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Abstract

In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC)
of monkeys performing a “cat/dog” categorization task ([3] and Freedman, Riesenhuber, Poggio, Miller,
Soc. Neurosci. Abs.). In this paper we analyze the tuning properties of view-tuned units in our HMAX
model of object recognition in cortex [7, 8] using the same paradigm and stimuli as in the experiment. We
then compare the simulation results to the monkey inferotemporal neuron population data. We find that
view-tuned model IT units that were trained without any explicit category information can show category-
related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT
neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-
down task-specific information. The population of experimental PFC neurons, on the other hand, shows
tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a
model of object recognition in cortex [10] in which a population of shape-tuned neurons provides a general
basis for neurons tuned to different recognition tasks.
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1 Introduction

In [10], Riesenhuber and Poggio proposed a model of
object recognition in cortex in which a general repre-
sentation of objects in inferotemporal cortex (IT) pro-
vides the basis for different recognition tasks — such
as identification and categorization — with task-related
units located further downstream, e. g., in prefrontal
cortex (PFC). Freedman and Miller recently performed
physiology experiments providing experimental popu-
lation data for both PFC and IT of a monkey trained on
a “cat/dog” categorization task ([2, 3] and Freedman,
Riesenhuber, Poggio, Miller, Soc. Neurosci. Abs., 2001).
In this paper, using the same stimuli as in the experi-
ment, we analyze the properties of view-tuned units in
our model, trained without any explicit category infor-
mation, and compare them to the tuning properties of
experimental IT and PFC neurons.

2 Methods

2.1 The HMAX model

We used the hierarchical object recognition system of
Riesenhuber & Poggio [7, 8], shown schematically in
Fig. 1. It consists of a hierarchy of layers with lin-
ear units performing template matching, and non-linear
units performing a “MAX” operation. This MAX oper-
ation, selecting the maximum of a cell’s inputs and us-
ing it to drive the cell, is key to achieving invariance
to translation, by pooling over afferents tuned to differ-
ent positions, and scale, by pooling over afferents tuned
to different scales. The template matching operation,
on the other hand, increases feature specifity. A cas-
cade of these two operations leads to C2 units (roughly
corresponding to V4/PIT neurons), which are tuned to
complex features invariant to changes in position and
scale. The outputs of these units (or a subset thereof)
are used as inputs to the view-tuned units (correspond-
ing to view-tuned neurons in IT [5, 8]), which in turn
can provide input to units trained on various recogni-
tion tasks, for instance cat/dog categorization (for the
appropriate simulations, see [9]).

2.2 Stimulus space

The stimulus space is spanned by six prototype objects,
three “cats” and three “dogs” (cf. Fig. 2). Our mor-
phing software [11] allows us to generate 3D objects
that are arbitrary combinations of the six prototypes.
Each object is defined by a six-dimensional morph vec-
tor, with the value in each dimension corresponding to
the relative proportion of one of the prototypes present
in the object. The component sum of each object was
constrained to be equal to one. An object was labeled
a “cat” or “dog” depending on whether the sum over
the “cat” prototypes in its morph vector was greater or
smaller than those over the “dog” prototypes, resp. The
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Figure 1: Scheme of the HMAX model. Feature specifity
and invariance to translation and scale are gradually
built up by a hierarchy of “S” and “C” layers [4], resp.
The C2 layer, consisting of units tuned to complex fea-
tures invariant to changes in position and scale, feeds
directly into the view-tuned units, which in turn can
provide input to recognition task-specific units, such as
a cat/dog categorization unit, as shown (see [9]).

Figure 2: Illustration of the cat/dog stimulus space. The
morph space is spanned by the pictures of three cats
shown on top (“house cat”, “Cheetah” and “Tiger”) and
the three dogs below (“house dog”, “Doberman” and
“German Shepherd”). All prototypes have been nor-
malized with respect to viewing angle, lighting param-
eters, size and color.
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class boundary was defined by the set of objects hav-
ing morph vectors with equal cat and dog component
sums. The lines in Fig. 2 show the nine possible morph
lines between two prototypes, one of each class, as used
in the test set (see below).

Training set. The training set (a subset of the stimuli
used to train the monkeys in [2, 3]) consisted of 144 ran-
domly selected morphed animal stimuli not restricted
to these morph lines [2], but chosen at random from the
cat/dog morph space, excluding “cats” (“dogs”) with
a “dog” (“cat”) component greater than 40% (as in the
experiment).

Test set. The testing set used to determine an exper-
imental neuron’s or model unit’s category tuning con-
sisted of the nine lines through morph space connecting
one prototype of each class. Each morph line was sub-
divided into 10 intervals, with the exclusion of the stim-
uli at the mid-points (which would lie right on the class
boundary, with an undefined label), yielding a total of
78 stimuli.

2.3 Learning a class representation

One view-tuned unit (VTU), connected to all or a sub-
set of C2 units, was allocated for each training stimu-
lus, yielding 144 view-tuned units.∗ The two parame-
ters affecting the tuning characteristics of the VTUs are
the number of afferent C2 units a (sorted by decreasing
strength [7]) and the Gaussian tuning width σ. Exper-
iments were run using 8, 32, 128 and 256 afferents to
each VTU and σ values of 0.1, 0.2, 0.4, 0.8 and 1.6, re-
spectively. For the sake of clarity we will present only
four of those 20 combinations ((a = 32, σ = 0.1); (a =
32, σ = 0.2); (a = 256, σ = 0.1) and (a = 256, σ = 0.2)).
Using 8 afferents produced units whose tuning was too
unspecific, while σ values above 0.2 yielded unrealisti-
cally broad tuning.

2.4 Evaluating category tuning

We use three measures to characterize the category-
related behavior of experimental neurons and model
units: the between-within index (BWI), the class cov-
erage index (CCI) and the receiver operating character-
istics (ROC).

BWI The between-within index (BWI) [2, 3] is a measure
for tuning at the class boundary relative to the class
interior. Considering the response of a unit to stim-
uli along one morph line, the response difference be-
tween two adjacent stimuli can be calculated. As there
is no stimulus directly on the class boundary, we use
20% steps for calculating the response differences. Let
btw be the mean response difference between the two
categories (i. e., between morph index 0.4 and 0.6) and
∗Results were similar for 32 VTUs obtained from 144 stim-

uli through k-means clustering [9].
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Figure 3: Number of view-tuned units tuned to stim-
uli at certain morph indices for different numbers of af-
ferents. The morph index is the percentage of the dog
prototype in the stimulus, e. g., morph index 0.4 corre-
sponds to a morphed stimulus which is 40% dog and
60% cat.

wi the mean response difference within the categories.
Then the between-within index is

BWI =
btw−wi
btw+wi

. (1)

Thus, the range of BWI values is −1 to +1. For a BWI
of zero the unit shows on average no different behavior
at the boundary compared to the class interiors. Pos-
itive BWI values indicate a significant response drop
across the border (e. g., for units differentiating between
classes) whereas negative values are characteristic for
units which show response variance within the classes
but not across the boundary.

CCI The class coverage index (CCI) [2] is the proportion
of stimuli in the unit’s preferred category that evoke re-
sponses higher than the maximum response to stimuli
from the other category. Possible values range from 1

39 ,
meaning out of the 39 stimuli in the class only the maxi-
mum itself evokes a higher response than the maximum
in the other class, to 1 for full class coverage, i. e., perfect
separability.†

ROC The receiver operating characteristics (ROC) curve
[6] shows the categorization performance of a unit in
terms of correctly categorized preferred-class stimuli
(hits) vs. miscategorized stimuli from the other class
(false alarms). The area under the ROC curve is a mea-
sure of the quality of categorization. A value of 0.5 cor-
responds to chance performance, 1 means perfect sep-
arability, i. e., perfect categorization performance. ROC
values were obtained by fixing the activation threshold
and counting hits and false alarms using this threshold.
Activation values for all stimuli were used as thresholds
to obtain ROC curves as detailed as possible. The ROC
†When comparing model units and experimental neurons,

CCI values were calculated using the 42 stimuli used in the
experiment (see section 4), so the minimum CCI value was
1
21 .
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area values were computed using trapezoidal numeri-
cal integration of the ROC curve.

3 Results

3.1 VTU positions

We defined the position of a VTU as the position of the
stimulus along the nine morph lines that maximizes the
VTU’s response. This approach yields an asymmetric
distribution of VTUs over the stimulus space (Fig. 3).
As the training set consisted of 72 cats and 72 dogs, this
asymmetry suggests that some morphed “cats” look
similar to “dogs” in the space of C2 activations.

3.2 Shape tuning

The response function over the stimulus space of a
view-tuned unit is a Gaussian centered at the unit’s pre-
ferred stimulus, dropping exponentially fast (depend-
ing on the unit’s standard deviation σ) in all direc-
tions. Thus, the VTU will respond to every stimulus
presented, however there will be a significant response
to only some of those stimuli.

Fig. 4 shows the response to the stimuli along the nine
morph lines of a VTU tuned close to the 80% cat stim-
ulus on the fifth line (connecting Cheetah and Dober-
man). For small σ, the tuning is much tighter around
this maximum, showing only little response to stimuli
involving other cat prototypes. With 32 afferents and a
σ of 0.1 this unit’s behavior could be described as cat-
egorizing cats vs. dogs along the morph lines involv-
ing cat prototype 2. With 256 afferents the tuning is
even tighter because the stimulus is specified in a 256-
dimensional space instead of a 32-dimensional one. Be-
cause the unit is tuned to a randomly generated stimu-
lus not necessarily lying on a morph line, there is hardly
any response for a = 256 and σ = 0.1.

3.3 Category tuning

3.3.1 BWI

The between-within index is a measure for response
changes at the class boundary vs. the class interiors. For
a given parameter set, all units share the same response
function shape, only varying in the location of their pre-
ferred stimulus in morph space. Thus, the major re-
sponse decay of prototype-tuned units will be within
their class, showing no observable response to stimuli
near the border or in the other class, yielding nega-
tive BWI values. Border-tuned units show a substan-
tial drop in response over the boundary with a much
lower mean difference within class resulting in a posi-
tive between-within index. As shown in Fig. 5, for units
with preferred stimuli at different positions along each
morph line, units tuned with 256 afferents show exactly
this behavior. However, when using only 32 afferent
VTUs the values tend to be closer to zero. This is due to
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Figure 4: Grayscale plot of a VTU response along
the nine morph lines. Each horizontal line represents
one cross-boundary morph line. The vertical middle
line is inserted to visually separate cat (left) and dog
(right)stimuli. Cat prototypes (C1, C2, C3) are plotted to
the left of the boundary, dog prototypes (D1, D2, D3) to
the right. The columns in between correspond to mor-
phed stimuli in 10% steps. A color scale indicates the
response level.
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Figure 5: Mean between-within index (BWI) of view-
tuned units with preferred stimuli spaced along the
morph lines. Error bars show standard deviation across
the nine morph lines.

4



−0.8−0.4 0 0.4 0.8
0

20

40

60

80

100

p=0.70

a=32 sig=0.1

mean=−0.01

−0.8−0.4 0 0.4 0.8
0

20

40

60

80

100

p=0.28

a=32 sig=0.2

mean=−0.01

−0.8−0.4 0 0.4 0.8
0

20

40

60

80

100

p<0.01

Between−within index

N
um

be
r o

f V
TU

s

a=256 sig=0.1

mean=−0.17

−0.8−0.4 0 0.4 0.8
0

20

40

60

80

100

p<0.01

a=256 sig=0.2

mean=−0.07

Figure 6: Histograms of between-within index (BWI)
values for the 144 model VTUs. The dashed line in-
dicates the mean between-within index over all view-
tuned units.

the less precise tuning of those VTUs (cf. Fig 4), yielding
smaller absolute values of the BWI.

The histograms of BWI values (Fig. 6) for the 144
units reflect this fact. The broader the VTU tuning gets
with decreasing a and increasing σ, the tighter the dis-
tribution of BWI values is centered around zero. For 256
afferents, there is a significant shift of the whole distri-
bution towards negative values (p < 0.01).

3.3.2 CCI

The class coverage index does not depend on σ be-
cause changing σ will change the width of the Gaussian
but not its shape or position. Clearly, the CCI of a VTU
is dependent on the position of its preferred stimulus
in morph space. Units tuned to stimuli near the class
boundary will have lower CCI values because the re-
sponse level to stimuli on the other side of the border
will be quite high. The class coverage index for units
tuned to stimuli near the center of a class (e. g., at morph
line positions 0.2 and 0.8) will be higher, as the maxi-
mum response to an other-class stimulus will be lower
because of the bigger distance from the center of tun-
ing to the class boundary. Units tuned to the prototype
stimuli will have smaller CCI values again due to the
visual dissimilarity of the prototypes (cf. Fig. 7). As can
be seen from Fig. 2, the visual appearance of prototypes
of the same class is quite different. Thus, e. g., the dis-
tance in the space of C2 activations from the Tiger proto-
type to the morphed stimulus which is only 40% Tiger
and 60% Doberman is smaller than the distance from
the Tiger prototype to the Cheetah prototype. As indi-
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Figure 7: Mean class coverage index (CCI) of view-
tuned units with preferred stimuli spaced along the
morph lines. Error bars show standard deviation across
the nine morph lines.
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Figure 8: Histograms of class coverage index (CCI) val-
ues. The dashed line indicates the mean class coverage
index over all view-tuned units.

cated by the error bars, there is a wide variance for the
class coverage index at one position on a morph line.

As can be seen in Fig. 8, the VTU’s CCI values are
shifted towards zero when increasing the number of af-
ferents, since the more specific tuning will emphasize
the dissimilarity of prototypes of the same class. For
a = 32, there are some units with CCI values of 0.4 and
above. This means those units show a response behav-
ior similar to categorization in certain parts of stimulus
space. Fig. 9 shows the response of a single VTU along
the nine morph lines. With the unit’s category thresh-
old at the indicated position the categorization perfor-
mance is 85%.

3.3.3 ROC

The CCI value corresponds (up to a factor) to the
number of stimuli that evoke responses higher than
the maximum other-class stimulus. Thus, this value is
equivalent to the number of correctly categorized stim-
uli with no false alarms (i. e., no other-class stimulus
being miscategorized), which is the initial point of the
ROC curve. Fig. 11 shows the distribution of AROC val-
ues for different numbers of afferents (as changing σ
only affects the response magnitude to individual stim-
uli but does not change their ranking, AROC is inde-
pendent of σ). For 256 afferents, about half of the units
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imum response to an 80% dog stimulus (one of 144
VTUs, 32 afferents to each VTU, σ = 0.1) along the
nine morph lines. The dashed line shows the average
over all morph lines. The solid horizontal line shows
a possible class boundary yielding best categorization
performance.
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Figure 10: AROC values of view-tuned units with pre-
ferred stimuli spaced along the morph lines. Error bars
show standard deviation across the nine morph lines.

have values over 0.6 with a maximum of 0.74. For 32 af-
ferents about 15% of the VTUs have an AROC value of
more than 0.8 up to 0.94. This clearly shows that there
is a substantial number of VTUs able to categorize with
a remarkable performance, without the benefit of any
category information during training.

4 Comparison of model and experiment

We compared the tuning properties of model units to
those of the IT and PFC neurons recorded from by
Freedman [2, 3] from two monkeys performing the
cat/dog categorization task.‡ In the following, we re-
strict our analysis to the neurons that showed stimulus
selectivity by an ANOVA (p < 0.01), over the 42 stim-
uli along the nine morph lines used in the experiment
(in the experiment, stimuli were located at positions 0,
0.2, 0.4, 0.6, 0.8, and 1 along each morph line). Thus,
we only analyzed those neurons that responded signif-

‡The monkeys had to perform a delayed match-to-
category task. The first stimulus was shown for 600ms, fol-
lowed by a 1s delay and the second, test, stimulus. See [2, 3]
for details.
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Figure 11: AROC values of the view-tuned units sorted
in ascending order.

icantly differently to at least one of the stimuli.§

In particular, we analyzed a total of 116 stimulus-
selective IT neurons during the “sample” period (100ms
to 900ms after stimulus onset). Only a small num-
ber of IT neurons responded selectively during the de-
lay period. For the PFC data, there were 67 stimulus-
selective neurons during the sample period, and 32
stimulus-selective neurons during the immediately fol-
lowing “delay” period (300 to 1100 ms after stimulus
offset, during which the monkey had to keep the cat-
egory membership of the previously presented sample
stimulus in mind, to compare it to a subsequently (at
1000 ms after stimulus offset) presented test stimulus
[3].

Figs. 13 through 15 show the BWI, CCI, and AROC
distributions for the IT neurons (during the sample pe-
riod — IT neurons tended to show much less delay ac-
tivity than the PFC neurons), and the PFC neurons (dur-
ing sample and delay periods, resp.).¶

4.1 IT

Comparing the view-tuned model unit data to the ex-
perimental IT data (Fig. 16 and Fig. 13), we observe a
very good agreement of the BWI distributions of model
units and IT neurons: Both are centered around zero
and show a mean not significantly different from 0. Fur-
ther, the ROC plots show very similar means, and —
even more importantly — identical maxima (0.94). This
shows that high ROC values can be obtained without
any explicit category information, and moreover that
the range of ROC values of experimental IT neurons are
well compatible with those of view-tuned model units.
There do appear to be some differences in the distribu-
tion of ROC values, with the experimental distribution
having proportionally fewer neurons with intermediate
ROC values.

§Extending the analysis to include all responsive neurons
(relative to baseline, p < 0.01) added mainly untuned neurons
with CCIs close to 0, and AROC values close to 0.5.
¶For comparison with the model, the indices and ROC

curves were calculated using a neuron’s averaged firing rate
(over at least 10 stimulus presentations) to each stimulus.
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Figure 12: Distribution of preferred stimuli (morph in-
dices) for experimental IT neurons.

Differences in the CCI distributions appear to be
more substantial. However, the highest CCI in the
model is greater than that of the experimental IT neu-
rons, showing that model units can show similar de-
grees of category tuning as the experimental neurons.

4.1.1 Noise

What could be the source of the differences between
the tuning properties of model units and experimen-
tal neurons? One factor is the deterministic response
of model units in contrast to the noisy responses of ex-
perimental neurons which show trial-to-trial variations
even for the same stimulus. Such random fluctuations
in a neuron’s firing rate can have a strong impact on
the CCI value of neurons with preferred stimuli near
the class boundary, where stimuli belonging to different
classes produce similar responses, pointing to a possi-
ble explanation for the high number of neurons in the
experiment with low CCI values.

Indeed, adding independent Gaussian noise to the re-
sponses of model units produces only modest shifts in
the BWI and ROC distributions, but leads to a CCI dis-
tribution that is dominated by units with low CCI val-
ues, as in the experiment (Fig. 17). In the ROC value
distribution, the proportion of units with intermedi-
ate ROC values decreased, producing a more “convex”
shape as in the experiment. In general, the agreement
with the experimental distribution is excellent, BWI and
ROC distributions are not statistically significantly dif-
ferent (p ≥ 0.2, Wilcoxon rank sum test), and the CCI
distribution is only marginally different (p = 0.06).

4.1.2 Resampling

Another factor that might affect the population tun-
ing properties is the distribution of preferred stimuli.
In fact, calculating the distribution of preferred stimuli
of the experimental IT neurons reveals a difference be-
tween experimental and model populations: As Fig. 12
shows, almost half of all experimental neurons have
preferred stimuli at the class boundary, whereas the
model units have a distribution that contains more neu-
rons tuned to morph line centers (Fig. 3).

This difference could either be the signature of task-

dependent influences on IT learning, or it could be due
to statistics of the stimulus ensemble, as the later stages
of the monkeys’ training focussed on stimuli close to the
boundary (which where most difficult for the monkeys
to learn). It will be interesting to examine this question
more closely in future studies where stimulus exposure
is better controlled.

We investigated the effect of the distribution of pre-
ferred stimuli on the population tuning properties by
resampling from the population of 144 model units to ob-
tain a population with a distribution of preferred stim-
uli as in Fig. 12. Afterwards, a population of 116 units,
the size of the experimental population, was drawn
from those noisy units such that the distribution of units
over the morph indices fit the experimental population.
This procedure was repeated for a total of 100 trials and
the results were averaged to obtain the correct number
of values.

Fig. 18 shows the population tuning properties of
the resampled model distribution (with a distribution
of preferred stimuli as in Fig. 12), chosen from the de-
terministic model units of Fig. 16. Interestingly, distri-
butions are not very different from the non-resampled
case, in line with the results in Figs. 5, 7, and 10 that
show only modest changes in the index values for units
with preferred stimuli at the border compared to di-
rectly adjacent positions.

We investigated the combined effect of noise and
distribution of preferred stimuli on population tuning
properties by adding independent Gaussian noise with
amplitude n to the responses of model units, and resam-
pling from the population of 144 model units to obtain
a population with a distribution of preferred stimuli as
in Fig. 12. In particular the morph indices of the noisy
model units were determined after adding noise to their
response, to allow for possible shifts in the the location
of the preferred stimulus in morph space. As before,
this procedure was repeated 100 times and the results
were averaged to obtain the correct number of values.

Fig. 19 shows the population tuning properties of the
resampled model distribution, for neurons with a noise
level of n = 0.08 (a noise level of n = 0.1, as in Fig. 17,
produced only slightly worse fits to the experimental
distribution). We again find very good agreement with
the experimental distribution, BWI and ROC distribu-
tions are not statistically significantly different (p ≥ 0.1,
Wilcoxon rank sum test), and the CCI distribution is
only marginally different (p = 0.03).
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Figure 13: Experimental IT data. The plots show the distribution of BWI (left), CCI (center) and ROC (right) area
values.
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Figure 14: Experimental PFC data (sample period). The plots show the distribution of BWI, CCI and ROC area.
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Figure 15: Experimental PFC data (delay period). The plots show the distribution of BWI, CCI and ROC area.

−0.8 −0.4 0 0.4 0.8
0

20

40

60

80

Between−within index

N
um

be
r o

f V
TU

s

p=0.28

mean=−0.01

0 0.2 0.4 0.6 0.8
0

10

20

30

40

Class coverage index

N
um

be
r o

f V
TU

s mean=0.19

max=0.64

36 72 108 144
0.5

0.6

0.7

0.8

0.9

1

VTUs

R
O

C
 a

re
a mean=0.66

max=0.94

Figure 16: Model IT data for a = 32, σ = 0.2. The plots show the distribution of BWI, CCI, and ROC area values.
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Figure 17: Model IT data for model units from Fig. 16, with added independent Gaussian noise of amplitude n = 0.1.
The plots show the distribution of BWI, CCI, and ROC. Values shown are the average over 100 trials.
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Figure 18: Resampled model IT data, deterministic units. The plots show the distribution of BWI, CCI and ROC
area. Values shown are the average over 100 trials.
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Figure 19: Resampled model IT data, noise level 0.08. The plots show the distribution of BWI, CCI and ROC area.
Values shown are the average over 100 trials.
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Figure 20: Fitted model IT data. The plots show the distribution of BWI, CCI and ROC area.
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4.1.3 Fitting
As a further demonstration that model IT unit tun-

ing is well compatible with experimental tuning, we
have investigated how well the experimental IT pop-
ulation can be fitted using the model view-tuned units.
To this end, we obtained the fitted population by se-
lecting, for every cell found in the experiment, the best
fitting model unit. This was done simply by adding
and comparing the absolute difference of the BWI, CCI,
ROC area, and morph index values for the experimen-
tal neuron and each model unit, respectively. Using this
procedure produces a model unit population with tun-
ing properties that are statistically not different from the
population tuning found for the experimental IT neu-
rons (p > 0.1 for all three of BWI, CCI, and ROC).

Thus, in summary, the degree of category tuning of
experimental IT neurons appears to be very well cap-
tured by the population of view-tuned model units.
As model units were trained without any explicit cate-
gory information, the agreement of experimental IT and
model data suggest that the learning of IT neuron re-
sponse properties can be understood as largely driven
by shape similarities in input space, without any influ-
ence of explicit category information.

4.2 Comparison of model units vs. PFC neurons

The PFC neurons show a BWI distribution with a posi-
tive mean significantly different from zero (sample pe-
riod: 0.09, delay: 0.15), combined with higher average
CCI values (sample: 0.21, delay: 0.21), with single neu-
rons reaching values as high as 0.76 (sample and de-
lay). Unlike in the IT case, this maximum value lies
outside the range of CCI values of model units. More-
over, a positive average BWI of the magnitude found
in the PFC data could only be obtained in the model
with a significant number of of border-tuned neurons
(cf. Fig. 5). Such border-tuned units have very low CCI
values (cf. Fig. 7). CCI values of PFC neurons are higher
than those of IT neurons, however. Thus, the tuning
properties of PFC neurons cannot be explained in the
model by mere stimulus tuning alone, but seem to re-
quire the influence of explicit category information dur-
ing training.

5 Discussion

In this paper, we have analyzed the tuning properties
of model view-tuned units tuned to the same stimuli
that were used in a recent experiment [2, 3] in which
monkeys were trained on a “cat/dog” categorization
task, followed by recordings from their inferotemporal
and prefrontal cortices. Using the same analysis meth-
ods as in the experiment, we found that view-tuned
model units showed tuning properties very similar to
those of monkey IT neurons. In particular, as with IT
cells in the experiment, we found that some view-tuned
units showed “categorization-like” behavior, i. e., very

high ROC values. Most notably, this tuning emerged
as a consequence of the shape-tuning of the view-tuned
units, with no influence of category information dur-
ing training. In contrast, the population of PFC neurons
showed tuning properties that could not be explained
by mere stimulus tuning. Rather, the simulations sug-
gest the explicit influence of category information in the
development of PFC neuron tuning.

These different response properties of neurons in the
two brain areas, with IT neurons coding for stimulus
shape and PFC neurons showing more task-related tun-
ing, are compatible with a recent model of object recog-
nition in cortex [8, 10] in which a general object rep-
resentation based on view- and object-tuned cells pro-
vides a basis for neurons tuned to specific object recog-
nition tasks, such as categorization. This theory is also
supported by data from another experiment in which
different monkeys were trained on an identification and
a categorization task, respectively, using the same stim-
uli [1], and which found no differences in the stimulus
representation by inferotemporal neurons of the mon-
keys trained on different tasks. On the other hand, a re-
cent experiment [12] reported IT neuron tuning empha-
sizing category-relevant features over non-relevant fea-
tures (but no explicit representation of the class bound-
ary, unlike in [3]) in monkeys trained to perform a cat-
egorization task. Further studies comparing IT neuron
tuning before and after training on a categorization task
or even different tasks involving the same set of stimuli,
and studies that investigate the possibility of top-down
modulation from higher areas (e. g., PFC) during task
execution, will be needed to more fully understand the
role of top-down task-specific information in shaping
IT neuron tuning. The present study demonstrated the
use of computational models to motivate and guide the
analysis of experimental data. Clearly, the road ahead
will equally require a very close interaction of experi-
ments and computational work.
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