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Abstract

Baylis & Driver [1] have recently presented data on the response of neurons in macaque infer-
otemporal cortex (IT) to various stimulus transformations. They report that neurons can general-
ize over contrast and mirror reversal, but not over figure-ground reversal. This finding is taken
to demonstrate that “the selectivity of IT neurons is not determined simply by the distinctive
contours in a display, contrary to simple edge-based models of shape recognition”, citing our
recently presented model of object recognition in cortex [3]. In this memo, I show that the main
effects of the experiment can be obtained by performing the appropriate simulations in our sim-
ple feedforward model. This suggests for IT cell tuning that the possible contributions of explicit
edge assignment processes postulated in [1] might be smaller than expected.
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Baylis and Driver [1] have recently presented
data on how responses of IT neurons are affected
by three different stimulus transformations. They
report that neurons can generalize over contrast
and mirror reversal, but not over figure-ground re-
versal. This finding is taken to demonstrate that
“the selectivity of IT neurons is not determined
simply by the distinctive contours in a display,
contrary to simple edge-based models of shape
recognition [2, 3].”

We have examined this claim by performing
the appropriate simulations in our “edge-based”
model of object recognition in cortex the authors
refer to (which is actually no more “edge-based”
than Hubel & Wiesel’s simple cells are), using the
same stimuli as in [1]. In particular, the model was
as described in [3] with the addition that complex
cell responses were made invariant to contrast re-
versal, to better capture the complex cell behavior
reported in the literature [4] (see caption of Fig. 2).

The stimuli used, modified from [1], are shown
in Fig. 1a. Fig. 1b shows one example shape (the
upper left from Fig. 1) undergoing the three stim-
ulus transformations (compare to Fig. 1 of [1]). We
next defined four model IT units, each tuned to a
different one of the four shapes of Fig. 1a. Figure
2 shows the response of one model unit (tuned to
shape 3, in the lower left of Fig. 1a) to the 32 stim-
uli generated by performing the eight combina-
tions of transformations for each of the four stim-
uli as shown in Fig. 1b. As in the case of the IT
neuron shown in Fig. 3 of [1], comparing the ap-
propriate histograms shows that the model unit’s
responses are similar across both contrast reversal
and mirror-image transforms but not across figure-
ground reversal, as can also be seen from the cor-
relation plots in Fig. 3 (compare to Fig. 2 of [1]).

Average correlation values over all four model
units were 1 for contrast reversal, 0.73 for mirror
reversal (in agreement with our earlier report [3]
that some model neurons show tolerance to mir-
ror inversion), and 0.36 for figure-ground rever-
sal. Thus, based on the responses of model units,
the contrast-reversed version of a shape would be
considered more similar than its mirror-reversed
version. Most relevant, the figure-ground reversed
version would be considered to be least similar to
the original shape, all in agreement with the hu-
man similarity judgments and IT data reported in
[1].

Interestingly, the low similarity of a shape and

its figure-ground reversed transform was obtained
without any special edge-assignment mechanisms,
postulated in [1] to be necessary to distinguish a
shape from its figure-ground-reversed transform.
Rather, shape representations in the model are
based on local features only, which are also af-
fected by a figure-ground reversal (which leaves
only the curved black/white center region con-
stant) This is not to say that more elaborate edge-
assignment computations [1] might not be used in
cortex — after all, the IT neurons in [1] show a
mean correlation coefficient for figure-ground re-
versal around zero, lower than the model neurons.
Moreover, recent data on the neural correlates of
border ownership in V2 [5] showing that visual in-
formation on stimulus borders far outside a neu-
ron’s traditional receptive field can modulate its re-
sponse suggests a role for recurrent projections, at
least for neurons in lower visual areas. It will be
interesting to see if similar effects as found in [5]
also hold for the much larger receptive fields of IT
cells, which would provide more unequivocal sup-
port for the contribution of additional processes in
the shaping of IT responses than the present ex-
perimental data. In any case, it is remarkable how
a simple feed-forward model originally proposed
to explain the invariances of IT neurons to scaling
and translation captures the main effects caused
by the very different manipulations of the Baylis
& Driver study, suggesting that computational ap-
proaches may help to explain cognitive phenom-
ena in terms of well-known neural mechanisms.
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Figure 1: Shapes and transformations. (a) The four shapes used. They were scanned in from [1], thresholded, and
rescaled to �� � �� pixels. (b) Shape transformations using shape 1 (upper left in (a)) as an example. The upper
leftmost image shows the original ����� pixel stimulus embedded in a ������� frame. The right ��� block shows
the contrast-reversed versions of the left block. In each �� � block, the right column is the mirror-reversed version of
the left column. The bottom row is the figure-ground reversed version of the top row. Compare to Fig. 1 in [1].
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Figure 2: Responses of one model unit (unit 3, tuned to the stimulus in the lower left of Fig. 1a, presented as shown
in the top left panel of Fig. 1b)) to the � � � stimuli. The layout is the same as in Fig. 1b, i.e., each subplot shows
the response (�-axis) of the neuron to the four shapes (�-axis) transformed like the corresponding panel in Fig. 1b.
For instance, the lower left plot shows the unit’s response to the figure-ground-reversed versions of the four shapes
of Fig. 1a. The model was as described previously [3], except for that invariance of complex cells (and thus model
IT units) to contrast-reversal was achieved by linearly rescaling the average intensity of image patches falling into
a simple cell’s receptive field to zero before calculating simple cell responses. Thus the response of a simple cell ��
to an image patch � in its receptive field was �� � ��� � �

�� with � � � ��� � � ������� � � � ��, �� the simple
cell’s optimal stimulus, � � � and �� � �� denoting the mean and Euclidean norm (to normalize simple cell responses
to a range between 0 and 1), resp. Apart from an increased robustness to contrast-reversal, view-tuned units in this
modified model show response properties similar to those reported previously [3] (not shown). View-tuned units, as
described in [3], were each connected to the 50 C2 afferents most strongly activated by its preferred stimulus, with a
tuning width of 	 � 	
�. Results were robust with respect to the choice of 	.
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Figure 3: Correlation plot for the responses shown in Fig. 2. The plots show unit activation for particular stimuli on
the �-axis and the transformed versions of the same stimuli along the �-axis. Left plot: Contrast reversal transform.
Center plot: Mirror reversal. Right plot: Figure-ground reversal. Numbers above the plots show value of Spearman
rank order correlation coefficient for the different transformations. While the correlation for both contrast and mirror
reversal is significant, � � 	
			�, it is not significant for figure-ground reversal, � � 	
��.
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