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Abstract

We present a new method to select features for a face detection system
using Support Vector Machines (SVMs). In the �rst step we reduce the
dimensionality of the input space by projecting the data into a subset of
eigenvectors. The dimension of the subset is determined by a classi�cation
criterion based on minimizing a bound on the expected error probability
of an SVM. In the second step we select features from the SVM feature
space by removing those that have low contributions to the decision func-
tion of the SVM.
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1 Introduction

The trainable system for detecting frontal and near-frontal views of faces in gray
images presented in [Heisele et al. 2000] gave good results in terms of detection rates.
The system used gray values of 19�19 images as inputs to a second-degree polynomial
kernel SVM. This choice of kernel lead to more than 40,000 features in the feature
space1. Searching an image for faces at di�erent scales took several minutes on a
PC. Many real-world applications require signi�cantly faster algorithms. One way to
speed-up the system is to reduce the number of features.

We present a new method to reduce the dimensions of both input and feature
space without decreasing the classi�cation rate. The problem of choosing the subset
of input features which minimizes the expected error probability of the SVM is an
integer programming problem, known to be NP-complete. To simplify the problem,
we �rst rank the features and then select their number by minimizing a bound on
the expected error probability of the classi�er.

The outline of the paper is as follows: generating training and test data is de-
scribed in Chapter 2. In Chapter 3 we give a brief overview of SVM theory. In
Chapter 4 we rank features in the input space according to a classi�cation crite-
rion. We then determine the appropriate number of ranked features in Chapter 5. In
Chapter 6 we remove features from the feature space that have small contributions
to the decision function of the classi�er. In Chapter 7 we applied feature selection to
a real-world application.

2 Description of the Input Data

2.1 Input features

In this section we describe the pre-processing steps applied to the gray images in
order to extract the input features to our classi�er. To decrease the variations caused
by changes of illumination we used three preprocessing steps proposed in [Sung 96].
A mask was �rst applied to eliminate pixels close to the boundary of the 19�19 im-
ages, reducing the number of pixels from 361 to 283. To account for cast shadows we
subtracted a best-�t intensity plane from the images. Then we performed histogram
equalization to remove variations in the image brightness and contrast. Finally the
283 gray values were re-scaled to a range between 0 and 1. We also computed the
gray value gradients from the histogram equalized images using 3�3 x- and y-Sobel
Filters. Again the results were re-scaled to be in a range between 0 and 1. These

1In the following, we use input space IRn for the representation space of the image data and
feature space IRp (p > n) for the non-linearly transformed input space.
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gradient features were combined with the gray value features to form a second set of
572 features2. Additionally we applied Principal Component Analysis (PCA) to the
whole training set and projected the data points into the eigenvector space.

To summarize we considered four di�erent sets of input features:

� 283 gray features

� 572 gray/gradient features

� 283 PCA gray features

� 572 PCA gray/gradient features

2.2 Training and test sets

In our experiments we used one training and two test sets. The positive training set
contained 2,429 19�19 faces. The negative training set contained 4,548 randomly
selected non-faces patterns.
In the �rst part of this paper, we used a small test set in order to perform a large
number of tests. The test set was extracted from the CMU test set 13. We extracted
all 479 faces and 23,570 non-face patterns. The non-face patterns were selected by
a linear SVM classi�er as the non-face patterns most similar to faces. The �nal
evaluation of our system was performed on the entire CMU test set 1, containing
118 images. Processing all images at di�erent scales resulted in about 57,000,000
analyzed 19�19 windows.

3 Support Vector Machine

Support Vector Machines [Vapnik 98] perform pattern recognition for two-class prob-
lems by �nding the decision surface which minimizes the structural risk of the classi-
�er. This is equivalent to determining the separating hyperplane that has maximum
distance to the closest points of the training set. These closest points are called Sup-

port Vectors (SVs). Figure 1 (a) shows a 2-dimensional problem for linearly separable
data. The gray area indicates all possible hyperplanes which separate the two classes.
The optimal hyperplane in Figure 1 (b) maximizes the distance to the SVs.

2As reported in [Heisele et al. 2000], detection results with gradient alone were worse than those
for gray values. That is why we combined gradient and gray features.

3The test set is a subset of the CMU test set 1 [Rowley et al. 97] which consists of 130 images
and 507 faces. We excluded 12 images containing line-drawn faces and non-frontal faces.
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a) b)

Figure 1: a) The gray area shows all possible hyperplanes which separate the two
classes. b) The optimal hyperplane maximizes the distance to the closest points.
These points (1, 2 and 3) are called Support Vectors (SVs). The distance M between
the hyperplane and the SVs is called the margin.

If the data are not linearly separable in the input space: a non-linear transfor-
mation �(�) maps the data points x of the input space IRn into a high dimensional,
called feature space IRp (p > n). The mapping �(�) is represented in the SVM clas-
si�er by a kernel function K(�; �) which de�nes an inner product in IRp. The decision
function of the SVM is thus:

f(x) = w � �(x) + b =
X
i

�0
i yiK(xi;x) + b (1)

where yi is the class label f�1; 1g of the training samples. Again the optimal hy-
perplane is the one with the maximal distance (in feature space IRp) to the closest
points �(xi) of the training data. Determining that hyperplane leads to maximizing
the following functional with respect to �:

W (�) =
X̀
i=1

�i � 1

2

X̀
i;j=1

�i�jyiyjK(xi;xj) (2)

under constraints
P`

i=1 �iyi = 0 and C � �i � 0; i = 1; :::; `. The solution of this
maximization problem is denoted �0 = (�0

1; :::; �
0
k; :::; �

0
l ).
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An upper bound on the expected error probability EPerr of an SVM classi�er is
given by:

EPerr � 1

`
E
�
R2 W (�0)

�
(3)

where R is the radius of the smallest sphere including all points �(x1); :::;�(x`) of the
training vectors x1; :::;x`. In the following, we will use this bound of the expectation
of the leave-one-out-error to rank and select features.

4 Ranking Features in the Input Space

4.1 Description of the method

In [Weston et al. 2000] a gradient descent method is proposed to rank the input
features by minimizing the bound of the expectation of the leave-one-out error of
the classi�er. We implemented an earlier approximation of this approach. The main
idea is to re-scale the n-dimensional input space by a n � n diagonal matrix � such
that the marginM in Equation (3) is maximized. However, one can trivially increase
the margin by simply multiplying all input vectors by a scalar. For this reason the
following constraint is added jj�jjF = N , where N is some constant. This constraint
approximately enforces the norm of radius R around the data to be constant while
maximizing the margin. The new mapping function can be written as ��(x) =
�(� � x) and the kernel function is K�(x;y) = K(� � x; � � y) = (��(x) ���(x)). The
decision function given in Equation (1) becomes:

f(x; �) = w � ��(x) + b =
X
i

�0
i yiK�(xi;x) + b (4)

The maximization problem of Equation (2) is now given by:

W (�; �) =
X̀
i=1

�i � 1

2

X̀
i;j=1

�i�jyiyjK�(xi;xj) (5)

subject to
P`

i=1 �iyi = 0, C � �i � 0, jj�jjF = N , and �i � 0. To solve this problem
we stepped along the gradient of Equation (5) with respect to � and � until we reached
a local maximum. One iteration consisted of two steps: �rst we held � constant and
trained the SVM to calculate the solution �0 of the maximization problem given
in Equation (2). In a second step, we kept � constant and performed the gradient
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descent on �W with respect to � subject to the constraint on the norm of � which is
an approximation to minimizing the bound on EPerr according to Equation (3) for a
�xed R. In our experiments we performed one iteration and then ranked the features
by decreasing elements �i of �.

4.2 Experiments on di�erent input spaces

We �rst evaluated the ranking methods on the gray and PCA gray features. The tests
were performed on the small test set for 60, 80 and 100 ranked features with a second-
degree polynomial SVM. In Figure 2 we show the 100 best gray features, bright gray
values indicate high ranking. The Receiver Operator Characteristic (ROC) curves of

a) b)

Figure 2: a) First 100 gray features according to ranking by gradient descent. Bright
intensities indicate high ranking. b) Reference 19� 19 face.

second-degree polynomial SVMs are shown in Figure 3. For 100 features there is no
di�erence between gray and PCA gray features. However the PCA gray features gave
clearly better results for 60 and 80 selected features. For this reason we focused in
the following experiments on PCA features only. An interesting observation was that
the ranking of the PCA features obtained by the above described gradient descent
method was similar to the ranking by decreasing eigenvalues.

To compare PCA gray/gradients with PCA gray features, we performed tests with
50 features on the entire CMU test set 1. Surprisingly, the results for gray values
alone were better than those for the combination of gray and gradient values. A
possible explanation could be that the gradient value features are noisier than the
gray ones.
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a)

b)

c)

Figure 3: Comparison of the two input spaces for a) 60 features b) 80 features and
c) 100 features.
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Figure 4: Comparison of the ROC curves for PCA gray features and PCA gray /
gradient features.

5 Selecting Features in the Input Space

5.1 Description of the method

In Chapter 4 we ranked the features according to their scaling factors �i. Now
the problem is to determine a subset of the ranked features (x1; x2; :::; xn) 2 IRn.
This problem can be formulated as �nding the optimal subset of ranked features
(x1; x2; :::; xn�) among the n possible subsets where n� < n is the number of selected
features. As a measure of the classi�cation performance of an SVM for a given subset
of ranked features we used again the bound on the expected error probability.

EPerr � 1

`
E
�
R2 W (�0)

�
(6)

To simplify the computation of our algorithm and to avoid solving a quadratic op-
timization problem in order to compute the radius R, we approximated4 R2 by 2p
where p is the dimension of the feature space IRp. For a second-degree polynomial

4We previously normalized all the data in IRn to be in a range between 0 and 1. As a result the
points lay within a p-dimensional cube of length

p
2 in IRp and the smallest sphere including all the

data points is upper bound by
p
2p.
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kernel of type (1 + x � y)2 we get:

EPerr � 1

`
2p E

�
W (�0)

�
� 1

`
n�(n� + 3) E

�
W (�0)

�
(7)

where n� is the number of selected features5. The bound of the expectation of the
leave-one-out error is shown in Figure 5. We had no training error for more than
22 selected features. The margin continuously increases with increasing numbers of
features. The bound on the expected error shows a plateau between 30 to 60 features,
then it signi�cantly increases.

Figure 5: Bound on the expected error number of selected features6.

5.2 Experiments

To evaluate our method, we tested the system on the large CMU test set 1 consisting
of 479 faces and about 57,000,000 non-face patterns. In Figure 6, we compare the
ROC curves obtained for di�erent numbers of selected features. The results show
that using more than 60 features did not improve the performance of the system.

5As we used a second-degree polynomial SVM the dimension of the feature space p = n�(n�+3)=2.
6Note that we did not normalize the by the number of training samples l.
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Figure 6: ROC curves for di�erent number of features.

6 Feature Reduction in the Feature Space

In the previous Chapter we described how to reduce the number of features in the
input space. Now we consider the problem of reducing the number of features from
the feature space. We used the method proposed in [Heisele et al. 2000] based on the
contribution of the features to the decision function f(x) of the SVM.

f(x) = w � �(x) + b =
X
i

�0
i yiK(xi;x) + b (8)

where w = (w1; :::; wp). For a second-degree polynomial kernel with K(x;y) =

(1 + x � y)2, the feature space IRp with dimension p = n(n+3)
2

is given by :

x
� = (

p
2x1;

p
2x2; ::;

p
2xn; x

2
1; x

2
2; ::; x

2
n;
p
2x1x2;

p
2x1x3; ::;

p
2xn�1xn).

The contribution of a feature x�k to the decision function in Equation (8) depends on
wk. A straightforward way to order the features is by decreasing jwkj. Alternatively,
one can weight w by the Support Vectors to account for di�erent distributions of the
features in the training data. The features were ordered by decreasing jwk

P
i yix

�

i;kj,
where x�i;k denotes the k-th component of Support Vector i in feature space IRp.
For the two methods we �rst trained an SVM with a second-degree polynomial kernel
with an input space of 60 features which corresponds to 1891 features in the feature
space. We then calculated

P
i jf(xi) � fS(xi)j for all Support Vectors, where fS(x)

is the decision function using the S �rst features according to their ranking. The
results in Figure 7 show that ranking by the weighted features of w lead to faster
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convergence of the error.

Figure 7: Classifying Support Vectors with a reduced number of features. The x-axis
shows the number of features, the y-axis is the mean absolute di�erence between the
output of the SVM using all features and the same SVM using the S �rst features
only. The features were ranked according to the features and the weighted features
of the normal vector of the separating hyperplane.

Figure 8 shows the ROC curves for 500 and 1000 features. As a reference we
added the ROC curve for a second-degree SVM trained on the original 283 gray fea-
tures. This corresponds to a feature space of dimensionality (283+3)283

2
= 40; 469. By

combining both methods of feature reduction we could reduce the dimensionality by
a factor of about 40 without loss in classi�cation performance.

7 Application

7.1 Architecture of the system

We applied feature selection to a real-world application where the goal was to deter-
mine the orientation (right side up or up side down) of face images in real-time. To
solve this problem we applied frontal face detection to the original and the rotated
images (180Æ). The images in which at least one face was detected with high con�-
dence were considered to be right side up.
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Figure 8: ROC curves for di�erent dimension of the feature space.

We used a subset of the Kodak Database consisting of 283 images of size 512 �
768. The resolution of the faces varied approximately between 20 � 20 and 200 �
200. The average number of faces per image was 2. Even after applying the two
feature selection methods described in this paper, the computational complexity of
a polynomial second-degree SVM classi�er was still too high for a real-time system.
That is why we implemented a two-layer system where the �rst layer consists of a fast
linear SVM that removes large parts of the background. The second layer consists
of a more accurate polynomial SVM performs the �nal face detection. Our system
is illustrated in Figure 9. (B) and (C) show the responses of the linear classi�er for
the original and the rotated images. Bright values indicate the presence of faces.
Thresholding these images leads to binary images (A) and (D) where the locations
of potential faces are drawn in black. At these locations we search for faces using the
polynomial second-degree SVM of the second layer.

7.2 Experiments

In the �rst experiment we applied a second-degree SVM classi�er trained on 60 PCA
features to the Kodak database. All 283 images were right side up. The results are
shown in Figure 10 and compared to the ROC curve for the CMU test set. The fact
that the ROC curve for the Kodak database is worse than the ROC curve for the
CMU test set 1 can be explained by the large number of rotated faces, faces of babies,
and children with masked faces (see Figure 11).
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Figure 9: Architecture of the real-time system determining the orientation of a face.

Figure 10: ROC curve for the Kodak database.
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Figure 11: Images from the Kodak database.
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In a second experiment we considered the two-layer system. We chose the thresh-
old for the linear SVM from previous results on the CMU test set. For this threshold
we classi�ed correctly 99.8% of faces and 99.9% of non-face patterns.
In the worst case, the average number of multiplications for the whole system is about
300 per pixel and per scale 7. Searching for a face directly with a second-degree poly-
nomial SVM using gray values would have lead to 81; 000 operations. As a result, we
sped up the system by a factor of 270.

8 Conclusion

We presented a method to select features for a face detection system using Support
Vector Machines (SVMs). By ranking and then selecting PCA gray features according
to a SVM classi�cation criterion we could remove about 80% of the input features. In
a second step we further reduced the dimensionality by removing features with low
contributions to the decision function of the SVM. Overall we kept less than 2% of
the original features without loss in classi�cation performance. We demonstrated the
eÆciency of our method by developing a real-time system that is able to determine
the orientation of faces.
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