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Abstract

Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for
compactly representing probabilistic information in a variety of unsupervised and supervised learning
problems. Often the parameters used in these networks need to be learned from examples. Unfortunately,
estimating the parameters via exact probabilistic calculations (i.e, the EM-algorithm) is intractable even
for networks with fairly small numbers of hidden units. We propose to avoid the infeasibility of the E step
by bounding likelihoods instead of computing them exactly. We introduce extended and complementary
representations for these networks and show that the estimation of the network parameters can be made
fast (reduced to quadratic optimization) by performing the estimation in either of the alternative domains.
The complementary networks can be used for continuous density estimation as well.
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1 Introduction

The appeal of probabilistic networks for knowledge rep-
resentation, inference, and learning (Pearl, 1988) derives
both from the sound Bayesian framework and from the
explicit representation of dependencies among the net-
work variables which allows ready incorporation of prior
information into the design of the network. The Bayesian
formalismpermits full propagation of probabilistic infor-
mation across the network regardless of which variables
in the network are instantiated. In this sense these net-
works can be \inverted" probabilistically.

This inversion, however, relies heavily on the use of
look-up table representations of conditional probabili-
ties or representations equivalent to them for modeling
dependencies between the variables. For sparse depen-
dency structures such as trees or chains this poses no
di�culty. In more realistic cases of reasonably inter-
dependent variables the exact algorithms developed for
these belief networks (Lauritzen & Spiegelhalter, 1988)
become infeasible due to the exponential growth in the
size of the conditional probability tables needed to store
the exact dependencies. Therefore the use of compact
representations to model probabilistic interactions is un-
avoidable in large problems. As belief network models
move away from tables, however, the representations can
be harder to assess from expert knowledge and the im-
portant role of learning is further emphasized.

Compact representations of interactions between sim-
ple units have long been emphasized in neural networks.
Lacking a thorough probabilistic interpretation, how-
ever, classical feed-forward neural networks cannot be
inverted in the above sense; e.g. given the output pat-
tern of a feed-forward neural network it is not feasible
to compute a probability distribution over the possible
input patterns that would have resulted in the observed
output. On the other hand, stochastic neural networks
such as Boltzman machines admit probabilistic interpre-
tations and therefore, at least in principle, can be in-
verted and used as a basis for inference and learning in
the presence of uncertainty.

Sigmoid belief networks (Neal, 1992) form a subclass
of probabilistic neural networks where the activation
function has a sigmoidal form { usually the logistic func-
tion. Neal (1992) proposed a learning algorithm for these
networks which can be viewed as an improvement of
the algorithm for Boltzmann machines. Recently Hin-
ton et al. (1995) introduced the wake-sleep algorithm
for layered bi-directional probabilistic networks. This
algorithm relies on forward sampling and has an appeal-
ing coding theoretic motivation. The Helmholtz machine
(Dayan et al., 1995), on the other hand, can be seen
as an alternative technique for these architectures that
avoids Gibbs sampling altogether. Dayan et al. also
introduced the important idea of bounding likelihoods
instead of computing them exactly. Saul et al. (1995)
subsequently derived rigorous mean �eld bounds for the
likelihoods. In this paper we introduce the idea of alter-
native { extended and complementary { representations
of these networks by reinterpreting the nonlinearities in
the activation function. We show that deriving likeli-
hood bounds in the new representational domains leads

to e�cient (quadratic) estimation procedures for the net-
work parameters.

2 The probability representations

Belief networks represent the joint probability of a set
of variables fSg as a product of conditional probabilities
given by

P (S1; : : : ; Sn) =

nY
k=1

P (Skjpa[k]); (1)

where the notation pa[k], \parents of Sk", refers to all
the variables that directly inuence the probability of Sk
taking on a particular value (for equivalent representa-
tions, see Lauritzen et al. 1988). The fact that the joint
probability can be written in the above form implies that
there are no \cycles" in the network; i.e. there exists an
ordering of the variables in the network such that no
variable directly inuences any preceding variables.

In this paper we consider sigmoid belief networks
where the variables S are binary (0/1), the conditional
probabilities have the form

P (Sijpa[i]) = g((2Si � 1)
X
j

WijSj) (2)

and the weights Wij are zero unless Sj is a parent of
Si, thus preserving the feed-forward directionality of the
network. For notational convenience we have assumed
the existence of a bias variable whose value is clamped
to one. The activation function g(�) is chosen to be the
cumulative Gaussian distribution function given by

g(x) =
1p
2�

Z x

�1

e�
1

2
z
2

dz =
1p
2�

Z
1

0

e�
1

2
(z�x)2dz

(3)
Although very similar to the standard logistic func-
tion, this activation function derives a number of ad-
vantages from its integral representation. In particular,
we may reinterpret the integration as a marginalization
and thereby obtain alternative representations for the
network. We consider two such representations.

We derive an extended representation by making ex-
plicit the nonlinearities in the activation function. More
precisely,

P (Sijpa[i]) = g((2Si � 1)
X
j

WijSj)

=

Z
1

0

1p
2�

e
�

1

2
[Zi�(2Si�1)

P
j
WijSj ]

2

dZi

def
=

Z
1

0

P (Si; Zijpa[i])dZi (4)

This suggests de�ning the extended network in terms
of the new conditional probabilities P (Si; Zijpa[i]). By
construction then the original binary network is obtained
by marginalizing over the extra variables Z. In this sense
the extended network is (marginally) equivalent to the
binary network.

We distinguish a complementary representation from
the extended one by writing the probabilities entirely in
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terms of continuous variables1. Such a representation
can be obtained from the extended network by a simple
transformation of variables. The new continuous vari-
ables are de�ned by ~Zi = (2Si � 1)Zi, or, equivalently,

by Zi = j ~Zij and Si = �( ~Zi) where �(�) is the step func-
tion. Performing this transformation yields

P ( ~Zijpa[i]) = 1p
2�

e
�

1

2
[ ~Zi�

P
j
Wij�( ~Zj)]

2

(5)

which de�nes a network of conditionally Gaussian vari-
ables. The original network in this case can be recovered

by conditional marginalization over ~Z where the condi-

tioning variables are �( ~Z).
Figure 1 below summarizes the relationships between

the di�erent representations. As will become clear later,
working with the alternative representations instead of
the original binary representation can lead to more ex-
ible and e�cient (least-squares) parameter estimation.

average 
over Z

Extended network
over {S, Z}

Original network
over {S}

augmentation

transformation of 
   variables

Complementary
network over {Z}

~

Figure 1: The relationship between the alternative rep-
resentations.

3 The learning problem

We consider the problem of learning the parameters of
the network from instantiations of variables contained
in a training set. Such instantiations, however, need not
be complete; there may be variables that have no value
assignments in the training set as well as variables that
are always instantiated. The tacit division between hid-
den (H) and visible (V) variables therefore depends on
the particular training example considered and is not an
intrinsic property of the network.

To learn from these instantiations we adopt the princi-
ple of maximum likelihood to estimate the weights in the
network. In essence, this is a density estimation prob-
lem where the weights are chosen so as to match the
probabilistic behavior of the network with the observed
activities in the training set. Central to this estimation is
the ability to compute likelihoods (or log-likelihoods) for
any (partial) con�guration of variables appearing in the
training set. In other words, if we let XV be the con-
�guration of visible or instantiated variables2 and XH

denote the hidden or uninstantiated variables, we need

1While the binary variables are the outputs of each unit
the continuous variables pertain to the inputs { hence the
name complementary.

2To postpone the issue of representation we use X to de-
note S, fS;Zg, or ~Z depending on the particular representa-
tion chosen.

to compute marginal probabilities of the form

logP (XV ) = log
X
XH

P (XV ; XH ) (6)

If the training samples are independent, then these log
marginals can be added to give the overall log-likelihood
of the training set

logP (training set) =
X
t

logP (XVt) (7)

Unfortunately, computing each of these marginal proba-
bilities involves summing (integrating) over an exponen-
tial number of di�erent con�gurations assumed by the
hidden variables in the network. This renders the sum
(integration) intractable in all but few special cases (e.g.
trees and chains). It is possible, however, to instead �nd
a manageable lower bound on the log-likelihood and op-
timize the weights in the network so as to maximize this
bound.

To obtain such a lower bound we resort to Jensen's
inequality:

logP (XV ) = log
X
XH

P (XH ; XV )

= log
X
XH

Q(XH )
P (XH ; XV )

Q(XH )

�
X
XH

Q(XH ) log
P (XH ; XV )

Q(XH )
(8)

Although this bound holds for all distributions Q(X)
over the hidden variables, the accuracy of the bound is
determined by how closely Q approximates the posterior
distribution P (XH jXV ) in terms of the Kullback-Leibler
divergence; if the approximation is perfect the divergence
is zero and the inequality is satis�ed with equality. Suit-
able choices for Q can make the bound both accurate
and easy to compute. The feasibility of �nding such Q,
however, is highly dependent on the choice of the repre-
sentation for the network.

4 Likelihood bounds in di�erent

representations

To complete the derivation of the likelihood bound
(equation 8) we need to �x the representation for the
network. Which representation to select, however, af-
fects the quality and accuracy of the bound. In addi-
tion, the accompanying bound of the chosen represen-
tation implies bounds in the other two representational
domains as they all code the same distributions over the
observables. In this section we illustrate these points
by deriving bounds in the complementary and extended
representations and discuss the corresponding bounds in
the original binary domain.

Now, to obtain a lower bound we need to specify the
approximate posterior Q. In the complementary rep-
resentation the conditional probabilities are Gaussians
and therefore a reasonable approximation (mean �eld)
is found by choosing the posterior approximation from
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the family of factorized Gaussians:

Q( ~Z) =
Y
i

1p
2�

e�( ~Zi�hi)
2
=2 (9)

Substituting this into equation 8 we obtain the bound

logP (S�) � �1

2

X
i

(hi � �jJijg(hj))
2

�1

2

X
ij

J2
ij
g(hj)g(�hj) (10)

The means hi for the hidden variables are adjustable pa-
rameters that can be tuned to make the bound as tight
as possible. For the instantiated variables we need to
enforce the constraints g(hi) = S�

i
to respect the in-

stantiation. These can be satis�ed very accurately by
setting hi = 4(2S�

i
� 1). A very convenient property

of this bound and the complementary representation in
general is the quadratic weight dependence { a property
very conducive to fast learning. Finally, we note that the
complementary representation transforms the binary es-
timation problem into a continuous density estimation
problem.

We now turn to the interpretation of the above bound
in the binary domain. The same bound can be obtained
by �rst �xing the inputs to all the units to be the means
hi and then computing the negative total mean squared
error between the �xed inputs and the corresponding
probabilistic inputs propagated from the parents. The
fact that this procedure in fact gives a lower bound on
the log-likelihood would be more di�cult to justify by
working with the binary representation alone.

In the extended representation the probability distri-
bution for Zi is a truncated Gaussian given Si and its
parents. We therefore propose the partially factorized
posterior approximation:

Q(S; Z) =
Y
i

Q(ZijSi)Q(Si) (11)

where Q(ZijSi) is a truncated Gaussian:

Q(ZijSi) = 1

g((2Si�1)hi)

1p
2�

e�
1

2
(Zi�(2Si�1)hi)

2

(12)

As in the complementary domain the resulting bound
depends quadratically on the weights. Instead of writing
out the bound here, however, it is more informative to
see its derivation in the binary domain.

A factorized posterior approximation (mean �eld)

Q(S) =
Q

i
qSi
i
(1� qi)

1�Si for the binary network yields
a bound

logP (S�) �
X
i

hSi log g(Pj
JijSj)i

+
X
i

h(1� Si) log(1� g(
P

j
JijSj))i

�
X
i

[qi log qi + (1� qi) log(1� qi)] (13)

where the averages h�i are with respect to the Q distribu-
tion. These averages, however, do not conform to analyt-
ical expressions. The tractable posterior approximation

in the extended domain avoids the problem by implicitly
making the following Legendre transformation:

logg(x) = [
1

2
x2 + log g(x)]� 1

2
x2

� �x� G(�)� 1

2
x2 (14)

which holds since x2=2 + log g(x) is a convex function.
Inserting this back into the relevant parts of equation 13
and performing the averages gives

logP (S�) �
X
i

[qi�i � (1� qi)��i]
X
j

Jijqj

�
X
i

[qiG(�i) + (1� qi)G(��i)]

�1

2
(
X
j

Jijqj)
2 � 1

2

X
ij

J2
ij
qj(1� gj)

�
X
i

[qi log qi + (1� qi) log(1� qi)] (15)

which is quadratic in the weights as expected. The mean
activities q for the hidden variables and the parameters
� can be optimized to make the bound tight. For the
instantiated variables we set qi = S�

i
.

5 Numerical experiments

To test these techniques in practice we applied the com-
plementary network to the problem of detecting motor
failures from spectra obtained during motor operation
(see Petsche et al. 1995). We cast the problem as a con-
tinuous density estimation problem. The training set
consisted of 800 out of 1283 FFT spectra each with 319
components measured from an electric motor in a good
operating condition but under varying loads. The test
set included the remaining 483 FFTs from the same mo-
tor in a good condition in addition to three sets of 1340
FFTs each measured when a particular fault was present.
The goal was to use the likelihood of a test FFT with
respect to the estimated density to determine whether
there was a fault present in the motor.

We used a layered 6! 20! 319 generative model to
estimate the training set density. The resulting classi�-
cation error rates on the test set are shown in �gure 2 as a
function of the threshold likelihood. The achieved error
rates are comparable to those of Petsche et al. (1995).

6 Conclusions

Network models that admit probabilistic formulations
derive a number of advantages from probability theory.
Moving away from explicit representations of dependen-
cies, however, can make these properties harder to ex-
ploit in practice. We showed that an e�cient estimation
procedure can be derived for sigmoid belief networks,
where standard methods are intractable in all but a few
special cases (e.g. trees and chains). The e�ciency of
our approach derived from the combination of two ideas.
First, we avoided the intractability of computing likeli-
hoods in these networks by computing lower bounds in-
stead. Second, we introduced new representations for
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Figure 2: The probability of error curves for missing
a fault (dashed lines) and misclassifying a good motor
(solid line) as a function of the likelihood threshold.

these networks and showed how the lower bounds in the
new representational domains transform the parameter
estimation problem into quadratic optimization.
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