [21]. In terms of a stimulus space
concept, it is arguably easier to determine whether a
given stimulus belongs to a more well-defined, sharply-
bounded set such as the basic-level category “dog”
than, for example, whether it does not belong to a
less well-defined superordinate class such as “means of
transport”, even if stimulus identification has been suc-
cessful. Thus, these findings can just as well be accom-
modated in a late-selection theory of attention.

Of course, we cannot exclude the possibility that the
visual system might nevertheless use advance tuning
as an attentional mechanism in some cases. More so-
phisticated mechanisms for selection of appropriate fea-
tures and boost strength might exist than we assumed
in this study. However, based on evidence from this
and other studies discussed so far, it can be argued that
any such early selection mechanism of attention would
most probably have a very limited range of operation.
A good candidate situation suggested by our results
might be the detection of a target stimulus from a lim-
ited set of well-trained stimuli when its contrast level is
known in advance, e.g., from an instruction trial, so that
target and potential distractor features are clearly iden-
tifiable and boost strength could be adjusted to stimu-
lus contrast, if that was at all necessary. For example,
a monkey could be trained on two novel sets of stim-
uli from different categories. Then, one would have to
search for cells in V4 that respond selectively to one of
those stimuli (or rather, as might be hypothesized, to a
complex feature displayed by this stimulus) and record
their activities before and during presentation of an ac-

tual test stimulus when the category of their preferred
stimulus or this stimulus itself has been cued as behav-
ioral target. Differential activity related to the cue dur-
ing a neuron’s early response (up to 150 ms after stimu-
lus presentation) or even during the delay period before
the stimulus appears then would indicate that an early
selection mechanism of attention might be at work.

There are in fact studies that do find evidence for pre-
stimulation tuning mechanisms of attention. Haenny et
al. [16] find increased baseline firing rates of neurons
in V4 for an orientation cue; however, their cues and
stimuli were simply oriented gratings, and the task the
monkey had to perform was an orientation judgment,
so that these findings can hardly be taken as evidence
for the role of attentional mechanisms in complex ob-
ject recognition. Psychophysical studies using brief pre-
sentations of single images often find performance in-
creases if a target stimulus to be detected in the image is
known in advance [5, 40]. In a strict interpretation of the
above theory of rapid recognition of briefly presented
stimuli, a single stimulus should either be recognized
or not, regardless of advance knowledge, and it should
not be subject to forgetting since no further stimuli oc-
cupy processing resources. Differences in performance
due to availability of advance knowledge in such exper-
iments might therefore in fact be due to an attentional
influence on the process of recognition itself. However,
these increases in performance are substantial only if
an exact picture of the target stimulus is provided in
advance. Thus, as both Pachella and Potter point out,
such early selection mechanisms of attention are likely
limited to situations where “highly specific informa-
tion about the stimulus to be presented” is provided
[40, 41], so that, one might add, even low-level com-
parisons of the features contained in the visual input
can lead to a correct judgment whether two stimuli are
identical or not. Moreover, in single image recognition
tasks, cue and stimulus immediately follow each other,
without intermittent distractors, and the task is usually
just to make a “same – different” judgment between
rather random stimuli, so that even a mechanism that
normally produces high false alarm rates might be effi-
cient here. Again, this indicates that any potential pre-
stimulation attentional tuning mechanism would most
likely be useful only in very specific settings where de-
tailed advance information is provided, stimuli are suf-
ficiently distinguishable and the task at hand is “forgiv-
ing” with respect to the shortcomings of advance tun-
ing mechanisms we propose in this study. It would be
very interesting to test in a psychophysical experiment
whether an effect of cuing can indeed be observed un-
der those conditions.

Overall, a theory that describes attention as a mech-
anism of selecting stimuli that have already been rec-
ognized, rather than one involved in or even required
for the process of recognition, seems to fit the available

35



experimental and modeling data best. It appears that,
given the highly complex structure of natural visual
input and the often rather diffuse nature of advance
cues, identifying features to attend to before stimulus
presentation quickly becomes intractable, and boost-
ing and attenuating neural activity in advance yields
unpredictable results. However, when recognition is
accomplished, the mechanisms of boost and suppres-
sion can be used very efficiently to select certain stimuli
for enhanced processing and behavioral responses. We
have shown that, in our Most Active VTU paradigm,
stimuli can in fact be brought to the “foreground” or
“background” effectively by boosting and attenuating
neuronal firing rates. If it is already known which stim-
uli are actually present in an image, these mechanisms
can be applied without risking recognition errors, since
selection of features for boost and suppression is much
easier when top-down information can directly be com-
pared with actual stimulus input. This way, the system
need not rely only on connection strengths established
by learning to select features to attend to, as in our sim-
ulations; it can take into account firing rates of neurons
in response to a given visual input, which are influ-
enced by actual stimulus appearance, contrast, clutter
etc., to determine which features are actually important
for identification of an object. This is also a promising
mechanism for modeling feature attention which has al-
ready been explored to some extent [63].

Thus, the picture of visual feature attention emerg-
ing from this study is that of a mechanism to compare
bottom-up with top-down activity and select match-
ing patterns for further processing, after visual input
has been processed to a sufficiently high level to allow
matching even to very abstract top-down information
such as categorical or negative cues. After attentional
effects come into play, that is, after about 150 ms, when
feedforward recognition has most likely already been
accomplished, neuronal activity in higher ventral vi-
sual areas such as V4 reflects not only which objects are
present in the visual field, but also, and even more so,
which objects have been attentionally selected. Area V4,
for example, might thus be viewed as an instantiation of
a “saliency map”. The concept of a saliency map is usu-
ally associated with a topographical neural representa-
tion of those locations in the visual field that have been
determined by bottom-up processes to contain the most
salient input (measured by such qualities as orientation,
color, brightness etc.) [23]. V4 might thus be thought of
as a “top-down object saliency map” that codes for the
presence of objects in the context of their current behav-
ioral relevance, useful for planning eye movements to
potential targets, for instance by providing input to the
frontal eye fields [3, 4]. Such a role of V4 is compatible
with very recent experimental evidence [32].
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