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Abstract

A fast simulated annealing algorithm is developed for automatic object recognition. The object recognition

problem is addressed as the problem of best describing a match between a hypothesized object and an

image. The normalized correlation coe�cient is used as a measure of the match. Templates are generated

on-line during the search by transforming model images. Simulated annealing reduces the search time by

orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of

how landmarks, for example, tra�c signs, can be recognized by an autonomous vehicle or a navigating

robot. Images are assumed to be taken while the robot or the vehicle is moving through its environment.

It tries to match them with templates created online from models stored in a database. We illustrate

the performance of our algorithm with real-world images of complicated scenes with tra�c signs. False

positive matches occur only for templates with very small information content. To avoid false positive

matches, we propose a method to select model images for robust object recognition by measuring the

information content of the model images. The algorithmworks well in noisy images for model images with

high information content.
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1 Introduction

The �eld of automated object recognition is one of the

most complex areas in computer vision and image un-

derstanding. Object recognition based on matched �l-

tering has been a very active research area in computer

vision for many years. Matched �ltering has been used

much earlier in the areas of radar, sonar, and signal pro-

cessing [Opp78]. Valuable information for visual object

recognition can be obtained from that literature.

Although template matching has been widely used in

computer vision [BB82, Yar85], a crucial problem with

the method is the size of the search space [MR90, LC88].

There are several approaches published in the literature

that either reduce the size of the search space or that

direct the search towards areas in the search space for

which a match is more likely [Gri88, Gri90, NR72, MR90,

AF86]. In this paper a new approach is proposed that

uses both such techniques. We discuss the problem of

how certain landmarks, for example tra�c signs, can be

recognized by an autonomous vehicle or robot. For this

particular application, a �ve-dimensional search-space is

su�ciently large for robust object recognition and small

enough for e�cient object recognition.

The method presented constructs templates on-line

during the search. The algorithm uses an e�cient local

de�nition of the correlation coe�cient to evaluate the

match. The algorithm presented correctly �nds the loca-

tion, shape, size, and orientation of objects. If enough in-

dependent information is contained in a template image,

it can be matched with an object in an image uniquely.

False positive matches occur only for objects that have

very small information content. To avoid false matches,

templates with insu�cient information content should

not be used for recognition tasks. We describe how to

compute the information content of template images.

Although the main objective of this paper is to de-

scribe a new approach to the general problem of visual

object recognition, the solution to the special problem

of recognizing tra�c signs is signi�cant by itself. Au-

tomatically recognizing tra�c signs in images is very

valuable for mobile robot or autonomous vehicle navi-

gation. A robot that can recognize a tra�c sign as a

familiar landmark in its map of the environment can

then use this information to localize itself in its envi-

ronment [BG94, Bra90]. Our method stands apart from

previous approaches to tra�c sign recognition because

�rst, it is e�ciently applied to real-world landscape im-

ages (as opposed to Ettinger's isolated signs [Ett88]),

and second, it does not rely on color perception which is

very sensitive to lighting changes. This sensitivity limits

the approach of May [May94] and Zheng et al. [ZRJ94]

who address the problem of recognizing tra�c signs us-

ing color information.

The optimization technique fast simulated annealing

is applied to avoid the cost of brute-force search by di-

recting the search successfully. It reduces the search

time by orders of magnitude. Recent publications in

the sonar literature [CBK
+
93, KCPD90] show that fast

simulated annealing has been very successful in coherent

signal extraction and localization in noisy environments.

We use it in a similar way for incoherent image process-

ing. Kirkpatrick et al. [KGV83] show how to implement

a Metropolis algorithm [MRR
+
53] to simulate annealing

of combinatorial optimization problems. Szu and Hart-

ley [SH87] propose an inverse linear cooling schedule for

simulated annealing. This version is called \fast simu-

lated annealing." The original slower version of simu-

lated annealing has been applied to segmentation and

noise reduction of degraded images by Geman and Ge-

man [GG84], to represent lobed objects by Friedland and

Rosenfeld [FR91], and to boundary detection by Geman

et al. [GGGD90]. However, for visual object recognition,

fast simulated annealing has yet not been exploited.

This paper is organized in the following way: The ob-

ject recognition problem is de�ned as a parameter search

problem in Section 2. Section 3 shows how templates are

generated from model images. Section 4 examines the

search space of the recognition problem and introduces

\ambiguity surfaces." Section 5 describes our simulated

annealing algorithm and Section 6 reports our experi-

mental results. Section 7 analyzes the error in the cor-

relation and proposes how to avoid false matches. Sec-

tion 8 describes our results on noisy images. We con-

clude with a summary of this work and suggestions how

to apply these results to other problems.

2 The Recognition Problem

An object in an image I is de�ned to be recognized if

it correlates highly with a template image T of the hy-

pothesized object. This template image T is a trans-

formed version of the model of the hypothesized object.

Model images of objects are stored in a library. Section 3

shows how to compute the template from the model. A

template T (x; y), for 0 � x < nT ; 0 � y < mT , is gen-

erally much smaller than the image I(x; y). The tem-

plate is compared with the part IT (x; y) of image I(x; y)
that contains the hypothesized object. Assuming pixel

(x0; y0) is at the lower-left corner of the hypothesized

object in I, subimage IT is de�ned to be

IT (x; y) = I(x0+x; y0+y) for 0 � x < nT ; 0 � y < mT :

We use the normalized correlation coe�cient as a mea-

sure of how well images IT and T correlate or match. For

images IT and T , the normalized correlation coe�cient

� is the covariance of IT and T normalized by the stan-

dard deviation of IT and T . The correlation coe�cient

is dimensionless, and j�j � 1. The correlation coe�cient

measures how accurate image IT can be approximated

by template T . Image IT and template T are perfectly

correlated if � = 1. We approximate � using the sampled

coe�cient of correlation

r = (pT
P

x;y IT (x; y)T (x; y)�
�P

x;y IT (x; y)
�
��P

x;y T (x; y)
�
)=�IT�T

where �IT =

r
pT
P

x;y IT (x; y)
2 �

�P
x;y IT (x; y)

�2
,

�T =

r
pT
P

x;y T (x; y)
2 �

�P
x;y T (x; y)

�2
and pT is

the number of pixels in the template image T with

nonzero brightness values and pT � nT �mT . Note this
1



last condition means that not all the pixels in images T
and IT are actually compared but only the nonzero pix-

els in T with the corresponding pixels in IT . This is

important, for example, if the template contains a cir-

cular object. Here pixels in T bordering the circle (or

the background) will be zero (black). The computa-

tion time of r is proportional to the number of pixels in

the hypothesized object, which is usually much smaller

than the number of pixels in I. Using the correlation

as a measure of successful recognition is also advanta-

geous because it is a very robust measure. That is, it

is relatively insensitive to uctuations in the environ-

ment compared to higher resolution methods, as is well

documented in spectral, bearing, and range estimation

problems [Joh82, BKM93].

3 Generating Templates from Model

Images

A template T (x; y) is generated from a model im-

age M (x; y) by choosing three parameters that describe

a transformation fromM into T . The parameters deter-

mine how the model is sampled, and if necessary, how it

is interpolated to generate the template. The parame-

ters used are a rotation parameter � and two sampling

parameters sx and sy.
For notational convenience, we de�ne the origin of a

coordinate system for model imageM (x; y) to be in the

middle of the image, i.e., M (x; y) is de�ned for �(nM �
1)=2 � x � (nM � 1)=2 and �(mM � 1)=2 � y � (mM �
1)=2 for nM ;mM odd. Then the rotation parameter �
determines how the x and y axes of M (x; y) are rotated
to de�ne the x and y axes of T (x; y). More precisely,

given vectors

mx =

�
nM � 1

2
; 0

�
and my =

�
0;
mM � 1

2

�
;

which lie on the coordinate axes of M , and model radius

RM =

q�
nM�1

2

�2
+
�
mM�1

2

�2
, we compute vectors

tx = RM (cos �; sin � ) and ty = RM (� sin �; cos � )

which de�ne the coordinate axes of the template image T
in continuous space. The axes of T always span the

model object as show in Figure 1.

The sampling parameters sx and sy determine how

many samples along vectors tx and ty are used for the

template image, respectively. The spacing between the

samples along tx is ((nM � 1)=2)=sx. If there is a pixel

in M (x; y) after every (nM � 1)=(2sx) step along tx, its

brightness is used to de�ne T along its x-axis. For exam-

ple this scenario may occur if � = 45 degrees, and sx =

(nM�1)=2. As shown in Figure 1, if sx = (nM�1)=4 the
model is down-sampled and transformed into a template

that is about one-quarter the size of the model. Pixels

of zero brightness are added where necessary as shown

in Figure 1.

In general, there may not be a pixel in M at the sam-

pling point on vector tx. If this is the case, we use a

four-point interpolation to de�ne the brightness for the

template at that point. Similarly,M is sampled (and if

necessary interpolated) along vectors ty;�tx; and �ty
to obtain the brightness of the template pixels along the

template coordinate axes. The rest of the template is

now determined from M along the grid that is de�ned

by the samples on the template coordinate axes.

Since the sampling rates sx and sy in the template

coordinate system are di�erent in general, the template

is a rotated, scaled, and uniformly deformed version of

the model. More parameters would be needed to de-

scribe more general non-uniformand non-linear deforma-

tions of the model. A straightforward extension would

be to add a fourth parameter to obtain a non-uniform

linear deformation of the model. However, for our pur-

poses, the transformation described is su�cient because

the objects to be recognized are usually at, normal to

the viewing direction and far away from the camera com-

pared to the object size. Our method computes the tem-

plate very quickly by sweeping over the model image only

once. The time for creating a nT �mT template image

is O(nTmT ).

Examples of a model and corresponding transformed

templates are shown in Figure 2. The �rst two templates

are scaled by sx = sy and are not rotated. The remain-

ing templates in Figure 2 are de�ned by more general

transformations with sx 6= sy .

4 The Parameter Search Space

The space of possible solutions of the recognition prob-

lem is extremely large, even if a particular object is

known to be in the image a priori. The dimension of

the search space is determined by the number of possi-

bilities for position, size, shape, and orientation of the

object. The number of possibilities for the position of

the centroid of the object in the image is O(n2) for a
n � n image. Assuming that the size and shape of the

object can be approximated by sampling the model along

two perpendicular axes as described in the previous sec-

tion, the number of possibilities to approximate the size

and shape of the object is also O(n2). Even with this

assumption, the number of possible angles is still very

large; since the image is discrete, we assume that the

number of possible angles is O(n). Thus, the size of the
search space is O(n5) for an n � n image. For a typi-

cal image of size 256� 256, the search space has a size

of order 10
14
. An exhaustive search of this space would

take too long to �nd a good match between templates

and images.

We use terminology from the radar and sonar liter-

ature to describe the search space. We call the space

an ambiguity surface. A peak in the ambiguity surface

means that the correlation coe�cient is high for a par-

ticular set of parameters. Figure 3 shows an example of

a two-dimensional ambiguity surface with a peak shown

in black. There may be several peaks in an ambiguity

surface. If the template and the object in the image

match perfectly, the cross-correlation between template

and image results in a peak in the ambiguity surface

which is the global optimum. Due to noise and reduction

of the search space by our template transformation, we

do not expect a perfect match. However, in most cases

the global optimum corresponds to a correct match or
2
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Figure 1: A 5� 5 template image is obtained from a 9 � 9 model image using parameters sx = sy = 2 and � = 45

degrees.

Figure 2: Model of slow sign with 101 � 111 pixels, and six templates of slow sign. Templates are obtained by

sampling model sign at various sampling rates and degrees of rotation.

Figure 3: On the left, image Slow3. On the right, the ambiguity surface of image Slow3 computed for all possible

translations given �xed angle and scaling parameters. A deterministic search would compute each value on this

surface. A steepest descent procedure would fail because of local minima. Therefore, a stochastic search is used to

�nd the best correlation value (here the darkest pixel value).

3



recognition.

As we can also see in Figure 3, an iterative search for

a peak in the ambiguity surface such as steepest descent

would fail because it would get \stuck" in local minima.

Simulated annealing, however, is able to \jump" out of

local minima and �nd the globally best correlation value.

5 The Simulated Annealing Algorithm

In this section we describe our algorithm for �nding an

optimal match between images and templates. Our al-

gorithm is based on a fast version of simulated anneal-

ing. Simulated annealing has become a popular search

technique for solving optimization problems. Its name

originates from the process of slowly cooling molecules

to form a perfect crystal. The cooling process and its

analogous search algorithm is an iterative process, con-

trolled by a decreasing temperature parameter. At each

iteration, our algorithm generates templates on-line as

described in Section 3. New test values for the loca-

tion, sampling, and rotation parameters of the template

are randomly perturbed from current values. If the cor-

relation coe�cient rj increases over the previous coe�-

cient rj�1, the new parameter values are accepted in the

j-th iteration (as in the gradient method). Otherwise,

they are accepted if

e�(Ej�Ej�1)=Tj > �

where � is randomly chosen to be in [0; 1], Tj is the tem-

perature parameter, and Ej = 1� rj is the cost function
in the j-th iteration. For a su�cient temperature this

allows \jumps" out of local minima. We choose

Tj = T0=j 1 � j � L

as the cooling schedule for the j-th update of the temper-

ature parameter where T0 is the initial temperature and

L is the number of iterations during the search. Note

that the rate at which the temperature decreases is in-

verse linear as �rst proposed by Szu and Hartley [SH87]

and converges faster than an often used logarithmically

inverse cooling schedule [GG84]. As a criteria for stop-

ping the annealing process, we simply put a limit on the

search length L. Although this does not ensure conver-

gence to the optimal correlation coe�cient, the solutions

we obtain for the parameters are generally su�cient and

solve the recognition task.

As Kuperman et al. [KCPD90] point out, if the search

problem involves di�erent kinds of parameters the an-

nealing algorithm is rather analogous to the cooling of a

mixture of liquids, each of which have di�erent freezing

points. An algorithm that randomly perturbs all param-

eters at the same time has poor convergence properties.

Therefore, at a speci�c temperature we do not combine

the test for the choice of the location, sampling, and

rotation angle. We also obtain good results using simu-

lated annealing only for the location parameters, and a

gradient descent procedure [CBK
+
93] for the remaining

parameters given large enough perturbations.

To properly deal with image boundaries of an image

I(x; y) for which 0 � x < nI and 0 � y < mI , we use the

following formula to perturb the x-coordinate cx of the

centroid position of a template with radius RT in image

I(x; y)

cx =

8><
>:

cx if cx �RT � 0 and cx +RT � nI
�cx if cx +RT < 0 and cx �RT � �nI
2nI � cx if cx �RT > nI and cx + RT � 2nI
nI=2 otherwise (unlikely perturbation).

The y-coordinate cy of the centroid of the template is

perturbed similarly. This formula avoids attracting the

centroid position to the rim or corners of the image.

6 Experimental Results

The algorithm described above was implemented on a

Sun workstation and on a Silicon Graphics Iris. We used

the model images shown in Figure 4 to �nd templates

that correlate optimally with the scene images shown in

Figure 5. The images are quantized using 256 grey levels.

The size of the model images is 122� 117 pixels (except

for the one-way sign, which has 178�60 pixels.) The size
of the scene images varies between 100�70 and 516�365
pixels.

For all scene images, the shape, size, orientation, and

location of any tra�c sign is found if it is known a priori

what kind of sign to look for. For example, using the

stop sign model shown in Figure 4 the algorithm �nds

the stop sign in a complicated scene image like image

Stop5. (This is the second image in the last row of images

in Figure 5; see also Figure 6). The stop sign in scene

image Stop5 is recognized although the stop sign model

was constructed from a picture of a completely di�erent

stop sign. Note that the stop sign in image Stop5 has

gra�ti, while the model sign does not.

For the more general problem of recognizing which

object is in a scene image (i.e., not knowing the kind

of tra�c sign a priori), we ran 144 experiments with 18

scene images and 8 model images. Table 1 contains the

correlation values obtained in the experiments. For each

scene image, our algorithm computes the highest corre-

lation coe�cient among the set of values obtained for

each model (boldface values in Table 1). The model cor-

responding to the maximum correlation value is selected

as the sign recognized in the scene image. For most scene

images, the correlation coe�cient is highest if a match

between a sign in the image and its corresponding tem-

plate occurs. Only for three images, Slow2, Stop4, and

Stop5, a false positive match occurs because the best

correlation coe�cient is not the one for the correspond-

ing model. We show the templates causing these false

positive matches in Figure 6.

There are two facts that contribute to the false pos-

itive matches. First, some models do not have enough

structure by themselves and match easily with arbitrary

parts of the images. For example, the European no-entry

sign's white middle bar matches with the roof of a car in

image Stop5, as shown in Image 5 of Figure 6. In Sec-

tion 7 we analyze this problem quantitatively. Second,

some models look quite di�erent from the actual land-

mark in the scene image. For example, as mentioned

before, the stop sign model does not have any gra�ti

while the signs in Stop4 and Stop5 do. The templates

constructed from the model stop sign do not match the
4



Figure 4: Model images used in experiments: Footpath, E-no-entry, No-entry, One-way, Priority, Slow, Stop, and

Yield.

stop signs in images Stop4 and Stop5 well enough to

result in a correlation coe�cient larger than the one ob-

tained with the model E-no-entry (see Image 4 and 5 of

Figure 6). One could try to solve this problem by mak-

ing a model of each tra�c sign (including its gra�ti) in

the environment. However, this would result in a huge

library of signs which would increase the search time sub-

stantially. Moreover, the environment may change and

outdate the library quickly. Therefore, we instead pro-

pose to select a small number of model images with high

information content (see Section 7) so that false positive

matches are avoided.

6.1 Illumination Changes

The correlation coe�cient �(IT ; T ) measures not only

how accurate image IT can be approximated by template

T , but also how accurate image IT can be approximated

by a linear function of T , since �(IT ; T ) = �(IT ; aT + b)
for some constants a; b. Therefore, the correlation coe�-

cient is invariant to constant scale factors in brightness.

Thus recognition is not a�ected by new lighting condi-

tions that mainly result in such brightness changes.

6.2 Simulated Annealing vs. Exhaustive

Search

We also implemented an exhaustive search of the en-

tire parameter space to compare its running time to our

fast simulated annealing algorithm. The comparison of

our simulated annealing algorithm and exhaustive search

drastically demonstrates the advantage of simulated an-

nealing. We used image Noentry2 which has 112 � 77

pixels. The search space had about 6:8� 10
7
sets of pa-

rameters. It took 15 seconds to recognize the sign using

our simulated annealing algorithm. In contrast, exhaus-

tive search found the sign after more than 10 hours of

computation time.

Figure 7 illustrates how fast our simulated annealing

algorithm recognizes a sign in a scene image.
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Figure 7: A typical run of our simulated annealing algo-

rithm. The sign is found after about 300 iterations (ca.

18 s).

7 Avoiding False Matches

The error in the sampled coe�cient of correlation r in-

creases if the number of pixels pT in the image window

considered decreases. For large samples of pT pixels the

error of r can be expressed as the mean squared error

(MSE)

E[(r � �)2] =
1� �2p

pT

(see Figure 8 and Weatherburn [Wea62]). As Weather-

burn points out, the sampling distribution of r is never

even approximately normal. The probability curve is

very skewed in the neighborhood of � = �1, even for

large samples.

The normalized auto-correlation of model imageM (x; y)
is

R(�x; �y) =

P
x

P
yM (x; y)M (x� �x; y � �y)P

x

P
y(M (x; y))2

:

The faster the auto-correlation falls o�, the higher the

resolution of the model image. Examples of auto-

correlation images are shown in Figure 9. The resolu-
5



Figure 5: Scene images used in recognition experiments. The images are named by the sign in the scene and a number

if the same sign is in more than one scene image. Reading left to right, the images are: Footpath, E-no-entry, No-entry

1 & 2, One-way, Priority 1, 2, & 3, Slow 1, 2, 3, & 4, Stop 1, 2, 3, 4, & 5, and Yield 1 & 2.

6



Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Figure 6: False positive matches: Images 1 and 2 show templates constructed from models Slow and Yield overlying

the sign in image Slow2 (correlation values 0.56 and 0.58, respectively.) Images 3 and 4 are cropped images of Stop4

and Stop5 illustrating the best match with templates made from the Stop model. For images Stop4 and Stop5, we

obtain better correlation values using models E-no-entry and Yield. Cropped versions of image Stop5 illustrating

these false positive matches are shown in Images 5 and 6.

TABLE 1

Correlation Values for Recognition Task

Models

Images Footpath E-no-entry No-entry One-way Priority Slow Stop Yield

Footpath 0.77 0.59 0.38 0.37 0.46 0.29 0.35 0.62

E-no-entry 0.49 0.73 0.39 0.43 0.46 0.26 0.38 0.62

No-entry1 0.22 0.21 0.67 0.31 0.24 0.18 0.17 0.40

No-entry2 0.29 0.18 0.84 0.37 0.14 0.26 0.23 0.35

One-way 0.37 0.55 0.24 0.70 0.40 0.38 0.31 0.58

Priority1 0.36 0.49 0.34 0.35 0.58 0.32 0.30 0.44

Priority2 0.46 0.54 0.40 0.45 0.66 0.29 0.32 0.31

Priority3 0.37 0.57 0.40 0.39 0.62 0.34 0.37 0.56

Slow1 0.25 0.29 0.25 0.25 0.45 0.74 0.15 0.38

Slow2 0.38 0.48 0.39 0.39 0.32 0.56 2nd 0.21 0.58

Slow3 0.39 0.58 0.41 0.38 0.40 0.62 0.30 0.59

Stop1 0.41 0.47 0.42 0.30 0.22 0.25 0.69 0.58

Stop2 0.23 0.16 0.27 0.25 0.18 0.11 0.38 0.30

Stop3 0.26 0.20 0.33 0.19 0.13 0.00 0.34 0.19

Stop4 0.42 0.73 0.46 0.50 0.43 0.32 0.56 3rd 0.66

Stop5 0.43 0.73 0.44 0.48 0.29 0.31 0.51 3rd 0.65

Yield1 0.45 0.75 0.39 0.50 0.53 0.32 0.37 0.78

Yield2 0.42 0.73 0.39 0.50 0.43 0.32 0.36 0.82

7
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Figure 8: Mean squared error of r for pT = 100; 400 and
2500.

tion of a given model image can be measured with a sin-

gle number, the coherence area A =
P

x

P
y(R(x; y))

2
.

Given the coherence area A and the number of pixels n
of M (x; y), the number of coherence cells is c = n=A.
The number of coherence cells is equivalent to the num-

ber of degrees of freedom of the model image. It can

be used as a measure of the information content of the

model image.

We examine the information content of each model

image to evaluate how useful the model image is for the

recognition task. All our model imagesM (x; y) have the
same number of pixels n. Model images with low reso-

lution (little structure) such as the European No-entry

and Yield signs, do not have enough information con-

tent for robust object recognition. This, and the mean

squared error in r for small pT , are responsible for the

false positive matches reported in Table 1. In order to

avoid false matches, we need to avoid using such model

images with low information content.

The models that contribute to the false positive

matches, E-no-entry and Yield, have a coherence area

of 313 and 197, respectively. This is much higher than

the coherence area for models with more reliable match-

ing results. For example, the Footpath and Stop signs'

auto-correlation falls o� much faster; their coherence ar-

eas are 148 and 56, respectively. The number of coher-

ence cells in E-no-entry is 297 and in Yield 473, but in

Footpath it is 628 and in Stop, even 1641.

Thus, the number of coherence cells is a quantitative

measure for determining if a model has enough infor-

mation content to be useful as a template. Most of the

models we use have a large enough number of coherence

cells for robust detection, but subsequent downsampling

in generation of templates may corrupt this.

8 Results on Noisy Images

Gaussian noise is added to the brightness values of some

of the scene images to examine the robustness of our

algorithm. The algorithm is able to �nd the sign even

in strongly degraded pictures. The signal-to-noise ratio

(SNR) of a noisy image is de�ned as 10 log of the variance

of the noisy image over the variance of the noise.

Several noisy images are obtained by corrupting image

Slow3 by zero-mean Gaussian noise with various signal-

to-noise ratios. Our results for image Slow3 are summa-

rized in Figure 10. Note that the correlation increases

as the signal-to-noise ratio increases.
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Figure 10: Correlation coe�cient for sign recognition in

noisy versions of image Slow3.

Figure 11 shows images Slow3 and Slow4 corrupted

by Gaussian noise with zero mean and SNR 3 dB and

5 dB, respectively. Matches for pictures with much lower

SNR are possible for templates with much larger number

of pixels and information content than those presented.

(In radar and sonar, signals with negative SNR are com-

monly extracted given su�cient information content.)

9 Conclusions

Our method has been shown to e�ciently recognize ob-

jects in complicated landscapes in the presence of noise.

To our knowledge, our work is the �rst to apply fast sim-

ulated annealing to object recognition. Our results show

that it makes the parameter search of object recognition

feasible.

We strongly advocate the use of template matching

in recognition tasks and provide quantitative techniques

to analyze its limits. We show how to measure the in-

formation content of templates as a way to make the

recognition algorithm robust.

For the application of tra�c signs, we have shown

that the search space can be successfully reduced by us-

ing a three parameter transformation from model image

to template. This method is well suited for recognition

tasks that involve objects with scale and shape varia-

tions. The method is so e�cient that templates can be

constructed on-line during the search.

For future work, severe illumination variations within

the object and occlusion problems can be addressed.

Other applications of our method, for example in medical

computer vision and in face recognition, are being inves-

tigated. A recent paper by Brunelli and Poggio [BP93]

reports successful face recognition using template match-

ing. The authors normalize their test images by �xing

the direction of the eye-to-eye axis and the interocular

distance. The location of the masks for eye, nose, mouth,

and face templates are also �xed. We believe that we can
8



Figure 9: Auto-correlation of model images Footpath, Stop, E-no-entry, and Yield. To illustrate how fast the

auto-correlation falls o�, the e-folding lengths, i.e., pixels (x; y) with R(x; y) � 1=e, are shown on a dark contour.

Figure 11: The �rst and third images are images Slow3 and Slow4 degraded by Gaussian noise with zero mean and

SNR 3 dB and 5 dB, respectively. The second and fourth images illustrate that the object is recognized where the

templates computed are shown overlying the recognized sign in the scene. (These images are shown brighter so that

the overlying template can be illustrated better.)

generalize Brunelli and Poggio's application to recognize

faces in images that are not normalized but contain more

general scenes with varied backgrounds.
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