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Abstract

Most psychophysical studies of object recognition have focussed on the recognition and representation of
individual objects subjects had previously explicitely been trained on. Correspondingly, modeling stud-
ies have often employed a “grandmother”-type representation where the objects to be recognized were
represented by individual units. However, objects in the natural world are commonly members of a class
containing a number of visually similar objects, such as faces, for which physiology studies have provided
support for a representation based on a sparse population code, which permits generalization from the
learned exemplars to novel objects of that class. In this paper, we present results from psychophysical and
modeling studies intended to investigate object recognition in natural (“continuous”) object classes. In two
experiments, subjects were trained to perform subordinate level discrimination in a continuous object class
— images of computer-rendered cars — created using a 3D morphing system. By comparing the recog-
nition performance of trained and untrained subjects we could estimate the effects of viewpoint-specific
training and infer properties of the object class-specific representation learned as a result of training. We
then compared the experimental findings to simulations, building on our recently presented HMAX model
of object recognition in cortex, to investigate the computational properties of a population-based object
class representation as outlined above. We find experimental evidence, supported by modeling results,
that training builds a viewpoint- and class-specific representation that supplements a pre-existing repre-
sentation with lower shape discriminability but possibly greater viewpoint invariance.
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1 Introduction

Object recognition performance crucially depends on
previous visual experience. For instance, a number of
studies have shown that recognition memory for unfa-
miliar faces is better for faces of one’s own race than for
faces of other races (the “Other Race-Effect”) [14, 18].
Recognition performance for objects belonging to less
familiar object classes such as “Greeble” objects [9] is
rather poor without special training. These differences
in performance are presumably the result of the differ-
ing degree of visual experience with the respective ob-
ject classes: Extensive experience with an object class
builds a representation of that object class that general-
izes to unseen class members and facilitates their recog-
nition.

Previous object recognition studies involving training
on novel stimuli have mostly focussed on training sub-
jects to recognize individual isolated objects [3, 9, 15, 31],
usually by either familiarizing the subjects with a sin-
gle object and then testing how well this object could
be recognized among distractors [3, 15], or by training
subjects on a small number of objects (e.g., by having the
subjects learn names for them [9, 31, 33]) and then test-
ing how well these objects could be recognized among
distractors. Thus, the objective of training was not to
learn an object class (like faces) from which arbitrary
novel examplars (unfamiliar faces) could be drawn dur-
ing testing — rather subjects had to re-recognize the ex-
act same objects as used in training.

An additional problem of several of the aforemen-
tioned studies was that the stimuli used belonged to
rather artificial object classes such as “cube objects”,
“paperclips”, or “amoebas” (Fig. 1b) differing from nat-
urally occuring object classes — such as, e.g., faces, hu-
man bodies, cats, dogs, or cars (Fig. 1a) — in that the
objects did not share a common 3D structure (making
them “not nice” object classes in the terminology of Vet-
ter et al. [35]).

Even in studies where objects of a more natural ap-
pearance were used (such as the “Greeble” family of ob-
jects [9]), subjects were still trained to recognize individ-
ual representatives (e.g., by naming them) whose recog-
nition was later tested under various transformations
[9, 21, 33]. Similarly, computational models of object
recognition in cortex have almost exclusively focussed
on the recognition of individual objects that had been
learned explicitely [8, 22, 23, 26, 36]. These computa-
tional studies [8, 23, 27, 36] commonly feature an ob-
ject representation where for each stimulus to be recog-
nized, a unique “grandmother”-type unit is trained to
respond to this individual object. While such a scheme
(with one or more “grandmother” units per object [35])
may actually be used to represent highly overtrained
objects [16] in situations where the subject has to rec-
ognize (a small number of) individual objects among a
great number of similar distractor objects [3, 15, 16], the

(a)

(b)

Figure 1: Natural objects, and artificial objects used in pre-
vious object recognition studies. (a) Members of natural ob-
ject classes, such as pedestrians (not shown) and cars, usually
share a common 3D structure, whereas stimuli popular in pre-
vious psychophysical studies of object recognition (from [4]),
(b), do not.

inefficiency and inflexibility of such a scheme makes it
highly unlikely to be used in cortex to represent natural
object classes.

A different possibility to represent objects is a scheme
where a group of units, broadly tuned to representatives of
the object class, code for the identity of a particular object by
their combined activation pattern. There exists some ex-
perimental evidence that is compatible with such a rep-
resentation: Recordings from neurons in inferotempo-
ral cortex (IT), a brain area believed to be essential for
object recognition [17, 30], suggest that facial identity
is represented by such a sparse, distributed code [38].
This is further supported by an optical imaging study
in IT [37] that indicated an area of neurons selective for
face stimuli.

Few studies,� experimental or theoretical, have in-
vestigated viewpoint-dependent recognition in a prin-
cipled way for the more general (and natural) case of
object classes, where training objects are used to build
a distributed class representation that is then probed
during testing using randomly chosen objects from the
same class.y

�Edelman [5] in a recent study used simple classes (Gaus-
sian blobs in parameter space) of geon-based “dog” and
“monkey” stimuli. However, the focus of that study was ob-
ject categorization.

yIn a recent study, Tarr and Gauthier [33] trained subjects
(in a naming task) to recognize a small number of individ-
ual objects seen from a single viewpoint. Subjects were then
trained on additional viewpoints for a subset of the training
objects. Subsequently, it was tested how recognition perfor-
mance for rotated views transferred to the training objects that
had only been seen at one viewpoint during training (the “co-
hort” objects). As the number of “cohort” and training objects
was rather small (4–6 objects), however, it is unclear whether
subjects actually learned a representation of the whole object
class. Furthermore, two of the three experiments in [33] used
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For the purpose of this paper we informally define a
continuous object class as a set of visually similar objects
in terms of 3D structure, that span a multidimensional
space, i.e., there is a continuous parametric representa-
tion of that class and objects can have arbitrarily similar
shapes. Vetter and Blanz [34] (see also [11]), for instance,
have shown that human faces can be well represented
in such a way. This definition is related to the “nice”
object classes of Vetter et al. [35]. Here, we stress the
shape similarity of objects in the class, where two mem-
bers can be arbitrarily similar to each other, which is of
primary interest for recognition and discrimination.

The aim of this paper is to investigate if and how the
results on view-dependent object recognition obtained
for the individual object case and a “grandmother” rep-
resentation transfer to continuous object classes repre-
sented through a distributed population code. We will
first present results from a psychophysical study in-
tended to investigate this question, in which subjects
were trained to perform subordinate level discrimina-
tion in a continuous object class — images of computer-
rendered cars — created using a 3D morphing system
[29]. By comparing the recognition performance of
trained and untrained subjects we can estimate the ef-
fects of viewpoint-specific training and infer properties
of the object-class specific representation learned as a
result of training.

We will then compare the experimental findings to
simulations, building on our recently presented HMAX
model of object recognition in cortex [27, 28, 32], to in-
vestigate the computational properties of a population-
based object class representation as outlined above. In
the process, we will demonstrate that the recognition
performance of HMAX previously demonstrated for
the class of paperclip objects is not special to this class
of objects but also transfers to other object classes.

A second experiment was designed to test the
model predictions and to investigate the viewpoint-
dependency of object recognition in more detail. The
results of this study will be compared to simulation re-
sults in the last section.

2 Experiment 1

Several psychophysical studies have reported above-
chance recognition rates for up to 45� (and beyond
[5]) viewpoint differences between sample and test ob-
ject after presenting the sample object at a single view-
point, for paperclip objects [3, 15] as well as geon-based
dog and monkey stimuli [5]. However, these experi-
ments controlled target/distractor similarity — which
strongly influences recognition performance [5, 21, 33]
— only very roughly (in two levels, [5]) or not at all
([3, 15]). Even more crucial, these studies did not compare

“cube” objects, which, as mentioned above, are not a good
model for natural object classes.

the recognition performance of trained subjects to naive sub-
jects. Hence, it is unclear how much of the recognition
performance was due to training and how much was
due to a pre-existing representation not specific to the
class of training objects.

The aim of Experiment 1 was to train subjects on a
recognition task involving stimuli chosen from a pre-
cisely defined continuous object class, presenting ob-
jects always at the same viewpoint, and then to probe
this representation by testing recognition performance
for varying viewpoints and match/nonmatch object
similarities. The results of the trained group are com-
pared to the performance of a naive group that did not
receive any training on the object class prior to testing.

2.1 Methods

2.1.1 A Continuous Object Class: Morphed Cars

Stimuli for both experiment and modeling were gen-
erated using a novel automatic, 3D, multidimensional
morphing system developed by Christian Shelton in
our lab [29]. With this system we were able to create
a large set of “intermediate” objects, made by blending
characteristics of the different prototype objects (View-
point DataLabs, UT) spanning the class. This was
done by specifying how much of each prototype the
object to be created should contain, naturally defin-
ing a vector space over the prototype objects. Corre-
spondences have been calculated for a system based
on eight car prototypes (the “8 car system”) and sub-
sequently for 15 car prototypes (the “15 car system”).
Thus, an advantage of the morphing system is that
it allows multidimensional morphing, i.e., the creation
of objects that are made up of mixtures of several 3D
prototypes. Moreover, as the prototypes are three-
dimensional graphics objects, morphed objects can be
freely transformed, e.g., through viewpoint or illumina-
tion changes.

In the initial morphing studies, we used the 8 car sys-
tem, whose prototypes are shown in Fig. 2. While the
prototypes are available as color models we chose to
render all objects as “clay” models by setting the col-
ors to gray values and decreasing surface reflectance
(C. Shelton, personal communication). Objects were
rendered with a lighting source located above the cam-
era and equally strong ambient lighting, and normal-
ized in size. This procedure was designed to reduce the
influence of possibly confounding color and size cues in
the experiment.

Stimulus space. Stimuli in Experiment 1 were drawn
from a subspace of the 8 car system, a two-dimensional
space spanned by the three marked prototypes shown

xAs monochrome printers produce gray values by dither-
ing, these and the other grayscale images print best on a color
printer.
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* * *

Figure 2: The eight prototype cars used in the 8 car system.
The cars marked with an asterisk show the prototypes span-
ning the morph space used in Experiment 1.x

in Fig. 2 (the space spanned by three prototypes is two-
dimensional since coefficients have to sum to one).

The advantage of using a well-defined object class
spanned by few prototypes is that the class can be ex-
haustively covered during training and its extent is well
known, which is not the case, e.g., for the class of human
faces.

2.1.2 Psychophysical Paradigm

Figures 3 and 5 illustrate the training and testing
tasks, respectively. They follow a two alternative
forced-choice (2AFC) design, with the two choices pre-
sented sequentially in time. The advantage of using
such a task is that subjects only have to decide which of
the two choices resembles the previously encountered
sample stimulus more closely, thereby eliminating the
influence of biases on the decision process that are as-
sociated with a yes/no task in which only one choice
stimulus is presented. An additional important advan-
tage of the 2AFC paradigm is that it transfers to simu-
lations in a straightforward way.

Subjects sat in front of a computer monitor at a dis-
tance of about 70cm, with the stimuli subtending about
3 degrees of visual angle (128 � 128 pixels). Each trial
was initiated by the appearance of the outline of a
blue square (about 5� of visual angle) on the screen, at
which time subjects had to push a button on a computer
mouse to initiate the trial. Immediately after the button
push, a randomly selected (see below) car appeared on
the screen for 500ms, followed by a mask consisting of
a randomly scrambled car image, presented for 50ms.
After a delay of 2000ms, the first choice car appeared
in the same location as the sample car, for 500ms, fol-
lowed by a 500ms delay and the presentation of the sec-
ond sample car. After the presentation of the second
car, the outline of a green square appeared, cueing sub-
jects to make a response (by pressing a mouse button),
indicating whether the first (left button) or the second
(right button) choice car was equal to the sample car.
In the training task (in Experiment 1 as well as Experi-
ment 2, see below), subjects received auditory feedback
on incorrect responses.

Figure 4: Illustration of match/nonmatch object pairs for Ex-
periment 1. The top shows a pair a distance d = 0:6 apart in
morph space while the lower pair is separated by d = 0:4.

In the training task, sample and test objects were
all presented at the same 225� viewpoint on all tri-
als, a 3/4 view (termed the training view, TV). New,
randomly chosen target (sample) and distractor objects
were chosen on each trial by picking coefficient vec-
tors from a uniform distribution followed by subse-
quent coefficient sum normalization. The purpose of
the training task was to induce subjects to build a de-
tailed viewpoint-specific representation of the object
class. The (Euclidean) distance d in morph space be-
tween target and distractor (nonmatch) objects was de-
creased over the course of training: Initially, distractor
objects were chosen to be very dissimilar to the target
objects, d = 0:6, making the task comparatively easy
(Fig. 4, top). Subjects performed trials at this level of
task difficulty until performance reached 80% correct.
Then d was decreased by 0:1 and the training repeated
with new stimuli down to d = 0:4 (Fig. 4, bottom). At
the time they were tested, each subject in the trained
group performed > 80% correct on the d = 0:4 set (on
a block of 50 match and 50 nonmatch trials, randomly
interleaved).

After subjects in the training group reached the per-
formance criterion on the training task, they were tested
in a task similar to the training task but in which the
viewpoint of match and non-match choice stimuli dif-
fered by 45�, corresponding to a rotation of the car to-
wards the viewer (as shown in Fig. 5 for a 22.5� rota-
tion, as used in Experiment 2). This direction of ro-
tation was chosen arbitrarily. For each viewpoint and
distance combination, subjects were tested on 30 match
and 30 nonmatch trials, for a total of 240 trials (with
120 unique match/nonmatch pairs), which were pre-
sented in random order. The high number of trials
was chosen to mitigate possible effects of morph space
anisotropy with respect to subjects’ perceptual similar-
ity judgments. Subjects received no feedback on their
performance in the testing task.
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Figure 3: Training task for Experiments 1 and 2. Shown are an example each of the two different kinds of trials: match and
nonmatch trials. In both, a sample car is followed by a mask and a delay. Then, in a match trial (upper branch), the match car
appears as the first choice car, and a distractor car as the second choice car. For a nonmatch trial (lower branch), the order is
reversed. The example objects shown here are from the 15 car system used in Experiment 2 (see section 4). Subjects had to make
a response after the offset of the second choice car and received auditory feedback on the correctness of their response.

Figure 5: Testing task for Experiments 1 and 2. The task is identical to the training task from Fig. 3 except for the absence of
feedback and the fact that the viewpoint choice cars were presented at could vary between trials (the example shows a viewpoint
difference of �' = 22:5�, as used in Experiment 2).
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2.2 Results

Subjects were 14 members of the MIT community that
were paid for participating in the experiment plus the
first author. Seven subjects and the first author were as-
signed to a “trained” group that received training ses-
sions until the performance criterion as described above
was reached, upon which they performed the testing
task as described above. One subject, whose initial per-
formance on the easiest (d = 0:6) training set was at
chance, was excluded from the training group. For the
remaining subjects, criterion was reached after one or
two training sessions of one hour each (average 1.75 ses-
sions). Another seven subjects, the “untrained” group,
did not receive any training on the stimuli but were run
only on the testing task.

As mentioned above, this comparison to an untrained
group is essential: The visual system is very well able to
perceive novel objects even without training, i.e., there
is a baseline discrimination performance for any novel
object class. This is also expected for the car objects
used in our study, as their shapes make them similar
to real cars subjects have some visual experience with
(in agreement with our objective to use a natural ob-
ject class to investigate the learning of natural object
classes). However, as the degree of similarity between
match and nonmatch objects is continuously increased
during training, subjects have to learn to perceive fine
shape differences among the morphed cars used in the
experiment. It is this learning component we are inter-
ested in, allowing us to investigate how class-specific
training on one viewpoint transfers to other viewpoints.

Figure 6 shows the averaged performance of the sub-
jects in the trained group on the test task. A repeated
measures ANOVA (using SPSS 8.0 for Windows) with
the factors of viewpoint and distance in morph space
between match and nonmatch objects revealed highly
significant main effects of both viewpoint difference
and distance in morph space (F (1; 6) = 155:224 and
F (1; 6) = 21:305, resp., p < 0:005) on recognition
rate, with a non-significant interaction (F (1; 6) = :572,
p > :4) between the two factors. Interestingly, perfor-
mance even for the 45� viewpoint difference is signif-
icantly above chance (p < 0:001 for both distances, t-
test).

The performance of the untrained subjects is shown
in Fig. 7. The ANOVA here again revealed significant
main effects of viewpoint and distance (for main effect
of distance, F (1; 6) = 7:814, p < 0:05, for viewpoint
F (1; 6) = 14:994, p < 0:01, no significant interaction
p > :4). Comparing the average recognition rates for
the trained (Fig. 6) and untrained (Fig. 7) groups, it
is apparent that recognition rates for the trained view
are higher in the trained group than in the untraineed
group whereas performance of the two groups seems
to be equal for the �' = 45� view. Examining the
different performances in the two groups in more de-
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Figure 6: Average performance of the trained subjects (N =

7) on the test task of Experiment 1. The z-axis shows perfor-
mance, x-axis viewpoint difference �' between sample and
test objects (�' 2 f0�; 45�g), and y-axis morph space distance
d between match and nonmatch objects (d 2 f0:4; 0:6g). The
height of the bars at the data points shows � standard error
of the mean. The numbers above the data points show the
corresponding numerical scores.

tail, t-tests (one-tailed, assuming that training improves
performance) on the two different populations for the
different conditions revealed that the performance of
the trained group was significantly better than the un-
trained group for 0� viewpoint difference for both d =

0:6 and d = 0:4 (p < 0:05), while the difference was not
significant for the 45� viewpoint difference (p � 0:3).
Note that the observed performance differences are un-
likely to be due to the untrained subjects’ lower famil-
iarity with the 2AFC paradigm, as performance differed
only on a subset of conditions, namely those where
sample and test objects were presented at the same
viewpoint. As for the trained group, recognition in the
untrained group for a viewpoint difference of 45� was
significantly above chance (p < 0:002 for both distance
levels).

Thus, the data show the following

1. For the trained as well as the untrained subject
groups, recognition performance decreases with
increasing target/distractor similarity and with
viewpoint difference.

2. Both trained and untrained subjects perform above
chance at the 45� view.

3. Training subjects with randomly chosen cars at the
0� view improves recognition of class members at
the 0� view but does not affect recognition perfor-
mance if the viewpoint difference between sample
and test objects is 45�.

5



0
5

10
15

20
25

30
35

40

0.4

0.45

0.5

0.55

0.6
0.5

0.6

0.7

0.8

0.9

1

0.64

viewpoint difference

0.73

0.76

distance

0.8

pe
rf

or
m

an
ce

Figure 7: Average performance of untrained subjects (N = 7)
on the test task of Experiment 1. Axis labeling as in Fig. 6.

2.3 Discussion

The results of Experiment 1 indicate that while there is a
recognition benefit from training on the 0� view, it does
not transfer to the 45� view. However, even for a view-
point difference of 45�, recognition is still significantly
above chance.

These results are especially interesting with respect to
a recent study by Edelman [5] that, for a categorization
task involving geon-based stimuli, reported two differ-
ent performance regimes depending on the degree of
viewpoint difference between sample and test object.
He surmised that this might be the manifestation of two
recognition mechanisms, one at work for small view-
point differences and another one for larger ones.

The results of Experiment 1 suggest the following in-
terpretation: While training at a single viewpoint does
not transfer to a viewpoint difference of 45� between
sample and test object, recognition in this case might
rely on features that are robust to rotation (like the roof
shape of the car) and which do not depend on object-
class specific learning. Similar non-specific features can
be used in the untrained group to perform recognition
also for the unrotated viewpoint, but they are not suf-
ficient to perform discrimination in fine detail, as ev-
idenced by the lower recognition performance for the
training view. Training lets subjects build a detailed
class and viewpoint-specific representation that supple-
ments the existing system: Subtle shape discrimina-
tions require sufficiently finely detailed features that are
more susceptible to 3D rotation, whereas coarser com-
parisons can likely be performed also with cruder fea-
tures or use more view-invariant representations opti-
mized for different objects (see general discussion).

Over which range of viewpoints would we expect
training at a single viewpoint to have an effect? To an-
swer this question we performed simulations in HMAX

presented in the next section.

3 Modeling: Representing Continuous
Object Classes in HMAX

Our investigation of object recognition in continuous
object classes is based on our recently presented HMAX
model [27] that has been extensively tested on the rep-
resentation of individual “paperclip” objects. After a
brief review of HMAX, we shall demonstrate how the
same model can easily be applied to the representation
of natural object classes (the use of such a representation
to perform object categorization is described in [28]).

3.1 The HMAX Model of Object Recognition in
Cortex

Figure 8 shows a sketch of our model of object recog-
nition in cortex [26, 27] that provides a theory of how
view-tuned units (VTUs) can arise in a processing hi-
erarchy from simple-cell like inputs. As discussed in
[26, 27], the model accounts well for the complex visual
task of invariant object recognition in clutter and is con-
sistent with several recent physiological experiments in
inferotemporal cortex. In the model, feature specificity
and invariance are gradually built up through differ-
ent mechanisms. Key to achieve invariance and ro-
bustness to clutter is a MAX-like response function of
some model neurons which selects the maximum ac-
tivity over all the afferents, while feature specificity is
increased by a template match operation. By virtue
of combining these two operations, an image is repre-
sented through a set of features which themselves carry
no absolute position information but code the object
through a combination of local feature arrangements.
At the top level, view-tuned units (VTUs) respond to
views of complex objects with invariance to scale and
position changes.{ In all the simulations presented in
this paper we used the “many feature” version of the
model as described in [26, 27].

3.2 View-Dependent Object Recognition in
Continuous Object Classes

As mentioned in the introduction, various studies have
provided support that “natural” object classes, in par-
ticular faces [37, 38], are represented by a population
of units broadly tuned to representatives of this object
class. Other physiological studies have provided evi-
dence that neuronal tuning in IT can be changed as a
result of training [2, 13, 16, 19].

A population-based representational scheme is eas-
ily implemented in HMAX through a group of VTUs
(the stimulus space-coding units, SSCU, which can also
provide a basis for object categorization [28]) tuned to

{To perform view-invariant recognition, VTUs tuned to
different views of the same object can be combined, as demon-
strated, e.g., in [23].
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Figure 8: Our model of object recognition in cortex (from [26]). The model is an hierarchical extension of the classical paradigm
[10] of building complex cells from simple cells. It consists of a hierarchy of layers with linear (“S” units in the notation of
Fukushima [8], performing template matching, solid lines) and non-linear operations (“C” pooling units [8], performing a
“MAX” operation, dashed lines). The non-linear MAX operation — which selects the maximum of the cell’s inputs and uses it
to drive the cell — is key to the model’s properties and is quite different from the basically linear summation of inputs usually
assumed for complex cells. These two types of operations respectively provide pattern specificity and invariance (to translation,
by pooling over afferents tuned to different positions, and scale (not shown), by pooling over afferents tuned to different scales).
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representatives of the object class.k Discrimination be-
tween different objects proceeds by comparing the cor-
responding activation patterns over these units.

To investigate the properties of such a representation,
we created a set of car objects using the eight car system.
In particular, we created lines in morph space connect-
ing each of the eight prototypes to all the other proto-
types for a total of 28 lines through morph space, with
each line divided into 10 intervals. This created a set of
260 unique cars. Each car was rendered from 13 view-
points around the 225� training view (TV), spanning the
range from 180� to 270� in steps of 7.5�, which yielded
a total of 3380 images.

We then defined a set of SSCUs tuned to representa-
tives of the car class. The representatives were chosen
by performing k-means clustering on the set of 260 cars
shown at the training view (results shown are for in-
dividual k-means runs — repeated runs tended to pro-
duce quantitatively similar results).

To examine the viewpoint-dependence of object
recognition in the car class we then performed trials
in which each of the TV cars was presented to the
model (the “sample car”), causing an activation pat-
tern asample over the SSCUs. Then a “match” and a
“nonmatch” (distractor) object were chosen. The for-
mer was the same car shown from a different view-
point ' = 225�+�'; �45� � �' � 45� as described
above, while the latter was a different car a distance d

away from the sample car along the same morph line,
shown at the same viewpoint ' as the match car. The
two choice cars caused activation patterns amatch and
anonmatch, resp. Recognition of the rotated sample car
was said to be successful if

jjasample � amatchjj < jjasample � anonmatchjj (1)

using a (unweighted) Euclidean metric, i.e., if the SSCU
activation pattern caused by the sample object was
more similar to the match object’s activation pattern
than to the activation pattern caused by the nonmatch
object. This paradigm is equivalent to a two alternative-
forced choice task and has the advantage that modeling
of the decision process is straightforward. Recognition
performance for each (�'; d) combination was tested
for all possible sample/distractor car pairs.

Figure 9 shows recognition performance as a function
of d and �' for a representation based on nSSCU = 16

SSCUs (selected by k-means as described above), each
with a tuning width of � = 0:2 and c = 256 connections
to the preceding C2 layer (i.e., fully connected to all 256
C2 units [26]).

We see that the general trend observed in the ex-
periment also holds in the simulations: Discrimination
performance drops with increasing target/distractor

kNote that the receptive fields of the SSCUs do not have to
respect class boundaries, as long as they adequately cover the
input space [28].

180 200 220 240 260 0

5

10
0.6

0.8

1

180 200 220 240 260

0

5

10

0.6

0.8

1

Figure 9: Recognition performance of the model on the eight
car morph space. x-axis shows viewpoint ' of nonmatch ob-
ject, y-axis match/nonmatch distance d (in steps along the
morph line the sample object lies on) in morph space, and z-
axis model discrimination performance for all ('; d) stimulus
pairs in the sample set. Model parameters were nSSCU = 16,
� = 0:2, c = 256. The two subplots show the same graph from
two different viewpoints to show positive rotations (i.e., to-
ward the front, so that the front of the car is turning towards
the viewer, as used in the psychophysical experiments), left
plot, and negative rotations (i.e., towards the back, so that the
side of the car faces the viewer), right plot.

similarity and increasing viewpoint difference between
sample and choice objects. In particular, for the positive
rotation direction investigated in Experiment 1 (and
also Experiment 2, see below), performance reaches
chance for rotations of 30�,�� while it is still robustly
above chance for viewpoint differences of 22.5� .

In order to investigate how discrimination perfor-
mance varies with the number of SSCUs in the repre-
sentation, the tuning width of the individual SSCU and
the number of afferents to each SSCU, we shall in the
following plot the average (one-sided) invariance range as
a function of these parameters, limiting ourselves to the
positive rotations also used in the experiment. The av-
erage one-sided invariance range, �r, for a given set of
model parameters and a given match/nonmatch dis-
tance d in morph (in steps along the morph line the
sample object lies on) space is calculated by summing
up the above-chance performance values, p0

i
, for view-

point difference�'i, p0i = 2�(pi�0:5) obtained from the
raw performance scores pi shown, e.g., in Fig. 9. Then,

�r =

n�1X

i=1

(p0
i
� p0

i+1)�'i + p0
n
�'n ; (2)

with n = 5;�'i = f0�; 7:5�; 15�; 22:5�; 30�g. This defi-
nition assumes a monotonic drop in performance with
increasing �', i.e., that if an object can be discrimi-
nated for a certain �' it can also be discriminated for
all �'0 < �'. This condition was met in the great ma-
jority of cases.

Dependence of rotation invariance on tuning width
of SSCUs. The dependence of the average rotation in-
variance on the tuning width of the SSCUs, i.e., the �

of the Gaussian SSCUs, is shown in Fig. 10 (all other
parameters as before). The invariance range seems to

��For a few parameter sets, performance at �' = 30� was
still slightly above chance.
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Figure 10: Dependence of average (one-sided) rotation in-
variance, �r, (z-axis) as a function of the tuning width, �, of SS-
CUs (x-axis). y-axis in this and Figs. 11–13 shows distance in
steps between match and nonmatch objects along the morph
line the sample (match) object lies on. Other parameters as in
Fig. 9.

be rather independent of the tuning width of the SS-
CUs. This is due to the high precision and dynamic
range of the model neurons whose response function
is Gaussian: Even if the stimulus rides on the tail of
a sharply tuned Gaussian unit, the unit’s response still
depends monotonically on the match of the afferent ac-
tivity to the unit’s preferred stimulus. For a more real-
istic response function with a narrower dynamic range
we would expect a stronger effect of tuning width, in
particular a drop of performance as tuning becomes too
narrow. Note that the average one-sided invariance
range for cars is very comparable to that obtained for
paperclip objects, which was on the order of 30�=2 =

15� [27].

Dependence on number of afferents to each SSCU.
In the studies of recognition in clutter using HMAX [26]
it was found that robustness to clutter can be increased
in the model by having view-tuned units receive input
only from a subset of units in the C2 layer, namely the
n most strongly activated ones. The invariance range,
on the other hand, was found to increase with the num-
ber of afferents. Figure 11 shows the dependence of the
average invariance range on the number of strongest
afferents to each SSCU (left plot) for a representation
based on nSSCU = 16, compared to a “grandmother”
representation (right plot) where a dedicated “grand-
mother” unit was allocated for each sample stimulus
and match and nonmatch objects were discriminated
based on which of the two stimuli caused a greater ex-
citation of the “grandmother” unit. This is identical to
the representation used in the recognition experiments
with paperclip objects [27]. Interestingly, while the in-
variance range shows a strong dependence on the num-
ber of afferents in the “grandmother” case, with invari-
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Figure 11: Dependence of invariance range on the number of
afferents to each SSCU (x-axis), left plot, which were varied
from having only the 10 most strongly activated C2 units for
each SSCU feed into the respective SSCU to a fully connected
network with 256 afferents. Other parameters as in Fig. 9. The
right plot shows the average rotation invariance range for a
“grandmother”-like representation where an individual neu-
ron is allocated for each sample stimulus, and recognition per-
formance is based just on this unit.
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Figure 12: Dependence of invariance range on the number of
SSCUs (x-axis). Other parameters as in Fig. 9.

ance range asymptoting at about c = 100 (similar to
what had been found for paperclips [27]), there seemed
to be a much weaker dependence on the number of af-
ferents in the population-based representation.

Dependence on number of SSCUs. Figure 12 shows
the average rotation invariance as a function of the
number of SSCUs. While rotation invariance for a rep-
resentation consisting of just one SSCU (the average)
shows expectedly poor rotation invariance, the invari-
ance is already sizeable for nSSCU = 2 and grows only
weakly with the number of SSCU for nSSCU > 2. Thus,
it may seem that a representation based on more than
two units offers only marginal benefits. However, this
picture changes dramatically if noise is added to the
representation, which was studied in the next section.

Robustness to Noise. The above simulations all as-
sumed completely deterministic model neurons where
firing rates are quasi-continuous variables of very high
precision. Real neurons, however, are likely to show
a more stochastic response of limited precision to re-
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Figure 13: Effect of addition of noise to the SSCU represen-
tation for different numbers of SSCU in the representation.
The x-axis shows the amplitude of the Gaussian noise that
was added to each SSCU in the representation. The plot on
the left shows the performance of a representation based on
nSSCU = 2, the right one for nSSCU = 16.

peated presentation of the same stimulus. We can qual-
itatively simulate the implications of such a behavior in
the model by adding noise to the model neurons and ex-
amining how much noise of a certain amplitude affects
performance for the different model configurations.

Figure 13 shows how additive Gaussian noise of
varying amplitude (which was just added to the activ-
ity pattern caused by the sample stimulus) affects in-
variance ranges for representations based on varying
numbers of SSCUs. We see that while the performance
for zero noise is similar, the representation based on
nSSCU = 2 is much less robust to noise than a repre-
sentation based on nSSCU = 16. Thus, increasing the
number of units in a representation increases its robust-
ness to noise (at least for the case of independent addi-
tive noise, as used here).

The “Other Class” Effect. An analog of the “Other
Race” effect [14, 18] mentioned in the introduction can
be modeled in quite a straightforward fashion, if we re-
place the SSCU representation tuned to cars with one
tuned to a different object class. Here we chose six
units tuned to prototypical cats and dogs (as used in
separate physiological and modeling studies of object
categorization [7, 28]), rendered as clay models and
size-normalized, shown in Fig. 14. Figure 15 shows
the “Other Class” effect obtained when using these six
cat/dog SSCU to perform the car discrimination task
from the previous sections: While performance in the
no noise condition is only somewhat worse than with
the specialized representation (left plot), even noise
of very low amplitude reduces the performance to
chance, as the cat/dog-specific SSCU respond only lit-
tle to the car objects, thus making the activation pat-
tern highly sensitive to noise. This underlines the influ-
ence of a specialized class representation on discrimina-
tion/recognition performance.

Figure 14: Cat/dog prototypes.
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Figure 15: The “Other Class” effect with six SSCUs tuned to
the cat/dog prototypes (� = 0:5; for � = 0:2, performance
was even lower and numerical underflows occured; other pa-
rameters as in Fig. 9). Left plot shows no noise, right with
noise amplitude of 0.05. Compare to Fig. 13.

Feature learning. The C2 features used in HMAX
are based on combinations of difference-of-Gaussians
(DOG) filters of different orientations that might not
be optimal to perform object discrimination for the car
class used in the experiments. Can performance be im-
proved with a more specific feature set?

No learning algorithm for feature learning in the
HMAX hierarchy has been presented so far. However,
we can investigate the effect of a class-specific feature
set in a two-layer version of HMAX [25] where S1 fil-
ters are not limited to DOGs but can take on arbitrary
shapes, and C1 units pool (using the MAX function)
over all S1 cells at different positions and scales tuned
to the same feature, with C1 units feeding directly into
VTUs, without S2 or C2 layers. Invariance properties
of the two-layer version of HMAX using a set of 10 fea-
tures consisting of bars and corners are comparable to
the full model [25, 27].

We can obtain a feature set specific to the car ob-
ject class by performing clustering on the set of image
patches created by dividing each sample car into small
12� 12 pixel patches. Figure 16 shows the features ob-
tained by clustering the sample car image patch space
(containing only those patches that had at least 10% of
their pixels set) into 200 clusters using k-means.

Figure 17 shows the performance of the two-layer
model using these features. In comparison to standard
HMAX (Fig. 9), performance of the two-layer model
is somewhat worse for positive rotation, with perfor-
mance dropping to chance already for rotations of 22.5�.
On the other hand, performance for negative rotations
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Figure 16: Car object class-specific features obtained by clus-
tering the image patches of sample cars.
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Figure 17: Performance of the two layer-model using the fea-
tures shown in Fig. 16. Parameters were nSSCU = 16; � = 0:2,
200 afferents to each SSCU. Axes as in Fig. 9.

(i.e., those that turn the side of the car towards the
viewer) is somewhat better. Both effects could be due
to the fact that many of the patches shown in Fig. 16
contain car parts likely to change under positive rota-
tion, like the wheels, but which are more stable under
negative rotation.

3.3 Discussion

The simulations point to several interesting properties
of a population-based representation,

1. invariance ranges for a population-based represen-
tation where object identity is encoded by the dis-
tributed activity over several units (SSCUs) tuned
to representatives of that class are comparable to
a representation based on “grandmother” cells
where recognition is based on a dedicated unit for
each object to be recognized;

2. invariance ranges are already high for a representa-
tion based on a low number of SSCUs, but robust-
ness to noise grows with the number of SSCUs in
the representation;

3. even if each SSCU is only connected to a low num-
ber of afferents (the nmost strongly activated) from
the C2 layer, invariance based on the population
representation is high.

The last point is especially intriguing, as it might point
to a way to obtain robustness to clutter together with

high invariance to rotation in depth, avoiding the trade-
off found for a “grandmother” representation [26]. Fur-
ther, the simulations suggest an additional advantage
of a population-based representation over a representa-
tion based on the C2 features directly: Suppose a cer-
tain object (e.g., “my car”) is to be remembered. If a
car-specific representation has been learned it suffices
to store the low-dimensional activation pattern over the
SSCUs whereas in the absence of a specialized repre-
sentation it will be necessary to store the activity pat-
tern over a much higher number of C2 units to achieve
comparable specificity.yy

In the context of Experiment 1, the simulations
suggest that the advantage of viewpoint- and class-
specific training should only extend to roughly between
22.5� and 30� of viewpoint difference between train-
ing and testing viewpoint. It thus confirms our the-
ory put forward in the discussion of Experiment 1 that
performance there was due to the combination of a
class- and viewpoint-specific representation and a pre-
existing, less specific but more view-invariant represen-
tation. The class-specific representation is capable of
fine shape discrimination but only over limited a range
of viewpoints, while the more general one uses features
that are less optimized for the novel object class but
show greater tolerance to rotation. For small �', the
two representations can complement each other, while
for larger viewpoint differences the unspecific features
still allow recognition in some cases.

4 Experiment 2

Experiment 1 suggested that the view-invariance range
derived from one object view extends less than 45� from
the training view. The modeling work presented in
the previous section predicted that an effect of training
should only extend to between 22.5� and 30� of view-
point difference. The purpose of Experiment 2 was to
more finely investigate the degree of view-invariance
and at the same time examine how the training effect
observed in Experiment 1 carried over to a broader ob-
ject class. The latter modification was chosen as the
small size of the object class in Experiment 1 implied
that discrimination hinged on a very limited number
of features. In Experiment 2 we therefore increased the
size of the class significantly (to 15 prototypes instead
of 3) to make the discrimination task harder in the hope
of increasing the learning effect. Further, we added
an intermediate viewpoint difference, 22.5�, in the test
task, as the simulations presented in the previous sec-
tion suggested that the effect of training should start to
drop off beyond this viewpoint difference.

yyIf there are also SSCUs tuned to objects from other classes,
it would suffice to store the activation pattern over the most
strongly activated SSCUs to achieve sufficient specificity, as
simulations have indicated (not shown). Thus, it is not neces-
sary for the SSCUs to carry class labels (cf. [28]).
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4.1 Methods

4.1.1 Stimulus Generation
Stimuli in Experiment 2 were drawn from a morph

space spanned by the 15 car prototypes shown in
Fig. 18. Objects were rendered in the same way as for
Experiment 1. Coefficient vectors in morph space were
now generated by first randomly picking which coeffi-
cients should be different from zero with a probability
of p = 0:25. Those coefficients were then set to ran-
dom values between 0 and 1 picked from a uniform dis-
tribution and the whole coefficient vector subsequently
sum-normalized to one. This algorithm was introduced
to increase the diversity of the training stimuli as ran-
domly setting all coefficients with subsequent normal-
ization tended to produce a rather homogeneous set of
objects visually similar to the average.

In test trials, distractors D6 for the d = 0:6 trials
were selected by picking a coefficient vector of the ap-
propriate Euclidean distance from the sample stimu-
lus. The vector was chosen by appropriately modify-
ing an equal number of coefficients as were different
from zero in the sample vector, observing the constraint
that the (linear) sum over all coefficients had to stay
constant. The distractor for the d = 0:4 trials was se-
lected to lie on the line connecting the sample and D6.
Moreover, the same objects were chosen for the differ-
ent �' trials. This made performance comparisons in
the different conditions easier as it decreased the ef-
fects of morph space anisotropy (that was due to the
different visual similarities of the prototypes). For each
d 2 f0:4; 0:6g;�' 2 f0�; 22:5�; 45�g combination, sub-
jects were tested on 30 match and 30 nonmatch trials for
a total of 360 trials. All conditions were randomized.

4.1.2 Subject Training
Training for subjects in the trained group in Experi-

ment 2 proceeded in a similar fashion as in Experiment
1. Subjects started out with match/nonmatch pairs a
distance d = 0:6 apart in morph space and then per-
formed blocks of 100 trials (50 match, 50 nonmatch), un-
til performance on the block exceeded 80%. When their
performance reached criterion, d was decreased by 0.1,
down to a final dfinal = 0:4. To make sure that subjects’
performance was not specific to the training set, per-
formance was tested on another set of d = 0:4 stimuli
after they reached criterion. In all cases subjects’ per-
formance on the second d = 0:4 set was comparable to
their performance on the first set.

4.2 Results

Subjects were 24 members of the MIT community that
were paid for participating in the experiment, all of
which were naive to the purpose of the experiment and
had not participated in experiment 1. Seven subjects
were randomly assigned to a “trained” group that re-
ceived training sessions until the performance criterion
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Figure 19: Average performance of trained subjects (N = 5)
in Experiment 2. Axes labeling as in Fig. 6.

as described above was reached. Six further subjects
started to receive training, but did not complete it due
to initial chance performance on the easiest (d = 0:6)
training stimuli (N = 2), failure to reach criterion af-
ter five training sessions (N = 1, at which point the
subject’s performance had asymptoted at 75% on the
d = 0:4 training set for the previous three sessions), or
failure to come to training sessions (N = 3).

For one of the subjects that completed training, the
data collection program malfunctioned during testing
and the subject was excluded from further analysis.
Another trained subject was not available for testing.
11 subjects did not receive any training on the stimuli
but were only run on the testing task. One subject of
that group whose performance was highly anomalous
(at chance for 0� viewpoint difference, probably due to
subject sleepiness) was excluded from further analysis.
Another subject was excluded due to program malfunc-
tion during the experiment.

Training sessions already revealed that discrimina-
tion in the larger morph space was harder than in the
three prototype space from Experiment 1: Subjects on
average required four hours of training (range: 3–5
hours), more than twice as much as in Experiment 1.

Figure 19 shows the averaged performance of the
subjects in the trained group on the test task. A re-
peated measures ANOVA with the factors of viewpoint
and distance in morph space between match and non-
match objects revealed a highly significant main effect
of viewpoint difference (F (2; 3) = 33:151, p � 0:005)
on recognition rate, but no significant effect of distance
(F (1; 4) = 3:259, p = :145) and a non-significant inter-
action (F (1; 6) = :492, p > :5) between the two factors.

The averaged performance over the 9 untrained sub-
jects is shown in Fig. 20. There are significant effects of
both viewpoint difference (F (2; 7) = 31:169, p � 0:001)
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Figure 18: The 15 prototypes used in the 15 car system.
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Figure 20: Average performance of untrained subjects (N =

9) in Experiment 2. Axes labeling as in Fig. 6.

and distance (F (1; 8) = 22:478, p � 0:001) with no sig-
nificant interaction between the two (F (2; 7) = :715,
p > :5).

Comparing the trained and untrained groups, t-tests
show that recognition performance in the trained group
is significantly (p < 0:02) higher at the training view for
d = 0:6 and d = 0:4, and also for the �' = 22:5� view
and d = 0:4 (p < 0:01), but does not reach significance
for �' = 22:5� and d = 0:6 (p = 0:11). Recognition
performance is not significantly different for the two
groups at �' = 45� for both distances (p � 0:2). For
both groups and distances, performance at �' = 45� is
significantly above chance (p < 0:02, one-tailed t-tests).

4.3 The Model Revisited

What recognition performance would we expect from
the model for the stimuli used in Experiment 2? To
investigate this question, we used the training stimuli

(400 cars from the d = 0:6; 0:5 and the two d = 0:4 train-
ing files) and performed k-means clustering on them to
obtain a class-specific representation as subjects might
have learned it as a result of training. To investigate
the discrimination performance of this representation,
we used a SSCU representation with the exact same pa-
rameters as in Fig. 9, i.e., nSSCU = 16; � = 0:2; c = 256.
We then evaluated the performance of this represen-
tation for the sample, match, nonmatch triples from
the testing task as described in section 4.1.1. Perfor-
mance at �' = 45� was at chance as expected, but for
�' = 22:5�, performance was 65% correct for d = 0:6

and 63% correct for d = 0:4, compatible with the results
obtained for the eight car class (Fig. 9).

4.4 Discussion

Increasing the size of the object class to be learned in-
creased task difficulty considerably as evidenced by the
longer training times as compared to Experiment 1. As
expected, this correlated with a more significant effect
of training on recognition performance (even with a
smaller group of trained subjects than in Experiment 1).

While the effect of training was highly significant
for the training view, we only observed a significant
training effect for �' = 22:5� for d = 0:4, with
the difference at d = 0:6 just failing to reach sig-
nificance (p = 0:11). This effect could be inter-
preted in the “fine/specific” and “coarse/unspecific”
dual framework of object recognition proposed in the
context of Experiment 1 as indication that the bene-
fits of the class- and viewpoint-specific representation
learned in the training phase do not extend much far-
ther than �' = 22:5�, as suggested by the simulations
presented in section 3. The performance of the un-
trained subjects can be interpreted as indicating that the
coarse class-unspecific representation performs roughly
as well as the viewpoint-specific representation at�' =

22:5�; d = 0:6, i.e., there is a balance between the class-
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and viewpoint-specific and the coarse but more view-
invariant representation, whereas for the finer shape
discrimination required at d = 0:4 the specific repre-
sentation still provides a significant advantage. Inter-
estingly, the small effect of match/nonmatch distance
in morph space for the trained group at �' = 22:5� is
paralleled in the model, where there is only a 2% perfor-
mance difference for this viewpoint difference and the
d = 0:6 (65%) and d = 0:4 (63%) conditions.

5 General Discussion

The psychophysical and modeling results presented in
this paper point to an interesting answer to the ini-
tial question of object recognition in continuous object
classes: Viewpoint-specific training builds a viewpoint-
specific representation for that object class. While this
representation supports fine shape discriminations for
viewpoints close to the training view, its invariance
range is rather limited. However, there is a less-specific,
pre-existing object representation that cannot discrimi-
nate shapes as finely as the trained class-specific rep-
resentation but shows greater tolerance to viewpoint
changes. It is instructive to compare these observations
to an earlier paper by Moses et al. [20] where it was
found that generalization ability for changes in view-
point and illumination was much greater for upright
than for inverted faces, suggesting that prior experi-
ence with upright faces extended to the novel faces even
though the novel faces had been encountered at one
view only.

Based on our simulation results, we would expect
a similar behavior, i.e., limited invariance around the
training view with high sensitivity to shape changes in
addition to a coarser but more invariant system, also
for other transformations, such as, for instance, varying
illumination. It will be very interesting to test this hy-
pothesis, by training a subject as presented in this pa-
per but then varying, for instance, illumination angle,
and to then compare trained and untrained groups and
model performance. This would also allow us to make
inferences about the invariance properties of the feature
channels feeding into the SSCU (which determine the
invariance range of the learned class- and viewpoint-
specific representation).

Another interesting, more theoretical, question con-
cerns the properties of the “pre-existing” representa-
tion: Can experience with rotated objects of a certain
class provide greater viewpoint invariance albeit with
coarse shape resolution also for novel objects belong-
ing to a different class? Poggio and Vetter [24] (see
also [35]) proposed the idea that class-specific view-
invariant features could be learned from examples and
then used to perform recognition of novel objects of the
same class given just one view. Jones et al. [12] (see also
[1]) presented a computational implementation of this
proposal showing how class-specific learning could fa-

cilitate perceptual tasks. If such a mechanism transfers
also to sufficiently similar members of a novel object
class (for instance from real cars, which have been seen
from many viewpoints, to the morphed cars), then it
would provide a suitable candidate for the less-specific
but more view-invariant representation found in this
experiment. Some simulations along these lines have
been performed in ([6], pp. 131), but the performance
of such a scheme, for instance with respect to view-
invariant recognition, was never tested. It will be very
exciting to explore this issue in future work.
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