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Abstract

In this report, a face recognition system that is capable of detecting and recognizing

frontal and rotated faces was developed. Two face recognition methods focusing on

the aspect of pose invariance are presented and evaluated | the whole face approach

and the component-based approach. The main challenge of this project is to develop

a system that is able to identify faces under di�erent viewing angles in realtime. The

development of such a system will enhance the capability and robustness of current

face recognition technology.

The whole-face approach recognizes faces by classifying a single feature vector

consisting of the gray values of the whole face image. The component-based ap-

proach �rst locates the facial components and extracts them. These components

are normalized and combined into a single feature vector for classi�cation. The

Support Vector Machine (SVM) is used as the classi�er for both approaches.

Extensive tests with respect to the robustness against pose changes are per-

formed on a database that includes faces rotated up to about 40Æ in depth. The

component-based approach clearly outperforms the whole-face approach on all tests.

Although this approach is proven to be more reliable, it is still too slow for real-time

applications. That is the reason why a real-time face recognition system using the

whole-face approach is implemented to recognize people in color video sequences. 1
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1 Introduction

The development of biometrics identi�cation systems is a very popular research

topic in arti�cial intelligence. Biometrics security systems have a high potential of

providing simple and powerful protection of the privacy of users and the information

stored in the mobile electronic devices, such as cellular phones and laptops. Di�erent

kinds of biometrics security systems have been actively applied to commercial hand-

held devices. For example, face recognition screensavers have been implemented in

some laptop models, �ngerprint and retinal pattern recognition technology has been

applied to high-level security building access, and voice identi�cation is a popular

research topic in the cellular phone industry.

Among all the applications of biometrics identi�cation, face recognition is most

suitable for automatic visual surveillance systems. Face recognition can also be easily

applied to hand-held devices with the availability of cheap and powerful hardware.

That is the reason why a great deal of research is focusing on developing new algo-

rithms and enhancing the capability and robustness of face recognition. However,

most of these systems are only capable of recognizing frontal views of faces. The

frontal face recognition approach is adequate in access control applications where

the user is consistent from session to session, e.g. accessing a personal laptop or

a cellular phone. However, in surveillance applications where the user is often not

aware of the task, it is important for the system to handle faces rotated in depth.

Rotation invariant face recognition is an important issue to address because of

its many real-world applications, especially in surveillance. It is clear that if a robust

system is created, it will have a huge impact on many di�erent areas of commercial

and military technology.

1.1 Previous Work

A survey on face recognition is described in [5]. Most of the previous work on

face recognition was primarily based on classifying frontal views of faces, assuming

that the person was looking straight into the camera. The approaches adopted

and developed in this report build on previous work in the areas of whole-face

and component-based face detection [8]. In order to improve the robustness of the

system, rotation of faces is taken into account in designing the system.

1.1.1 Whole-face Approach

In the whole-face approach, a single feature vector is used to represent the face

image as an input to a classi�er. Some common techniques include single-template

matching, eigenfaces [13] [15], Fisher's discriminant analysis [2], and neural net-

works [7]. Eigenfaces, described in [13], represent face images in a low dimensional

feature space using principle component analysis (PCA). In [7], back-propagation
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neural networks were used to perform identi�cation. These systems work well for

classifying frontal views of faces. However, they are not robust against pose changes

since the whole-face approach is highly sensitive to translations and rotations of the

face. Figure 1 shows that a rotated face cannot be matched by a single whole-face

pattern. To avoid this problem, an alignment stage can be added before classifying

the face. Aligning an input face image with a reference face image requires comput-

ing correspondences between the two face images. The correspondences are usually

determined for a small number of prominent points in the face, e.g. the centers of

the eyes, the nostrils, or the corners of the mouth. Based on these correspondences,

the input face image can be warped to a reference face image. In [4], face recogni-

tion is performed by independently matching templates of three facial regions (both

eyes, nose and mouth). The con�guration of the components during classi�cation

is unconstrained since the system does not include a geometrical model of the face.

A similar approach with an additional alignment stage was proposed in [3]. Active

shape models are used in [10] to align input faces with model faces.

a) b) c)

Figure 1: The problem caused by rotations.

1.1.2 Component-based Approach

Alternative to the whole-face approach, the component-based approach recognizes

faces by �rst detecting the facial components. The advantage of using component-

based recognition is that local facial components are less sensitive to translation

and rotation than the whole face pattern. The component-based approach can

compensate for pose changes by allowing a exible geometrical relation between the

components in the classi�cation stage. Elastic grid matching, described in [18], uses

Gabor wavelets to extract features at grid points and graph matching for the proper

positioning of the grid. The recognition was based on wavelet coeÆcients that were

computed on the nodes of the elastic graph. In [12], a window was shifted over the

face image and the discrete cosine transform (DCT) coeÆcients computed within

the window were fed into a 2-D Hidden Markov Model.
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1.2 Our Approach

Both the whole-face approach and the component-based approach are implemented

and evaluated in this report.

The whole-face approach consists of a face detector that extracts the face part

from an image and propagates it to a set of SVM classi�ers that perform face

recognition. By using a face detector, the face part of the image is extracted from

the background so the translation and scale invariance is achieved. Due to changes in

the pose and viewpoints, there are many variations in face images, even of the same

person, which make the recognition task diÆcult. For this reason, the database

of each person is split into viewpoint-speci�c clusters. A linear SVM classi�er is

trained on each cluster so as to distinguish one person from all other people in the

database. A real-time face recognition system based on the whole-face approach

with clustering is built. Figure 2 shows a block diagram of the real-time system.

Figure 2: The system overview.

The component-based approach uses a face detector that detects and extracts

local components of the face. The face detector consists of a set of SVM classi�ers

that locate di�erent facial components and a single geometrical classi�er that checks

if the con�guration of the components matches a learned geometrical face model.

The detected components are extracted from the image, normalized in size, and fed

into a set of SVM classi�ers for face recognition.

The outline of this report is as follows: Section 2 gives an overview of the SVM

classi�er and its application on multi-class classi�cation. Section 3 describes various

real-time image processing techniques for preprocessing the images obtained from

the video stream. Section 4 explains the whole-face and component-based face
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recognition approaches. Section 5 contains experimental results and a comparison

between the two face recognition approaches. Section 6 concludes the report and

suggests future work.

2 Support Vector Machine Classi�er

Support vector machines (SVMs) have been extensively used as classi�ers in pattern

recognition. The SVM performs binary pattern classi�cation by �nding a decision

surface which separates the training data into two classes.

2.1 Binary Classi�cation

Fig. 3a shows a 2-D problem for linearly separable data. In many two-class pattern

classi�cation problems, classes can be separated by more than one hyperplane. The

dotted lines indicate all possible hyperplanes which separate the two classes. SVM

determines the formulation of the hyperplane, which maximizes the distance between

the two classes, and chooses it to be the decision plane. The decision plane is denoted

by f = 0 in Fig. 3b. In [16], this hyperplane is described as the optimal hyperplane

with respect to the structural risk minimization. Support vectors (SVs) are the

closest points of each class to the decision plane. They are the circled data points in

Fig. 3b. The distance from the decision plane to the SVs is denoted by M in Fig. 3b

and is called the margin between the two classes.

SVM belongs to the class of margin maximizing classi�ers because it chooses the

hyperplane which gives the largest margin to be the decision surface. The SVM

decision function has the following form:

f(x) =
X̀

i=1

�iyixi � x + b (1)

where xi 2 IRn, i = 1; 2; : : : ; l. Each point of xi belongs to one of the two classes

identi�ed by the label yi 2 f�1; 1g. The coeÆcients �i and b are the solutions of

a quadratic programming problem [16]. �i is non-zero for support vectors and is

zero otherwise. Classi�cation of a new data point x in the test set is performed by

computing the sign of the right-hand side of Eq. (1). The distance from x to the

hyperplane is computed as follows:

d(x) =

P`
i=1 �iyixi � x + b

jj
P`

i=1 �iyixijj

(2)

The formulation in eq. (2) is the normalized output from eq. (1). It is the distance

of a data point from the decision surface. The sign of d is the classi�cation result
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for the test data x, and jd j is the distance from x to the decision plane. The farther

away a point is from the decision plane, the more reliable the classi�cation result is.

When the data are not linearly separable, each point x in the input space is

mapped to a point z = �(x) of a higher dimensional feature space where the data

can be separated by a hyperplane. The mapping �(�) is represented in the SVM

classi�er by a kernel function K(�; �). The decision function of the SVM is thus:

f(x) =
X̀

i=1

yi�iK(xi;x) + b (3)

An important family of kernel functions is the polynomial kernel:

K(x;y) = (1 + x � y)p (4)

where p is the degree of the polynomial. In this case, the components of the

mapping �(x) are all the possible monomials of input components up to the degree

p. Most of the experiments in this project make use of the linear SVMs because the

data are linearly separable, but in one of the experiments the polynomial second

degree SVM is used for comparison.

2.2 Multi-class Classi�cation

In order to classify q classes with SVM, the one-vs-all approach is used. In this

approach, q SVMs are trained and each of the SVMs separates a single class from

all the remaining classes [6] in the training set. The classi�cation in our experiments

is done by running a feature vector through all q SVMs. The identity of the person

is established according to the SVM that produces the highest normalized output

given by Eq. (2).

In the real-time system, the one-vs-all approach has a slightly di�erent de�nition.

Instead of separating a person from all other people in the database, two additional

classes are used: the background class and the generic face class. The background

class contains images of the empty oÆce and the generic face class contains images

of di�erent people who are not the the positive database. These two classes are

added to the negative class of all the SVMs for rejection.

3 Preprocessing

Images from the video sequence are preprocessed in four steps. First, a skin detector

based on a maximum a posteriori (MAP) probabilistic model is used to separate the

skin pixels from the non-skin pixels in a scene. Second, background subtraction is

used to remove the static background and the background pixels that are mistaken

as skin pixels. Each of these steps generates a binary image. By combining these two
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a)

b)

Figure 3: a) The gray area shows all possible hyperplanes which separate the two

classes. b) The optimal hyperplane maximizes the distance between the SVs of the

two di�erent classes. The points (1, 2, and 3) are the SVs. The distance M is the

margin.
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binary images, a new binary image that shows the presence of skin pixels is produced.

Third, a morphological operation is applied to dilate the combined binary image.

Finally, the connected component analysis algorithm determines the largest region

in the dilated image and claims that this is the face part of a person.

3.1 Skin Detection

The skin detector is trained and used to classify skin pixels from the non-skin pixels

in video sequences [9]. Since the presence of skin pixels represents the presence of

people, the skin detector is thus a person detector. Two separate sets of color im-

ages are used for training and testing the skin detector. The separation of the skin

part from the non-skin part of color images is based on the distinct color proper-

ties of the human skin. Each pixel is represented by its normalized red and green

colors. The classi�cation of a skin pixel and a non-skin pixel is performed by a

maximum a posteriori (MAP) probabilistic model adapted on a training set of skin

pixels and non-skin pixels. The input to the MAP model is the normalized red and

green color value of a pixel and the output is one of two classes: the skin class or the

non-skin class. Fig. 4 is a block diagram that shows the training of the skin detector.

Figure 4: The block diagram of the skin detector.

The skin training set was obtained by taking pictures of the CBCL sta� with a

CCD color camera. Twenty pictures at a resolution of 640 x 480 pixels were taken

of the faces of each person at 5 frames per second. The skin parts in these images

were extracted and labeled manually. An independent set of skin images were used

as test set. The non-skin training set was obtained by taking pictures of the empty

oÆce as well as some clothing samples with the same CCD camera.

The normalized red and green color space is often used for skin detection since

it reduces sensitivity to changes in illumination and intensity. By normalizing the

colors, luminance information is not taken into account. This makes the skin detec-

tor work for both light and dark skin colors. Normalized red and green color pixels

from the skin and non-skin training sets are used to construct the skin and non-skin

histograms.

Histogramming belongs to the non-parametric density estimation in which the

probability density functions depend on the data itself and the form of the function
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is not speci�ed in advance. The 256 values of red and green are quantized into 32

discrete segments with 8 values in each segment. The 2-D histograms of the skin

pixels and the non-skin pixels are obtained by dividing each of the red and green axes

into 32 sections. These histograms approximate the probability density functions of

the r-g color given the presence of a skin pixel and the presence of a non-skin pixel.

a) b)

Figure 5: a) The 32 x 32 bin histogram of the skin pixels in the r-g plane. b) The

32 x 32 bin histogram of the non-skin pixels in the r-g plane. The darker color

represents higher probability of occurrence.

A 32�32 bin skin histogram and a 32�32 bin non-skin histogram are constructed

from the skin pixels and non-skin pixels of the training set. The conditional proba-

bilities of the r-g color of a pixel given a skin pixel P(rg j skin) and the conditional

probabilities of the r-g color of a pixel given a non-skin pixel P(rg j nonskin) are

computed. Fig. 5a and 5b show the skin and non-skin histograms respectively.

These two histograms are used to generate the MAP model of the skin detector.

The equation of the MAP model is given in Eq. (5):

P (rgjskin)

P (rgjnonskin)
>

P (nonskin)

P (skin)
(5)

If the left-hand side of Eq. (5) is greater than the right-hand side, then the pixel

is classi�ed as a skin pixel. Otherwise, the pixel is classi�ed as a non-skin pixel. The

quantity on the right-hand side of the inequality is called the detection threshold,

which is the ratio of the a priori probabilities. The a priori probabilities can be

estimated from the training set. A reasonable choice of P(skin) can be obtained by

dividing the total number of skin pixels by the total number of skin and non-skin
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pixels. The decision boundary is determined by the border of the overlapping region

of the two histograms. A receiver operating characteristic (ROC) curve shows the

relationship between correct detection P("skin" j skin) and false positive P("skin"

j non-skin) as a function of the detection threshold. The ROC of the skin detector

test set is shown in Fig. 6. The performance of the classi�er is determined by the

area under the ROC curve and the amount of overlap between the skin and the non-

skin histograms. Fig. 7b shows that a lot of background pixels were mistaken to be

skin pixels. In order to solve this problem, the background subtraction algorithm is

applied to eliminate these misclassi�cations.

Figure 6: The ROC curve of the Skin Detector.

3.2 Background Subtraction

In background subtraction, the di�erence between an image from the video stream

and the stored background image is computed and a binary image is produced in

order to detect new objects in the scene. In this case, background subtraction is

used to remove the background parts that are mistaken to be skin parts. This

allows the use of a lower skin detection threshold and thus the skin detection rate

can be increased. The background image updates itself at 0.5 frames per second.

However, it will not update when the di�erence between the new image from the

video stream and the stored background image is great. The updating algorithm is

designed to avoid updating when there are no new objects entering the scene. For

example, if the illumination condition in the room changes, the di�erence between

the stored image and the new image will be big, but there is no new object entering
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the scene. An example of the binary background subtraction image is shown in

Fig. 7c. By combining the skin detection and the background subtraction binary

images in Fig. 7b and 7c logically, a new binary image in Fig. 7d is produced which

shows the presence of a person.

a) b)

c) d)

Figure 7: a) The original color image. b) The resulting binary image of skin detec-

tion. c) The background subtraction binary image. d) The combined skin detection

and background subtraction binary image.

3.3 Morphological Operation

Mathematical morphology is a �eld that involves the study of topological and struc-

tural properties of objects based on their images. The goal of using a morphology

operation in binary images is to represent black pixels by regions in order to give a

complete description of the image. A region in a binary image is a set of connected

pixels with the same color. In order to group the skin-pixels into a region, the eight

neighboring pixels of a particular pixel are considered. A pixel has two horizon-

tal and two vertical neighbors that are each a unit distance from the pixel itself.

There are also four diagonal neighbors. Together they form the eight neighbors of a

pixel. A 3� 3 all-white dilation �lter is applied to the combined skin detection and

background subtraction binary images. This 3 � 3 window is convolved with the
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a) b)

Figure 8: a) The combined skin detection and background subtraction binary image.

b) The dilated binary image.

combined binary image. If the number of black pixels within the eight neighboring

pixels is greater than the prede�ned minimum number of black pixels, then all the

nine pixels within the window will be set to black. Otherwise, all the nine pixels

will be set to white. Fig. 8a shows the image before dilation and Fig. 8b shows the

image after dilation.

3.4 Connected Component Analysis (CCA)

Connectivity between pixels is commonly used in establishing boundaries of objects

and regions in binary images. Connected component analysis transforms a binary

image into a graph, where each node of the graph represents a connected region

and the boundaries of the region represent spatial relationships between regions [1].

CCA is used for �nding the largest connected region in a binary image. The dilated

image is the input to the connected component analysis. The black region in the

dilated image represents the skin part. CCA �nds the largest connected region and

claims that to be the face part. A bounding box is drawn to surround this region

of interest (ROI) in the original color video stream of the real-time system. Fig. 9

shows the ROI in the video stream. Face detection and recognition algorithms are

applied to the bounding box extracted from the video stream.

4 Face Recognition

4.1 Whole-face Approach

The whole-face approach consists of two stages. In the face detection stage, a face

is detected and extracted from the gray value image. In the recognition stage, the

person's identity is established.
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Figure 9: The ROI is indicated by the bounding box.

4.1.1 Face Detection

A linear SVM face detector similar to the one described in [8] is trained and used

to extract the face part from the bounding box obtained from the video stream.

The training data for the linear SVM face detector are generated by rendering

seven textured 3-D head models [17]. The heads are rotated between -30Æ and

+30Æ in depth and are illuminated by ambient light and a single directional light

pointing towards the center of the face. 3,590 synthetic face images of size 58� 58

pixels are generated to form the positive training data. The negative training data

initially consists of 10,209 58 � 58 non-face patterns randomly extracted from 502

non-face images. The negative training data is further enlarged to 13,655 images

by bootstrapping [14]. Bootstrapping is done by applying the linear SVM face

detector, which trained on the initial negative set, to the 502 non-face images. The

false positives (FPs) generated are added to the negative training data to build the

�nal negative training set with 13,655 images. Then a new linear SVM face detector

is retrained with the enlarged negative training set.

The face part extracted by the SVM face detector is converted into gray values

and is re-scaled to 40 � 40 pixels. A best-�t intensity plane is subtracted from

the gray values to compensate for cast shadows [14]. Histogram equalization is

also applied to remove variations in image brightness and contrast. The 1,600 gray

values of each face image are then normalized to the range between 0 and 1. Each

image is represented by a single feature vector of length 1,600 because the face

image has 40 � 40 pixels. These feature vectors are the inputs to the linear SVM

face recognizers. Fig. 10 shows the training of the whole-face approach. Some face

detection results are shown in Fig. 11.

4.1.2 Face Recognition

Changes in the head pose of a person lead to strong variations in the faces. These are

considered in-class variations and they complicate the recognition task. The linear
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Figure 10: The training process of the whole-face approach.

Figure 11: The upper 2 rows are the original images before face extraction. The

lower 2 rows show the face parts extracted by the SVM face detector. These face-

extracted images are the training set of the face recognition system.
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Figure 12: Binary tree of face images generated by divisive clustering.

SVM classi�er cannot always separate faces of one person with di�erent rotations

from all other people without introducing training errors. In this case, the training

set of each person is split into several smaller viewpoint-speci�c clusters by the

divisive binary clustering algorithm [11]. This algorithm starts with an initial cluster

that includes all the feature vectors of a person, denoted by xn 2 IRn, i = 1; 2; : : : ; N

in Eq. (6), where N is the number of faces in the cluster. During each iteration, the

algorithm creates a hierarchy by successively splitting the highest variance cluster

into two new clusters. The variance of a cluster is calculated as:

�2 = minf
1

N
�

NX

m=1

jjxn � xmjj
2
g
N
n=1 (6)

where xm is the average face of the cluster. The process repeats until the number

of clusters reaches the prede�ned number. In these experiments, the prede�ned

number of clusters is four. After clustering, the face with the minimum distance to

all other faces in the same cluster is chosen to be the average face of the cluster.

The clusters can be arranged in a binary tree. Fig. 12 shows the result of clustering

applied to the training images of a person in the database. The nodes represent

the average faces and the leaves represent faces in the �nal clusters. As expected,

divisive clustering performs a viewpoint-speci�c grouping of faces.

The whole-face approach is a multi-class classi�cation problem. The one-vs-all

strategy described in section 2.2 is applied to the SVM training. A linear SVM is

trained to distinguish between images in one cluster (label +1) and images of other

people in the training set (label -1), so the total number of SVMs trained is equal
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to the total number of clusters for all people. In this case, each SVM is associated

to one cluster of each person. The class label y of a feature vector x is computed as

follows:

y = n if dn(x) + t > 0 (7)

y = 0 if dn(x) + t � 0

with dn(x) = maxfdi(x)g
q
i=1

where di(x) is the distance of pattern xi from the decision plane computed ac-

cording to Eq. (2). The classi�cation threshold is denoted as t. Classi�cation is

done according to the value of the class label y computed by Eq. (7) with q being

the number of clusters of all people in the training set. A non-zero class label stands

for recognition and the class label 0 stands for rejection. When di(x) is too small,

this pattern is too close to the decision plane. In this case, the system cannot tell

which class this pattern belongs to, and thus the pattern is rejected.

4.2 Component-based Approach

The whole-face approach is highly sensitive to image variations caused by changes in

the pose of the face as shown in Fig. 1. Since the changes in facial components due

to rotations are relatively small compared to those in the whole face pattern, the

component-based approach is implemented in order to avoid the problems caused by

the whole-face approach. Fig. 13 shows the training process of the component-based

approach.

Figure 13: The training process of the component-based approach.

4.2.1 Face Detection

In order to detect the face, a two-level component-based face detector [8] is used.

The principles of the system are illustrated in Fig. 14. On the �rst level, component

classi�ers independently detect 14 facial components. On the second level, a geo-

metrical con�guration classi�er performs the �nal face detection by combining the
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Output of
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First Level:
Component
Classifiers
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Figure 14: System overview of the component-based face detector using four com-

ponents.

facial components resulting from the 14 component classi�ers. The maximum con-

tinuous outputs of the component classi�ers within the rectangular search regions

around the expected positions of the components are used as inputs to the geometri-

cal con�guration classi�er. The search regions have been calculated from the mean

and the standard deviation of the components' locations in the training images.

The geometrical classi�er is used for arranging the components in the proper facial

con�guration. It is provided with the precise positions of the detected components

relative to the upper left corner of the 58� 58 window. The 14 facial components

used in the detection system are shown in Fig. 15a. The shapes and positions of the

components have been automatically determined from the training data in order to

provide maximum discrimination between face and non-face images [8]. The face

images in the training set are the same as that for the whole-face detector.

4.2.2 Face recognition

The component-based detector runs over each image in the training set and the

components are extracted from each image. Only 10 out of the 14 original compo-

nents are kept for face recognition because the remaining ones either contain few

gray value structures or strongly overlap with other components. The 10 selected

components are shown in Fig. 15b. The component-based face detector applied to

face images in the original training set shown in the �rst 2 rows of Fig. 11 and the

�nal training set of the component-based recognition system are shown in Fig. 16.
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a) b)

Figure 15: (a) Shows the 14 components of the face detector. The centers of the

components are marked by white crosses. The 10 components used for face recog-

nition are shown in (b).

Figure 16: Examples of component-based face detection. Face parts covered by the

10 components are used as training data for face recognition.
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By recombining the components, background pixels are successfully removed. In

order to generate the input to the face recognition classi�er, the components of each

image are normalized in size. Their gray values are normalized to a range of 0 and 1

and are then combined into a single feature vector. Again, the one-vs-all strategy of

multi-class classi�cation is used. A linear SVM classi�er is trained for each person

in the database. The classi�cation result is determined according to Eq. (7).

5 Results

5.1 Database

The training data for the face recognition system were recorded with a digital video

camera at a frame rate of about 5Hz. The training set consists of 8,593 gray face

images of �ve subjects; 1,383 of these images are frontal views. The resolutions of

the face images range between 80�80 and 130�130 pixels with rotations in azimuth

up to about � 40Æ.

The test set was recorded with the same camera but on a separate day and with

di�erent illumination and background. The test set includes 974 images of all �ve

subjects in the database. The rotation in depth is again up to about � 40Æ. Fig. 17

and Fig. 18 show the experimental procedures when using the whole-face approach

and the component-based approach.

Figure 17: Overwiew of the whole-face approach experiment.

Figure 18: Overwiew of the component-based approach experiment.
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5.2 Experiments

Two sets of experiments were carried out.

The �rst set of experiments was trained on all 8,593 rotated and frontal face

images and tested on an independent test set with 974 frontal and rotated faces of

all the subjects. This experiment contained four di�erent tests:

1. Whole-face approach with one linear SVM for each person.

2. Whole-face approach with one linear SVM for each cluster.

3. Whole-face approach with one 2nd degree polynomial SVM for each person.

4. Component-based approach with one linear SVM for each person.

The second set of experiments was trained only on the 1,383 frontal face images

but tested on the same test set used in the �rst set of experiments. This experiment

contained three di�erent tests:

1. Whole-face approach with one linear SVM for each person.

2. Whole-face approach with one linear SVM for each cluster.

3. Component-based approach with one linear SVM for each person.

The ROC curves of these two set of experiments are shown in Fig. 19a and

Fig. 19b. Each point on the ROC curve corresponds to a di�erent value of the clas-

si�cation threshold t from Eq. (7). Some results of the component-based recognition

system are shown in Fig. 20.

In both sets of experiments, the component-based approach clearly outperformed

the whole-face approach, even though the classi�ers used in the component-based

approach (linear SVMs) are less powerful than those used in the whole-face approach

(polynomial second degree SVMs and SVMs with clustering).

Clustering also leads to a signi�cant improvement of the whole-face approach

with the training set including the rotated faces. Clustering generates viewpoint-

speci�c clusters that have smaller in-class variations than the whole set of images of

a person, so the whole-face approach with clustering and linear SVMs is superior to

the whole-face approach without clustering and with a non-linear SVM. This shows

that weaker classi�ers trained on properly chosen subsets of the data can outperform

a single and more powerful classi�er trained on the whole data set.

6 Conclusion and Future Work

A whole-face approach and a component-based approach of face recognition were

implemented and their performances with respect to robustness against pose changes

were compared. The component-based approach detected and extracted a set of 10

facial components and arranged them in a single feature vector that was classi�ed

by linear SVMs. The whole-face approach detected the whole face, extracted it from
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a)

b)

Figure 19: (a) ROC curves trained and tested on both frontal and rotated faces. (b)

ROC curves trained on frontal faces and tested on frontal and rotated faces.
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Figure 20: Examples of component-based face recognition. The �rst 3 rows of images

and the �rst image in the last row are correct identi�cation. The last two images

in the bottom row are misclassi�cations due to too much rotation and unexpected

facial expression.
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the image, and used it as an input to a set of viewpoint-speci�c SVM classi�ers.

Tests were performed on both systems with a test database that included faces

rotated in depth up to about � 40Æ. In both sets of experiments, the component-

based approach outperformed the whole-face approach. This shows that using facial

components instead of the whole face pattern as input features signi�cantly simpli�es

the task of face recognition. However, the speed of the component-based approach is

much slower than that of the whole-face approach, since a lot more SVM classi�ers

are used in the component-based approach for extracting the facial components.

This approach is not suitable for applications involving real-time systems for the

time being. Fig. 19a shows that the performance of the whole-face approach with

clustering is just slightly worse than the performance of the component-based ap-

proach. However, the recognition speed of the whole-face approach is a lot faster.

This is the reason why the real-time system is implemented based on the whole-face

approach.

A potential future research topic would be to reduce the number and dimensions

of face components. The dimensions of the components and the combined face

images can be reduced using techniques such as the principal component analysis

(PCA). Fewer facial components could be selected and used in order to reduce

the number of classi�ers. These improvements could speed up the classi�cation

rate of the component-based approach and make it more desirable for use in real-

time applications. Powerful computers with multi-processors could also be used to

parallel-process the component classi�cations in order to reduce the computation

time when implementing real-time systems. More experiments should be done on

larger and standardized test sets so as to compare my system with the existing ones.
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