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Abstract 
 
The visual recognition of complex movements and actions is crucial for communication and survival in 
many species.  Remarkable sensitivity and robustness of biological motion perception have been 
demonstrated in psychophysical experiments.  In recent years, neurons and cortical areas involved in 
action recognition have been identified in neurophysiological and imaging studies.  However, the detailed 
neural mechanisms that underlie the recognition of such complex movement patterns remain largely 
unknown.  This paper reviews the experimental results and summarizes them in terms of a biologically 
plausible neural model.  The model is based on the key assumption that action recognition is based on 
learned prototypical patterns and exploits information from the ventral and the dorsal pathway.  The 
model makes specific predictions that motivate new experiments. 
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Complex motion patterns, such as biological movements or actions, are biologically important visual 
stimuli.  They are useful for recognizing predators from large distance, and are important for the courtship 
behavior in multiple species.  Many predators exploit complex movements for detecting their prey, and 
for minimizing their own risk during attack by selecting weak animals (1). Gestures and facial 
expressions play a central role in the communication behavior of primates and humans (2, 3).  In spite of 
the high biological relevance of such stimuli, a detailed, biologically plausible theory for the neural 
mechanisms that underlie their recognition is still lacking.  We provide in this article a review of the most 
important experimental results and present a model that consistently accounts for them on the basis of 
well-established cortical neural mechanisms.  From this theoretical analysis a number of questions arises 
that motivate new psychophysical, neurophysiological and functional imaging experiments. 
 
 
Neural Basis of Motion Recognition: Review of Some Basic Results: 
 
Classical psychophysical experiments by Johansson have demonstrated that complex movement patterns, 
such as walking or dancing, can be recognized from highly impoverished stimuli that consist only of a 
small number of moving dots.  Such �point light displays� can be generated by filming illuminated 
markers that are fixed on the joints of actors who perform complex movements (4).  Subsequent studies 
have shown that the same stimuli are also sufficient for the recognition of other complex actions, such as 
American Sign Language and facial expressions (5).  The recognition of biological motion from point 
light displays is highly selective, and subjects are able to identify the actor and the gender of the walking 
person on the basis of such stimuli (6).  Since action patterns can be recognized from point light stimuli 
and strongly blurred movies (7) well-defined shape information seems not to be necessary for the 
recognition process.  Other psychophysical studies suggest that gait patterns in some cases can be 
identified on the basis of form features in individual stationary images, or from stimuli with strongly 
degraded motion information.  This implies that pure form information sometimes can be sufficient (8). 
 
A variety of computer vision methods for the recognition of complex movements and actions exist.  This 
shows that the recognition problem is computationally solvable, even though a solution at the level of the 
human performance is still out of reach (9).  Many approaches for the analysis of human movements rely 
on predefined or learned geometrical models of the human body, or body parts, combined with predictive 
filtering techniques.  Other approaches rely on the analysis of the space-time patterns using flexible 
templates, exploiting methods from texture analysis, or by learning probabilistic models, like Hidden 
Markov Models.  Some methods exploit form features, such as edges and colored patches.  Others are 
based on the analysis of optical flow patterns (10).  Most technical algorithms are not biologically 
plausible, since it seems difficult to imagine how they could be implemented neurally.  Somewhat closer 
to structures that have plausible biological implementations are solutions based on neural networks or 
connectionist models (10, 11). 
 
It is an open question whether the amazing properties of biological motion recognition can be accounted 
for with known neural mechanisms of cortical information processing.  Only few neurophysiological 
results are available:  Different parts of the superior temporal sulcus (STS) contain neurons that respond 
selectively for full-body (12) and hand movements (13).  Many of these neurons show view-dependent 
responses: the same action elicits much smaller neural responses if it is presented from a viewing 
direction that differs from the preferred view of the neuron.  A significant fraction of neurons in STS 
show strong responses for point light stimuli.  Neurons selective for the visual perception of actions have 
also been found in area F5 of the premotor cortex of monkeys, an area that has been compared with 
Broca�s speech area in humans (14).  Neurons in this area respond selectively during the observation of 
actions, like grasping.  Such responses show invariance against the effector position, e.g. the distance of 
the hand from the body.  Some neurons even generalize over different ways of performing the same 
action, e.g. grasping with the hand or the mouth.  The most significant property of such neurons is that 
they respond not only when the monkey observes an action performed by another actor, but also when the 
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monkey itself performs the action.  It has been postulated that such �mirror neurons� are fundamental for 
linking perception and motor planning, and for the learning of movements by imitation (14). 
 
Functional imaging studies have suggested the existence of similar neural structures in humans (15).  
Activation of areas in the STS during observation of biological motion has been reported in PET and 
fMRI experiments using point light displays and natural stimuli for full-body motion (16, 17).  Activation 
of such areas was also found for mouth and hand movements and facial expressions (3, 18-20).  An 
analog of area F5 in humans has been reported as well.  This area in the inferior frontal gyrus shows 
selective activity during grasping and during the observation and imagery of hand and body movements 
(15, 19).  Biological movement stimuli have been reported in some studies also to activate other sites, like 
the fusiform gyrus, the supplementary motor area, the amygdala, and the cerebellum (16, 17, 20). 
 
 
Model: 
 
Despite a growing body of experimental results from single unit recordings and functional imaging there 
are almost no theoretical proposals of biologically plausible neural mechanisms for the recognition of 
complex biological movements.  We have developed a model that consistently summarizes many existing 
results and simultaneously provides a plausibility proof that the recognition of complex biological 
movement patterns might be based on relatively simple, well-established neural mechanisms.  In addition, 
our model shows that recognition of such patterns can be achieved with a limited number of learned 
prototypical motion patterns.  This representational principle is analogous to the encoding of stationary 
three-dimensional shapes in terms of learned �prototypical views.�  View-based encoding has been a 
fruitful approach for the study of stationary object recognition in primates (21). 
 
The basic structure of the model is illustrated in Fig. 1A. Consistent with the known functional division of 
the visual cortex in a ventral and dorsal processing stream (22), the model contains two pathways that are 
specialized for the analysis of form and optic flow information.  We wanted to test with our 
computational model whether the recognition of complex biological movements and actions can be based 
purely on form or on optic flow information.  To test this hypothesis we made the simplifying assumption 
that, at least to first order, the two pathways are not coupled before the level of the STS.  The fusion of 
both processing streams in the brain occurs likely at the level of the STS (23).  This fusion can be easily 
integrated in the model and leads to an improvement of the robustness of the recognition (24). 
 
Both pathways consist of hierarchies of neural feature detectors.  Hierarchical models for the ventral 
pathway have been proposed repeatedly to account for stationary object recognition (25, 26).  Along the 
hierarchy the size of the receptive fields of the detectors, as well as their invariance against scaling and 
translation of the stimuli increases gradually.  This assumption is consistent with the physiological 
properties of neurons in both the ventral and dorsal pathway.  In addition, recent theoretical studies have 
demonstrated that hierarchical feed-forward networks with such gradual increase of feature complexity 
and invariance can account for highly selective pattern recognition with substantial degrees of invariance.  
Such models account in particular for the neurophysiologically measured invariance properties of neurons 
in the object recognition area IT of monkeys (26).  Similar to other models for the recognition of 
stationary objects (25), invariance for translation and scaling is achieved in our model by pooling the 
responses from non-invariant neural detectors over multiple spatial positions and scales using a 
maximum-like operation (26).  Pooling by a maximum operation, as opposed to pooling by linear 
summation, assures that the pooled response does not loose its selectivity for the original feature.  In 
addition, pooling by a maximum operation makes the responses of feature detectors robust against 
background clutter (26).  The maximum operation can be realized with simple, biologically plausible 
neural circuits (27).  Preliminary physiological results suggest that this operation may be carried out by a 
subpopulation of complex cells in areas V1 and V4 (28). 
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Figure 1A:  Overview of the model with two pathways for the processing of form and optic flow 
information.  Each pathway consists of a hierarchy of neural feature detectors with receptive field sizes 
illustrated by the circles in the bottom row.  The hierarchy levels of the form pathway are formed by 
�simple cells�, modeled by Gabor filters, complex cells that respond maximally for oriented bars 
independent of their exact spatial position, view-tuned neurons selective for body poses, and motion 
pattern-selective neurons that are selective for the whole movement sequence.  The hierarchy levels of the 
motion pathway are motion (energy) detectors, detectors for local optic flow field patterns (translation, 
expansion, and contracting flow), neurons selective for complex instantaneous optic flow patterns, and 
motion pattern-selective neurons.  The labels indicate also the areas in the macaque that contain neurons 
with similar properties.  The highest levels of both pathways might not be separated in the brain.  The 
Appendix provides more details of the circuitry and the properties of the cells. 
 
Figure 1B:  Selectivity for temporal order is achieved by asymmetric lateral connections between 
neurons coding for different body configurations (or complex optic flow patterns).  The activated neuron 
pre-excites other neurons that code for temporally subsequent configurations and inhibits neurons coding 
for configurations earlier or much later in the image sequence.  (See Appendix  for further details.) 
 
Figure 1C:  A traveling pulse of activity in the representation is only stabilized by the recurrent neural 
network if the stimulus frames are presented in the right temporal order (upper panel).  If the stimulus 
frames are scrambled in time (lower panel) the neural activity is strongly reduced. 
 
Figure 1D:  Test of the recurrent network with movies generated from a video sequence of a walking 
person:  The stimulus shown in the original temporal order (solid blue line) leads to a fast build-up of 
activity in the form pathway (latency < 200 ms) after stimulus onset.  Destroying the temporal order by 
either presenting the frames in random order (broken red lines), or by playing the movie in reverse order 
(broken green line) leads to a substantially reduced activity in the neurons representing the walking 
movement. 
 
 
 
The form pathway achieves recognition of actions based on form features.  In the model, neurons on the 
first level of the form pathway mimic V1 simple cells responding selectively for local oriented contours.  
Neurons on the next hierarchy level, corresponding to complex cells in areas V2 and V4, are selective for 
bars independently of their exact spatial position and phase information.  Neurons selective for more 
complex shape features, like corners, as observed in area V4 (29), could be easily added at this level, even 
though they are not necessary for replicating the experimental results discussed in this paper.  The 
neurons at the next level of the form pathway are functionally equivalent to the �view-tuned neurons� that 
have been found in area IT of macaques.  Such neurons can be trained to respond selectively to views of 
complex three-dimensional objects (30).  We assume that these, or functionally similar neurons, can also 
learn to respond selectively for the particular configurations of the human body that are characteristic for 
actions and biological movements.  Such learning might occur during the observation of movement 
sequences, but we did not model the underlying learning process.  After learning, such neurons encode 
�snapshots� from image sequences showing complex body movements.  The highest level of the form 
pathway consists of neurons that respond selectively for complete complex motion patterns, such as 
walking, running, boxing, or dancing.  These motion pattern neurons summate and temporally smooth the 
activity of all snapshot neurons on the earlier level that code for snapshots of the same motion pattern.  To 
keep the model simple we assumed that a single motion pattern neuron codes for each training pattern.  
This is a simplification, because in the brain multiple motion pattern neurons are likely to contribute to 
the representation to each motion pattern category (31). 
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The motion pathway analyzes optic flow information.  The neurons at the first level of the motion 
pathway extract local motion energy, modeling direction-sensitive neurons in the primary visual cortex 
and area MT of the macaque (32).  The neurons on the intermediate level of the motion pathway are 
selective for specific local optical flow field patterns: translation, and contraction / expansion along 
motion boundaries.  In physiological experiments neurons with selectivity for similar local optical flow 
patterns have been found in areas MT and MST (33), and in area KO in humans (34).  The neurons at the 
next higher level of the motion pathway are selective for instantaneous complex optical flow field 
patterns that arise during biological movements.  The selectivity of these neurons is also learned from 
prototypical example movement patterns.  These neurons are functionally equivalent to the �snapshot� 
neurons in the form pathway.  In the brain such neurons might be located in different parts of the STS, 
and possibly also in the premotor cortex.  The activity of these neurons is integrated by movement 
pattern-selective neurons at the highest level of the motion pathway that encode complex movement 
patterns, like walking or running.  Motion pattern neurons of the form and the motion pathway may not 
be separated in the cortex.  More details about the neural detectors on the different hierarchy levels of the 
model are described in the Appendix. 
 
The recognition of complex movement patterns is selective for temporal order.  Subjects who see a movie 
that shows a biological movement sequence in scrambled temporal order do not perceive the biological 
movement, even though the scrambled movie contains the same �snapshots� as the original sequence.  
Also, subjects can easily detect when a natural movement pattern is shown in reverse order (35).  Multiple 
neural mechanisms can account for such sequence selectivity.  In the model we assumed a mechanism 
that is based on asymmetric lateral connections between the �view-tuned� or optic-flow pattern-selective 
neurons (36).  Such asymmetric connectivity can be learned by a simple modified Hebbian rule (37).  
Interestingly, strong effective lateral connectivity in area IT can also account for the experimentally 
observed memory and delay activity in this area (38).  Memory for stationary images and image 
sequences may thus be mediated by the same neural dynamics. 
 
An experimental test of the different possible mechanisms for sequence selectivity requires detailed 
neurophysiological data.  Fig. 1B illustrates the form of the lateral connections in the model.  The network 
dynamics stabilizes a traveling activity pulse only if the stimulus frames are presented in the �right� 
temporal order.  The effectiveness of this mechanism is illustrated in Figs. 1C and D.  Scrambling or 
inversion of the temporal order of the stimulus leads to a competition between the stimulus input and the 
intrinsic dynamics of the network resulting in a strong reduction of neural activity.  With the proposed 
neural mechanism a recognition of biological movement can be achieved within less than 300 ms. This is 
consistent with the psychophysical and neurophysiological observations indicating that biological motion 
stimuli can be recognized with presentation times as small as 200 ms, requiring stimulation for much less 
than a full walking cycle (12, 39).  In addition, the postulated mechanism for order selectivity allows for 
substantial variations in the stimulus speed without abolishing recognition, consistent with 
psychophysical results (see Appendix for further details). 

 6



 
 
 
Figure 2A:  The proposed neural mechanism is characterized by high selectivity for motion patterns.  The 
two panels show the activities of the �walking� neurons on the highest hierarchy levels of the form (top 
panel) and motion pathway (bottom panel).  High activation arises only when �walking� is presented as 
stimulus.  The other 38 distractor sequences, other locomotion patterns and complex movements from 
sports, elicit much smaller activities in the neurons that represent walking. 
Figure 2B:  Generalization fields that arise when the model, previously trained with three locomotion 
patterns (walking, running and limping), is tested with motion morphs between these patterns.  The three 
panels show the color-coded activity in the motion pattern neurons in the form pathway that encode 
walking, running and limping.  Morphs were created by linear combination of prototypical joint 
trajectories of walking, running and limping in space-time (see text).  The positions of the pixels in the 
triangles code for the weights of the prototypes in the linear combination.  The corners of the triangles 
indicate the pure prototypes (W: walking, R: running, L: limping).  Points on the edges of the triangle 
represent two-pattern morphs between the adjacent prototypes, e.g. the point (o) is a morph between 
walking and running with equal weights 0.5.  Points within the triangle are three-pattern morphs, where 
the ratios of the distances from the edge points are equal to the ratios of the corresponding weights.  The 
center of the triangle, (x), codes for a morph with equal weights (1/3) of all patterns.  Point (+) is a 
morph with 20 % walking, 20 % limping and 60 % running.  The neural activity varies smoothly with the 
weights, consistent with the experimental results presented in (41).  Comparing the generalization fields 
for the different motion prototypes depicted in the three triangles, it appears that walking is over-
represented compared to the other patterns.  Similar results were obtained for the model neurons in the 
motion pathway. 
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Simulation Results and Predictions: 
 
The model was tested using more than 100 video sequences, including different forms of human 
locomotion, dancing and physical exercises.  We present in the following a few key results and 
predictions.  Additional simulation results and additional details about the stimulus generation can be 
found in the Appendix.  
 
A first set of simulations evaluates in how far the pattern selectivity and the generalization properties of 
the model match the properties of the biological system.  Fig 2A illustrates that both pathways show high 
selectivity for different motion patterns. 
 
The model was tested with 39 movement patterns that were presented as full-body stimuli (stick figures 
animated with tracking data from natural movements).  The activity in the neural representation for 
walking is high only for walking test patterns.  All other test patterns elicit only relatively small activities.  
Since the two pathways were not coupled this implies that the information in each pathway alone is 
sufficient for an accurate recognition of the presented complex motion patterns.  A clear prediction 
follows from this property of the model.  It should be possible to recognize biological movements by 
temporal association of stationary images, if they contain sufficient form information.  This should be true 
even when optic flow cues are minimized, e.g. by using very long inter-stimulus intervals between the 
frames to suppress normal short and long-range motion perception.  Psychophysical evidence consistent 
with this prediction was obtained with sequences of �Mooney� stimuli.  Such stimuli consist of sequences 
of strongly degraded pictures showing body configurations of animals.  Before subjects recognize the 
animals in the individual pictures the motion stimulus induces the percept of an incoherent optic flow.  
After subjects recognize the animals in the picture they could also perceive their biological motion, in 
spite of the seemingly incoherent optic flow information that is specified by such stimuli (40). 
 
In spite of its high selectivity, the model predicts good generalization for natural complex movement 
patterns.  The model tested with multiple video sequences showing the same type of locomotion executed 
multiple times, or by different people, classifies the motion patterns correctly unless the body geometries 
of the actors are very different (see Appendix).  A more accurate quantification of the generalization 
properties of the model can be obtained with stimuli generated by motion morphing.  We used a new 
morphing technique for the computation of linear combinations of complex movements in space-time 
(41).  Three prototypical locomotion patterns, walking, running and limping, were used to train the model.  
The same prototypes were subsequently linearly combined with different weights to produce the motion 
morphs that we used as test stimuli.  Fig. 2B illustrates the neural activities that are elicited by such 
morphs in the neural representations for walking, running and limping. 
 
The neural activities vary smoothly with the weights of the prototypes in the linear combination.  This 
prediction from the model is consistent with psychophysical data that we obtained by testing human 
subjects with the same stimuli:  We found that multiple psychophysical measures, which can be assumed 
to covary with the activity of the neurons that are selective for locomotion patterns, changed smoothly 
with the weights that characterize the morphed pattern (42).  Fig. 2B shows the predicted �generalization 
fields� for the individual prototypes.  These are the regions in the pattern space of the motion morphs for 
which a particular prototypical pattern is perceived.  The model predicts an over-representation of the 
pattern �walking�.  Interestingly, we found this prediction confirmed in our psychophysical experiments.  
The model also reproduces the experimentally measured speed-, and position invariance of the 
recognition of complex movements in humans.  In addition, the model is sufficiently selective to identify 
people by their locomotion patterns (6).  The corresponding simulations can be found in the Appendix. 
 
An important prediction follows naturally from the assumption of a representation in terms of learned 
snapshots and instantaneous optic flow patterns.  Biological motion recognition should be view-
dependent.  Such view-dependence is psychophysically well-documented.  The recognition of the 
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movements of point light walkers is strongly impaired when the stimulus is rotated in the image plane, or 
in depth (43).  The same behavior is predicted by the model, as illustrated in Fig. 3A.  Rotation of the 
stimulus in depth strongly reduces the response of the motion pattern sensitive neurons.  A similar 
reduction was observed for neurons in area TPO that responded selectively for �walking� if the direction 
of the walker was rotated against the preferred direction of the neuron (12).  For 2D rotations of the 
stimuli in the image plane against the training views similar reductions of the neural activity are observed 
in the model.  These results are consistent with recent fMRI experiments (44). 
 
A second set of simulations tests whether the model reproduces the high degree of robustness that has 
been observed in psychophysical experiments on biological motion recognition.  Biological motion 
stimuli can be strongly degraded before recognition suffers.  One example is the recognition of point light 
displays, which humans and possibly also other animals (45) can easily recognize, even if they have never 
seen such stimuli before.  The model predicts the same type of robustness without assuming complex 
computational processes, like a reconstruction of the links between the dots or of the structure of the 
articulated figure.  Fig. 3B shows the activities of the motion pattern neurons that have been trained with a 
normal full-body �walking� stimulus. 
 
Activities are shown for the form and the motion pathway for three different stimuli: a normal walking 
stimulus, a point light walker, and a distractor stimulus (running). The point light stimulus does not result 
in substantial activity in the form pathway. In the motion pathway, however, it induces significant 
activation. The low response for the distractor pattern shows that this activity is selective for a specific 
biological motion. The generalization from normal stimuli to point light stimuli in the model is accounted 
for by the similarity of the optical flow fields of the normal and the degraded normal stimulus. This leads 
to another prediction that may be tested experimentally: Point light stimuli showing learned complex 
movements should elicit selective activation in the dorsal, but not in the ventral pathway. In fact, stimuli 
can be degraded even more without abolishing recognition of the model. Consistent with psychophysical 
results, the model can even recognize point light stimuli when the individual dots have a limited life time 
(46). 
 
Point light stimuli can be degraded also by removing individual dots from the figure. Depending on the 
missing joints, the recognition performance is more or less reduced. This leads to another interesting 
prediction of the model. Removing elbows and feet has been shown to be most harmful for recognition in 
psychophysical experiments (47). The model predicts the same result (Fig. 3C). The fact that removing 
the elbows is very harmful for recognition, rules out trivial explanations based on the maximum speed of 
the stimulus dots. In the model, the critical factor is the similarity between the rudimentary optic flow 
field generated by the point light stimulus and the optic flow templates that are encoded in the motion 
pattern neurons that have been learned from full-body walker stimuli. 
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Figure 3A:  Activity in the neural representation for walking, in the form pathway, when the stimulus is 
rotated in depth against the learned view of the walking pattern.  The neural activity decreases strongly 
with the rotation angle.  The red bars indicate the activities of the motion pattern neuron for walking. The 
blue bars indicate the maximum of the activities of the other motion pattern neurons that are encoding 
running limping and marching.  The inset shows the activity of a neuron from area TPO in the STS, 
measured electrophysiologically [reproduced with permission from (12)] that shows similar angle 
dependence.  Equivalent results were obtained for the neurons in the motion pathway of the model. 
 
Figure 3B:  Activities of the motion pattern neurons for walking in the form and motion pathway for 
three different stimuli: a full-body stimulus for walking (blue solid lines), walking presented as point light 
display (red dashed lines), and a full-body stimulus for running (green dashed-dotted lines). In the form 
pathway only the full-body stimulus for walking elicits high activity.  The point light display and the 
distractor do not result in significant activation.  In the motion pathway the point light stimulus induces 
significant activity that is much stronger than the activity induced by the distractor sequence. 
 
Figure 3C:  Decay of the activity in the motion pattern neuron for �walking�, in the motion pathway, for 
degraded point-light stimuli.  The dots of different joints were removed from the stimulus.  Red bars 
indicate the activities of the neural representation for walking and blue bars indicate the maximum of the 
activities of the motion pattern neurons for running, limping, and marching. 
 
Figure 3D:  Activity in the motion pathway for the motion pattern neurons that encodes �walking to the 
right.�  The stimuli are point light walkers that are degraded by background noise.  The noise was 
created by �scrambling� the sequence of a point light walker (see text).  The solid blue line shows the 
activity for a walker walking to the right, and the broken red line the activities for a walker walking to the 
left.  The error bars indicate the standard deviations over 20 repeated simulations.  Discrimination 
between walking to the left and to the right side is possible if the two activities are significantly different.  
This is the case for up to 30 noise dots, a number that exceeds the number of the point light walker by a 
factor of three. 
 
 
Further experimental evidence for the high robustness of action recognition was obtained in masking 
experiments.  In such experiments a large number of moving background dots can be added to point light 
stimuli without significantly impairing recognition (48).  Such robust behavior can be observed even 
when the background dots are created by �scrambling� point light walkers.  In this case the masking dots 
have exactly the same movements as the dots in the moving figure, but different average positions.  High 
robustness against masking is predicted by our model. Figure 3D shows the activity of the motion pattern 
neurons trained with a standard �walking rightwards� stimulus and tested with point light stimuli moving 
rightwards and leftwards in presence of different amounts of background noise.  Even if the number of 
noise dots exceeds the number of dots of the point light walker by a factor of three, the activation levels 
for the rightwards and leftwards walking are still significantly different.  This implies that a right-left 
discrimination should be possible in spite of the presence of substantial motion clutter.  The high 
robustness of the model might result, at least partially, from the suppression of clutter by the nonlinear 
pooling operation. 
 
Because the model tries to reproduce coarsely the structure of the visual cortex, another interesting set of 
predictions can be derived by reading out the time-averaged neural activity from the different hierarchy 
levels of the model�s pathways.  Such predictions seem (under some assumptions) appropriate for a 
comparison with data from functional imaging experiments.  For this comparison, we loosely assigned the 
layers of the neural model to different areas in visual cortex (49).  An obvious prediction that is consistent 
several experimental results (16-18). is that for stimuli of similar type (full-body or point light) the 
activity in the lower areas in the two pathways does not show clear discrimination between biological and 
non-biological motion (dots moving randomly).  A differentiation between biological and non-biological 
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motion appears at the level of the model area STS.  More specific predictions can be derived by 
comparing the activities for different types of point light stimuli in area STS.  For instance, an upright 
point light walker stimulus induces significantly higher activity than an �inverted� point light walker, 
which has been rotated by 180 degrees.  The activity elicited by an inverted walker exceeds the activity 
arising for a scrambled point light walker or a stimulus with the same number of randomly moving dots.  
This prediction is quantitatively consistent with the results of a recent FMRI study (44). Further details 
about these predictions are reported in (50). 
 
 
Conclusions: 
 
The recognition of complex movements is an important perceptual function, not only because it is 
fundamental for communication and recognition at a distance, but also for the learning of complex motor 
actions by imitation (14).  An analysis of the neural basis of complex movement recognition seems 
timely.  On one hand, there is a growing body of experimental results.  On the other hand, recent work in 
computational vision on motion pattern and stationary objects recognition has increased our 
understanding of the underlying computational problems and plausible neural mechanisms required for 
their solution. 
 
The current model shows that several principles that are central for the recognition of stationary objects 
might be important also for the recognition of complex motion patterns.  The first principle is a 
representation in terms of learned prototypical patterns (51).  The model shows that the experimentally 
observed generalization properties of the perception of biological movements are quantitatively consistent 
with this hypothesis.  The second principle is a neural architecture that consists of hierarchies of neural 
detectors with gradually increasing feature specificity and invariance.  This architecture seems to be 
adequate to account for the invariance properties with respect to stimulus position, scaling, and speed that 
are characteristic for recognition of biological motion.  An important additional assumption in our model 
is the existence of recurrent neural network structures that associate sequential information over time.  
This assumption leads to predictions that can be physiologically tested, such as the existence of 
asymmetric lateral connections between motion pattern selective neurons. 
 
A key prediction of the model is that any sufficiently smooth complex movement pattern can be learned, 
independently of whether it is compatible with the motion of a biological organism or the physical rules 
of articulated moving objects.  The only restriction is that the form and the optical flow features of the 
stimulus must be adequate for the activation of the neural detectors in the earlier levels of the ventral and 
the dorsal pathways.  Another prediction that can be tested electrophysiologically, and with functional 
imaging methods, is that area IT, thought to be important for the recognition of stationary objects (30), 
may be also involved in the recognition of biological movements, potentially through the representation 
of �snapshots� from motion sequences (52).  An experimental verification of this prediction might be 
possible by testing IT neurons with stationary images of body configurations that are embedded in image 
sequences that are compatible or incompatible with biological movements (53).  The prediction that the 
recognition of biological movements is possible with the information from each pathway alone is 
consistent with clinical results showing that patients with lesions that include either only the human 
equivalent of are IT, or the MT/V5 complex are still able to recognize complex biological movements 
when the STS is spared.  Only bilateral lesions of the STS have been reported to lead to severe deficits in 
the perception of biological movements (54, 55). 
 
The model presented in this paper is only a first-order approximation with the explicit goal to consistently 
summarize most of the existing data.  It serves to provide a plausibility proof that a relatively simple, 
biologically plausible architecture can account for the recognition of complex motion patterns.  Most 
importantly, the model makes predictions that suggest new experiments.  We are aware that the model 
makes a number of strong simplifications.  For instance, there is experimental evidence for substantial 
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attentional effects on the recognition of biological motion (56).  Likewise, experimental results 
demonstrate top-down influences or cross talk between the two pathways (53, 57).  It seems almost 
surprising that the skeleton feed-forward architecture described here is already sufficient to account 
already for a variety of the known experimental results. 
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Appendix: 
 
Details about the Neural Detectors 
 
Tab. 1 lists the most important properties of the neural detectors in the two pathways.  In the form 
pathway oriented contours are extracted using Gabor filters with 8 different orientations and two spatial 
scales that differed by factor two.  Gabor filters are well established as models for V1 simple cells (58).  
The responses of these filters were given by  
 
g(x,y) = exp(-d�Kd) cos (κ d1), with K = diag(0.5 [σ1

-2, σ2
-2]), and d = R(φ) [x � x0, y � y0] 

 
where R(φ) is a two-dimensional rotation matrix, and where φ defines the preferred orientation.  The 
vector [x0, y0] defines the center of the receptive field.  The receptive fields were arranged within an 
equidistant quadratic grid.  The chosen parameters values were σ1 = 10, σ2 = 7, κ = 0.35 for the small 
spatial scale, and twice as large for the larger spatial scale.  The output signals of the Gabor filters were 
thresholded using a linear threshold function before they were transmitted to the next higher hierarchy 
level. 
 
To calculate the responses of the invariant bar detectors, the responses of the V1 neurons were pooled 
separately for each orientation within a limited spatial region, and over the two spatial scales using a 
maximum operation.  The pooled responses model the responses of complex cells in areas V1, V2 and V4 
that are known to be invariant against the spatial phase of the stimulus (59).  The receptive field diameters 
of these neurons were about four times larger than the receptive fields for the neurons on the first 
hierarchy level, consistent with neurophysiological results from area V4 in macaques (60).  In our 
simulations invariant bar detectors for different orientations were sufficient to discriminate accurately 
between the tested biological motion stimuli.  An addition of detectors for more complex features, like 
corners or other orientation discontinuities, is easily possible on this level of the form pathway.  In neural 
models for stationary object recognition such detectors increase the selectivity of the model (61).  The 
responses of the bar detectors were also passed through a linear threshold function. 
 
Consistent with other models that reproduce electrophysiological results from area IT (26, 61,62), the 
view-tuned neurons in the form pathway are modeled by radial basis functions.  The input signals of these 
neurons are derived from the invariant bar detectors whose responses show significant variation over 
time, and between the different training patterns.  The criterion for significant variation was that the 
variance of the detector response exceeded a critical threshold.  The radial basis function units are 
embedded in a recurrent neural network that is described in greater detail below.  The feed-forward input 
of the view-tuned neurons is then given by:  
 
                      G(u) = exp(-[u � u0]�  C [u � u0])                                                   (1) 
 
where u is the vector of the responses of the (significant) invariant bar detectors, and where u0 signifies 
the preferred input pattern of the neuron.  C is a diagonal matrix with the elements Cll that are inversely 
proportional to the variance of the l-th component of u in the training set.  The centers of the radial basis 
functions were learned from key frames of the prototypical image sequence. Each individual biological 
motion pattern was represented by 21 key frames.  Consistent with neurophysiological data from the area 
IT in monkeys (30), the view-tuned model neurons have large receptive fields that include the whole 
visual area of the model that had a diameter of approximately to 10 deg visual angle. 
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Model neurons 
Areas Number of 

neurons RF Size References 

FORM  PATHWAY 

Simple cells V1 1010 0.6 / 1.2 
deg (58, 59) 

Complex cells  V1, V2, 
V4 128 4 deg (59, 60) 

View-tuned  
cells IT, STS 1050 >8 deg (30) 

Motion pattern neurons IT, STS, 
F5 3�40 > 8 deg (12, 17) 

MOTION PATHWAY 

Local motion detectors V1,V2, 
(MT) 1147 0.9 deg (64) 

Local OF pattern  
detectors 

MT, MST 
MST, KO 

72 (translation) 
2 x 50 (expansion / 
contraction) 

2 deg (66, 67, 68, 72) 
(17, 34, 69, 71) 

Complex OF pattern 
detectors STS 1324 >8 deg (12) 

Motion pattern neurons STS, F5 3�40 > 8 deg (12, 17) 

 
 
 
Tab 1: Most important properties of the different model neurons in the form and the motion pathway.  It 
is assumed that the moving figure covers a region with a height of about 6 deg visual angle. 

 15



 
The highest level of the form pathway contains neurons that sum the output activities of all view-tuned 
units that represent the same biological motion pattern and smooth them over time.  The activities of these 
motion pattern neurons are shown in the simulation results. Let signify the activity of the view-
tuned neuron that encodes keyframe (or �snapshot�) k of motion pattern l.  The dynamics of the response 
Pl(t) of the motion pattern neuron for pattern l is given by (with the integration time constant τs ≈ 150 ms): 

)(tH l
k

 
                                             (2) ∑+−=

l

l
k

ll
s tHtPtP )()()(&τ

 
The first level of the motion pathway extracts the local motion information from the stimulus sequence.  
We did not model the extraction of the local motion energy in detail since a variety of neural models for 
low-level motion perception have already been proposed (63).  Instead we calculated the optic flow fields 
directly from a stick figure model that was animated using two-dimensional tracking data from video 
sequences. This simplification is based on the assumption that the visual system is able to extract local 
motion information relatively accurately from articulated motion stimuli.  This assumption seems 
consistent with perceptual experience.  In addition, our simulations show that motion pattern recognition 
is possible even with strongly impoverished optic flow information.  This implies that the performance of 
the model should not depend strongly on the accuracy of the estimation of the local motion energy.  
Neurophysiological experiments suggest that in the macaque cortical areas V1, V2 and MT are most 
important for the extraction of local motion (64). The receptive field size of the local motion energy 
detectors in the model is in the range of foveal direction-selective neurons in the primary visual cortex of 
monkeys (65). 
 
The neurons on the next hierarchy level of the motion pathway extract specific local optic flow patterns. 
The first class of neurons responds selectively for translatory motion and has receptive field sizes that are 
consistent with the receptive fields of neurons in area MT in monkeys (66). In accordance with 
neurophysiological data, we assume approximately a width of about 90o for the direction tuning (67), and 
two classes of motion detectors tuned for low and medium speeds (68).  The model contains detectors for 
8 different preferred directions.  A second class of neural detectors on this hierarchy level is selective for 
expansion and contraction flow, or motion edges along horizontal or vertical lines. Neurons that are 
sensitive for such optic flow features have been found in areas MSTd (69).  The large receptive fields of 
many MSTd neurons, however, make it disputable whether this area is involved in the analysis of object 
motion (70).  Neurons that are selective for smaller stimuli, but have also large receptive fields have been 
reported in area MSTl (71).  Neurons sensitive for local discontinuities of the optic flow have also been 
reported in macaque area MT (72). Also the kinetic occipital region (KO), which has been described 
recently in humans (34), might be important for the extraction of motion discontinuities.  This area shows 
strong selective activation during the recognition of biological motion stimuli (17). 
 
The neurons on the next-higher level of the motion pathway are selective for complex instantaneous optic 
flow patterns. Such �optic flow pattern neurons� are modeled by laterally coupled radial basis function 
units, like the view-tuned units in the form pathway. The units are trained with complex optic flow field 
patterns that are derived from the training video sequences. Like in the form pathway, only neurons from 
the previous level with significant response variation over time, or between different movement patterns 
contribute input signals to this hierarchy level.  Such neurons that are selective for complex global optic 
flow patterns might be found in the different areas of the STS that have been reported to be selective for 
biological motion (12). 
 
The highest level of the motion pathway consists of motion pattern neurons that summate and temporally 
smooth the activities of the optic flow pattern neurons from the previous layer.  They are modeled in the 
same way as the motion pattern neurons in the form pathway.  On this level of the visual system the 
ventral and the dorsal pathway may be already fused.  In this case, a single set of motion pattern neurons 
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would integrate the signals from both pathways.  Anatomical sites of such motion pattern neurons in 
monkeys are likely the mentioned regions in STS, but possibly also the action sensitive area F5 in the 
premotor cortex (14). 
 
 
Neural Recognition Dynamics 
 
To account for temporal order selectivity, we assumed that view-tuned and optic flow pattern-selective 
neurons are embedded in recurrent neural networks with asymmetric connections.  Assume that G is 
the feed-forward input of a view-tuned (or optic flow pattern) neuron calculated by equation (1).  
If is the output signal, the activity dynamics of the network is given by: 

)(tl
k
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Fig. 6: Asymmetric interaction function used in the model. 
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The function f(.) is a monotonic nonlinear threshold function.  In the simulations a step threshold was 
used.  Sequence selectivity is achieved because of the asymmetric interaction kernel w(k) that is depicted 
in Fig 6. A detailed mathematical analysis of the network dynamics has been presented in (73). In 
presence of a moving form-constant input peak, given by the signals Gk(t), a stable traveling pulse 
solution arises in the network.  Outside a certain speed regime of the input peak this stable solution breaks 
down, giving rise to another class of solutions with much smaller amplitude.  The same behavior can be 
shown for networks with linear threshold neurons (73).  The time constant τ was 150 ms. 
 
 
Stimulus Generation 
 
The stimuli were created from video sequences showing actors performing different complex full-body 
movements.  All these movements were periodic.  In the movies 12 joint positions were marked by hand 
in about 20-30 frames per movement cycle.  The tracked trajectories were smoothed by fitting them with 
second order Fourier series and normalized to 21 frames per movement cycle.  The smoothed trajectories 
were used to animate a stick figure that had approximately the same outline as the moving actor.  The 
stick figure was used to create the input images (pixel maps) for the form pathway, and also for the direct 
calculation of the instantaneous optic flow fields. The articulated body motion leads to highly 
discontinuous optic flow fields that prohibit an application of standard optic flow algorithms.  Also we 
did not want to model the extraction of local motion energy in detail.  The flow field was calculated from 
the stick figure using the shifts between subsequent frames of corresponding points of the articulated 
figure. 
 
 
Invariance with Respect to Translation, Scaling, and Speed 
 
The model was trained with stimuli with one specific stimulus size and speed.  To test the efficiency of 
the invariance mechanism that is based on nonlinear pooling over multiple scales and positions we 
quantified first the translation invariance of the model.  The result is shown in Fig. 7A.  Significant 
responses in the neural representation arise for translated stimuli, as long as the shifts do not exceed about 
half of the width of the walking figure (about 2 deg of visual angle).  Similar translation invariance has 
been found in psychophysical experiments in which subjects had to detect changes in a point light walker 
that was translated during saccades (74).  We tested also the scaling invariance by presenting stimuli that 
were increased or decreased in size relative to the training patterns.  The simulation results are shown in 
Fig. 7B. A scaling invariance of about 1.3 octaves is achieved.  This size invariance is in the regime that 
has been reported for neurons in anterior area IT in monkeys (75). 
 
We finally tested also the invariance of the stimulus with respect to speed changes.  Complex movements 
can be recognized easily from movies with increased or decreased in speed.  We tested the model with 
patterns that were slowed down or speeded up relative to the training sequences.  Fig. 7C shows that the 
neural activity stays high for speed changes as high as factor two.  Similar robustness against changes in 
speed has been observed in psychophysical experiments (76).  The robustness against changes in speed is 
explained by the stability of the traveling pulse solution of the recurrent neural network that produces 
solutions with substantial amplitudes in a whole regime of stimulus speeds (73). 
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Fig. 7:  Simulation results for translation, scaling and speed invariance.  The activity of the motion 
pattern neuron for walking in the motion pathway is shown.  The dark bars indicate the maximum of the 
response of the other motion pattern neurons that are not selective for walking.  Fig. A: Translation 
invariance is achieved in a regime of about half of the width of the walking figure (upper panel).  This is 
consistent with psychophysical data obtained by translating biological motion stimuli during saccades 
(lower panel) [reproduced with permission from (22)].  Fig. B: Activity in the motion pattern neurons for 
the motion pathway when the stimulus is scaled compared to the training view.  Scaling invariance of 
about 1.3 octaves is achieved.  Fig. C: Activity for changing the stimulus speed.  In accordance with 
psychophysical experiments the speed can be changed by factor two without abolishing recognition.  The 
form pathway shows similar invariance properties. 
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Generalization over Different Walkers and Recognition of People by their Gait 
 
Our model postulates that complex movement patterns are encoded by learning prototypical example 
patterns. This account is only computationally feasible if it is possible to recognize with a single 
prototype the biological movements executed by different people. This implies that the model after 
training with the locomotion pattern of one actor should generalize to patterns showing the same 
locomotion pattern executed by a different actor. We tested if the neural model fulfills this requirement by 
testing the model with the training locomotion pattern executed by nine other actors.  Fig. 8A shows that 
reasonable generalization is achieved in both pathways. It seems possible to code for motion patterns 
executed by different individuals by a single learned prototype. 
 
A number of psychophysical studies have shown that subjects are able to recognize other people by their 
movements, or at least can exploit movement information to improve recognition (77).  It seems a 
legitimate question to test if the proposed neural mechanism is sufficiently selective to recognize 
individuals by their movements.  We trained the model with the locomotion pattern �walking� executed 
by four actors (two males and two females).  From each actor we recoded five repetitions of the same 
locomotion pattern. Only the first repetition was used for training.  Fig. 8B shows the activities of the 
motion pattern selective neurons.  In all cases the neuron that was trained with the movement of the same 
actor shows the highest response. This implies that the identity of the walker is easily possible on the 
basis of the activities of the motion pattern selective neurons.  A similar result for the motion pathway is 
obtained using point light stimuli.  (The neurons in the form pathway are silent for such stimuli.) 
 
Our computational analysis suggests that complex motion patterns might be encoded by relatively small 
populations of neurons.  Dependent on the task (categorization of different gaits or identification of the 
identity of a walker) these populations may be read out as population code in a flexible way.  
Alternatively, multiple neural populations might exist that code for the characteristic gait patterns of 
individual people and general classes of locomotion patterns, like �walking�, �running�, etc. 
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Fig. 8:  Testing the model with locomotion patterns from multiple people.  Fig. A: The model was trained 
with walking, running, and marching executed by one actor and tested with walking executed by nine 
other actors.  The activities of the motion pattern selective neurons are shown.  Dark bars show the 
maximum activity of the neurons that code for motion patterns different from �walking�.  W1 and R1 
indicate the training patterns �walking� and �running� of the actor �M� whose locomotion patterns 
were used during as training.  W2 ... W10 correspond to �walking� executed by other actors.  Substantial 
generalization over different actors is achieved in both pathways.  Fig. B: Individual motion pattern 
neurons of the model are trained with walking executed by four different actors, signified by M, X, A and 
C.  The numbers indicate the repetitions of the same gait pattern for each actor (e.g. M4 indicating the 
fourth recorded pattern for actor M).  Only the patterns M1, ..., C1 were used for training.  The activities 
of the motion pattern neurons are indicated by different line styles.  Each neuron shows high activity only 
for test patterns from the same actor whose movement was used to train the neuron.  From these neural 
activities the identities of the walkers can be easily recovered. 
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