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Abstract

Intuitively, we expect that averaging — or bagging — different regressors with low
correlation should smooth their behavior and be somewhat similar to regularization. In
this note we make this intuition precise. Using an almost classical definition of stability,
we prove that a certain form of averaging provides generalization bounds with a rate of
convergence of the same order as Tikhonov regularization — similar to fashionable RKHS-
based learning algorithms.

This report describes research done within the Center for Biological & Computational Learning which is part of
the McGovern Institute, the Department of Brain & Cognitive Sciences and the Artificial Intelligence Laboratory
at the Massachusetts Institute of Technology.
This research was sponsored by grants from: Office of Naval Research (DARPA) under contract No. N00014-00-
1-0907, National Science Foundation (ITR) under contract No. IIS-0085836, National Science Foundation (KDI)
under contract No. DMS-9872936, and National Science Foundation under contract No. IIS-9800032
Additional support was provided by: Central Research Institute of Electric Power Industry, Eastman Kodak
Company, DaimlerChrysler AG, Compaq, Honda R&D Co., Ltd., Komatsu Ltd., NEC Fund, Siemens Corporate
Research, Inc., and The Whitaker Foundation.

1



Introduction

Learning from examples can be regarded [8] as the problem of approximating a multivariate
function from sparse data1. The function can be real valued as in regression or binary valued as
in classification.
The accuracy of the approximated function is based upon its performance on future data, mea-
sured in terms of its generalization error. Given x ∈ IRd and y ∈ IR with underlying probability
distribution P (x, y), the generalization error of a function f is

Iexp[f ] ≡
∫

V (y, f(x))P (x, y) dxdy, (1)

where V is the loss function (a typical example is the square loss, V (y, f(x)) = (y − f(x)2).
Usually we do not know the distribution P (x, y). We have only the � training pairs drawn from
P (x, y) from which we can measure the empirical error

Iemp[f ] ≡ 1

�

�∑
i=1

V (yi, f(xi)). (2)

The problem of approximating a function from sparse data is ill-posed and a classical way to
solve it is regularization theory [12]. Regularization theory originates from Tikhonov’s classical
approach for solving ill-posed problems. Existence, uniqueness and especially stability2 can be
restored via a regularizing operator. The basic idea at the heart of the method — as in any
approach to ill-posed problems — is to restrict appropriately the space of solutions f to an
appropriately small hypothesis space3. Within the universe of ill-posed problems, the problem
of learning theory has a specific need — the derivation of generalization bounds.

1 Definitions

This section and the next one (stolen from [10]) provide key definitions and theorems. Given an
input space x ∈ X ⊆ IRd and an output space y ∈ Y ⊆ IR, a training set

S = {z1 = (x1, y1), ..., z� = (x�, y�)},

of size � in Z ∈ X × Y is drawn i.i.d. from an unknown distribution D. We will refer to a set

Si,u = {z1, ..., u, ..., z�},

where the point zi in set S is replaced with an arbitrary new point u.
Given the training set S we estimate a function fS : X → Y . The error of this function with
respect to an example z = (x, y) is defined as

V (fS, z) = V (fS(x), y).

1There is a large literature on the subject: useful reviews for this paper are [3, 9, 4, 13] and references therein.
2Stability is defined as continuous dependence of the solution f on the data (xi, yi), e.g. the approximating

function must vary little with small perturbations of training data.
3The Ivanov method restricts the solution f to compact sets defined by ‖f‖2

K ≤ A for any positive, finite A.
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Thus the empirical error of the function is

Iemp[fS, S] =
1

�

�∑
i=1

V (fS, zi)

where fS is the function the algorithm selects given a set S and S is the set of points the loss
function is evaluated at. The expected or generalization error is

Iexp[fS] =
∫
Z

V (fS, z)P (z) dz = IEz[V (fS, z)],

where IEz[·] is the expectation for z sampled from the distribution D.
We state that a loss function V is σ-admissible if

∀S1, S2 ∈ Z�, (x, y) ∈ Z |V (fS1(x), y) − V (fS2(x), y)| ≤ σ|f1(x) − f2(x)|.
This condition was introduced in [1].

2 Stability: old and new definitions

A learning algorithm is a mapping from a training set S to a function fS.

Definition 2.1 (Bousquet and Elisseeff, 2001)[1] An algorithm has stability β with respect
to the loss function V if

∀S, Si,u ∈ Z�, ∀z ∈ Z, |V (fS, z) − V (fSi,u , z)| ≤ β.

Note that β will in general depend on �, so we could more precisely define stability as a function
from the integers to the reals, but the usage will be clear from context. This definition of stability
is known as uniform stability. It is a restrictive condition, as it needs to hold on all possible
training sets, even training sets that can only occur with probability 0. This motivates the weaker
notion of (β, δ)-stability.

Definition 2.2 (Kearns and Ron, 1999) [11] An algorithm is β-stable at S with respect to
a loss function V if

∀z ∈ Z, |V (fS, z) − V (fSi,u, z)| ≤ β.

Definition 2.3 (Kutin and Niyogi, 2001) [5] An algorithm A is (β, δ)-stable with respect to
a loss function V if

IPS∼Z�(A is β-stable at S) ≥ 1 − δ.

It is obvious that a β-stable algorithm is also (β, δ)-stable for all δ ≥ 0. The following theorems
provide generalization bounds for β-stable and (β, δ)-stable algorithms.

Theorem 2.1 (Bousquet and Elisseeff, 2001) [1] Let A be a β-stable learning algorithm
satisfying 0 ≤ V (fS, z) ≤ M for all training sets S and for all z ∈ Z. For all ε > 0 and all
� ≥ 1,

IPS {|Iemp[fS, S] − Iexp[fS]| > ε + 2β�M} ≤ exp

(
− 2�ε2

(4�β� + M)2

)
.
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Theorem 2.2 (Kutin and Niyogi, 2001) [5] Let A be a (β, δ)-stable learning algorithm
satisfying 0 ≤ V (fS, z) ≤ M for all training set S and for all z ∈ Z. For all ε, δ > 0 and all
� ≥ 1,

IPS {|Iemp[fS, S] − Iexp[fS]| > ε + β� + Mδ} ≤ 2 exp

(
− �ε2

8(2�β� + M)2

)
+

4�2Mδ

2�β� + M
.

In general we are mainly interested in the case where β� = O
(

1
�

)
and δ = O(e−�). Throughout

the rest of the paper, when we state that an algorithm is strongly β or (β, δ)-stable we mean that

β� = O
(

1
�

)
and δ = O(e−�).

Using this convention, we note that strongly β-stable and strongly (β, δ)-stable algorithms have
asymptotically identical generalization bounds, with differing constants. In both cases, we have
(via a simple restatement of the theorems) that for any τ ∈ (0, 1), with probability 1 − τ ,

|Iemp[fS, S] − Iexp[fS]| ≤ O

(
1√
�

)
,

which we also refer to as fast convergence.
It is interesting that several key learning algorithms are strongly β-stable4. In a similar spirit,
we introduce what is an even more restrictive definition and remark that it applies to all cases
considered by Bousquet and Elisseeff.

Definition 2.4 An algorithm has α-stability if

∀S, Si,u ∈ Z�, ∀z ∈ Z, |fS(x) − fSi,u(x)| ≤ α. (3)

This definition – which corresponds to the classification stability introduced by [1] just for clas-
sification – describes stability of the actual functions. It is closer to the classical definition of
stability — as continuous dependence on the initial data. It is clear that (strong) α-stability
implies (strong) β-stability for σ-admissible loss functions. The converse is not true: in general,
stability wrt the loss function does not imply stability of the functions, even for σ-admissible
loss functions (see [10])5. However, published proofs of β-stability of various algorithms [1, 5],
first prove that the functions are close in L∞, then use the σ-admissibility condition on the loss
function to show β-stability. For instance, the proof of Theorem 22 of Bousquet and Elisseeff
leads directly to

Theorem 2.3 Let H be a reproducing kernel Hilbert space on a compact domain X with kernel
K s.t. for all x K(x, x) ≤ Ck ≤ ∞. Let the loss function V be σ-admissible. The learning
algorithm defined by

min
f∈H

1

�

�∑
i=1

V (f(xi), yi) + λ||f ||2K (4)

is α-stable with

α ≤ CKσ

2λ�
.

4In retrospect this is to be expected since regularization induces continuous dependence on the initial data
which is a property very similar to β-stability.

5For example, consider the square loss, and the case where f1(x) = y + K and f2(x) = y −K. The loss of the
two functions is identical, but their L∞ norms differ by 2K (Rifkin, Calder pers. comm.).
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3 Stability of bagging

The intuition is that averaging regressors or classifiers trained on subsamples of a training set
should increase stability with correspondingly better generalization bounds. Note that through-
out this section we assume that the regressors that will be bagged are only α-stable, a very weak
assumption. They are not assumed to be strongly α-stable. Notice that in the following we are
not making any claims about the empirical error over the whole training set! Consider N regres-
sors fi(x), each trained on (in general different) subsets of the training set. Each of the subsets
has size p; the training set has overall size �. We call f ′

i the regressor corresponding to fi but
obtained when one of the data points in the whole training set is perturbed. The average bagged
regressor is defined as 1

N

∑N
j=1 fj . It is straightforward to check that if each fi has α-stability αp

then the bagged regressor has also α-stability ≤ αp.
We now consider a special sampling scheme for bagging: each of the N regressors is trained on
a disjoint subset of the training set. In this case N = �/p with p fixed. Only one of the N
regressors will be affected by a perturbation of one of the � training points. Thus only one of the
terms in 1

N
|∑N

j=1(fj − f j)
′| will be different from zero. In this special case the α-stability of the

bagged regressor is αp

N
. Formalizing this reasoning results in the following theorem.

Theorem 3.1 Consider the bagged regressor 1
N

∑N
j=1 fj, in which each of the N regressors is

α-stable for a training set of size p. There exist sampling schemes such that the bagged regressor
is strongly α-stable with α-stability (αpp

�
). Its β-stability with respect to the σ-admissible loss

function V is then (αppσ
�

).

A similar result extends to a simple boosting scheme in which the bagged classifier ( 1
N

∑
bifi) is

a weighted average of the individual regressors, with weights possibly found by optimization on
the training set. We assume that there is an upper bound on the individual weight bi for all i,
i.e. bi ≤ D, as it is the case if the bi are normalized (i.e.

∑
bi = 1). This means that the bound

on the weight of each regressor in the resulting boosted function decreases with increasing N .
Then the β-stability of the weighted regressor is (αppσD

�
).

Now consider a bagging scheme where the subsets chosen for training are not necessarily disjoint.
Consider two variants:

1. If we enforce the constraint that each point belongs to exactly k subsets, then k functions
will be affected by the perturbation of one point. We can train k�

p
= kN regressors, and,

therefore, have the same bound on α-stability for the bagged regressor αpk
Nk

= αpp
�

. Note that
the bound on α-stability does not change with k for this scheme. It would be interesting
to see empirically how the training error depends on k.

2. If we do not impose the above restriction on the number of subsets a given point can
belong to, we might ask a question: If we pick N = �

p
subsets at random, how many

functions will be affected by perturbation of one point? We can do a probabilistic analysis
of this scheme and use the property of (β, δ)-stability defined previously. Note that the
probability of each point being selected for a subset is p

�
, and there are �

p
subsets, so the

expected number of subsets a given point belongs to is 1. Nonetheless, we were unable
to derive tight exponential (in �) bounds that would allow us to use (β, δ)-stability results
from [6].
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4 Remarks

1. If the individual regressors are strongly stable, then bagging does not improve the rate
of convergence, which can be achieved by using only one regressor or by bagging a fixed
number of regressors trained on nonoverlapping training sets of size increasing with �.

2. In the case of regularization with quadratic loss the stability of the solution depends on the
condition number (||K +λ�I||)(||(K + λ�I)−1||) ≤ CK

λ
. Thus it is finite for finite λ but can

be very large for λ = 0 and cannot be bounded a priori. In this case, it seems difficult to
show in general that bagging helps. However, in the one-dimensional radial basis functions
case with λ = 0 we can use results (for instance by Buhmann et al [2, 7]) to show that
bagging can give an improvement in the condition number of order O(N3), where N is the
number of bagged RBF, each trained on an optimal subset of the data (intercalated so that
the distance between training points for each regressor is maximal).

5 Discussion

The observation captured by theorem 3.1 implies that there exist bagging and training schemes
providing strong stability to ensembles of non-strongly stable algorithms. Thus bagging has a
regularization effect and provides rates of convergence for the generalization error that are of the
same order as Tikhonov regularization. It would be interesting to extend the previous analysis
to various “boosting” schemes.
Another, probably more interesting issue in many practical situations, is whether and how bag-
ging can improve stability for a given, fixed size � of the training set. At the same time, the
empirical error should also be minimized. Intuitively, the empirical error can be reduced by
increasing the size of the subsamples used to train the individual classifiers; this however tends
to worsen stability.

Acknowledgments: We wish to thank Matt Calder for key suggestions.
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