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Abstract

This paper considers the problem of language change. Linguists must explain not only how languages

are learned but also how and why they have evolved along certain trajectories and not others. While the

language learning problem has focused on the behavior of individuals and how they acquire a particular

grammar from a class of grammars G, here we consider a population of such learners and investigate the

emergent, global population characteristics of linguistic communities over several generations. We argue

that language change follows logically from speci�c assumptions about grammatical theories and learning

paradigms. In particular, we are able to transform parameterized theories and memoryless acquisition

algorithms into grammatical dynamical systems, whose evolution depicts a population's evolving linguistic

composition. We investigate the linguistic and computational consequences of this model, showing that

the formalization allows one to ask questions about diachronic that one otherwise could not ask, such as

the e�ect of varying initial conditions on the resulting diachronic trajectories. From a more programmatic

perspective, we give an example of how the dynamical system model for language change can serve as

a way to distinguish among alternative grammatical theories, introducing a formal diachronic adequacy

criterion for linguistic theories.
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1 Introduction

As is well known, languages change over time. Lan-

guage scientists have long been occupied with describ-

ing phonological, syntactic, and semantic change, often

appealing to the analogy between language change and

evolution. Some even suggest that language itself is a

complex adaptive system (see Hawkins and Gell-Mann,

1989). For example, Lightfoot (1991, chapter 7, pp. 163{

65�.) talks about language change in this way: \Some

general properties of language change are shared by other

dynamic systems in the natural world: : : In population

biology and linguistic change there is constant ux..... If

one views a language as a totality, as historians often do,

one sees a dynamic system." Indeed, entire books have

been devoted to the description of language change us-

ing the terminology of population biology: genetic drift,

clines, and so forth
1
However, these analogies have rarely

been pursued beyond casual and descriptive accounts.
2

In this paper we formalize these intuitions, to the best

of our knowledge for �rst time, as a concrete, computa-

tional, dynamical systems model, and investigating the

consequences of this formalization.

In particular, we show that a model of language

change emerges as a logical consequence of language ac-

quisition, a point made by Lightfoot (1991). We shall

see that Lightfoot's intuition that languages could be-

have just as though they were dynamical systems is es-

sentially correct, as is his proposal for turning language

acquisition models into language change models. We can

provide concrete examples of both \gradual" and \sud-

den" syntactic changes, occurring over time periods of

many generations to just a single generation.
3

Many interesting points emerge from the formaliza-

tion, some programmatic:

� Learnability is a well-known criterion for the ad-

equacy of grammatical theories. Our model pro-

vides an evolutionary criterion: By comparing the

trajectories of dynamical linguistic systems to his-

torically observed trajectories, one can determine

the adequacy of linguistic theories or learning al-

gorithms.

� We derive explicit dynamical systems correspond-

ing to parametrized linguistic theories (e.g., the

Head First/Final parameter in head-driven phrase

structure grammars or government-binding gram-

mars) and memoryless language learning algo-

rithms (e.g., gradient ascent in parameter space).

� We illustrate the use of dynamical systems as a

research tool by considering the loss of Verb Sec-

ond position in Old French as compared to Mod-

ern French. We demonstrate by computer model-

ing that one grammatical parameterization in the

1For a recent example, see Nichols (1992), Linguistic Di-
versity in Space and Time.

2Some notable exceptions are Kroch (1990) and Clark and
Roberts (1993).

3Lightfoot 1991 refers to these sudden changes acting
over a single generation as \catastrophic" but in fact this
term usually has a di�erent sense in the dynamical systems
literature.

literature does not seem to permit this historical

change, while another does. We can more accu-

rately model the time course of language change. In

particular, in contrast to Kroch (1989) and others,

who mimic population biology models by impos-

ing S-shaped logistic curves on possible language

changes by assumption, we derive the time course

of language change from more basic assumptions,

and show that it need not be S-shaped; rather, an

S-shape can emerge from more fundamental prop-

erties of the underlying dynamical system.

� We examine by simulation and traditional phase-

space plots the form and stability of possible

\diachronic envelopes" given varying alternative

language distributions, language acquisition algo-

rithms, parameterizations, input noise, and sen-

tence distributions. The results bear on models

of language \mixing"; so-called \wave" models for

language change; and other proposals in the di-

achronic literature.

� As topics for future research, the dynamical sys-

tem model provides a novel possible source for ex-

plaining several linguistic changes including: (a)

the evolution of modern Greek metrical stress as-

signment from proto-Indo-European; and (b) Bick-

erton's (1990) \creole hypothesis," concerning the

striking fact that all creoles, irrespective of linguis-

tic origin, have exactly the same grammar. In the

latter case, the \universality" of creoles could be

due a parameterization corresponding to a com-

mon condensation point of a dynamical system, a

possibility not considered by Bickerton.

2 An Acquisition-Based Model of

Language Change

How does the combination of a grammatical theory and

learning algorithm lead to a model of language change?

We �rst note that just as with language acquisition, there

is a seeming paradox in language change: it is generally

assumed that children acquire their caretaker (target)

grammars without error. However, if this were always

true, at �rst glance grammatical changes within a popu-

lation could seemingly never occur, since generation after

generation children would successfully acquire the gram-

mar of their parents.

Of course, Lightfoot and others have pointed out the

obvious solution to this paradox: the possibility of slight

misconvergence to target grammars could, over several

generations, drive language change, much as speciation

occurs in the population biology sense:

As somebody adopts a new parameter setting,

say a new verb-object order, the output of

that person's grammar often di�ers from that

of other people's. This in turn a�ects the lin-

guistic environment, which may then be more

likely to trigger the new parameter setting in

younger people. Thus a chain reaction may

be created. (Lightfoot, 1991, p. xxx)

We pursue this point in detail below. Similarly, just
1



as in the biological case, some of the most commonly

observed changes in languages seem to occur as the result

of the e�ects of surrounding populations, whose features

in�ltrate the original language.

We begin our treatment by arguing that the problem

of language acquisition at the individual level leads log-

ically to the problem of language change at the group

or population level. Consider a population speaking

a particular language
4
. This is the target language|

children are exposed to primary linguistic data (PLD)

from this source, typically in the form of sentences ut-

tered by caretakers (adults). The logical problem of lan-

guage acquisition is how children acquire this target lan-

guage from their primary linguistic data|to come up

with an adequate learning theory. We take a learning

theory to be simply a mapping from primary linguis-

tic data to the class of grammars, usually e�ective, and

so an algorithm. For example, in a typical inductive

inference model, given a stream of sentences, an acqui-

sition algorithm would simply update its grammatical

hypothesis with each new sentence according to some

preprogrammed procedure. An important criterion for

learnability (Gold, 1967) is to require that the algorithm

converge to the target as the data goes to in�nity (iden-

ti�cation in the limit).

Now suppose that we �x an adequate grammatical

theory and an adequate acquisition algorithm. There are

then essentially two means by which the linguistic com-

position of the population could change over time. First,

if the primary linguistic data presented to the child is al-

tered (due to any number of causes, perhaps to presence

of foreign speakers, contact with another population, dis-

uencies, and the like), the sentences presented to the

learner (child) are no longer consistent with a single tar-

get grammar. In the face of this input, the learning

algorithm might no longer converge to the target gram-

mar. Indeed, it might converge to some other grammar

(g2); or it might converge to g2 with some probability,

g3 with some other probability, and so forth. In either

case, children attempting to solve the acquisition prob-

lem using the same learning algorithm could internalize

grammars di�erent from the parental (target) grammar.

In this way, in one generation the linguistic composition

of the population can change.
5

Second, even if the PLD comes from a single tar-

get grammar, the actual data presented to the learner

is truncated, or �nite. After a �nite sample sequence,

children may, with non-zero probability, hypothesize a

grammar di�erent from that of their parents. This can

again lead to a di�ering linguistic composition in suc-

ceeding generations.

In short, the diachronic model is this: Individual chil-

dren attempt to attain their caretaker target grammar.

4In our analysis this implies that all the adult members
of this population have internalized the same grammar (cor-
responding to the language they speak).

5Sociological factors a�ecting language change, a�ect lan-
guage acquisition in exactly the same way, yet are abstracted
away from the formalization of the logical problem of lan-
guage acquisition. In this same sense, we similarly abstract
away such causes here.

After a �nite number of examples, some are success-

ful, but others may misconverge. The next generation

will therefore no longer be linguistically homogeneous.

The third generation of children will hear sentences pro-

duced by the second|a di�erent distribution|and they,

in turn, will attain a di�erent set of grammars. Over suc-

cessive generations, the linguistic composition evolves as

a dynamical system.

On this view, language change is a logical consequence

of speci�c assumptions about:

1. the grammar hypothesis space|a particular

parametrization, in a parametric theory;

2. the language acquistion device|the learning algo-

rithm the child uses to develop hypotheses on the

basis of data;

3. the primary linguistic data|the sentences pre-

sented to the children of any one generation.

If we specify (1) through (3) for a particular gener-

ation, we should, in principle, be able to compute the

linguistic composition for the next generation. In this

manner, we can compute the evolving linguistic compo-

sition of the population from generation to generation;

we arrive at a dynamical system. We now proceed to

make this calculation precise. We �rst review a standard

language acquisition framework, and then show how to

derive a dynamical system from it.

2.1 The Language Acquisition Framework

Let us state our assumptions about grammatical theo-

ries, learning algorithms, and sentence distributions.

1. Denote by G; a family of possible (target) gram-

mars. Each grammar g 2 G de�nes a language L(g) �
�
�
over some alphabet � in the usual way.

2. Denote by P a distribution on �
�
according to

which sentences are drawn and presented to the learner.

Note that if there is a well de�ned target, gt; and only

positive examples from this target are presented to the

learner, then P will have all its measure on L(gt); and

zero measure on sentences outside Suppose n examples

are drawn in this fashion, one can then let Dn = (�
�
)
n

be the set of all n-example data sets the learner might be

presented with. Thus, if the adult population is linguis-

tically homogeneous (with grammar g1) then P = P1:

If the adult population speaks 50 percent L(g1) and 50

percent L(g2) then P =
1

2
P1 +

1

2
P2.

3. Denote by A the acquisition algorithm that chil-

dren use to hypothesize a grammar on the basis of in-

put data. A can be regarded as a mapping from Dn

to G: Thus, acting upon a particular presentation se-

quence dn 2 Dn; the learner posits a hypothesis A(dn) =
hn 2 G: Allowing for the possibility of randomization,

the learner could, in general, posit hi 2 G with probabil-

ity pi for such a presentation sequence dn: The standard

(stochastic version) learnability criterion (Gold, 1967)

can then be stated as follows:

For every target grammar, gt 2 G; with positive-only

examples presented according to P as above, the learner

must converge to the target with probability 1, i.e.,

Prob[A(dn) = gt] �!n!1 1
2



For an analysis of learnability issues for memoryless

algorithms in �nite parameter spaces, consult Niyogi

(1995) .

2.2 From Language Learning to Popuation
Dynamics

The framework for language learning has learners at-

tempting to infer grammars on the basis of linguistic

data. At any point in time, n; (i.e., after hearing n ex-

amples) the learner has a current hypothesis, h; with

probability pn(h): What happens when there is a pop-

ulation of learners? Since an arbitrary learner has a

probability pn(h) of developing hypothesis h (for every

h 2 G); it follows that a fraction pn(h) of the population
of learners internalize the grammar h after n examples.

We therefore have a current state of the population after

n examples. This state of the population might well be

di�erent from the state of the parent population. As-

sume for now that after n examples, maturation occurs,

i.e., after n examples the learner retains the grammat-

ical hypothesis for the rest of its life. Then one would

arrive at the state of the mature population for the next

generation.
6

This new generation now produces sen-

tences for the following generation of learners according

to the distribution of grammars in its population. Then,

the process repeats itself and the linguistic composition

of the population evolves from generation to generation.

We can now de�ne a discrete time dynamical system

by providing its two necessary components:

A State Space: a set of system states, S. Here the

state space is the space of possible linguistic composi-

tions of the population. Each state is described by a

distribution Ppop on G describing the language spoken

by the population.
7
At any given point in time, t, the

system is in exactly one state s 2 S;
An Update Rule: how the system states change from

one time step to the next. Typically, this involves spec-

ifying a function, f; that maps st 2 S to st+1
8

For example, a typical linear dynamical system might

consist of state variables x (where x is a k-dimensional

state vector) and a system of di�erential equations x0 =
Ax (A is a matrix operator) which characterize the evo-

lution of the states with time. RC circuits are a simple

example of linear dynamical systems. The state (cur-

rent) evolves as the capcitor discharges through the re-

sistor. Population growth models (for example, using

logistic equations) provide other examples.

6Maturation seems to be a reasonable hypothesis in this
context. After all, it seems even more unreasonable to imag-
ine that learners are forever wandering around in hypoth-
esis space. There is evidence from developmental psychol-
ogy to suggest that this is the case, and that after a certain
point children mature and retain their current grammatical
hypotheses forever.

7As usual, one needs to be able to de�ne a �-algebra on the
space of grammars, and so on. This is unproblematic for the
cases considered in this paper because the set of grammars
is �nite.

8In general, this mapping could be fairly complicated. For
example, it could depend on previous states, future states,
and so forth; for reasons of space we do not consider all pos-
sibilities here. For reference, see Strogatz, 1993.
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P6
P7

P8

g g g g g gg g1 2 3 4 5 6 7 8

R

G

Figure 1: A simple illustration of the state space for the

3-parameter syntactic case. There are 8 grammars. A

probability distribution on these 8 grammars, as shown

above, can be interpreted as the linguistic composition

of the population. Thus, a fraction P1 of the population

have internalized grammar, g1; and so on.

As as linguistic example, consider the three parameter

syntactic space described in Gibson and Wexler (1994).

This de�nes 8 possible \natural" grammars. Thus G has

8 elements. We can picture a distribution on this space

as shown in �g. 1. In this particular case, the state space

is

S = fP 2 R

8j

8X

i=1

Pi = 1g

Here we interpret the state as the linguistic compo-

sition of the population.
9

For example, a distribution

that puts all its weight on grammar g1 and 0 everywhere

else indicates a homogeneous population that speaks a

language corresponding to grammar g1: Similarly, a dis-

tribution that puts a probability mass of 1/2 on g1 and

1/2 on g2 denotes a population (nonhomogeneous) with

half its speakers speaking a language corresponding to

g1 and half speaking a language corresponding to g2:

To see in detail how the update rule may be com-

puted, consider the acquisition algorithm,A. For exam-

ple, given the state at time t; (Ppop;t), the distribution

of speakers in the parental population, one can obtain

the distribution with which sentences from �� will be

presented to the learner. To do this, imagine that the

i

th
linguistic group in the population, speaking language

Li, produces sentences with distribution Pi. Then for

any ! 2 �
�
; the probability with which ! is presented

to the learner is given by

P (!) =

X

i

Pi(!)Ppop;t(i)

This �xes the distribution with which sentences are

presented to the learner. The logical problem of lan-

guage acquisition also assumes some success criterion for

attaining the mature target grammar. For our purposes,

we take this as being one of two broad possibilities: ei-

ther (1) the usual Gold scenario of identi�cation in the

limit, what we shall call the limiting sample case; or (2)

9Note that we do not allow for the possibility of a single
learner having more than one hypothesis at a time; an ex-
tension to this case, in which individuals would more closely
resemble the \ensembles" of particles in a thermodynamic
system is left for future research.
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identi�cation in a �xed, �nite time, what we shall call

the �nite sample case.
10

Consider case (2) �rst. Here, one draws n example

sentences according to distribution P , and the acquisi-

tion algorithm develops hypotheses (A(dn) 2 G). One

can, in principle, compute the probability with which

the learner will posit hypothesis hi after n examples:

Finite Sample: Prob[A(dn) = hi] = pn(hi) (1)

The �nite sample situation is always well de�ned|the

probability pn always exists.
11
.

Now turn to case (1), the limiting case. Here learn-

ability requires pn(gt) to go to 1, for the unique target

grammar, gt, if such a grammar exists. However, in gen-

eral there need not be a unique target grammar since

the linguistic population can be nonhomogeneous. Even

so, the following limiting behavior might still exist:

Limiting Sample: lim
n!1

Prob[A(dn) = hi] = p(hi)

(2)

Turning from the individual child to the population,

since the individual child internalizes grammar hi 2 G
with probability pn(hi) in the \�nite sample" case or

with probability p(hi) \in the limit", in a population of

such individuals one would therefore expect a proportion

pn(hi) or p(hi) respectively to have internalized grammar

hi. In other words, the linguistic composition of the next

generation is given by Ppop;t+1(hi) = pn(hi) for the �nite

sample case and by Ppop;t+1(hi) = p(hi) in the limiting

sample case . In this fashion,

Ppop;t �!
A
Ppop;t+1

Remarks. 1. For a Gold-learnable family of languages

and a limiting sample assumption, homogeneous popu-

lations are always stable. This is simply because each

child and therefore the entire population always even-

tually converges to a single target grammar, generation

after generation.

2. However, �nite sample case is di�erent from the

limiting sample case. Suppose we have solved the mat-

uration problem, that is, we know roughly the time, or

number of examples N the learner takes to develop its

mature (adult) hypothesis. In that case pN (h) is the

probability that a child internalizes the grammar h, and

pN (h) is the percentage of speakers of Lh in the next

generation. Note that under this �nite sample analy-

sis, even for a homogeneous population with all adults

10Of course, a variety of other success criteria, e.g., con-
vergence within some epsilon, or polynomial in the size of
the target grammar, are possible; each leads to potentially
di�erent language change model. We do not pursue these
alternatives here.

11This is easy to see for deterministic algorithms, Adet:

Such an algorithm would have a precise behavior for every
data set of n examples drawn. In our case, the examples
are drawn in i.i.d. fashion according to a distribution P on
��

: It is clear that pn(hi) = P [fdnjAdet(dn) = hig]: For
randomized algorithms, the case is trickier, though tedious,
but the probability still exists because all the �nite choice
paths over all sequences of length n is enumerable. Previous
work (Niyogi and Berwick, 1993,1994a,1994b) shows how to
compute pn for randomized memoryless algorithms.

speaking a particular language (corresponding to gram-

mar, g; say), pN (g) will not be 1|that is, there will be

a small percentage of learners who have misconverged.

This percentage could blow up over several generations,

and we therefore have potentially unstable languages.

3. The formulation is very general. Any fA;G;Pig

triple yields a dynamical system.
12
. In short:

(G;A; fPig) �! D( dynamical system)

4. The formulation also does not assume any particu-

lar linguistic theory, learning algorithm, or distribution

with which sentences are drawn. Of course, we have im-

plicitly assumed a learning model, i.e., positive examples

are drawn in i.i.d. fashion and presented to the learner.

Our dynamical systems formalization follows as a log-

ical consequence of this learning framework. One can

conceivably imagine other learning frameworks|these

would potentially give rise to other kinds of dynamical

systems|but we do not formalize them here.

This completes the abstract formulation of the dy-

namical system model. Next, we choose speci�c linguis-

tic theories and learning paradigms to model particular

kinds of language changes, with the goal of answering

the following questions:

� Can we really compute all the relevant quantities

to specify the dynamical system?

� Can we evaluate the behavior (phase-space charac-

teristics) of the resulting dynamical system?

� Does the

dynamical system model|the formalization|shed

light on diachronic models and linguistic theories

generally?

In the remainder of this paper, we give some concrete

answers to these questions within the principles and pa-

rameters theory of modern linguistics.

3 Language Change in Parametric

Systems

In previous works (Niyogi and Berwick, 1993, 1994a,

1994b; Niyogi, 1995), we investigated the problem of

learnability within parametric systems. In particular, we

showed that the behavior of any memoryless algorithm

can be modeled as a Markov chain. This analysis allows

us to solve equations 1 and 2, and thus obtain the up-

date equations of the associated dynamical system. Let

us now show how to derive such models in detail. We

�rst provide the particular G;A; fPig triple, and then

give the update rule.

The learning system triple.

1. G: Assume there are n parameters|this leads to a

space G with 2
n
di�erent grammars.

2. A: Let us imagine that the child learner follows

some memoryless (incremental) algorithm to set

parameters. For the most part, we will assume that

12Note that this probability could evolve with generations
as well. That will complete all the logical possibilites. How-
ever, for simplicity, we assume that this does not happen.

4



the algorithm is the \triggering learning algorithm"

or TLA (the single step, gradient-ascent algorithm

of Gibson and Wexler, 1994) or one of the variants

discussed in Niyogi and Berwick (1993).

3. fPig: Let speakers of the ith language, Li; in the

population produce sentences according to the dis-

tribution Pi. For the most part we will assume in

our simulations that this distribution is uniform on

degree-0 (unembedded) sentences, exactly as in the

learnability analysis of Gibson and Wexler 1994 or

Niyogi and Berwick 1993.

The update rule. We can now compute the update

rule associated with this triple. Suppose the state of the

parental population is Ppop;n on G: Then one can obtain

the distribution P on the sentences of �
�
according to

which sentences will be presented to the learner. Once

such a distribution is obtained, then given the Markov

equivalence established earlier, we can compute the tran-

sition matrix T according to which the learner updates

its hypotheses with each new sentence. From T one can

�nally compute the following quantities, one for the \�-

nite sample" case and one for the \limiting sample" case:

Prob[ Learner's hypothesis = hi 2 G after m examples]

= f 1

2n
(1; : : : ; 1)

0
T

mg[i]

Similary, making use of the limiting distributions of

Markov chains (Resnick, 1992) one can obtain the fol-

lowing (where ONE is a
1

2n
� 1

2n
matrix with all ones).

Prob[ Learner's hypothesis = hi\in the limit"]

= (1; : : : ; 1)
0
(I � T + ONE)

�1

These expressions allow us to compute the linguistic

composition of the population from one generation to

the next according to our analysis of the previous sec-

tion.

Remark. The limiting distribution case is more com-

plex than the �nite sample case and requires some careful

explanation. There are two possibilities. If there is just a

single target grammar, then, by de�nition, the learners

all identify the target correctly in the limit, and there

is no further change in the linguistic composition from

generation to generation. This case is essentially unin-

teresting. If there are two or more target grammars,

then recalling our analysis of learnability (Niyogi and

Berwick, 1994), there can be no absorbing states in the

Markov chain corresponding to the parametric grammar

family. In this situation, a single learner will oscillate

between some set of states in the limit. In this sense,

learners will not converge to any single, correct target

grammar. However, there is a sense in which we can

characterize limiting behavior for learners: although a

given learner will visit each of these states in�nitely of-

ten in the limit, it will visit some more often than others.

The exact percentage the learner will be in a particular

state is given by equation 3 above. Therefore, since we

know the fraction of the time the learner spends in each

grammatical state in the limit, we assume that this is

the probability with which it internalizes the grammar

corresponding to that state in the Markov chain.

Summarizing, we provide the basic computational

framework for modeling language change:

1. Let �1 be the initial population mix, i.e., the per-

centage of di�erent language speakers in the com-

munity. Assuming that the i
th

group of speakers

produces sentences with probability Pi; we can ob-

tain the probability P with which sentences in �
�

occur for the next generation of learners.

2. From P we can obtain the transition matrix T for

the Markov learning model and the limiting distri-

bution of the linguistic composition �2 for the next

generation.

3. The second generation now has a population mix

of �2. We repeat step 1 and obtain �3. Continuing
in this fashion, in general we can obtain �i+1 from

�i.

We next turn to speci�c applications of this model.

We begin with a simple 3-parameter system as our �rst

example, considering variations on the learning algo-

rithm, sentence distributions, and sample size available

for learning. We then consider a di�erent, 5-parameter

system already presented in the literature (Clark and

Roberts, 1993) as one intended to partially characterize

the change from Old French to Modern French.

4 Example 1: A Three Parameter

System

The previous section developed the necessary mathemat-

ical and computational tools to completely specify the

dynamical systems corresponding to memoryless algo-

rithms operating on �nite parameter spaces. In this ex-

ample we investigate the behavior of these dynamical

systems. Recall that every choice of (G;A; fPig) gives
rise to a unique dynamical system. We start by making

speci�c choices for these three elements:

1. G : This is a 3-parameter syntactic subsystem de-

scribed in Gibson and Wexler (1994). Thus G has

exactly 8 grammars, generating languages from L1

through L8, as shown in the appendix of this paper

(taken from Gibson and Wexler, 1994).

2. A : The memoryless algorithms we consider are the

TLA, and variants by dropping either or both of the

single-valued and greediness constraints.

3. fPig : For the most part, we assume sentences are

produced according to a uniform distribution on

the degree-0 sentences of the relevant language, i.e.,

Pi is uniform on (degree-0 sentences of) Li:

Ideally of course, a complete investigation of di-

achronic possibilities would involve varying G, A, and
P and characterizing the resulting dynamical systems

by their phase space plots. Rather than explore this en-

tire space, we �rst consider only systems evolving from

homogeneous initial populations, under four basic vari-

ants of the learning algorithm A. This will give us an
5



Initial Language Change to Language?

(�V 2) 1 2 (0.85), 6 (0.1)

(+V 2) 2 2 (0.98); stable

(�V 2) 3 6 (0.48), 8(0.38)

(+V 2) 4 4 (0.86); stable

(�V 2) 5 2 (0.97)

(+V 2) 6 6 (0.92); stable

(�V 2) 7 2 (0.54), 4(0.35)

(+V 2) 8 8 (0.97); stable

Table 1: Language change driven by misconvergence

from a homogeneous initial linguistic population. A

�nite-sample analysis was conducted allowing each child

learner 128 examples to internalize its grammar. Af-

ter 30 generations, initial populations drifted (or not, as

shown in the table) to di�erent �nal linguistic composi-

tions.

initial grasp of how linguistic populations can change.

Indeed, linguistic change has been studied before; even

the dynamical system metaphor itself has been invoked.

Our computational paradigm lets us say muchmore than

these previous descriptions: (1) we can say precisely

what the rates of change will be; (2) we can determine

what diachronic population curve changes will look like,

without stipulating in advance that they must be S-

shaped (sigmoid) or not, and without curve �tting to

a pre-de�ned functional form.

4.1 Homogeneous Initial Populations

First we consider the case of a homogeneous

population|no noise or confounding factors like foreign

target languages. How stable are the languages in the

3-parameter system in this case? To determine this, we

begin with a �nite-sample analysis with n = 128 ex-

ample sentences (recall by the analysis of Niyogi and

Berwick (1993,1994a,1994b) that learners converge to

target languages in the 3-parameter system with high

probability after hearing this many sentences). Some

small proportion of the children misconverge; the goal

is to see whether this small proportion can drive lan-

guage change|and if so, in what direction. To give

the reader some idea of the possible outcomes, let us

consider the four possible variations in the learning al-

gorithm (�Single-step, �Greedy)holding �xed the sen-

tence distributions and learning sample.

4.1.1 Variation 1: A = TLA (+Single Step,
+Greedy); Pi = Uniform; Finite Sample
= 128

Suppose the learning algorithm is the triggering learn-

ing algorithm (TLA). The table below shows the lan-

guage mix after 30 generations. Languages are numbered

from 1 to 8. Recall that +V2 refers to a language that

has the verb second property, and �V2 one that does

not.

Observations. Some striking patterns regarding the

resulting population mixes can be noted.

1. First, all the +V2 languages are relatively stable,

i.e., the linguistic composition did not vary signi�-

cantly over 30 generations. This means that every

succeeding generation acquired the target parame-

ter settings and no parameter drifts were observed

over time.

2. In contrast, populations speaking �V2 languages all
drift to +V2 languages. Thus a population speak-

ing L1 winds up speaking mostly L2 (85%). A

population speaking language L7 gradually shifts

to a population with 54 percent speaking L2 and

35 percent speaking L4 (with a smattering of other

speakers) and apparently remains basically stable

in this mix thereafter. Note that the relative sta-

bility of +V2 languages and the tendency of �V2
languages to drift to +V2 is exactly contrary to evi-

dence in the linguistic literature. Lightfoot (1991),

for example, claims that the tendency to lose V2

dominates the reverse tendency in the world's lan-

guages. Certainly, both English and French lost

the V2 parameter setting|an empirically observed

phenomenon that needs to be explained. Immedi-

ately then, we see that our dynamical system does

not evolve in the expected manner. The reason

could be due to any of the assumptions behind

the model: the the parameter space, the learning

algorithm, the initial conditions, or the distribu-

tional assumptions about sentences presented to

learners. Exactly which is in error remains to be

seen, but nonetheless our example shows concretely

how assumptions about a grammatical theory and

learning theory can make evolutionary, diachronic

predictions|in this case, incorrect predictions that

falsify the assumptions.

3. The rates at which the linguistic composition

changes vary signi�cantly from language to lan-

guage. Consider for example the change of L1 to

L2: Figure 2 below shows the gradual decrease in

speakers of L1 over successive generations along

with the increase in L2 speakers. We see that over

the �rst 6 or seven generations very little change

occurs, but over the next 6 or seven generations

the population changes at a much faster rate. Note

that in this particular case the two languages di�er

only in the V2 parameter, so the curves essentially

plot the gain of V2. In contrast, consider �gure 3

which shows the decrease of L5 speakers and the

shift to L2: Here we note a sudden change: over

a space of just 4 generations, the population shifts

completely. Analysis of the time course of language

change has been given some attention in linguistic

analyses of diachronic syntax change, and we re-

turn to this issue below.

4. We see that in many cases a homogeneous popula-

tion splits up into di�erent linguistic groups, and

seems to remain stable in that mix. In other words,

certain combinations of language speakers seem to

asymptote towards equilibrium (at least through

30 generations). For example, a population of L7

speakers shifts over 5{6 generations to one with 54

percent speaking L2 and 35 percent speaking L4

and remains that way with no shifts in the distri-
6
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Initial Language Change to Language?

�V 2 1 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 2 2 (0.42), 4 (0.19), 6 (0.17), 8 (0.12)

�V 2 3 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 4 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)

�V 2 5 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 6 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

�V 2 7 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

+V 2 8 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

Table 2: Language change driven by misconvergence. A

�nite-sample analysis was conducted allowing each child

learner (following the TLA with single-value dropped)

128 examples to internalize its grammar. Initial popula-

tions were linguistically homogeneous, and they drifted

to di�erent linguistic compositions. The major language

groups after 30 generations have been listed in this table.

Note how all initially homogeneous populations tend to

the same composition.

there is a tendency to gain V2 rather than lose V2,

contrary to the empirical facts.

As an example, �g. 4 shows the changing percentage

of the population speaking the di�erent languages start-

ing o� from a homogeneous population speaking L5: As

before, learners who have not converged to the target in

128 examples are the driving force for change here. Note

again the time evolution of the grammars. For about

5 generations there is only a slight decrease in the per-

centage of speakers of L5: Then the linguistic patterns

switch rapidly over the next 7 generations to a relatively

stable mix.

4.1.3 Variations 3 & 4: �Greedy, �Single
Value constraint; Pi =Uniform; Finite
Sample = 128

Having dropped the single value constraint, we con-

sider the next obvious variation in the learning algo-

rithm: dropping greediness while varying the single value

constraint. Again, our goal is to see whether this makes

any di�erence in the resulting dynamical system. This

gives rise to two di�erent learning algorithms: (1) al-

low the learning algorithm to pick any new grammar at

most one parameter value away from its current hypoth-

esis (retaining the single-value constraint, but without

greediness, that is, the new grammar does not have to

be able to parse the current input sentence); (2) allow

the learning algorithm to pick any new grammar at each

step (no matter how far away from its current hypothe-

sis).

In both cases, the population mix after 30 generations

is the same irrespective of the initial language of the

homogeneous population. These results are shown in

table 3.

Observations:

1. Both algorithms yield dynamical systems that ar-

rive at the same population mix after 30 genera-

tions. The path by which they arrive at this mix

is, however, not the same (see �gure 5).
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Figure 4: Time evolution of grammars using a greedy

learning algorithm with no single value constraint in

place.

Initial Language Change to Language?

Any Language 1 (0.11), 2 (0.16), 3 (0.10), 4 (0.14)

(Homogeneous) 5 (0.12), 6 (0.14), 7 (0.10), 8 (0.13)

Table 3: Language change driven by misconvergence, us-

ing two di�erent acquisition algorithms that do not obey

a local gradient-ascent rule (a greediness constraint). A

�nite-sample analysis was conducted with the learning

algorithm following a random-step algorithm or else a

single-step algorithm, along with 128 examples to inter-

nalize its grammar. Initial populations were linguisti-

cally homogeneous, and they drifted to di�erent linguis-

tic compositions. The major language groups after 30

generations have been listed in this table. Note that all

initially homogeneous populations converge to the same

�nal composition.

2. The �nal population mix contains all languages in

signi�cant proportion. This is in distinct contrast

to the previous situations, where we saw that �V2
languages were eliminated over time.

4.2 Modeling Diachronic Trajectories

With a basic notion of how diachronic systems can evolve

given di�erent learning algorithms, we turn next to the

question of population trajectories. While we can al-

ready see that some evolutionary trajectories have a \lin-

guistically classical" S-shape, their smoothness can vary.

However, our formalization allows us to say much more

than this. Unlike the previous work in diachronic lin-

guistics that we are familiar with, we can explore the

space of possible trajectories, examining factors that af-

fect their evolutionary time course, without assuming an

a priori S-shape.

For example, Bailey (1973) proposed a \wave" model

of linguistic change: linguistic replacements follow an S-

shaped curve over time. In Bailey's own words (taken
8
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a
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b
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b
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d
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b
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b
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c
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p
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c
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c
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c
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h
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c
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c
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h
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c
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c
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c
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c
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c
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c
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c
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c
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b
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p
e
a
k
e
r
s
in

t
h
e
c
o
m
-

m
u
n
it
y
a
s
t
h
e
s
e
n
t
e
n
c
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c
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c
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c
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c
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c
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p
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c
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d
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d
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e
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=
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c
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c
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c
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b
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p
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b
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c
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c
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b
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p
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b
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b
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r
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h
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p
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m
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c
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h
e

s
y
s
t
e
m

m
o
v
e
s
in

d
i�
e
r
e
n
t
w
a
y
s
a
s
p
v
a
r
ie
s
.
W
h
e
n
p
is

v
e
r
y
s
m
a
ll
(
0
.0
5
)
,
t
h
a
t
is
,
s
e
n
t
e
n
c
e
s
c
o
m
m
o
n
t
o
L
1
a
n
d

L
2
o
c
c
u
r
in
fr
e
q
u
e
n
t
ly
,
in

t
h
e
lo
n
g
r
u
n
t
h
e
p
e
r
c
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p
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r
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h
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c
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p
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c
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c
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c
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r
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n
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c
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c
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c
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b
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p
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p
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n
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p
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p
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p
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p
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p
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e
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h
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p
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p
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h
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h
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h
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b
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c
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n
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Figure 7: The evolution of L2 speakers in the community

for various values of p (a parameter related to the sen-

tence distributions Pi, see text). The algorithmused was

the TLA, the inital population was homogeneous, speak-

ing only L1: The curves for p = 0:05; 0:75; and 0:95 have

been plotted as solid lines.

dynamical system has a speci�c update procedure ac-

cording to which the states evolve from some homoge-

neous initial population. A more complete characteri-

zation of the dynamical system would be achieved by

obtaining phase-space plots of this system. Such phase-

space plots are pictures of the state-space S �lled with

trajectories obtained by letting the system evolve from

various initial points (states) in the state space.

4.3.1 Phase-Space Plots: Grammatical
Trajectories

We have described earlier the relationship between

the state of the population in one generation and the

next. In our case, let � denote an 8-dimensional vector

variable (state variable). Speci�cally, � = (�1; : : : ; �8)
0

(with
P8

i=1
�i) as we discussed before. The following

schema reiterates the chain of dependencies involved in

the update rule governing system evolution. The state

of the population at time t (in generations), allows us to

compute the transition matrix T for the Markov chain

associated with the memoryless learner. Now, depending

upon whether we want (1) an asymptotic analysis or (2)

a �nite sample analysis, we compute (1) the limiting

behavior of T
m
as m (the number of examples) goes to

in�nity (for an asymptotic analysis), or (2) the value of

T
N

(where N is the number of examples after which

maturation occurs). This allows us to compute the next

state of the population. Thus �(t + 1) = g(�(t)) where

g is a complex non-linear relation.

�(t) =) P on �� =) T =) T

m
=) �(t + 1)

If we choose a certain initial condition �1; the system will

evolve according to the above relation and one can obtain

a trajectory of � in the 8 dimensional space over time.

Each initial condition yields a unique trajectory and one

••••
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Figure 8: Subspace of a phase-space plot. The plot shows

(�1(t); �2(t)) as t varies, i.e., the proportion of speakers

speaking languages L1 and L2 in the population. The

initial state of the population was homogeneous (speak-

ing language L1). The algorithm used was +Greedy

�Single value.

can then plot these trajectories obtaining a phase-space

plot. Each such trajectory corresponds to a line in the

8-dimensional plane given by
P8

i=1 �i = 1: One cannot

directly display such a high dimensional object, but we

plot in �gure 8 the projection of a particular trajectory

onto a two dimensional subspace given by (�1(t); �2(t))

(the proportion of speakers of L1 and L2) at di�erent

points in time.

As mentioned earlier, with a di�erent initial condition

we get a di�erent grammatical trajectory. The complete

state space picture is thus �lled with all the di�erent

trajectories corresponding to di�erent initial conditions.

Fig. 9 shows this.

4.3.2 Stability Issues

The phase-space plots show that many initial condi-

tions yield trajectories that seem to converge to a single

point in the state space. In the dynamical systems termi-

nology, this corresponds to a �xed point of the system|

a population mix that stays at the same composition.

Many natural questions arise at this stage. What are

the conditions for stability? How many �xed points are

there in a given system? How can we solve for them?

These are interesting questions but detailed answers are

not within the scope of the current paper. In lieu of a

more complete analysis we state here a �xed point theo-

rem that allows one to characterize the stable population

mixes.

First, some notational preliminaries. As before, let

Pi be the distribution on the sentences of the ith lan-

guage Li: From Pi; we can construct Ti; the transition

matrix whose elements are given by the explicit proce-

dure documented in Niyogi and Berwick (1993, 1994a,

1994b). The matrix Ti models a +Greedy �Single value
learner if the target language is Li (with sentences from

11
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Figure 9: Subspace of a Phase-space plot. The plot

shows (�1(t); �2(t)) as t varies for di�erent nonhomoge-

neous initial population conditions. The algorithm used

was +Greedy �Single value.

the target produced with Pi). Similarly, one can obtain

the matrices for other learning variants. Note that �xing

the Pi's �xes the Ti's and in so the Pi's are a di�erent

sort of \parameter" that characterize how the dynamical

system evolves.
16

If the state of the parent population at

time t is �(t); then it is possible to show that the (true)

transition matrix for �Greedy �Single value learners is

T =
P8

i=1 �i(t)Ti: For the �nite case analysis, the fol-

lowing theorem holds:

Theorem 1 (Finite Case) A �xed point (stable point)

of the grammatical dynamical system (obtained by a

�Greedy �Single value learner operating on the 8 param-

eter space with k examples to choose its �nal hypothesis)

is a solution of the following equation:

�
0
= (�1; : : : ; �8) = (1; : : : ; 1)

0
(

8X

i=1

�iTi)
k

Proof (Sketch): This equation is obtained simply by

setting �(t+1) = �(t). Note however, that this is an ex-

ample of a nonlinear multidimensional iterated function

map. The analysis of such dynamical systems is non-

trivial, and our theorem by no means captures all the

possibilities.

We can similarly state a theorem for the limiting

(asymptotic) case analysis.

Theorem 2 (Limiting or Asymptotic Analysis)
A �xed point (stable point) of the grammatical dynami-

cal system (obtained by a �Greedy �Single value learner

16There are thus two distinct kinds of parameters in our
model: �rst, parameters that de�ne the 2n languages and
de�ne the state-space of the system; and second, the Pi's
the characterize the way in which the system evolves and
are therefore the parameters of the complete grammatical
dynamical system.

operating on the 8 parameter space (given in�nite exam-

ples to choose its mature hypothesis) is a solution of the

following equation:

�
0
= (�1; : : : ; �8) = (1; : : : ; 1)

0
(I �

8X

i=1

�iTi +ONE)
�1

where ONE is the 8� 8 matrix with all its entries equal

to 1.

Proof: Again this is trivially obtained by setting �(t+

1) = �(t): The expression on the right provides an ana-

lytical expression for the update equation in the asymp-

totic case. See Resnick (1992) for details. All the caveats

mentioned in the proof section of the previous theorem

apply here as well.

Remark. We have just touched the surface as far as

the theoretical characterization of these grammatical dy-

namical systems are concerned. The main purpose of

this paper is to show that these dynamical systems ex-

ist as a logical consequence of assumptions about the

grammatical space and an acquisition theory. We have

exhibited only some preliminary simulations with these

systems. From a theoretical perspective, it would be

much more valuable to have complete characterizations

of such systems. Strogatz (1993) suggests that nonlin-

ear multidimensional mappings with greater than 3 di-

mensions are likely to be chaotic. It is also interesting

to note that iterated function maps de�ne fractal sets .

Such investigations are beyond the scope of this paper,

and might well be a fruitful area for further research.

5 Example 2: From Old French to

Modern French; Clark and Roberts

Analysis Revisited

So far, our examples have been based on a 3-parameter

linguistic theory for which we derived several di�erent

dynamical systems. Our goal was to concretely instan-

tiate our philosophical arguments, sketching the factors

that inuence evolutionary trajectories. In this section,

we briey consider a di�erent parametric linguistic sys-

tem studied by Clark and Roberts, 1993. The histori-

cal context in which Clark and Roberts advanced their

linguistic proposal is the evolution of Modern French

from Old French. Their parameters are intended to cap-

ture some, but of course not all, of this change. They

too use a learning algorithm|in their case, a genetic

algorithm|to account for historical change but do not

analyze their model from the dynamical systems view-

point. Here we adopt their parameterization, with all

its strengths and weaknesses, but consider an alternative

learning paradigm and the dynamical systems approach.

Extensive simulations in the earlier section reveal that

while the learnability problem of the 3-parameter space

can be solved by stochastic hill climbing algorithms, the

long term evolution of these algorithms have a behavior

that is at variance with the diachronic change actually

observed in historical linguistics. In particular, we saw

how there was a tendency to gain rather than lose the V2

parameter setting. While this could well be an artifact of
12



the class of learning algorithms considered, a more likely

explanation is that loss of V2 (observed in many of the

world's languages like French, English, and so forth) is

due to an interaction of parameters and triggers other

than those considered in the previous section. We inves-

tigate this possibility and begin by �rst reviewing Clark

and Roberts' alternative parametric theory.

5.1 The Parametric Subspace and Data

We now consider a syntactic space involving the with

5 (boolean-valued) parameters. We do not attempt

to describe these parameters. The interested reader

should consult Haegeman (1991) for details and Clark

and Roberts (1993) for details.

1. p1: Case assignment under agreement (p1 = 1) or

not (p1 = 0).

2. p2: Case assignment under government (p2 = 1) or

not ((p2 = 0). Relevant triggers for this parameter

include \Adv V S", \S V O".

3. p3: Nominative clitics.

4. p4: Null Subject. Here relevant triggers would in-

clude \wh V S O".

5. p5: Verb-second V2. Triggers include \Adv V S" ,

and \S V O".

These 5 parameters de�ne a 32 grammar space. Each

grammar in this parametrized system can be represented

by a string of 5 bits depending upon the values of

p1; : : : ; p5; for instance, the �rst bit position corresponds

to case assignment under agreement. We can now look

at the surface strings (sentences) generated by each such

grammar. For the purpose of explaining how Old French

changed to Modern French, Clark and Roberts consider

the following key sentences. The parameter settings re-

quired to generate each sentence are provided in brack-

ets; an asterisk is a \doesn't matter" value and an \X"

means any phrase.

The Relevant Data

adv V S [*1**1]

SVO [*1**1] or [1***0]

wh V S O [*1***]

wh V S O [**1**]

X (pro) V O [*1*11] or [1**10]

X V s [**1*1]

X s V [**1*0]

X S V [1***0]

(S) V Y [*1*11]

The parameter settings provided in brackets set the

grammarswhich generate the sentence. For example, the

sentence form \adv V S" (corresponding to quickly ran

John), an incorrect word order in English) is generated

by all grammars that have case assignment under govern-

ment (the second element of the array set to 1, p2 = 1)

and verb second movement (p5 = 1). The other parame-

ters can be set to any value. Clearly there are 8 di�erent

grammars that can generate (alternatively parse) this

sentence. Similarly there are 16 grammars that generate

the form S V O (8 corresponding to parameter settings

of [*1**1] and 8 corresponding to parameter settings of

[1***0]) and 4 grammars that generate ((s) V Y).

Remark. Note that the sentence set Clark and Roberts

considered is only a subset of the the total number of

degree-0 sentences generated by the 32 grammars in

question. In order to directly compare their model with

ours, we have not attempted to expand the data set or �ll

out the space any further. As a result, all the grammars

do not have unique extensional properties, i.e., some gen-

erate the same set of sentences.

5.2 The Case of Diachronic Syntax Change in
French

Continuing with Clark and Roberts' analysis, within this

parameter space, it is historically observed that the lan-

guage spoken in France underwent a parametric change

from the twelfth century to modern times. In particu-

lar, they point out that both V2 and prodrop are lost,

illustrated by examples like these:

Loss of null subjects: pro-drop

(1) (Old French; +pro drop)

Si �rent (pro) grant joie la nuit

`thus (they) made great joy the night'

(2) (Modern French; �pro drop)

�Ainsi s'amusaient bien cette nuit

`thus (they) had fun that night'

Loss of V2

(3) (Old French; +V2)

Lors oirent ils venir un escoiz de tonoire

`then they heard come a clap of thunder'

(4) (Modern French; �V2)
�Puis entendirent-ils un coup de tonerre. `then they

heard a clap of thunder'

Clark and Roberts observe that it has been argued

this transition was brought about by the introduction

of new word orders during the �fteenth and sixteenth

centuries resulting in generations of children acquiring

slightly di�erent grammars and eventually culminating

in the grammar of modern French. A brief reconstruc-

tion of the historical process (after Clark and Roberts,

1993) runs as follows.

Old French; setting [11011] The language spoken

in the twelfth and thirteenth centuries had verb-second

movement and null subjects, both of which were dropped

by the twentieth century. The sentences generated by

the parameter settings corresponding to Old French are:

Old French

adv V S { [*1**1]

S V O { [*1**1] or [1***0]

wh V S O [*1***]

X (pro) V O [*1*11] or [1**10]

Note that from this data set it appears that both

the Case agreement and nominative clitics parameters

remain ambiguous. In particular, Old French is in a

subset-superset relation with another language (gener-

ated by the parameter settings of 11111). In this case,

possibly some kind of subset principle (Berwick, 1985)
13



could be used by the learner; otherwise it is not clear how

the data would allow the learner to converge to the Old

French grammar in the �rst place. None of the �Greedy,
�Single value algorithms would converge uniquely to the

grammar of Old French.

The string (X)VS occurs with frequency 58% and

SV(X) occurs with 34% in Old French texts. I t is argued

that this frequency of (X)VS is high enough to cause the

V2 parameter to trigger to +V2.

Middle French In Middle French, the data is not con-

sistent with any of the 32 target grammars (equivalent

to a heterogenous population). Analysis of texts from

that period reveal that some old forms (like Adv V S)

decreased in frequency and new forms (like Adv S V)

increased. It is argued in Clark and Roberts that such

a frequency shift causes "erosion" of V2, brings about

parameter instability and ultimately convergence to the

grammar of Modern French. In this transition period

(i.e. when Middle French was spoken/written) the data

is of the following form:

adv V S [*1**1]; SVO [*1**1] or [1***0]; wh V S

O [*1***]; wh V s O [**1**]; X (pro)V O [*1*11] or

[1**10]; X V s [**1*1]; X s V [**1*0]; X S V [1***0];

(s)VY [*1*11]

Thus, we have old sentence patterns like Adv V S

(though it decreases in frequency and becomes only

10%), SVO, X (pro)V O and whVSO. The new sentence

patterns which emerge at this stage are adv S V (in-

creases in frequency to become 60%), X subjclitic V, V

subjclitic (pro)V Y (null subjects) , whV subjclitic O.

Modern French [10100] By the eighteenth century,

French had lost both the V2 parameter setting as well

as the null subject parameter setting. The sentence pat-

terns consistent with Modern French parameter settings

are SVO [*1**1] or [1***0], X S V [1***0], V s O [**1**].

Note that this data, though consistent with Modern

French, will not trigger all the parameter settings. In

this sense, Modern French (just like Old French) is not

uniquely learnable from data. However, as before, we

shall not concern ourselves overly with this, for the rel-

evant parameters (V2 and null subject) are uniquely set

by the data here.

5.3 Some Dynamical System Simulations

We can obtain dynamical systems for this parametric

space, for a TLA (or TLA-like) algorithm in a straight-

forward fashion. We show the results of two simulations

conducted with such dynamical systems.

5.3.1 Homogeneous Populations [Initial{Old
French]

We conducted a simulation on this new parameter

space using the Triggering Learning Algorithm. Recall

that the relevant Markov chain in this case has 32 states.

We start the simulation with a homogeneous population

speaking Old French (parameter setting = 11011). Our

goal was to see if misconvergence alone, could drive Old

French to Modern French.

Just as before, we can observe the linguistic compo-

sition of the population over several generations. It is

observed that in one generation, 15 percent of the chil-

dren converge to grammar 01011; 18 percent to grammar
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Figure 10: Evolution of speakers of di�erent languages

in a population starting o� with speakers only of Old

French.

01111; 33 percent to grammar 11011 (target) and 26 per-

cent to grammar 11111 with very few having converged

to other grammars. Thereafter, the population consists

mostly of speakers of these 4 languages, with one im-

portant di�erence: 15 percent of the speakers eventually

lose V2. In particular, they have acquired the gram-

mar 11110. Shown in �g. 10 are the percentage of the

population speaking the 4 languages mentioned above

as they evolve over 20 generations. Notice that in the

space of a few generations, the speakers of 11011, and

01011 have dropped out altogether. Most of the popula-

tion now speaks language 1111 (46 percent) and 01111

(27 percent). Fifteen percent of the population speaks

11110 and there is a smattering of other speakers. The

population remains roughly stable in this con�guration

thereafter.

Observations:

1. On examining the four languages to which the

system converges after one generation, we noice that

they share the same settings for the principles [Case as-

signemnt under government], [pro drop], and [V2]. These

correspond to the three parameters which are uniquely

set by data from Old French. The other two parameters

can take on any value. Consequently 4 languages are

generated all of which satisfy the data from Old French.

2. Recall our earlier remark that due to insu�cient

data, there were equivalent grammars in the parameter

system. It turns out that in this particular case, the

grammars (01011) and (11011) are identical as far as

their extensional properties are concerned; as are the

grammars (11111) and (01111).

3. There is subset relation between the two sets de-

scribed in (2). The grammar (11011) is in a subset rela-

tion with (11111). This explains why after a few gener-

ations most of the population switches to either (11111)

or (01111) (the superset grammars).

4. An interesting feature of the simulation is that 15

percent of the population eventually acquires the gram-
14



mar (11110), i.e., they have lost the V2 parameter set-

ting. This is the �rst sign of instability of V2 that we

have seen in our simulations so far (for greedy algorithms

which are psychologically preferred). Recall that for such

algorithms, the V2 parameter was very stable in our pre-

vious example.

5.3.2 Heterogenous Populations (Mixtures)

The earlier section showed that with no new (foreign)

sentence patterns the grammatical system starting out

with only Old French speakers showed some tendency to

lose V2. However, the grammatical trajectory did not

terminate in Modern French. In order to more closely

duplicate this historically observed trajectory, we ex-

amine alternative inital conditions. We start our sim-

ulations with an initial condition which is a mixture of

two sources; data from Old French and data from New

French (reproducing in this sense, data similar to that

obtained from the Middle French period). Thus chil-

dren in the next generation observe new surface forms.

Most of the surface forms observed in Middle French are

covered by this mixture.

Observations:

1. On performing the simulations using the TLA as a

learning algorithm on this parameter space, an interest-

ing pattern is observed. Suppose the learner is exposed

to sentences with 90 percent generated by Old French

grammar (11011) and 10 percent by Modern French

grammar (10100), within one generation 22 percent of

the learners have converged to the grammar (11110) and

78 percent to the grammar (11111). Thus the learn-

ers set each of the parameter values to 1 except the

V2 parameter setting. Now Modern French is a non-V2

language; and 10 percent of data from Modern French

is su�cient to cause 22 percent of the speakers to lose

V2. This is the behaviour over one generation. The new

population (consisting of 78 percent speaking grammar

(11111) and 22 percent speaking grammar (11110)) re-

mains stable for ever.

2. Fig. 11 shows the proportion of speakers who have

lost V2 after one generation, as a function of the propor-

tion of sentences from the Modern French Source. The

shape of the curve is interesting. For small values of

the proportion of the Modern French source, the slope

of the curve is greater than 1. Thus there is a greater

tendency of speakers to lose V2 than to retain it. Thus

10 percent of novel sentences from the Modern French

source causes 20 percent of the population to lose V2;

similarly 20 percent of novel sentences from the Modern

French source causes 40 percent of the speakers to lose

V2. This e�ect wears o� later. This seems to capture

computationally the intuitive notion of many linguists

that a small change in inputs provided to children could

drive the system towards larger change.

3. Unfortunately, there are several shortcomings of

this particular simulation. First, we notice that mixing

Old and Modern French sources does not cause the de-

sired (historically observed) grammatical trajectory from

Old to Modern French (corresponding in our system to

movement from state (11011) to state (10100) in our

Markov Chain). Although we �nd that a small injection
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Figure 11: Tendency to lose V2 as a result of new

word orders introduced by Modern French source in our

Markov Model.

of sentences fromModern French causes a larger percent-

age of the population to lose V2 and gain subject clitics

(which are historically observed phenomena), neverthe-

less, the entire population retains the null subject set-

ting and case assignment under government. It should

be mentioned that Clark and Roberts argue that the

change in case assignment under government is the driv-

ing force which allows alternate parse-trees to be formed

and causes the parametric loss of V2 and null subject.

In this sense, it is a more fundamental change.

4. If the dynamical system is allowed to evolve, it ends

up in either of the two states (11111) or (11110). This is

essentially due to the subset relations these states (lan-

guages) have with other languages in the system. An-

other complication in the system is the equivalence of

several di�erent grammars (with respect to their surface

extensions) e.g. given the data we are considering, the

grammars (01011) and (11011) (Old French) generate

the same sentences. This leads to multiplicity of paths,

convergence to more than one target grammar and gen-

eral inelegance of the state-space description.

Future Directions: There are several possibilities to con-

sider here.

1. Using more data and �lling out the state-space

might yield greater insight. Note that we can also study

the development of other languages like Italian or Span-

ish within this framework and that might be useful.

2. TLA-like hill climbing algorithms do not pay at-

tention to the subset principle explicitly. It would be

interesting to explicitly program this into the learning

algorithm and observe the evolution thereafter.

3. There are often cases when several di�erent gram-

mars generate the same sentences or atleast equally well

�t the data. Algorithms which look only at surface

strings are unable then to distinguish between them re-

sulting in convergence to all of them with di�erent prob-

abilities in our stochastic setting. We saw an exam-

ple of this for convergence to four states earlier. Clark
15



and Roberts suggest an elegance criterion by looking at

the parse-trees to decide between these grammars. This

di�erence between strong generative capacity and weak

generative capacity can easily be incorporated into the

Markov model as well. The transition probabilites, now,

will not depend upon the surface properties of the gram-

mars alone, but also upon the elegance of derivation for

each surface string.

4. Rather than the evolution of the population, one

could look at the evolution of the distribution of words.

One can also obtain bounds on frequencies with which

the new data in the Middle French Period must occur so

that the correct drift is observed.

6 Conclusions and Directions for

Future Research

In this paper, we have argued that any combination

of (grammatical theory, learning paradigm) leads to a

model of grammatical evolution and diachronic change.

A learning theory (paradigm) attempts to account for

how children (the individual child) solve the problem

of language acquisition. By considering a population of

such \child learners", we have arrived at a model of the

emergent, global, population behavior. The key point

is that such a model is a logical consequence of gram-

matical, and learning theories. Consequently, whenever

a linguist suggests a new grammatical, or learning the-

ory, they are also suggesting a particular evolutionary

theory|and the consequences of this need to be exam-

ined.

Historical Linguistics and Diachronic Criteria

Froma programmatic persepective, this paper has two

important consequences. First, it allows us to take a

formal, analytic view of historical linguistics. Most ac-

counts of language change have tended to be descriptive

in nature (though signi�cant exceptions are the work of

Lightfoot, Kroch, Clark and Roberts, among others). In

contrast, we place the study of historical linguistics (di-

achronic phenomena) on a scienti�c
17

platform. In this

sense, our conception of historical linguistics is closest

in spirit to evolutionary theory and population biology
18

(which attempts to describe the origin and changing pat-

terns of life) and cosmology (which attempts to describe

the origin and evolution of the physical universe).

Second, it allows us to formally pose a diachronic

criterion for the adequacy of grammatical theories. A

signi�cant body of work in learning theory, has al-

ready sharpened the learnability criterion for grammat-

ical theories|in other words, the class of grammars G
must be learnable by some psychologically plausible al-

gorithm from primary linguistic data. Now we can go

one step further. The class of grammars G (along with

a proposed learning algorithm A) can be reduced to a

17By scienti�c, we mean, the construction of models with
explanatory, and predictive powers{ models which can be
falsi�ed in the sense of Popper.

18Indeed, most previous attempts to model language
change, like that of Clark and Roberts (1993), and Kroch
(1990) have been inuenced by the evolutionary models.

dynamical system whose evolution must match that of

the true evolution of human languages (as reconstructed

from historical data).

We have attempted to lay the framework for the devel-

opment of research tools to study historical phenomena.

To concretely demonstrate that the grammatical dynam-

ical systems need not be impossibly di�cult to compute

(or simulate), we explicitly showed how to transform

parametrized theories, and memoryless learning algo-

rithms to dynamical systems. The speci�c simulations

of this paper are far too incomplete to have any long

term linguistic implications, though, we hope, it cer-

tainly forms a starting point for research in this direc-

tion. Nevertheless, there were certain interesting results

obtained.

1. We saw that the V2 parameter was more stable

in the 3-parameter case, than it was in the 5 parameter

case. This suggests that the loss of V2 (actually observed

in history) might have more to do with the choice of

parametrizations than learning algorithms, or primary

linguistic data (though, we suggest great caution, before

drawing strong conclusions on the basis of this study).

2. We were able to shed some light on the time course

of evolution. In particular, we saw how this was a deriva-

tive of more fundamental assumptions about initial pop-

ulation conditions, sentence distributions, and learning

algorithms.

3. We were able to formally develop notions of sys-

tem stability. Thus, certain parameters could change

with time, others might remain stable. This can now be

measured, and the conditions for stability or change can

be investigated.

4. We were able to demonstrate how one could tinker

with the system (by changing the algorithm, or the sen-

tence distributions, or maturational time) to allow evo-

lution in certain directions. This would suggest the kinds

of changes needed in linguistics for greater explanatory

adequacy.

Further Research

This has been our �rst attempt to de�ne the bound-

aries of the problem. There are several directions of fur-

ther research.

1. From a linguistic perspective, the most interesting

thing to do, would perhaps be the examination of alter-

native parametrized theories, and to track the change of

certain languages in the context of these theories (much

like our attempt to track the change of French in this

paper). Some worthwhile attempts would include a)

the study of parametric stress systems (Halle and Id-

sardi, 1992){and in particular, the evolution of modern

Greek stress patterns from proto-Indo European; b) the

investigation of the possibility that creoles correspond to

�xed points in parametric dynamical systems, a possibil-

ity which might explain the striking fact that all creoles

(irrespective of the linguistic origin, i.e., initial linguistic

composition of the population) have the same grammar;

c) the evolution of modern Urdu, with Hindi syntax, and

Persian vocabulary.

2. From a mathematical perspective, one could take

this research in many directions including a) the formal-
16



ization of the update rule for other grammatical theories

and learning algorithms, and the characterization of the

dynamical systems implied therein b) the investigation

of stability issues more closely, and characterizing better

the phase-space plots c) recall that our dynamical sys-

tems are multi-dimensional non-linear iterated function

mappings|a recipe for chaotic behaviour, and a possi-

bility to investigate further.

It is our hope that research in this line will mature

to make useful contributions, both to linguistics, and in

view of the unusual nature of the dynamical systems in-

volved, to the study of such systems from amathematical

perspective.

References

[1] R. C. Berwick. The Acquisition of Syntactic Knowl-

edge. MIT Press, 1985.

[2] R. Clark and I. Roberts. A computational model

of language learnability and language change. Lin-

guistic Inquiry, 24(2):299{345, 1993.

[3] G. Altmann et al. A law of change in language.

In B. Brainard, editor, Historical Linguistics, pages

104{115, Studienverlag Dr. N. Brockmeyer., 1982.

Bochum, FRG.

[4] E. Gibson and K. Wexler. Triggers. Linguistic In-

quiry, 25, 1994.

[5] L. Haegeman. Introduction to Government and

Binding Theory. Blackwell: Cambridge, USA, 1991.

[6] A. S. Kroch. Grammatical theory and the quantita-

tive study of syntactic change. In Paper presented

at NWAVE 11, Georgetown Universtiy, 1982.

[7] A. S. Kroch. Function and gramar in the his-

tory of english: Periphrastic "do.". In Ralph Fa-

sold, editor, Language change and variation. Ams-

terdam:Benjamins. 133-172, 1989.

[8] Anthony S. Kroch. Reexes of grammar in pat-

terns of language change. Language Variation and

Change, pages 199{243, 1990.

[9] D. Lightfoot. How to Set Parameters. MIT Press,

Cambridge, MA, 1991.

[10] B. Mandelbrot. The Fractal Geometry of Nature.

New York, NY: W. H. Freeman and Co., 1982.

[11] P. Niyogi. The Informational Complexity of Learn-

ing From Examples. PhD thesis, Massachussetts

Institute of Technology, Cambridge, MA, 1994.

[12] P. Niyogi and R. C. Berwick. Formal models for

learning �nite parameter spaces. In P. Broeder and

J. Murre, editors,Models of Language Learning: In-

ductive and Deductive Approaches, chapter 14. MIT

Press; to appear, Cambridge, MA.

[13] P. Niyogi and R. C. Berwick. Formalizing triggers:

A learning model for �nite parameter spaces. Tech.

Report 1449, AI Lab., M.I.T., 1993.

[14] P. Niyogi and R. C. Berwick. A markov language

learning model for �nite parameter spaces. In Pro-

ceedings of 32nd meeting of Association for Com-

putational Linguistics, 1994.

[15] C. Osgood and T. Sebeok. Psycholinguistics: A

survey of theory and research problems. Journal of

Abnormal and Social Psychology, 49(4):1{203, 1954.

[16] S. Resnick. Adventures in Stochastic Processes.

Birkhauser, 1992.

[17] S. Strogatz. Nonlinear Dynamics and Chaos.

Addison-Wesley, 1993.

[18] U. Weinreich, W. Labov, and M. I. Herzog. Em-

pirical foundations for a theory of language change.

In W. P. Lehmann, editor, Directions for historical

linguistics: A symposium., pages 95{195. Austin:

University of Texas Press, 1968.

A The 3-parameter system of Gibson

and Wexler (1994)

The 3-parameter system discussed in Gibson and Wexler

(1994) includes two parameters from X-bar theory.

Speci�cally, they relate to speci�er-head relations, and

head-complement relations in phrase structure. The fol-

lowing parmetrized production rules denote this:

XP ! SpecX

0
(p1 = 0) or X

0
Spec(p1 = 1)

X

0 ! CompX

0
(p2 = 0) or X

0
Comp(p2 = 1)

X

0 ! X

A third parameter is related to verb movement. In

German, and Dutch root declarative clauses, it is ob-

served that the verb occupies exactly the second posi-

tion. This Verb-Second phenomenon might or might not

be present in the world's languages, and this variation is

captured by means of the V2 parameter.

The following table provides the unembedded (degree-

0) sentences from each of the 8 grammars (languages)

obtained by setting the 3 parameters of example 1 to

di�erent values. The languages are referred to as L1

through L8:
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