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Abstract

We have simulated the behavior of several arti�cial ies, interacting visually with each other. Each y
is described by a simple tracking system (Poggio and Reichardt, 1973; Land and Collett, 1974) which
summarizes behavioral experiments in which individual ies �xate a target. Our main �nding is that the
interaction of these simple modules gives rise to a variety of relatively complex behaviors. In particular,
we observe a swarm-like behavior of a group of many arti�cial ies for certain reasonable ranges of our
tracking system parameters.
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1 The Problem

Two decades ago researchers proposed a simpli�edmodel
of the visuo-motor control systems used by ies (Musca
domestica for instance) to �xate contrasted targets (Re-
ichardt and Wenking, 1969; Reichardt and Poggio 1975,
1976, 1980; Poggio and Reichardt, 1973; Geiger and Pog-
gio, 1975; Wehrhahn and Poggio, 1976) and to chase
other ies (Land and Collett, 1974; Poggio et al., 1977;
Bueltho� et al., 1979; Reichardt and Poggio, 1980; Pog-
gio and Reichardt, 1981; Wehrhahn et al., 1982; Collett
and Land, 1975; Collett and Land, 1978). The models
describe the motion of a y as it is tracking a visual tar-
get. The basic equation of motion is somewhat similar
to a point mass in a nonlinear force �eld. The models
were used to simulate free-ight behavior; the simula-
tions were compared with actual ight data recorded
through high-speed 3D movies. In the simulations of
chases, the trajectory of a leading y was given to the
model which then used that data to predict the trajec-
tory of the chasing y. Simulations were also made of a
y approaching a stationary target (a landing situation).

Simulationswere never made, however, of two or more
ies interacting with each other using the model of the
visuo-motor control system for tracking. The purpose of
this paper is to conduct such simulations. In particular,
we are especially interested in �nding out whether the
interaction of two or more model ies can lead to tra-
jectories showing indications of chaotic behavior, from
equations governing the motion are fully deterministic
and rather simple. In addition, this project may be a
�rst step in studying the complex behavior arising from
the interaction of many ies in a swarm, each one de-
scribed by a simple model.

2 Background

Male and female ies �xate { that is y towards { small
contrasted patterns and track moving objects. A sim-
ple, mathematical model developed by Reichardt and
coworkers (see for instance Reichardt and Poggio, 1976;
Reichardt and Poggio, 1980) were based on so-called
closed-loop experiments in which a ying y was �xed to
a torque compensator, capable of measuring its torque
about the vertical axis. The torque was controlling the
motion of the environment around the y by a real-time
electronic simulation of the ight dynamics.

In this paper we restrict ourselves to the an idealized
situation with a restricted number of degrees of freedom.
In particular, we assume that the ight trajectories are
on the horizontal plane. The models can be extended
to the 3D situation (see Reichardt and Poggio, 1981;
Wehrhahn et al., 1982; Bueltho�, H. et al., 1979). Figure
1 shows the equivalent free-ight situation.  is the error
angle between the direction of ight �f and the direction
of the target �p, both relative to the \zero" direction ;
it represents the position of the image of the target on
the eye of the y under the assumption { not completely
correct { that the y's head is always looking straight
ahead in the direction of ight. The ight dynamics,
neglecting translational e�ects, is approximated by

k _�f = F (t) (1)

where F (t) is the torque generated by the y and _�f

is the angular velocity of the y. The torque F (t) de-
pends on the visual input; it was found (see Reichardt
and Poggio, 1976) that it can be approximated, under
situations of tracking and chasing, as a function of the
angular error (see Fig.1). The angular velocity also con-
tributes but in a small way: we will neglect here the
angular velocity term (see Reichardt and Poggio , 1980).
We approximate F (t) as

F (t) = D( ) +N (t) (2)

D( ) has been described as either a linear function of
the angular error over the domain (��; �) (see Fig. 2a)
or as a nonlinear function of it (see Fig. 2b), depending
on whether the y is male or female and on whether it
is engaged in free-ight chasing or in simple �xation. In
this paper we will examine both forms of D( ) as two
di�erent, but plausible control systems. N (t) is a so-
called zero-mean, gaussian process characterized by its
autocorrelation function. It can be thought of as low-
pass white noise. Since in most of our simulations we
did not use the noise term N (t), unless otherwise spec-
i�ed we will set N (t) = 0. Note that N (t) reects our
ignorance (in the model) of the y's will and intentions.
The model, which describes the smooth tracking sys-
tem and neglects a possible \saccadic" system (see Land,
1977 and Poggio et al, 1977), is of course an oversimpli-
�cation. Heisenberg and Wolf (1990) among others have
described evidence pointing to necessary extensions of it.
We also assume that ies move at constant translational
velocity v; in some cases we will make the assumption
that the velocity v is controlled by the distance to the
target and refer to this control choice with v(�). The
speci�c forms of D( ) and of v(�) are in Figures 2a, 2b,
and 2c.

3 The Model

We model a y in most of our simulations by using the
following equations of motion

k _�f = F (t) (3)

F (t) = D( (t � �) (4)

where is the delay in the y's reaction (about 30 msec);
the translational equations, which account for the change
in angle due to the translation of the y relative to the
target, are

_x = v(�)sin�f (5)

_y = v(�)cos�f (6)

Instead of this set of di�erential equations we sim-
ulate on the computer the corresponding set of di�er-
ence equations by discretizing the di�erential equations
at time intervals of �t. Notice that a change in �t in
our di�erence equations corresponds to scaling appropri-
ately parameters such as k and v. We neglect the delay
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(the \equivalent" delay in our di�erence equation model
is �t).

4 The Simulations

4.1 One y, one �xed target

The �rst simulated experiments consist of one y �xating
a single �xed target. We �rst run the simulation using
Dl( ) and a constant velocity (see Fig. 3). The (simple)
theory (see Reichardt and Poggio, 1980) predicts a peri-
odic attractor in which the y orbits the target in a �xed
circular path. The y cannot land because the velocity
is constant. It keeps the target at an error angle of �=2.
The orbit is stable because the slope of Dl( ) around
�=2 is positive (see Fig. 2a) . The result of the simula-
tion con�rms that prediction. When we use v(�) of Fig.
2c to control the y's velocity and the same Dl( ), the
y is able to land, as expected.

Using Dn( ) and a constant velocity we observe a lo-
cally unstable situation, since in Dn( ) around �=2 the
slope is negative (see Fig. 4). Figure 4 also represents
the �rst observation of a \ower-like" periodic attrac-
tor. This attractor shows up again in later simulations
with multiple ies. The y makes \bowtie-like" loops
by �xating the target, passing through it, and then �x-
ating it again and so on. It makes these loops in one
direction for a certain amount of time, depending on the
initial conditions, then it gets stuck in one loop appar-
ently ad in�nitum. The attractor is unstable and can be
destroyed by small amounts of noise.

If we use v(�) to control the y's velocity and again
Dn( ) for the torque the results are similar to those
using Dl( ) as the torque function. As expected, the
y's behavior for j j < �=6 is virtually the same for both
Dn( ) and Dl( ) since the slope of the two functions is
similar in that range.

4.2 One y, one moving target

In the next set of experiments we simulate a y tracking
a moving object: therefore in all of the following simula-
tions the velocity is controlled by v(�) with the speed of
the target as the lower bound. Whether we use linear or
nonlinear D( ) the observed behavior are qualitatively
similar. Fig. 5 is a speci�c example showing tracking of
a target moving with random direction.

4.3 Two ies chasing each other

At this point we begin to simulate the cases that have
not appeared previously in the literature. In the next
two simulations the two ies have the same constant ve-
locity and are both tracking each other. When we use
Dl( ) to control the torque in both ies we observe two
attractors by randomly changing the initial positions of
the two ies. The �rst attractor, and far more frequent
one (see Fig. 6), consists of the two ies always set-
tling into the same circular orbit, one chasing the other,
and keeping each other at a  = �=2 error angle. This
behavior is similar to the single y orbiting around a tar-
get. It is a stable attractor because in Dl( ) the slope
around �=2 positive. This attractor { like the single y,
single target attractor { is not easily destroyed by small

amounts of noise. The second, far more rare attractor
(see Fig. 7) exists only with certain restricted initial
conditions (i.e. both ies must initially face in parallel
directions and be positioned on the same line perpendic-
ular to their direction of ight). The ies begin to weave
around each other while making their loops progressively
smaller and smaller ad in�nitum until they seem to be
travelling along the same straight line.

However, when the y's torque is controlled by Dn( )
the resulting attractor is very unstable (see Fig. 8).
Small amounts of noise will signi�cantly alter the y's
behavior. This attractor closely resembles the single y
�xed target attractor seen in Fig. 4. After forming the
typical \ower-like" pattern the ies settle into a pe-
riodic attractor. Instead of progressively rotating each
new loop slightly from the last as they do while creat-
ing the \ower-like" pattern, the ies remain in the same
loop. Once trapped in the periodic attractor, the ies �x-
ate each other, pass through each other, and �xate each
other again while retracing the same path ad in�nitum.
The time between the beginning of the simulation and
the beginning of the periodic attractor (roughly propor-
tional to number of loops made before \getting stuck")
depends on the initial conditions.

4.4 More than two ies chasing each other

In simulations in which a y has more than one target
we assume, based on experimental data from Reichardt
and Poggio (1976), that the y's total torque is approxi-
mated by the sum of the torques generated by each target
individually. In formula:

Ftotal = D( 1) +D( 2) + � � �+N (t) (7)

where  1;  2; � � � are the error angles of the y relative to
each target. We also assume that the absolute value of
the torque produced by the y cannot exceed an upper
limit. For this reason we introduce a saturation nonlin-
earity operating on Ftotal

Fsat = �(Ftotal) (8)

where � is the function de�ned here as

�(x) =

�
x if jxj � 4
�4 otherwise.

(9)

Notice that this means that nonlinear saturation
never occurs with less than 4 ies if the nonlinear Dn( )
is used.

4.4.1 Three ies chasing each other

Three ies chasing each other show di�erent types of
behavior depending on their initial conditions, �t, and
on the values of their parameters.

Using the \linear" control equation Dl( ) (with the
nonlinear saturation) we observe several di�erent types
of behavior depending on �t. With small �t values
(:06 > �t > :003) we observe several di�erent periodic
and apparently chaotic attractors. One of these attrac-
tors simply consists of the three ies merging their ight
paths and ying o� in a straight line (this occurs around
�t = :06). The other two are variations of the gen-
eral \weaving" behavior (see Fig. 9), one being almost
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chaotic (it shows almost periodic behavior over a very
long time scale), the other periodic. Using very small
�t's (�t < :003) we observe only the apparently chaotic
\weaving" pattern of Fig. 10. With large and moderate
values of �t (�t > :06) we observe an attractor in which
the three ies, after an initial transient, apparently ran-
dom ight pattern, suddenly y apart in straight lines
at 2=3� from each other. This phenomenon occurs be-
cause each y puts itself in a position such that the error
angles  for the other two ies are equal and opposite,
producing equal and opposite torques, which lead to this
equilibrium situation. As a general, but by no means
unequivocal rule, the \120� equilibrium" phenomenon
occurs at higher �t's and variations of the \weaving"
behavior occur at lower �t's.

It is interesting to note that making �t greater or
smaller is equivalent to making the ies' torque F and
translational velocity v greater and smaller respectively
as we alluded to earlier. With a large �t (�t > :2) and
the Dn( ) control system complete chaos reigns. This
behavior is due to the fact that a large �t is equiva-
lent to a large torque F which would cause the y to
over-rotate leading to chaos. As one reduces �t more
and more (:1 > �t > :07) the ight pattern apparently
remains chaotic but all three ies stick to each other
and take the same path. Their path becomes smoother
and less rough than with large �t's yet it remains rid-
dled with chaotic loops. As �t is lessened even further
(:07 > �t > :05) the ies split up their ight path (see
Fig. 11). One y goes on its own while the other to re-
main attached together. These two groups (of 2 ies and
1 y) continue to y towards each other, pass through
each other, and then y towards each other again ad
in�nitum. In doing so they form loops but no appar-
ent pattern. Their behavior apparently remains chaotic.
When �t is very small (�t < :05) then the ies remain
grouped as before and they loop in the same way, how-
ever patterns begin to surface in their behavior. Flight
paths begin to resemble the \bow-tie loops" discussed
earlier, and the error angle  between two ies begins to
follow a quasi periodic pattern. The behavior, however,
is not completely periodic. The repetition of patterns is
not as exact as in the simulation involving only two ies.
Chaos still may be present. For larger �t there is also
another more rare attractor in which all three ies follow
the same straight-line path.

4.4.2 Two ies chasing, one eeing

In the next set of simulations, we used three model
ies, two of which chased (or were attracted by) the other
ies, and one of which ed from (or was repelled by) the
other ies. The behavior, like in the previous simula-
tions, depends on �t and on which of the two control
equations was used.

Using the linear function Dl( ), at large �t (�t > :2)
we observed several di�erent types of apparently chaotic
attractors. In some cases the eeing y may y o� in a
straight line with the two chasers following in a chaotic
way. In other cases a \V" shape was formed by the paths
of the two chaser ies while the eeing y is chaotically
in the middle of the \V" (similar to \120� equilibrium").

In still other cases the ies simply follow apparently ran-
dom \zig-zag" paths. But as �t was decreased (�t < :1)
the ies always displayed the same type of behavior (see
Fig. 12). The two chaser ies weave around each other,
making \U" shaped loops in a curved path, and gradu-
ally increasing the size of the loops. At the same time
the eeing y follows a curved path on the inside of the
curved path of the two chaser ies. This behavior occurs
in small to very small �t's and seems to be the only be-
havior at these �t's (observed as low as �t = :0005).

Using the non-linear functionDn( ), we also observed
that as dt decreases just one type of behavior seems to
take over. For large �t (�t > :5) we observed only
apparent chaos. But as we decreased �t (:5 > �t >
:1) the behavior became less and less chaotic until the
eeing y ew o� in a straight line with the two chasers
following immediately behind it in the same straight line.
This behavior occurred in small to very small �t's and
seems to be the only behavior at these �t's (observed at
as low �t as �t = :0005).

4.5 A swarm of ies

10 ies with the nonlinear Dn( ) (and saturation) show
a periodic behavior for �t < 0:03. With �t > 0:03 there
seems to be onset of chaos (see Fig. 13). The behavior
of the swarm starts to resemble the rapid imploding and
exploding motions of actual swarms of mosquitos. We
notice a global stability of the swarm itself which is glued
together and moves relatively slowly as a whole, at a
much slower rate than the individual ies. The glue that
holds the swarm together is the reciprocal attraction that
y exert on each other. There is no leader though all the
ies follow one of them for some interval of time before
the onset of a phase of chaotic ight. The behaviour
seems to be relatively independent of the number of ies.

5 Discussion

Our simulations of arti�cial ies suggest that the inter-
action of very simple control systems may account for
some of the complex behavior observed in real swarms
of ies or mosquitoes. The model of the y which we
use is a vast oversimpli�cation. Therefore in the follow-
ing we discuss some limitations of the model and some
of the most important (possible) extensions.

5.1 Limitations of the model

The original Reichardt and Poggio model is a simpli�-
cation of the tracking of real-life ies. It does not take
into account the motion of the individual y's head rela-
tive to its body (Land, 1973; ; Geiger and Poggio, 1977;
Wagner, 1986). It does not model the apparent ability
of the y to control in some circumstances the \noise"
term, N (t) (Heisenberg & Wolf, 1990). It also concen-
trates on the smooth pursuit control system. In addition
our simulation uses di�erence equations in the place of
di�erential equations with delay. Furthermore our sim-
ulated ies are simply points on a screen and can pass
through each other, unlike real ies. Finally, we make
the assumption that all ies can see all the other ies
regardless of the distance between them (clearly unreal-
istic). In fact one may assume that a y becomes visible
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to another y under normal conditions only for distances
below 50cm or so (Collett & Land, 1978). We should also
notice that the systems involved in tracking and chasing
are almost certainly di�erent from each other with re-
spect to the underlying neural substrate; they are also
di�erent in male and female ies (Wehrhahn, 1978; Pog-
gio et al., 1977).

5.2 Extensions of the model

There are several obvious extensions of the model. We
have mentioned earlier examples such as taking into ac-
count the visibility of ies as a function of distance and
of occlusions (by other ies). Clearly an extension to
three dimensions would be desirable. A full model of the
dynamics of ight { including lift, roll, yaw and pitch {
is relatively challenging, especially if one would like to
take into account the degrees of freedom associated with
the movements of the head relative to the body. More
interesting is the idea of modeling di�erent simple behav-
iors in the individual ies. It is likely that a y has at
very least a small repertoire of routines or behaviors that
can be switched on in di�erent situations: the landing
reaction, the chasing behavior and the tracking behav-
ior are such examples. From our simulations it seems
that the swarm behavior of a group of ies may be an
emergent property of a simple control system for track-
ing. It is quite possible however that the parameters
of the control system active during the swarm behavior
may be di�erent from the control system active during
chasing and that they may correspond to di�erent neu-
ral structures. Notice that the slope of D( ) is much
greater in male ies than in female ies and that only
male ies \swarm". Our simulations pose the question
of whether the swarm behaviour is a side e�ect of an
existing tracking system. We believe that a positive an-
swer to the question is unlikely. We believe, however,
that the swarm behaviour may depend on a relatively
simple tracking system similar to { even if separate from
{ the chasing system described in this paper. The alter-
native hypothesis is of course that the swarm behaviour
depends on a completely di�erent control system.

The most interesting aspect of our simulations is to
show that the interaction of a few very simple control
systems as we described for ies can generate complex
behavior. Under some conditions this behavior appears
to be chaotic. We did not test whether the solution of
our (di�erence!) equations has all the characteristics of
deterministic chaos but at least in some of our simula-
tions this is quite likely and not too surprising. Even
more interesting is the observation that the chaotic be-
havior of groups of ies has a qualitative similarity with
the swarm behavior sometimes observed in mosquitos or
similar ies. It is instructive how many di�erent behav-
iors a few of these simple equations can generate: the �g-
ures show a few of them but do not exhaust the number
of interesting attractors we have observed. The �gures
do not do justice to the richness of the simulations which
should be observed dynamically to appreciate them fully.
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Figure 1. The angles used in our model and � , the distance of the y to the target. �p is the direction of the target
relative to the vertical; �f is the direction of ight relative to the vertical;  = �p � �f is the error angle.
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(a) (b)

(c)

Figure 2a. The linear Dl( ) function describing how the torque generated by the y depends on the error angle .
This function seems to describe free-ight chasing by male ies Musca domestica (see Reichardt & Poggio, 1981).

The ordinate is torque (dyn cm); the abscissa is degrees of visual angle. 2b) The nonlinear Dn( ) function
describing how the torque generated by the y depends on the error angle . This function seems to describe

tracking in female ies Musca domestica (see Poggio & Reichardt, 1981). The ordinate is torque (dyn cm); the
abscissa is degrees of visual angle. 2c) The function v(�) describing how the forward velocity is controlled

depending on the distance to the target in chasing situations (see Poggio & Reichardt , 1981).

Figure 3. The trajectory of a simulated y tracking a stationary target. In our di�erence equation we used the
linear Dl( ), v = 100 and �t = 0:01sec. The simulation shows a periodic attractor, as predicted by the (simple)

theory. The same attractor is found over a wide range of �t.
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Figure 4. The trajectory of a simulated y tracking a stationary target with nonlinear Dn( ), and �t = 0:01sec.
The velocity is constant. After a transient bow-tie trajectory the model y settles in one of the loops (the smallest
one in the �gure) with a periodic behavior (see inset). The same behavior is observed for di�erent dt (from 0:1 to
0:001). Here, as in several of the following �gures, the inset above the �gure shows the error angle as a function of

time. The ordinate is from �� to � , the abscissa starts at time 0.

Figure 5. A typical chasing behavior of a simulated y tracking a moving target. The target moves at constant
speed with random directions. The same basic behavior is observed with nonlinear and linear D( ), and a wide
range of �t. The velocity decreases with the distance from the target according to the function v(�). The inset
above the �gure shows the error angle as a function of time. The ordinate is from �� to � , the abscissa starts at

time 0.
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Figure 6. The behavior of two ies chasing each other. We use the linear Dl( ). The velocity is constant for both
ies. In this simulation �t = :001 but the same behavior is observed for a broad range of �t.

Figure 7. The second, far more rare attractor for the case of two ies chasing each other with a linear Dl( ) exists
only with certain restricted initial conditions (both ies must initially face in parallel directions and be positioned
on the same line perpendicular to their direction of ight). In this simulation �t = :001 but the same behavior is

observed for a broad range of �t. The inset above the �gure shows the error angle as a function of time.
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Figure 8. The behavior of two ies chasing each other. Both ies use now the nonlinear Dn( ). The velocity is
constant for both ies. In this simulation �t = :001 but the same behavior is observed for a broad range of dt. As

usual, the upper inset shows the error angle of one y relative to the other plotted as a function of time.

Figure 9. The behavior of three ies chasing each other. All the ies are controlled by the linear Dl( ). The
velocity is constant. This behavior is observed for a wide range of parameters (see later �gures). The inset above

the �gure shows the error angle as a function of time.
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Figure 10. Three ies chasing each other. All the ies are controlled by the linear Dl( ) with nonlinear saturation
of the total torque of each y (see text). The velocity is constant. This apparently chaotic behavior is observed for
small �t (such as for instance �t = :001). The inset above the �gure shows the error angle of one of the y relative

to one of the other two as a function of time.

Figure 11. Three ies chasing each other using the nonlinear Dn( ). This particular behavior depends on a large
�t (here �t = :05). The velocity is constant. The inset above the �gure shows the error angle of one of the y

relative to one of the other two as a function of time.
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Figure 12. Three ies, two of which are chasing the others while one is escaping (its Dl( ) appears with a negative
sign, see text). All the ies are controlled by the linear Dl( ). The velocity is constant. This behavior is the most
frequent and has been observed for a wide range of �t's (from 0:1 to 0:001). The inset above the �gure shows the

error angle of one of the chasing ies relative the other chasing y as a function of time.

Figure 13. \Swarm behavior". 10 ies, chasing each other, with nonlinear Dn( ), torque saturation, �t = 0:035:
the behavior is chaotic and resembles the swirling pattern of a real swarm of mosquitos. The behavior disappear for
su�ciently small �t. The inset above the �gure shows the error angle of one of the y relative to one of the others

as a function of time.
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