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Abstract

Real-world learning tasks often involve high-dimensional data sets with complex patterns of missing
features. In this paper we review the problem of learning from incomplete data from two statistical
perspectives|the likelihood-based and the Bayesian. The goal is two-fold: to place current neural net-
work approaches to missing data within a statistical framework, and to describe a set of algorithms, derived
from the likelihood-based framework, that handle clustering, classi�cation, and function approximation
from incomplete data in a principled and e�cient manner. These algorithms are based on mixture mod-
eling and make two distinct appeals to the Expectation-Maximization (EM) principle (Dempster et al.,
1977)|both for the estimation of mixture components and for coping with the missing data.

Copyright c Massachusetts Institute of Technology, 1994

This report describes research done at the Center for Biological and Computational Learning and the Arti�cial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the Center is provided in part by a grant from the
National Science Foundation under contract ASC{9217041. Support for the laboratory's arti�cial intelligence research is
provided in part by the Advanced Research Projects Agency of the Department of Defense. The authors were supported in
part by a grant from ATR Auditory and Visual Perception Research Laboratories, by a grant from Siemens Corporation, by
grant IRI-9013991 from the National Science Foundation, and by grant N00014-90-J-1942 from the O�ce of Naval Research.
Zoubin Ghahramani was supported by a grant from the McDonnell-Pew Foundation. Michael I. Jordan is a NSF Presidential
Young Investigator.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In computational and biological learning the environ-
ment does not often provide complete information to the
learner. For example, a vision system may encounter
many partially occluded examples of an object, yet have
to recover a model for the unoccluded object. Similarly,
an adaptive controller may be required to learn a map-
ping from sensor readings to actions even if its sensors
are unreliable and sometimes fail to give readings. Ex-
amples of data sets with missing values abound in ma-
chine learning. 1

In this paper we review the problem of learning from
incomplete data from a statistical perspective. The goal
is two-fold: to place current neural network treatments
of missing data within a statistical framework, and to
derive from this framework a set of algorithms that han-
dle incomplete data in a principled manner. To maintain
the breadth of the review we discuss classi�cation, func-
tion approximation, and clustering problems. Because
missing data can arise in both the input and the target
variables, we treat both missing inputs and unlabeled
data.

The statistical framework that we adopt (cf. Little
and Rubin, 1987) makes a distinction between the envi-
ronment, which we assume to generate complete data,
and the missing data mechanism which renders some
of the output of the environment unobservable to the
learner. The supervised learning problem consists of
forming a map from inputs to targets. The unsuper-
vised learning process generally consists of extracting
some compact statistical description of the inputs. In
both these cases the learner may bene�t from knowl-
edge of constraints both on the data generation process
(e.g., that it falls within a certain parametric family),
and on the mechanism which caused the pattern of in-
completeness (e.g., that it is independent of the data
generation process). The use of statistical theory allows
us to formalize the consequences of these constraints and
provides us with a framework for deriving learning algo-
rithms that make use of these consequences.

Before developing a framework for incomplete data,
let us motivate the problem with perhaps the simplest
statistical example that illustrates an interaction be-
tween the missing data and the data generation mecha-
nisms. Imagine we wish to estimate the mean (�x; �y)
and covariance matrix � of a bivariate normal distribu-
tion, from a data set X = f(xi; yi)g

N

i=1 where some of the
observations of yi are missing (see Fig. 1). If we estimate
�x by the mean of the xi and �y by the mean of the ob-
served values of yi, we will underestimate �y as we have
ignored the covariance structure in the observed data. A
more intelligent heuristic would use the covariance struc-
ture to �ll-in the values of the missing yi by regressing
them on the xi. However, even this heuristic will yield a
biased estimate of the covariance matrix as the �lled-in
data points will all fall along the regression line. Both
of the above \�lling-in" techniques, known as mean im-

putation and regression imputation, yield unsatisfactory

1See, for example, the UCI Repository of Machine Learn-
ing Databases (Murphy and Aha, 1992).

results even on this simple parameter estimation prob-
lem.

The paper is organized as follows. In section 2 we
outline the statistical framework that de�nes the miss-
ing data and data generation mechanisms. In section 3
we proceed to describe a likelihood-based approach to
learning from incomplete data. In section 4 we use this
approach to derive a set of learning algorithms for func-
tion approximation, classi�cation, and clustering. Sec-
tion 5 describes an alternative to the likelihood-based
approach, the Bayesian approach, and several algorithms
that implement it. Section 6 discusses Boltzmann ma-
chines and incomplete data. Finally, we conclude in sec-
tion 7.
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Figure 1: A simple example. Complete data were gen-
erated from a Gaussian with mean (5; 5) and covariance
matrix (5=4 9=4; 9=4 17=4). Data points with missing
y values are denoted by hollow circles on the y = 0
line. The solid square indicates the (x; y) mean calcu-
lated over the observed data. The hollow square and the
ellipse indicate the mean and standard deviation calcu-
lated from the incomplete data using a maximum likeli-
hood (ML) algorithm. Note that the ML estimate of �y
is higher than any of the observed values of y!

2 The Framework

The statistical framework we present is based on Lit-
tle and Rubin (1987). We assume that the data set
X = fxig

N

i=1 can be divided into an observed component
X o and a missing component Xm. Each data vector xi
may have di�erent patterns of missing features. We will
not distinguish for now between the input and target
components of the data vector.

We formalize the notion of a missing data mechanism
by de�ning a missing data indicator matrix R, such that

Rij =

�
1; xij observed,
0; xij missing.
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Both the data generation process and the missing data
mechanism are considered to be random processes, with
joint probability distribution given by

P (X ; Rj�; �) = P (Xj�)P (RjX ; �): (1)

We use the parameters � for the data generation process
and a distinct set of parameters, �, for the missing data
mechanism.

Once the data probability model has been decom-
posed as in (1), we can distinguish three nested types
of missing data mechanism. The data can be

1. Missing completely at
random (MCAR): P (RjX ; �) = P (Rj�). That is,
the probability that xij is missing is independent
of the values in the data vector.

2. Missing at random (MAR): P (RjX o
;Xm

; �) =
P (RjX o

; �). That is, the probability that xij is
missing is independent of values of missing com-
ponents of the data, but may depend on the val-
ues of observed components. For example, xij may
be missing for certain values of xik;(k 6=j) provided
that xik is always observed. Figure 1 illustrates
this case.

3. Not missing at random (NMAR). That is,
P (RjX o

;Xm
; �) may depend on the value of xij.

If P (Rijjxij; �) is a function of xij the data is said
to be censored. For example, if a sensor fails when
its input exceeds some range its output will be cen-
sored.

The type of the missing data mechanism is critical in
evaluating learning algorithms for handling incomplete
data. Full maximumlikelihood and Bayesian approaches
can handle data that is missing at random or completely
at random. Several simpler learning approaches can han-
dle MCAR data but fail on MAR data in general. No
general approaches exist for NMAR data.

For both Bayesian and maximum likelihood tech-
niques the estimates of the parameters � and � are linked
to the observed data, X o and R, via P (X o

; Rj�; �).2 For
maximum likelihood methods the likelihood is

L(�; �jX o
; R) / P (X o

; Rj�; �);

and for Bayesian methods the posterior probability is

P (�; �jX o
; R) / P (X o

; Rj�; �)P (�; �):

We wish to ascertain under which conditions the pa-
rameters of the data generation process can be estimated
independently of the parameters of the missing data
mechanism. Given that

P (X o
; Rj�; �) =

Z
P (X o

;Xmj�)P (RjX o
;Xm

; �)dXm
;

we note that if

P (RjX o
;Xm

; �) = P (RjX o
; �);

2For succinctness will use the non-Bayesian phrase \esti-
mating parameters" in this section; this can be replaced by
\calculating the posterior probabilities of the parameters" for
the parallel Bayesian argument.

then

P (X o
; Rj�; �) = P (RjX o

; �)

Z
P (X o

;Xmj�)dXm

P (RjX o
; �)P (X oj�): (2)

Equation (2) states that if the data is MAR then
the likelihood can be factored. For maximum like-
lihood methods this implies directly that maximizing
L(�jX o) / P (X oj�) as a function of � is equivalent to
maximizing L(�; �jX o

; R). Therefore the parameters of
the missing data mechanism can be ignored for the pur-
poses of estimating � (Little and Rubin, 1987).

For Bayesian methods, the missing data mechanism
cannot be ignored unless we make the additional require-
ment that the prior is factorizable:

P (�; �) = P (�)P (�):

These results imply that data sets that are NMAR, such
as censored data, cannot be handled by Bayesian or
likelihood-based methods unless a model of the missing
data mechanism is also learned. On the positive side,
they also imply that the MAR condition, which is weaker
than the MCAR condition, is su�cient for Bayesian or
likelihood-based learning.

3 Likelihood-Based Methods for

Feedforward Networks

In the previous section we showed that maximum likeli-
hood methods can be utilized for estimating the param-
eters of the data generation model, ignoring the missing
data mechanism, provided that the data is missing at
random. We now turn to the problem of estimating the
parameters of a model from incomplete data.

We focus �rst on feedforward neural network models
before turning to a class of models where the missing
data can be incorporated more naturally into the esti-
mation algorithm. For feedforward neural networks we
know that descent in the error cost function can be inter-
preted as ascent in the model parameter likelihood (e.g.
White, 1989). In particular if the target vector is as-
sumed to be Gaussian, P (yijxi; �) � N (yi; f�(xi); �

2
i
I),

then the log likelihood is equivalent to the sum-squared
error weighted by the output variances:

max
X
i

logP (yijxi; �)() min
1

2

X
i

1

�i
(yi � f�(xi))

2

If a target yi is missing or unknown the variance of that
output can be taken to be in�nite, �2

i
!1. Similarly, if

certain components of a target vector are missing we can
assume that the variance of that component is in�nite.
The missing targets drop out of the likelihood and the
minimization can proceed as before, simply with certain
targets replaced by \don't cares."

If components of an input vector are missing, how-
ever, then the likelihood is not properly de�ned since
P (yijxi; �) depends on the full input vector. The con-
ditional over the observed inputs needed for the likeli-
hood requires integrating out the missing inputs. This,
in turn, requires a model for the input density, P (x),
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which is not explicitly available in a feedforward neural
network.

Tresp et al. (1994) proposed solving this problem by
separately estimating the input density, P (x), with a
Gaussian mixture model and the conditional density,
P (yjx), with a feedforward network. This approach can
be seen as maximizing the joint input-output log likeli-
hood

l =
X
i

logP (xi;yij�; �)

=
X
i

logP (yijxi; �) +
X
i

logP (xij�)

where the feedforward network is parametrized by � and
the mixture model is parametrized by �. If some com-
ponents of an input vector are missing the observed data
likelihood can be expressed as

P (yijx
o
i
; �) =

Z
P (yijx

o
i
;xm; �)P (xmjxoi ; �)dx

m
;

where the input has been decomposed into its observed
and missing components, x = (xo;xm). The mixture
model is used to integrate the likelihood over the missing
inputs of the feedforward network. The gradient of this
likelihood with respect to the network parameters,

@l

@�
=
X
i

1

P (yijx
o
i
; �)

Z
P (yijx

o
i ;x

m
; �)P (xmjxoi ; �)

(yi � f�(x
o
i ;x

m))
@f�(x

o
i ;x

m)

@�
dxm;

exhibits error terms which weight each completion of the
missing input vector by P (xmjyi;x

o
i
; �; �). This term, by

Bayes rule, is proportional to the product of the prob-
ability of the completion given the input, P (xmjxo

i
; �),

and the posterior probability of the output given that
completion P (yijx

o
i
;xm; �). The integral can be approx-

imated by a Monte Carlo method, where, for each miss-
ing input, several completions are generated according
to the input distribution. An intuitively appealing as-
pect of this method is that more weight is placed on
error gradients from input completions that better ap-
proximate the target (Tresp et al., 1994; Buntine and
Weigend, 1991).

These arguments imply that computing maximum
likelihood estimates from missing inputs requires a
model of the joint input density. In principle this could
be achieved by multiple feedforward networks each learn-
ing a particular conditional density of inputs. For exam-
ple, if the pattern of missing inputs is monotone, i.e. the
d input dimensions can be ordered such that if xij is
observed then all xik for k < j are also observed, then
the missing data can be completed by a cascade of d� 1
networks. Each network is trained to predict one in-
put dimension from completed instances of all the lower
index input dimensions and therefore models that par-
ticular conditional density (cf. regression imputation for
monotone multivariate normal data; Little and Rubin,
1987).

However, to accommodate general patterns of miss-
ing inputs and targets the approach of using multiple

feedforward networks becomes practically cumbersome
as the number of such networks grows exponentially with
the data dimensionality. This problem can be avoided
by modeling both the input and output densities using
a mixture model.

4 Mixture Models and Incomplete Data

The mixture modeling framework allows learning from
data sets with arbitrary patterns of incompleteness.
Learning in this framework is a classical estimation prob-
lem requiring an explicit probabilistic model and an al-
gorithm for estimating the parameters of the model. A
possible disadvantage of parametric methods is their lack
of exibility when compared with nonparametric meth-
ods. Mixture models, however, largely circumvent this
problem as they combine much of the exibility of non-
parametric methods with certain of the analytic advan-
tages of parametric methods (McLachlan and Basford,
1988).

Mixture models have been utilized recently for super-
vised learning problems in the form of the \mixtures of
experts" architecture (Jacobs et al., 1991; Jordan and
Jacobs, 1994). This architecture is a parametric re-
gression model with a modular structure similar to the
nonparametric decision tree and adaptive spline models
(Breiman et al., 1984; Friedman, 1991). The approach
presented here di�ers from these regression-based ap-
proaches in that the goal of learning is to estimate the
density of the data. No distinction is made between in-
put and output variables; the joint density is estimated
and this estimate is then used to form an input/output
map. Similar density estimation approaches have been
discussed by Specht (1991) for nonparametric models,
and Nowlan (1991) and Tresp et al. (1994), among oth-
ers, for Gaussian mixture models. To estimate the vec-
tor function y = f(x) the joint density P (x;y) is esti-
mated and, given a particular input x, the conditional
density P (yjx) is formed. To obtain a single estimate of
y rather than the full conditional density one can evalu-
ate ŷ = E(yjx), the expectation of y given x.

The most appealing feature of mixture models in the
context of this paper is that they can deal naturally with
incomplete data. In fact, the problem of estimating mix-
ture densities can itself be viewed as a missing data prob-
lem (the \labels" for the component densities are miss-
ing) and an Expectation{Maximization (EM) algorithm
(Dempster et al., 1977) can be developed to handle both
kinds of missing data.

4.1 The EM algorithm for mixture models

This section outlines the estimation algorithm for �nd-
ing the maximum likelihood parameters of a mixture
model (Dempster et al., 1977). We model the data
X = fxig

N

i=1 as being generated independently from a
mixture density

P (xi) =

MX
j=1

P (xij!j; �j)P (!j); (3)

where each component of the mixture is denoted !j and
parametrized by �j . We start by assuming complete
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data. From equation (3) and the independence assump-
tion we see that the log likelihood of the parameters
given the data set is

l(�jX ) =

NX
i=1

log

MX
j=1

P (xij!j; �j)P (!j):

By the maximum likelihood principle the best model of
the data has parameters that maximize l(�jX ). This
function, however, is not easily maximized numerically
because it involves the log of a sum.

Intuitively, there is a \credit-assignment" problem:
it is not clear which component of the mixture gener-
ated a given data point and thus which parameters to
adjust to �t that data point. The EM algorithm for
mixture models is an iterative method for solving this
credit-assignment problem. The intuition is that if one
had access to a \hidden" random variable z indicating
which data point was generated by which component,
then the overall maximization problem would decou-
ple into a set of simple maximizations. Using the bi-
nary indicator variables Z = fzig

N

i=1, de�ned such that
zi = (zi1; : : : ; ziM) and zij = 1 i� xi is generated by
Gaussian j, a \complete-data" log likelihood function
can be written

lc(�jX ;Z) =

NX
i=1

MX
j=1

zij log[P (xijzi; �)P (zi; �)]; (4)

which does not involve a log of a summation.
Since z is unknown lc cannot be utilized directly, so we

instead work with its expectation, denoted by Q(�j�k).
As shown by (Dempster et al., 1977), l(�jX ) can be max-
imized by iterating the following two steps:

E-step: Q(�j�k) = E[lc(�jX ;Z)jX ; �k]
M-step: �k+1 = argmax

�

Q(�j�k): (5)

The Expectation or E-step computes the expected com-
plete data log likelihood, and the Maximization or M-
step �nds the parameters that maximize this likelihood.
In practice, for densities from the exponential family the
E-step reduces to computing the expectation over the
missing data of the su�cient statistics required for the
M-step. These two steps form the basis of the EM algo-
rithm for mixture modeling.

4.1.1 Incorporating missing values into the EM
algorithm

In the previous section we presented one aspect of the
EM algorithm: learning mixture models. Another im-
portant application of EM is to learning from data sets
with missing values (Little and Rubin, 1987; Dempster
et al., 1977). This application has been pursued in the
statistics literature mostly for non-mixture density es-
timation problems.3 We now show how combining the

3Some exceptions are the use of mixture densities in the
context of contaminated normal models for robust estima-
tion (Little and Rubin, 1987), and in the context of mixed
categorical and continuous data with missing values (Little
and Schluchter, 1985).

missing data application of EM with that of learning
mixture parameters results in a set of clustering, classi-
�cation, and function approximation algorithms for in-
complete data.

Using the previously de�ned notation, xi is divided
into (xo

i
;xm

i
) where each data vector can have di�erent

patterns of missing components. (To denote the missing
and observed components in each data vector we would
ordinarily introduce superscripts mi and oi, however, we
have simpli�ed the notation for the sake of clarity.)

To handle missing data we rewrite the EM algorithm
incorporating both the indicator variables from algo-
rithm (5) and the missing inputs, Xm.

E-step: Q(�j�k) = E[lc(�jX
o
;Xm

;Z)jX o
; �k]

M-step: �k+1 = argmax
�

Q(�j�k):

The expected value in the E-step is taken with respect
to both sets of missing variables. We proceed to illus-
trate this algorithm for two classes of models, mixtures
of Gaussians and mixtures of Bernoullis, which we later
use as building blocks for classi�cation and function ap-
proximation.

4.1.2 Real-valued data: mixture of Gaussians

Real-valued data can be modeled as a mixture of
Gaussians. We start with the estimation algorithm for
complete data (Duda and Hart, 1973; Dempster et al.,
1977; Nowlan, 1991). For this model the E-step simpli-
�es to computing E[zijjxi; �k]. Given the binary nature
of zij , E[zijjxi; �k], which we denote by hij, is the prob-
ability that Gaussian j generated data point i.

hij =
j�̂jj

�1=2 expf�1
2
(xi � �̂j)

T �̂�1
j
(xi � �̂j)gP

M

l=1 j�̂lj�1=2 expf�
1
2
(xi � �̂l)

T �̂�1
l
(xi � �̂l)g

:

(6)
The M-step re-estimates the means and covariances of
the Gaussians4 using the data set weighted by the hij:

�̂
k+1
j

=

PN

i=1 hijxiP
N

i=1 hij

; (7)

�̂k+1
j

=

PN

i=1 hij(xi � �̂
k+1
j

)(xi � �̂
k+1
j

)TP
N

i=1 hij

: (8)

To incorporate missing data we begin by rewriting the
log likelihood of the complete data,

lc(�jX
o
;Xm

;Z) =

NX
i

MX
j

zij logP (xijzi; �) +

NX
i

MX
j

zij logP (zij�): (9)

We can ignore the second term since we will only be es-
timating the parameters of the P (xijzi; �). Specializing
equation (9) to the mixture of Gaussians we note that

4Though this derivation assumes equal priors for the
Gaussians, if the priors are viewed as mixing parameters they
can also be learned in the maximization step.
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if only the indicator variables zi are missing, the E step
can be reduced to estimating E[zijjxi; �] as before. For
the case we are interested in, with both zi and x

m
i
miss-

ing, we expand equation (9) using m and o superscripts
to denote subvectors and submatrices of the parameters
matching the missing and observed components of the
data,5 to obtain

lc(�jX
o
;Xm

;Z) =

NX
i

MX
j

zij [
n

2
log 2� +

1

2
log j�jj

�
1

2
(xo

i
� �o

j
)T�

�1;oo
j

(xo
i
� �o

j
)

�(xo
i
� �o

j
)T�

�1;om
j

(xm
i
� �m

j
)

�
1

2
(xm

i
� �m

j
)T�

�1;mm
j

(xm
i
� �m

j
)]:

Note that after taking the expectation, the su�-
cient statistics for the parameters include three un-
known terms, zij , zijx

m
i
, and zijx

m
i
xm
i

T . Thus
we must compute: E[zij jx

o
i ; �k], E[zijx

m
i jx

o
i ; �k], and

E[zijx
m
i
xm
i

T jxo
i
; �k]:

One intuitive approach to dealing with missing data
is to use the current estimate of the data density to com-
pute the expectation of the missing data in an E-step,
complete the data with these expectations, and then use
this completed data to re-estimate parameters in an M-
step. However, as we have seen in section 1, this intuition
fails even when dealing with a single two-dimensional
Gaussian; the expectation of the missing data always lies
along a line, which biases the estimate of the covariance.
On the other hand, the approach arising from applica-
tion of the EM algorithm speci�es that one should use
the current density estimate to compute the expectation
of whatever incomplete terms appear in the likelihood
maximization. For the mixture of Gaussians these in-
complete terms are the interactions between the indica-
tor variable zij and the �rst and second moments of xm

i
.

Thus, simply computing the expectation of the missing
data zi and xm

i
from the model and substituting those

values into the M step is not su�cient to guarantee an
increase in the likelihood of the parameters.

To compute the above expectations we de�ne

x̂mij � E[xmi jzij = 1;xoi ; �k] = �
m
j + �mo

j �oo�1

j (xoi � �
o
j);

which is the least-squares linear regression between xm
i

and xo
i
predicted by Gaussian j. Then, the �rst expec-

tation is E[zijjx
o
i ; �k] = hij, the probability as de�ned

in (6) measured only on the observed dimensions of xi.
Similarly, we get

E[zijx
m
i jx

o
i ; �k] = hijx̂

m
ij;

5For example, � is divided into

�
�oo �om

�mo �mm

�
corre-

sponding to x =

�
x
o

x
m

�
: Also note that the superscript

(�1; oo) denotes inverse followed by submatrix operations,
whereas (oo�1) denotes the reverse order.

and

E[zijx
m
i
xmi

T
jxoi ; �k] = hij(�

mm
j
��mo

j
�oo�1

j
�mo
j

T+x̂mij x̂
mT

ij
):

(10)
The M-step uses these expectations substituted into

equations (7) and (8) to re-estimate the means and co-
variances. To re-estimate the mean vector, �

j
, we sub-

stitute the values of x̂m
ij
for the missing components of

xi in equation (7). To re-estimate the covariance matrix
we substitute the values of the bracketed term in (10) for
the outer product matrices involving the missing compo-
nents of xi in equation (8).

4.1.3 Discrete-valued data: mixture of
Bernoullis

Binary data can be modeled as a mixture of Bernoulli
densities. That is, each D-dimensional vector x =
(x1; : : : ; xd; : : :xD), xd 2 f0; 1g, is modeled as generated
from the mixture of M Bernoulli densities:

P (xj�) =

MX
j=1

P (!j)

DY
d=1

�
xd

jd
(1� �jd)

(1�xd):

For this model the complete data E-step computes

hij =

QD

d=1 �̂
xid

jd
(1 � �̂jd)

(1�xid)

PM

l=1

QD

d=1 �̂
xid

ld
(1� �̂ld)(1�xid)

; (11)

and the M-step re-estimates the parameters by

�̂
k+1
j

=

P
N

i=1 hijxiP
N

i=1 hij

: (12)

As before, to incorporate missing data we must
compute the appropriate expectations of the su�cient
statistics in the E-step. For the Bernoulli mixture
these include the incomplete terms E[zijjx

o
i
; �k] and

E[zijx
m
i
jxo

i
; �k]. The �rst is equal to hij calculated over

the observed subvector of xi. The second, since we as-
sume that within a class the individual dimensions of the
Bernoulli variable are independent, is simplyhij�

m
j
. The

M-step uses these expectations substituted into equa-
tion (12).

More generally, discrete or categorical data can be
modeled as generated by a mixture of multinomial den-
sities and similar derivations for the learning algorithm
can be applied. Finally, the extension to data with mixed
real, binary, and categorical dimensions can be readily
derived by assuming a joint density with mixed compo-
nents of the three types. Such mixed models can serve
to solve classi�cation problems, as will be discussed in a
later section.

4.2 Clustering

Gaussian mixture model estimation is a form of soft clus-
tering (Nowlan, 1991). Furthermore, if a full covariance
model is used the principal axes of the Gaussians align
with the principal components of the data within each
soft cluster. For binary or categorical data soft clus-
tering algorithms can also be obtained using the above
Bernoulli and multinomial mixture models. We illus-
trate the extension of these clustering algorithms to miss-
ing data problems with a simple example from character
recognition.
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Figure 2: Learning digit patterns. First row: the ten 5 � 7 templates used to generate the data set. Second row:
templates with Gaussian noise added. Third row: templates with noise added and 50% missing pixels. The training
set consisted of ten such noisy, incomplete samples of each digit. Fourth row: means of the twelve Gaussians at
asymptote (� 30 passes through the data set of 100 patterns) using the mean imputation heuristic. Fifth row:
means of the twelve Gaussians at asymptote (� 60 passes, same incomplete data set) using the EM algorithm.
Gaussians constrained to diagonal covariance matrices.

In this example (Fig. 2), the Gaussian mixture algo-
rithm was used on a training set of 100 35-dimensional
noisy greyscale digits with 50% of the pixels missing.
The EM algorithm approximated the cluster means from
this highly de�cient data set quite well. We compared
EM to mean imputation, a common heuristic where
the missing values are replaced with their unconditional
means. The results showed that EM outperformed mean
imputation when measured both by the distance be-
tween the Gaussian means and the templates (see Fig. 2),
and by the likelihoods (log likelihoods � 1 s.e.: EM
�4633� 328; mean imputation �10062� 1263; n = 5).

4.3 Function approximation

So far, we have alluded to data vectors with no refer-
ence to \inputs" and \targets." In supervised learning,
however, we generally wish to predict target variables
from some set of input variables|that is, we wish to ap-
proximate a function relating these two sets of variables.
If we decompose each data vector xi into an \input"
subvector, xi

i
, and a \target" or output subvector, xt

i
,

then the relation between input and target variables can
be expressed through the conditional density P (xt

i
jxi

i
).

This conditional density can be readily obtained from
the joint input/target density, which is the density which
all the above mixture models seek to estimate. Thus,
in this framework, the distinction between supervised
learning, i.e. function approximation, and unsupervised
learning, i.e. density estimation, is semantic, resulting
from whether the data is considered to be composed of
inputs and targets or not.

Focusing on the Gaussian mixture model we note that

the conditional density P (xt
i
jxi

i
) is also a Gaussian mix-

ture. Given a particular input the estimated output
should summarize this density.

If we require a single estimate of the output, a natu-
ral candidate is the least squares estimate (LSE), which
takes the form x̂t(xi

i
) = E(xt

i
jxi

i
). Expanding the expec-

tation we get

x̂t(xii) =

MX
j=1

hij[�
t
j +�ti

j �
ii�1

j (xii � �
i
j)]; (13)

which is a convex sum of the least squares linear approx-
imations given by each Gaussian. The weights in the
sum, hij, vary nonlinearly over the input space and can
be viewed as corresponding to the output of a classi�er
that assigns to each point in the input space a probability
of belonging to each Gaussian.6 The least squares esti-
mator has interesting relations to models such as CART
(Breiman et al., 1984), MARS (Friedman, 1991), and
mixtures of experts (Jacobs et al., 1991; Jordan and
Jacobs, 1994), in that the mixture of Gaussians com-
petitively partitions the input space, and learns a linear
regression surface on each partition. This similarity has
also been noted by Tresp et al. (1994).

If the Gaussian covariance matrices are constrained to
be diagonal, the least squares estimate further simpli�es
to

x̂t(xii) =

MX
j=1

hij�
t
j ;

6The hij in equation (13) are computed by substituting

x
i

i into equation (6) and evaluating the exponentials over the
dimensions of the input space.
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the average of the output means, weighted by the prox-
imity of xii to the Gaussian input means. This expression
has a form identical to normalized radial basis function
(RBF) networks (Moody and Darken, 1989; Poggio and
Girosi, 1989), although the two algorithms are derived
from disparate frameworks. In the limit, as the covari-
ance matrices of the Gaussians approach zero, the ap-
proximation becomes a nearest-neighbor map.

Not all learning problems lend themselves to least
squares estimates|many problems involve learning a
one-to-manymapping between the input and target vari-
ables (Ghahramani, 1994). The resulting conditional
densities are multimodal and no single value of the
output given the input will appropriately reect this
fact (Shizawa, 1993; Ghahramani, 1994; Bishop, 1994).
For such problems a stochastic estimator, where the out-
put is sampled according to x̂t(xi

i
) � P (xt

i
jxi

i
), is to be

preferred to the least squares estimator.
For learning problems involving discrete variables the

LSE and stochastic estimators have a di�erent interpre-
tation. If we wish to obtain the posterior probability of
the output given the input we would use the LSE esti-
mator. On the other hand, if we wish to obtain output
estimates that fall in our discrete output space we would
use the stochastic estimator.

4.4 Classi�cation

Classification with missing inputs

0 20 40 60 80 100

20

40

60

80

100

% missing features

EM

%
 c

o
rr

ec
t 

cl
as

si
fi

ca
ti

o
n

MI

Figure 3: Classi�cation of the iris data set. 100 data
points were used for training and 50 for testing. Each
data point consisted of 4 real-valued attributes and one
of three class labels. The �gure shows classi�cation per-
formance � 1 standard error (n = 5) as a function of
proportion missing features for the EM algorithm and
for mean imputation (MI), a common heuristic where
the missing values are replaced with their unconditional
means.

Classi�cation, though strictly speaking a special case
of function approximation, merits attention of its own.
Classi�cation problems involve learning a mapping from
an input space of attributes into a set of discrete class

labels. The mixture modeling framework presented here
lends itself readily to classi�cation problems by modeling
the class label as a multinomial variable. For example,
if the attributes are real-valued and there are D class
labels, a mixture model with Gaussian and multinomial
components can be used;

P (x; C = dj�) =

MX
j=1

P (!j)
�jd

(2�)n=2j�jj1=2

expf�
1

2
(x � �j)

T��1
j
(x� �j)g

denotes the joint probability that the data point has at-
tributes x and belongs to class d, where the �jd are the
parameters for the multinomial class variable. That is,

�jd = P (C = dj!j; �), and
P

D

d=1 �jd = 1.
Missing attributes and missing class labels (i.e., unla-

beled data points) are readily handled via the EM algo-
rithm. In the E-step, missing attributes are completed
using the same formulas as for the Gaussian mixture ex-
cept that

hij = P (xo
i ; Ci = dj!j; �) =

�jdP (x
o
i
j!j; �)PM

l=1 �ldP (x
o
i
j!l; �)

:

On the other hand, if a class label is missing hij becomes

P (xij!j; �)=
PM

l=1 P (xij!l; �), exactly as in the Gaussian
mixture. The class label is then completed with a prob-

ability vector whose dth component is
P

M

j=1 hij�jd.

Once the classi�cation model has been estimated,
the most likely label for a particular input x may be
obtained by computing P (C = djx; �). Similarly, the
class conditional densities can be computed by evaluat-
ing P (xjC = d; �). Conditionalizing over classes in this
way yields class conditional densities which are in turn
mixtures of Gaussians. Figure 3 shows the performance
of the EM algorithm on a sample classi�cation problem
with varying proportions of missing features.

This mixture-based approach to classi�cation is
closely related to the mixture discriminant analysis
(MDA) approach recently proposed by Hastie and Tib-
shirani (1994). In MDA, classes are also �t by mixture
densities using the EM algorithm and an optimal dis-
criminant is obtained. Hastie and Tibshirani extend
this basic MDA procedure by combining it with reduced
rank discrimination. Like Fisher-Rao linear discriminant
analysis this results in an interpretable, low dimensional
projection of the data and often also leads to improved
classi�cation performance. While the authors do not
mention missing data, it seems likely that EM methods
can be used in the context of their algorithm.

Previous approaches to classi�cation from incomplete
patterns have proceeded along di�erent lines. Cheese-
man et al. (1988) describe a Bayesian classi�cation
method in which each class is modeled as having Gaus-
sian real-valued attributes and multinomial discrete at-
tributes. The learning procedure �nds the maximum a

posteriori parameters of the model by di�erentiating the
posterior probability of the class parameters and setting
to zero. This yields a coupled set of nonlinear equations,
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similar to the EM steps, which can be iterated to �nd
the posterior mode of the parameters (Dempster et al.,
1977). To handle missing data the authors state that
\for discrete attributes it can be shown that the correct
procedure for treating an unknown value is equivalent to
adding an `unknown' category to the value set" (p. 62).
For real-valued attributes they add a `known'/`unknown'
category to each attribute and set its value appropri-
ately. Three comments can be made about this ap-
proach. First, each `unknown' category added to the
multinomial value set results in an extra parameter that
has to be estimated. Furthermore, adding an `unknown'
category does not reect the fact that the unobserved
data actually arises from the original multinomial value
set (an argument also made by Quinlan, 1986; see be-
low). For example, for a data set in which one attribute
is often unknown the algorithm may form a class based
on that attribute taking on the value `unknown'|a situ-
ation which is clearly undesirable in a classi�er. Finally,
as each class is modeled by a single Gaussian or multino-
mial and the data points are assumed to be unlabeled,
the Cheeseman et al. (1988) algorithm is in fact a form
of soft clustering.

Southcott and Bogner (1993) have approached the
problem of classi�cation of incomplete data using an ap-
proximation to EM for clustering. In the E-step, the
observed data are classi�ed using the current mixture
model, and each data point is assigned to its most likely
class. The parameters of each class are then re-estimated
in the M-step. In our notation this approximation corre-
sponds to setting the highest hij for each data point to
1 and all the others to 0. They compared this method
with a neural network based algorithm in which each
missing input is varied through the possible range of
(discrete) attribute values to �nd the completion result-
ing in minimum classi�cation error. They reported that
their approximation to EM outperformed both the neu-
ral network algorithm and an algorithm based on linear
discriminant analysis. They did not include the exact
EM algorithm in their comparison.

Quinlan (1986,1989) discusses the problem of missing
data in the context of decision tree classi�ers. Quinlan's
decision tree framework uses a measure of information
gain to build a classi�er, resulting in a tree structure
of queries on attribute values and a set of leaves rep-
resenting class membership. The author concludes that
treating `unknown' as a separate value is not a good so-
lution to the missing value problem, as querying on at-
tributes with unknown values will have higher apparent
information gain (Quinlan, 1986). The approach that
he advocates instead is to compute the expected infor-
mation gain, by assuming that the unknown attribute is
distributed according to the observed values in the sub-
set of the data at that node of the tree. This approach
is consistent with the information theoretic framework
adopted in his work and parallels the EM and Bayesian
treatments of missing data which suggest integrating
over the possible missing values.

An alternative method of handling missing data in de-
cision trees is presented by Breiman et al. (1984) for the
CART algorithm. CART initially constructs a large de-

cision tree based on a splitting criterion closely related to
the above measure of information gain. The tree is then
pruned recursively using a measure of model complexity
proportional to the number of terminal nodes, resulting
in a smaller, more interpretable tree with better gener-
alization properties. If a case is missing the value of an
attribute then it is not considered when evaluating the
goodness of splits on that attribute. Cases are assigned
to branches of a split on an attribute where they have
missing values using the best `surrogate split'|i.e. the
split on another attribute which partitions the data most
similarly to the original split. This method works well
when there is a single, highly correlated attribute that
predicts the e�ects of a split along the missing attribute.
However, if no single attribute can predict the e�ects of
the split this methodmay not perform well. An approach
based on computing the expected split from all the ob-
served variables, similar to Quinlan's, would be more
suitable from a statistical perspective and may provide
improved performance with missing data.

5 Bayesian methods

In Bayesian learning the parameters are treated as un-
known random variables characterized by a probability
distribution. Bayesian learning utilizes a prior distribu-
tion for the parameters, which may encode world knowl-
edge, initial biases of the learner, or constraints on the
probable parameter values. Learning proceeds by Bayes'
rule|multiplying the prior probability of the parameters
by the likelihood of the data given the parameters, and
normalizing by the integral over the parameter space|
resulting in a posterior distribution of the parameters.
The information learned about the unknown parameters
is expressed in the form of this posterior probability dis-
tribution.

In the context of learning from incomplete data, the
Bayesian use of priors can have impact in two arenas.
First, the prior may reect assumptions about the initial
distribution of parameter values as described above. The
learning procedure converts this prior into a posterior via
the data likelihood. We have seen that to perform this
conversion independently of the missing data mechanism
requires both that the mechanism be missing at random
and that the prior be factorizable. Second, the prior
may reect assumptions about the initial distribution of
the missing values. Thus, if we have a prior distribution
for input values we can complete the missing data by
sampling from this distribution.

For complete data problems and simple models the
judicious choice of conjugate priors for the parameters
often allows analytic computation of their posterior dis-
tribution (Box and Tiao, 1973). However, in incomplete
data problems the usual choices of conjugate priors do
not generally lead to recognizable posteriors, making it-
erative simulation and sampling techniques for obtaining
the posterior distribution indispensable (Schafer, 1994).

5.1 Data augmentation and Gibbs sampling

One such technique, which is closely related in form to
the EM algorithm, is data augmentation (Tanner and
Wong, 1987). This iterative algorithm consists of two

8



steps. In the Imputation or I-step, instead of comput-
ing the expectations of the missing su�cient statistics,
we simulate m random draws of the missing data from
their conditional distribution P (XmjX o

; �). In the Pos-
terior or P-step we sample m times from the posterior
distribution of the parameters, which can now be more
easily computed with the imputed data: P (�jX o

;Xm).
Thus, we obtain samples from the joint distribution of
P (Xm

; �jX o) by alternately conditioning on one or the
other of the unknown variables, a technique known as
Gibbs sampling (Geman and Geman, 1984). Under some
mild regularity conditions this algorithm can be shown
to converge in distribution to the posterior (Tanner and
Wong, 1987). Note that the augmented data can be cho-
sen so as to simplify the P-step in much the same way as
indicator variables can be chosen to simplify the M-step
in EM.

Data aug-
mentation techniques have been recently combined with
the Metropolis{Hastings algorithm (Schafer, 1994). In
Metropolis{Hastings (Metropolis et al., 1953; Hastings,
1970), one creates a Monte Carlo Markov chain by draw-
ing from a probability distribution meant to approximate
the distribution of interest and accepting or rejecting the
drawn value based on an acceptance ratio. The accep-
tance ratio, e.g. the ratio of probabilities of the drawn
state and the previous state, can often be chosen to be
easy to calculate as it does not involve computation of
the normalization factor. If the transition probabilities
allow any state to be reached eventually from any other
state (i.e. the chain is ergodic) then the Markov chain
will approach its stationary distribution, chosen to be
the distribution of interest, from any initial distribution.
The combination of data augmentation and Metropolis{
Hastings can be used, for example, in problems where
the posterior itself is di�cult to sample from in the P-
step. For such problems one may generate a Markov
chain whose stationary distribution is P (�jX o

;Xm).

5.2 Multiple imputation and Bayesian
backpropagation

Multiple imputation (Rubin, 1987) is a technique in
which each missing value is replaced by m simulated val-
ues which reect uncertainty about the true value of the
missing data. After multiple imputation, m completed
data sets exist, each of which can be analyzed using com-
plete data methods. The results can then be combined
to form a single inference. Though multiple imputation
requires sampling from P (XmjX o

; �), which may be dif-
�cult, iterative simulation methods can also be used in
this context (Schafer, 1994).

The Bayesian backpropagation technique for missing
data presented by Buntine and Weigend (1991) is a spe-
cial case of multiple imputation. In Bayesian backpropa-
gation, multiple values of the input are imputed accord-
ing to a prior distribution so as to approximate the inte-
gral in (3), which in turn is used to compute the gradient
required for backpropagation. This procedure is similar
to that of Tresp et al. (1994), except that whereas the
former completes the data by sampling from a prior dis-
tribution of inputs, the latter estimates this distribution

directly from the data.7

6 Boltzmann machines and incomplete

data

Boltzmann machines are networks of binary stochastic
units with symmetric connections, in which learning cor-
responds to minimizing the relative entropy between the
probability distribution of the visible states and a target
distribution (Hinton and Sejnowski, 1986). The relative
entropy cost function can be rewritten to reveal that,
if the target distribution is taken to be the empirical
distribution of the data, it is equivalent to the model
likelihood. Therefore, the Boltzmann learning rule im-
plements maximum likelihood density estimation over
binary variables.

The Boltzmann learning procedure �rst estimates cor-
relations between unit activities in a stage where both
input and target units are clamped and in a stage where
the target units are unclamped. These correlations are
then used to modify the parameters of the network in
the direction of the relative entropy cost gradient. This
moves the output unit distribution in the unclamped
phase closer to the target distribution in the clamped
phase.

Reformulated in terms of maximum likelihood condi-
tional density estimation, the Boltzmann learning rule
is an instance of the generalized EM algorithm (GEM;
Dempster, Laird, and Rubin, 1977): the estimation of
the unit correlations given the current weights and the
clamped values corresponds to the E-step, and the up-
date of the weights corresponds to the M-step (Hinton
and Sejnowski, 1986). It is generalized EM in the sense
that the M-step does not actually maximize the likeli-
hood but simply increases it by gradient ascent.

The incomplete variables in the Boltzmann machine
are the states of the hidden units|those that are not
denoted as the visible input or output units. This sug-
gests that the principled way of handling missing inputs
or targets in a Boltzmann machine is to treat them as
hidden units, that is, to leave them unclamped. Ex-
actly as in the formulation for mixture models presented
above, the EM algorithm will then estimate the appro-
priate su�cient statistics|the �rst order correlations|
in the E-step. These su�cient statistics will then be used
to increase the model likelihood in the M-step.

7 Conclusions

There are several ways of handling missing data dur-
ing learning. Heuristics, such as �lling in the missing
data with unconditional or conditional means, are not al-
ways e�cient, discarding information latent in the data
set. More principled statistical approaches yield inter-
pretable results, providing a guarantee to �nd the max-
imum likelihood parameters despite the missing data.

These statistical approaches argue convincingly that
the missing data has to be integrated out using an esti-
mate of the data density. One class of models in which

7From a strictly Bayesian point of view both procedures
are improper in that they don't take into account the vari-
ability of the parameters in the integration.

9



this can be performed naturally and e�ciently are mix-
ture models. For these models, we have described appli-
cations to clustering, function approximation, and clas-
si�cation from real and discrete data. In particular, we
have shown how missing inputs and targets can be incor-
porated into the mixture model framework|essentially
by making a dual use of the ubiquitous EM algorithm.

Finally, our principal conclusion is that virtually all of
the incomplete data techniques reviewed from the neural
network and machine learning literatures can be placed
within this basic statistical framework.
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