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Abstract

In previous work (Olshausen & Field 1996), an algorithm was described for learning linear sparse codes
which, when trained on natural images, produces a set of basis functions that are spatially localized,
oriented, and bandpass (i.e., wavelet-like). This note shows how the algorithmmay be interpreted within a
maximum-likelihood framework. Several useful insights emerge from this connection: it makes explicit the
relation to statistical independence (i.e., factorial coding), it shows a formal relationship to the algorithm
of Bell and Sejnowski (1995), and it suggests how to adapt parameters that were previously �xed.
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1 Introduction

There has been much interest in recent years in unsuper-
vised learning algorithms for �nding e�cient representa-
tions of data. Among these are algorithms for sparse or
minimumentropy coding (Foldiak 1990; Zemel 1993; Ol-
shausen & Field 1996; Harpur & Prager 1996), indepen-
dent component analysis (Comon 1994; Bell & Sejnowski
1995; Amari et al. 1995; Pearlmutter & Parra 1996), and
hierarchical generative modeling (Dayan 1995; Hinton
et al. 1995). One �nds common threads among many
of these techniques, and this note is an attempt to tie
some of them together. In particular, I will focus on the
sparse coding algorithm of Olshausen and Field (1996)
and its relation to maximum-likelihood techniques. As
we shall see, forming this link enables one to see a for-
mal relationship to the independent component analysis
algorithm of Bell and Sejnowski (1995), which although
not originally described in terms of maximum-likelihood
may be understood in this light. I shall also show how
the algorithm may be cast in terms of mean-�eld theory
techniques in order to obtain a lower bound on the log-
likelihood, which shares some similarity to the use of a
\recognition distribution" in the Helmholtz machine of
Dayan et al. What emerges from this process is a bet-
ter understanding of the algorithm and how it may be
improved.

2 Learning linear sparse codes

In the sparse coding learning algorithmof Olshausen and
Field (1996), a set of basis functions, �i(~x), is sought
such that when an image, I(~x), is linearly decomposed
via these basis functions,

I(~x) =
X
i

ai�i(~x) ; (1)

the resulting coe�cient values, ai, are rarely active (non-
zero). In other words, the probability distribution over
the ai should be unimodal and peaked at zero with heavy
tails (positive kurtosis). This is accomplished by con-
structing an energy function of the form

E(I; aj�) =
X
~x

"
I(~x) �

X
i

ai�i(~x)

#2
+ �

X
i

S(ai) ;

(2)
and then minimizing it with respect to the ai and �i.
The �rst term in Equation 2 ensures that information is
preserved (i.e., that the �i span the input space), while
the second term incurs a penalty on activity so as to
encourage sparseness. The intuition behind the choice
of S is that it should favor among activity states with
equal variance (jaj2) those with the fewest number of
non-zero (or not-close-to-zero) components. The choices

experimented with include jaij, log(1 + a2i ), and �e
a2i .

Gradient descent on E is performed in two phases, one
nested inside the other: For each image presentation, E
is minimized with respect to the ai; the �i then evolve
by gradient descent on E averaged over many image pre-
sentations. Stated more formally, we seek a set of basis

functions, ��, such that

�� = argmin
�

D
min
a

E(I; aj�)
E

(3)

where h�i denotes an ensemble average over the images.
Note that in this expression and in the rest that follow,
I refers to the vector with components I(~xj), a refers
to the vector with components ai, and � refers to the
matrix with components �i(~xj).

The intuition behind the algorithm is that on each im-
age presentation, the gradient of S \sparsi�es" the activ-
ity on the ai by di�erentially reducing the value of low-
activity coe�cients more than high-activity coe�cients.
This weeds out the low-activity units. The �i then learn
on the error induced by this sparsi�cation process. The
result is a set of �i that can tolerate sparsi�cation with
minimum mean-square reconstruction error. A virtu-
ally identical algorithm was developed independently by
Harpur and Prager (1996).

3 Maximum-likelihood framework

While the energy function framework provides a useful,
intuitive way of formulating the sparse coding problem,
a probabilistic approach could provide a more general
framework. Harpur and Prager (1996) point out that
the �rst term on the right-hand side of Equation 2 may
be interpreted as the negative log-likelihood of the im-
age given � and a (assuming a gaussian noise model),
while the second term may be interpreted as specifying
a particular log-prior on a. That is,

P (Ija; �) =
1

Z�N
e
�
jI�a�j2

2�2
N (4)

P (a) = �i

1

Z�
e��S(ai) (5)

with � = 2�2N�. Thus, we may interpret E as being
proportional to � logP (I; aj�), since

P (I; aj�) = P (Ija; �)P (a) (6)

/ e
�

1

2�2
N

E(I;aj�)

(7)

How can we use this insight to improve our understand-
ing of the algorithm?

Under the maximum-likelihood approach, we would
try to �nd the set of basis functions, ��, such that

�� = argmax
�

hlogP (Ij�)i (8)

P (Ij�) =

Z
P (Ija; �)P (a)da (9)

In other words, we are trying to �nd a set of �i that
maximize the log-likelihood that the set of images could
have arisen from a random process in which the �i are
linearly mixed with statistically independent amplitudes
distributed according to 1

Z�
e��S(ai), with additive gaus-

sian image noise. This is formally equivalent to mini-
mizing the Kullback-Leibler (KL) distance between the
actual joint probability of the images, P �(I), and our
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Figure 1: Two-dimensional iso-probability plots of a,
Cauchy prior, b, Gaussian likelihood, and c, their prod-
uct. The axes on each plot are a1; a2.

model of the joint probability based on independent
causes, P (Ij�), since

KL[P �(I); P (Ij�)] =

Z
P �(I) log

P �(I)

P (Ij�)
dI (10)

= �HP� � hlogP (Ij�)i (11)

and HP�
:
= �

R
P � logP � is �xed, so maximizing

hlogP (Ij�)i minimizes KL.
Unfortunately, all of this is easier said than done be-

cause we have to integrate over the entire set of ai in
Equation 9, which is computationally intractable. A
reasonable approximation may be to assume that �N
is small, in which case the dominant contribution to the
integral is at the maximum of P (I; aj�). Thus,

�� �= argmax
�

D
log[max

a
P (Ija; �)P (a)]

E
: (12)

This is equivalent to the algorithm of Olshausen and
Field (1996), as can be seen by comparing to Equation 3
and using the de�nitions of Equations 4 and 5. The in-
tuition for why this approximation works in practice is
shown in Figure 1. The prior, P (a), is a product of 1-D
\sparse" distributions, such as 1

1+a2
i

, which are unimodal

and peaked at zero. The likelihood, P (Ija; �), is a mul-
tivariate gaussian, and since we are usually working in
the overcomplete case (the number of basis functions ex-
ceeds the dimensionality of the input) this will take the
form of a gaussian ridge (or sandwich) that has its max-
imum along the line (or plane, etc.) given by I = a�.
The product of these two functions, P (Ija; �)P (a), will
have its maximum displaced away from the maximum
along the gaussian ridge (i.e., away from the \perfect
solution") and towards the origin, but also towards the
ridges of the prior. Thus, the gradient with respect to �
will tend to steer the gaussian ridge towards the ridges
of the prior, which will in turn increase the volume of
their product, or P (Ij�). The reason we can get by with
this approximation in this case is because we are working
with a product of two fairly smooth, unimodal functions.
If the functions were not so well behaved, then one can
see that such an approximationmight produce problems.

4 Relation to Bell and Sejnowski

Bell and Sejnowski (1995) describe an algorithm for \in-
dependent component analysis" based on maximizing

the mutual information between the inputs and out-
puts of a neural network. Here, we show that this algo-
rithmmay be understood as solving the same maximum-
likelihood problem described above (Section 3), except
by making a di�erent simplifying assumption. This has
also been shown recently by Pearlmutter & Parra (1996)
and Mackay (1996).

Bell and Sejnowski examine the case where the num-
ber of basis functions is equal to the number of inputs,
and where the �i are linearly independent. In this case,
there is a unique set of ai for which jI�a�j2 equals zero
for any given image, I. In terms of the previous dis-
cussion, P (Ija; �) is now a gaussian hump with a single
maximum at a = I��1, rather than a gaussian ridge as
in Figure 1b. If we let �N go to zero in Equation 4, then
P (Ija; �) becomes like a delta function and the integral
of Equation 9 becomes

P (Ij�) =

Z
�(I � a�)P (a)da (13)

= P (I��1)� j det��1j (14)

and so

�� = argmax
�

�
hlogP (I��1)i + log j det��1j

�
(15)

= argmin
�

"
h�
X
i

S((��1)i � I)i � log j det��1j

#
:

(16)

By making the following de�nitions according to the con-
vention of Bell and Sejnowski (1995),

W = ��1 (17)

ui = Wi � I (18)

then, the gradient descent learning rule for W becomes

�Wij / ��S0(ui)Ij +
cofWij

detW
: (19)

This is precisely Bell and Sejnowski's learning rule when
the output non-linearity of their network, g(x), is equal
to the cdf (cumulative density function) of the prior on
the ai, i.e.,

yi = g(ui) (20)

g(ui) =

Z ui

�1

1

Z�
e��S(x)dx : (21)

Thus, the independent component analysis algorithm
of Bell and Sejnowski (1995) is formally equivalent to
maximum likelihood in the case of no noise and a square
system (dimensionality of output = dimensionality of in-
put). It is easy to generalize this to the case when the
number of outputs is less than the number of inputs, but
not the other way around. When the number of outputs
is greater than the e�ective dimensionality of the input
(# of non-zero eigenvalues of the input covariance ma-
trix), then the extra dimensions of the output will simply
drop out. While this does not pose a problem for blind
separation problems where the number of independent
sources (dimensionality of a) is less than or equal to the
number of mixed signals (dimensionality of I), it will be-
come a concern in the representation of images, where
overcompleteness is a desirable feature (Simoncelli et al.,
1992).
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5 Lower-bound maximization

A central idea behind the Helmholtz machine of Dayan
et al. (1995), as well as the \mean �eld" theory of Saul
et al. (1996), is the construction of an alternative proba-
bility distribution, Q(ajI), that is used to obtain a lower-
bound on logP (Ij�). First, we rewrite logP (Ij�) as

logP (Ij�) = log

Z
Q(ajI)

P (Ija; �)P (a)

Q(ajI)
da (22)

Then, as long as Q is a probability (i.e.,
R
Q = 1; Q > 0),

we obtain by Jensen's inequality

logP (Ij�) �

Z
Q(ajI) log

P (Ija; �)P (a)

Q(ajI)
da (23)

= HQ �
1

2�2N
hE(I; aj�)iQ + const:(24)

where HQ
:
= �

R
Q(ajI) logQ(ajI)da. Thus, if we

can construct Q(ajI) so that the integral is tractable,
then we can do gradient ascent on a lower bound of
hlogP (Ij�)i. How good the bound is, though, depends
on the Kullback-Leibler distance between Q(ajI) and
P (ajI), or in other words, on how closely we can approx-
imate P (ajI) with our tractable choice of Q. Typically,
Q is chosen to be factorial,Q(ajI) = �iqi(aijI), in which
case

HQ =
X
i

Hqi (25)

hE(I; aj�)i
Q

= jI � ��j2 +
X
i

�2i j�ij
2 +

�
X
i

Z
qi(ai)S(ai)dai (26)

where �i =
R
qi(ai)aidai and �2i =

R
qi(ai)(ai � �i)

2dai.
Comparing Equation 26 to Equation 2, one can see

that the sparse coding learning algorithm of Olshausen
and Field (1996) e�ectively uses qi(ai) = �(ai��i), with
�i chosen so as to minimize E (and hence maximize the
lower bound of Equation 24). This choice would seem
suboptimal, though, because we are getting zero entropy
out of HQ (actually HQ = �1, but we are ignoring the
in�nities here because it is the derivatives we really care
about). If we could �nd a qi with higher entropy which
also lowers the energy, then we could move the bound
closer to the true log-likelihood. However, broadening
qi (for example, by making it gaussian with adjustable
�i and �i) only a�ects the solution for � insofar as it
low-pass �lters the cost function, S, which has a simi-
lar e�ect to simply lowering �. So, it is di�cult to see
that adding this extra complexity will improve matters.
One apparent bene�t of having non-zero �i is that there
is now a growth-limiting term on the �i (second term
on the right side of Eq. 26). Without such a term, the
�i will grow without bound, and so it is necessary in
the algorithm of Olshausen and Field (1996) to keep the
�i normalized (which is rather ad hoc by comparison).
Preliminary investigation using a Gaussian qi and mini-
mizing E with respect to both �i and �i for each image
(but still keeping the �i normalized) does not reveal sig-
ni�cant di�erences in the solution, but it deserves further

study. It may also be worthwhile to try using a Q(ajI)
that is de�ned by pairwise statistics (i.e., a covariance
matrix on the ai).

It should be noted that what is important here is
the location of the maximumof whatever approximating
function we use, not the absolute value of the bound per
se. If the maximum of the lower-bound occurs at a sig-
ni�cantly di�erent point than the maximum of the true
log-likelihood, then the approximation is not much help
to us.

6 Discussion

What I think has been gained from this process is a bet-
ter understanding of both the sparse coding algorithm of
Olshausen and Field (1996) and the independent com-
ponent analysis algorithm of Bell and Sejnowski (1995).
Although neither of these algorithms was originally cast
in maximum-likelihood terms, they are both essentially
solving the same problem. The main di�erence between
them is in the simplifying assumptions they make in
order to deal with the intractable integration problem
posed by Equation 9: Olshausen and Field's algorithm
assumes low-noise (small �N ) and thus a peaky, uni-
modal distribution on P (I; aj�) in order to justify eval-
uating it at the maximum, whereas Bell and Sejnowski
limit the dimensionality of the ai to equal the dimension-
ality of the input and also assume no noise so that the
integral becomes tractable. The maximum-likelihood
framework also makes possible the link to techniques
used in the Helmholtz machine (Dayan et al., 1995),
which reveals that a better choice of approximating dis-
tribution, Q, could potentially lead to improvements.

A practical advantage of looking at the problem
within this framework is that it suggests we could adapt
the shape of the prior. For example, the prior on the
ai need not be i.i.d., but could be shaped di�erently for
each ai, e.g., P (ai) =

1
Z�i

e��iS(ai), in order to best �t

the data. Adapting �i would be accomplished by letting
it evolve along the gradient of hlogP (Ij�)i. Using the
approximation of Equation 12, this yields the learning
rule:

_�i / �hS(ai)i �
1

Z�i

@Z�i
@�i

: (27)

A problem that may arise here, due to the fact that
the full integral in Equation 9 is not being computed, is
that there may be a bias toward non-informative at pri-
ors (since these will yield perfect reconstruction on each
trial). An advantage of Bell and Sejnowski's algorithm
in this case is that it essentially computes the full inte-
gral in Equation 9 and so does not have this problem.
For their algorithm, the maximum-likelihood framework
prescribes a method for adapting the \generalized sig-
moid" parameters p and r for shaping the prior (see pp.
1137-8 of their paper), again by doing gradient ascent
on the average log-likelihood. (See also Mackay, 1996,
for other methods of parameterizing and adapting a fac-
torial prior.) In cases where a statistically independent
linear code may not be achieved (e.g., natural images), it
may be advantageous to alter the prior so that informa-
tion about pairwise or higher-order statistical dependen-
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cies among the ai may by incorporated into our model
of P (a), for example using a Markov random �eld type
model.

References

Amari S, Cichocki A, Yang HH (1996) A new learn-
ing algorithm for blind signal separation. Advances
in Neural Information Processing Systems, 8, MIT
Press.

Bell AJ, Sejnowski TJ (1995) An information-
maximization approach to blind separation and
blind deconvolution. Neural Computation, 7: 1129-
1159.

Comon P (1994) Independent component analysis, a
new concept? Signal Processing, 36: 287-314.

Dayan P, Hinton GE, Neal RM, Zemel RS (1995) The
Helmholtz machine. Neural Computation, 7: 889-
904.

Foldiak P (1990) Forming sparse representations by lo-
cal anti-Hebbian learning. Biol. Cybernetics, 64:
165-170.

Harpur GF, Prager RW (1996) Development of low en-
tropy coding in a recurrent network, Network, 7.

Hinton GE, Dayan P, Frey BJ, Neal RM (1995) The
\wake-sleep" algorithm for unsupervised neural
networks. Science, 268: 1158-1161.

Mackay DJC (1996) Maximum likelihood and covari-
ant algorithms for independent component analy-
sis. Available via ftp://wol.ra.phy.cam.ac.uk/

pub/www/mackay/ica.ps.gz

Olshausen BA, Field DJ (1996) Emergence of simple-
cell receptive �eld properties by learning a sparse
code for natural images. Nature, 381: 607-609.

Pearlmutter BA, Parra LC (1996) A context-sensitive
generalization of ICA. International Conference on
Neural Information Processing, September 1996,
Hong Kong. In press.

Saul LK, Jaakkola T, Jordan MI (1996) Mean �eld the-
ory for sigmoid belief networks. Journal of Arti�-

cial Intelligence Research, 4: 61-76.

Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ
(1992) \Shiftable multiscale transforms," IEEE

Transactions on Information Theory, 38(2): 587-
607.

Zemel RS (1993) A minimumdescription length frame-
work for unsupervised learning. Ph.D. Thesis, Uni-
versity of Toronto, Dept. of Computer Science.

Acknowledgments
This note grew out of discussions with Chris Lee, Pe-

ter Dayan, Federico Girosi, Max Riesenhuber, Tony Bell,
George Harpur, Mike Lewicki, and Dan Ruderman over
the past several months. I thank Tommy Poggio for
making possible the visit to MIT which fostered many
of these interactions.

4


