
m i t c o m p u t e r s c i e n c e a n d a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

Learning Commonsense Categorical
Knowledge in a Thread Memory
System

Oana L. Stamatoiu
AI Technical Report 2004-001 May 2004

© 2 0 0 4 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w . c s a i l . m i t . e d u

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning Commonsense Categorical

Knowledge in a Thread Memory System

by

Oana L. Stamatoiu

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements

for the degree of

Master of Engineering in Computer Science and
Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2004

c© Massachusetts Institute of Technology 2004. All rights
reserved.

Certified by: Patrick H. Winston
Ford Professor of Artificial Intelligence and Computer

Science
Thesis Supervisor

Accepted by: Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Learning Commonsense Categorical Knowledge in a
Thread Memory System

by
Oana L. Stamatoiu

Submitted to the Department of Electrical Engineering and Computer
Science on May 6, 2004, in partial fulfillment of the requirements for

the degree of Master of Engineering in Computer Science and
Engineering

Abstract

If we are to understand how we can build machines capable of broad
purpose learning and reasoning, we must first aim to build systems that
can represent, acquire, and reason about the kinds of commonsense
knowledge that we humans have about the world. This endeavor sug-
gests steps such as identifying the kinds of knowledge people commonly
have about the world, constructing suitable knowledge representations,
and exploring the mechanisms that people use to make judgments about
the everyday world. In this work, I contribute to these goals by propos-
ing an architecture for a system that can learn commonsense knowledge
about the properties and behavior of objects in the world. The archi-
tecture described here augments previous machine learning systems in
four ways: (1) it relies on a seven dimensional notion of context, built
from information recently given to the system, to learn and reason
about objects’ properties; (2) it has multiple methods that it can use
to reason about objects, so that when one method fails, it can fall back
on others; (3) it illustrates the usefulness of reasoning about objects
by thinking about their similarity to other, better known objects, and
by inferring properties of objects from the categories that they belong
to; and (4) it represents an attempt to build an autonomous learner
and reasoner, that sets its own goals for learning about the world and
deduces new facts by reflecting on its acquired knowledge. This thesis
describes this architecture, as well as a first implementation, that can
learn from sentences such as “A blue bird flew to the tree” and “The
small bird flew to the cage” that birds can fly. One of the main contri-
butions of this work lies in suggesting a further set of salient ideas about
how we can build broader purpose commonsense artificial learners and
reasoners.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science

2

Acknowledgments

I would like to thank first of all my thesis advisor, Patrick Winston,
for his mentoring, his guidance, and his support of my work. Most of
all, I owe to him my interest in AI and my passion for understanding
human intelligence, as well as any conceptual and writing clarity of the
work I present here.

I also want to thank the members of the Genesis Group at the
MIT Artificial Intelligence and Computer Science Laboratory, whose
ideas have deeply shaped my goals and my approach of understanding
intelligence from a computational point of view. I want to extend spe-
cial thanks to Ian Eslick; I have found our discussions about symbolic
learning and reasoning especially useful in my work.

Looking back on my years at MIT, I find that I have been deeply
changed, as a thinker and as a person, by several professors whom I’ve
had the honor to listen to and learn from. Among them, I’d like to
thank professors Patrick Winston and Marvin Minsky in the computer
science field for inspiring my curiosity and passion for artificial intel-
ligence and cognition, professor James Munkres in the mathematics
department for nurturing my early inclinations as a mathematician,
and professor Ned Hall in the philosophy department for teaching me
to look at the world in more than one way.

I feel my current work has been made possible above all by the
affection and support of my parents and grandparents whom I deeply
love and respect.

Finally, I would like to dedicate this work to my grandfather, Sergiu
Caster, who has inspired my early interest in books, my passion for
opera, and my genuine curiosity to discover the inner workings of the
human mind.

3

Contents

1 Introduction 8
1.1 Building a Learner of Commonsense Knowledge 9
1.2 Outline . 11

2 Grounding in Previous Work 12
2.1 Context in Machine Learning 12
2.2 Similarity and Categorization 17
2.3 The Problem of Representation 21
2.4 Knowledge Acquisition and Learning 23
2.5 The Bridge Project . 27

3 System Design 30
3.1 System Specifications . 31
3.2 The Representations and Implicit Assumptions 34
3.3 Design Overview . 36
3.4 Using Context for Learning and Question Answering . . 38
3.5 The Conceptual Model for Learning 42

3.5.1 The Similarity Mechanism 44
3.5.2 Stereotypes for Classes of Objects 46
3.5.3 The Memory Module 48
3.5.4 The Query Answering Methods 49

4 Implementation and Results 54
4.1 The Squirrel Implementation 54

4.1.1 The Implementation of the Backend 55
4.1.2 The Implementation of the User Interface 57

4.2 Concrete Learning Examples 59
4.2.1 Robins fly because they are birds, and birds can

fly . 59

4

4.2.2 Planes fly because they are similar to robins, and
robins fly . 63

4.2.3 A robin is made of feathers, has wings, and is a
bird . 65

5 Evaluation and Discussion 67
5.1 System Evaluation . 67

5.1.1 Penguins can’t fly 68
5.1.2 Contributions of the Learning Architecture . . . 68

5.2 Surprises . 71

6 Salient Ideas for Learning with Context 73
6.1 Richer Representations of the World 73
6.2 Better Use of Context 74
6.3 Better Learning and Reasoning Heuristics 74
6.4 Better Models of Memory 76
6.5 Autonomy... and All That Jazz 77

7 Contributions 78

A Examples of Squirrel Code 80
A.1 Pseudocode for the Assessing the Similarity of Two Things 80
A.2 Code for Calculating Stereotypes 83
A.3 Pseudocode for the Reflection Thread of Memory 88
A.4 Code Template for the Learn Methods of the Learner . 89
A.5 Code of the Qualify Method of the Learner 90

5

List of Figures

2.1 An example of a Thing structure. 29

3.1 An MDD showing the main modules of the learning system. 37
3.2 An MDD showing the layering of the learning system,

by module function. 38
3.3 A pictorial representation of the Context object. 40
3.4 The steps involved in processing an input sentence. . . . 43
3.5 Calculating the stereotype of a class of objects from the

absolute and relative stereotypes. 47
3.6 The threaded structure of the Memory module. 49

4.1 A screenshot of the Squirrel GUI. 57

6

List of Tables

3.1 The classes of knowledge Squirrel learns. 32
3.2 The kinds of questions Squirrel can answer. 33
3.3 The methods used to answer queries about objects’ prop-

erties. 52
3.4 Priority of deduction methods for each kind of user query. 53

7

Chapter 1

Introduction

“My aim is to put down on paper what I see and what I feel in the
best and simplest way.” (Ernest Hemingway)

If we are to understand how we can build machines capable of broad
purpose learning and reasoning, we must first aim to build systems that
can represent, acquire, and reason about the kinds of commonsense
knowledge that we, humans, have about the world. This endeavor sug-
gests steps such as identifying the kinds of knowledge people commonly
have about the world, constructing suitable knowledge representations,
and exploring the mechanisms that people use to make judgments about
the everyday world. In this work, I contribute to these goals by propos-
ing an architecture for a rational system that can learn commonsense
knowledge about the properties and behavior of objects in the world.
In this thesis I describe this architecture and the fundamental ideas in
which it grounds; I present an implementation, called Squirrel, which
embodies these ideas; and I discuss how the architecture can be used
to support broader purpose learning about the world.

The architecture described here augments previous machine learn-
ing systems in four ways.

First, it uses a notion of context, built from information recently
given to the system, to learn and reason about objects’ properties. The
context has seven dimensions, where each dimension represents a kind
of property that an object has. Examples of these properties are an
object’s capabilities, what an object is made of, and what categories of
objects it belongs to.

Second, the architecture includes multiple methods that it can use
to reason about objects, so that when one method fails, it can fall back

8

on others. This is important because the ability to think about things
in different ways is likely one of the hallmarks of human intelligence.

Third, the architecture illustrates the usefulness of reasoning about
objects by thinking about their similarity to other, better known ob-
jects, and by inferring properties of objects from the categories that
they belong to. Similarity and categorization appear to be fundamen-
tal cognitive processes whose understanding may help us better under-
stand human cognition in general. As such, it is important to illustrate
how well a system can reason about the world by using judgments based
on similarity and categorization.

Fourth, this architecture represents an attempt to build a autonomous
learner and reasoner, that sets its own goals for learning about the world
and deduces new facts by reflecting on its acquired knowledge.

This thesis describes this architecture as well as a first implemen-
tation, called Squirrel, that can learn from sentences such as “A blue
bird flew to the tree” and “The small bird flew to the cage” that birds
can fly. One of the main contributions of this work lies in suggesting
a further set of salient ideas about how we can build broader purpose
commonsense artificial learners and reasoners.

1.1 Building a Learner of Commonsense
Knowledge

The grand vision of the work described here is to understand how com-
puters can be built to learn and reason about the world, and thus how
they can be turned into intelligent or rational entities. This project
represents a step toward this vision, that of developing an architec-
ture suitable for accumulating and generalizing knowledge about the
properties and behavior of objects in the world, from simple English
sentences. I describe both the architecture and an implementation.
Throughout this thesis, I call the architecture the architecture or the
system, and I call its current implementation Squirrel.

Before describing the system in any more depth, I want to clarify
what I mean when I say the system acquires “commonsense knowledge”
about the world, and what I mean when I call it a “learning system”.

I use “commonsense knowledge” throughout this thesis to refer to
general knowledge that we humans have about the objects around us
and their properties. Other authors use the term “commonsense” to
refer to a broader kind of knowledge about the world [1]. Specific
examples of what I call commonsense knowledge include knowledge
that: people can walk, people have legs, birds can fly, birds have wings,

9

and a bird is an animal. The knowledge the system described here
accumulates does not include, for example, social knowledge such as
knowledge that people like to talk to each other.

I call the system I have built a “learning system” because its main
purpose is to deduce new facts about the world from old facts. Upon
making these deductions, the system stores the new facts in its knowl-
edge base. In this way, the system grows its knowledge about the
world by deducing new knowledge from old. This is the meaning that
“to learn” has in this thesis.

Concretely, the system is an incremental learner as defined by (De-
vaney and Ram 1996, [23]). It receives input English sentences one at
a time, and incorporates knowledge for each sentence in its knowledge
base. The system refines what it knows about the world dynamically,
from each new sentence and from queries about objects and their prop-
erties, posed by a human user. For example, the system generalizes
knowledge such as that birds can fly from input sentences such as “A
blue bird flew to a tree”, “The small bird flew from the cage to the
river”. The system’s architecture is modular and contains four layers:
a layer for representing objects and events in the world, a layer for
language parsing and understanding, a layer for learning, and a layer
for storing, retrieving, and manipulating long term knowledge. These
layers interact with each other primarily by using English phrases.

The main contributions of this architecture are that:

• It uses similarity and categorization judgments that rely on the
context built from information recently supplied to the system,
to reason about objects and their properties,

• It illustrates the usefulness of having multiple ways to reason
about situations so that when one method fails, the system can
try others instead,

• It illustrates the role that communication has in prompting a
system to consolidate its knowledge about the world and deduce
new knowledge, and

• It uncovers a set of salient ideas about the properties an archi-
tecture should have in order to support broader purpose learning
and reasoning about the world,

One of the main surprises I have found while designing and imple-
menting this learning system is the usefulness of building the system
to use English expressions to ‘talk’ to itself internally.

10

One of the salient ideas that has emerged out of this learning ar-
chitecture is that the notion of context is essential to the quality of
learning and reasoning in an artificial system.

1.2 Outline

This thesis is organized as follows. In chapter 2, I describe the previous
work that this thesis grounds in. I discuss the use of context in machine
learning, psychology research into similarity and categorization, and
artificial intelligence research in the areas of knowledge representation
and acquisition. I also describe the Bridge architecture [13] that my
learning system is built on top of. The sections on context (section
2.1), knowledge acquisition (section 2.4), and the Bridge architecture
(section 2.5) are crucial background for the remainder of this thesis.

In chapter 3, I describe the design of the learning system. I start
by pointing out the fundamental ideas and specifications I desire the
system to have. I then describe the knowledge representations I use
and the underlying assumptions these representations imply. I further
describe the main modules of the system, their interactions, and the
roles they play in learning.

In chapter 4, I describe Squirrel, a first implementation of this sys-
tem. I describe the user interface and backend implementation and
present three concrete learning examples from Squirrel’s execution.

In chapter 5, I evaluate the learning system and discuss the surprises
I have found while designing and implementing Squirrel.

In chapter 6, I outline the salient ideas that have emerged from the
current work, about what properties that an architecture should have
in order to support broader purpose learning and reasoning about the
world. Together, these ideas outline a platform for learning broader
purpose knowledge about the world.

In chapter 7, I present the contributions that I have made toward
building intelligent artificial systems.

11

Chapter 2

Grounding in Previous
Work

“The secret of genius is to carry the spirit of childhood into matu-
rity.” (Thomas Henry Huxley)

A first step to designing an artificial learner consists of answering the
following four fundamental questions: (1) what is the context in which
learning happens, (2) what kinds of representations are best suited for
the information that is to be learned, (3) what kinds of knowledge a
machine can attempt to learn, and (4) what learning principles can be
applied to deduce general information about the world around.

In this chapter, I describe previous work in the areas of context in
machine learning, similarity and categorization as methods for reason-
ing about the world, knowledge representation, and knowledge acquisi-
tion. For each of these areas, I show how my current work grounds in
the work described and how it contributes to further research in that
area.

2.1 Context in Machine Learning

The use of context in machine learning is a relatively new topic of re-
search in AI. Since the 1990s, context has been the topic of several
conferences and workshops, such as the International and Interdisci-
plinary Conference on Modeling and Using Context (1997), and the
International Conference on Machine Learning (1996). Though as of
yet, there seems to be no universally agreed upon definition of con-

12

text (Bigolin, Brezillon 1997, [26]), several authors (Devaney and Ram
1996, [23], Matwin and Kubat 1996, [34], Turney 1996, [42], Lenat 1998,
[22]) have advocated for the usefulness of context in concept learning as
well as in expert domains (Agabra, Alvarez, Brezillon 1997, [15]), and
moreover for the necessity of using context for machine learning tasks
(Matwin and Kubat 1996, [34]). Researchers have concretely experi-
mented with using context in a variety of domains, from studying wine
fermentation (Agabra, Alvarez, Brezillon 1997, [15]), to using context
to improve the formalization of natural language, namely translating
from system requirements expressed in natural language to a conceptual
model for the system (Bigolin, Brezillon 1997, [26]), to using context
to improve knowledge discovery (Sala 1997, [36]).

I review here representative work which motivates the use of context
in machine learning and illustrates the role of using context in concept
learning and classification tasks. From this work, I argue that using
context can substantially improve machine learning algorithms, and I
give a brief overview of my use of context in this thesis.

Several authors have been interested in using context in concept
learning (Devaney and Ram 1996, [23], Matwin and Kubat 1996, [34]),
where an artificial learner takes as input a set of instances described in
terms of a number of characteristics and aims to generalize a set of con-
cepts from this input. (Devaney and Ram 1996, [23]) define the goal of
such a learner to be to improve the prediction of the characteristics or
behavior of instances unseen by the learner. Devaney and Ram advo-
cate using context by arguing that in order to produce a robust concept
learner, the learner must describe the instances it classifies in terms of
attributes which are relevant to the problem at hand. They claim that
context should include the goals and tasks of the learner, as well as
knowledge about its environment, and that as context changes, the
learner should also change the characteristics which it uses to describe
instances.

To illustrate the usefulness of context in artificial learning, Devaney
and Ram present an implementation of what they call an “attribute-
incremental” concept learner, called AICC. An attribute-incremental
learner is incremental, in that it incorporates inputs gradually and dy-
namically changes its concepts based on the inputs. It is attribute-
incremental because it modifies not only its concepts, but also the at-
tributes used to describe those concepts, so it is able to respond to
changes in context. The main contribution of this learner is that, in
response to changes in the attributes set, it produces a new set of con-
cepts by modifying existing ones, in less time than it takes traditionally

13

systems to build the same new concepts from scratch. They are thus
able to bootstrap new concepts from old by using context, a result
especially noteworthy for situations where there is a considerable cost
associated with the acquisition of information (Devaney and Ram 1996,
[23]).

Devaney and Ram also situate the use of context in a larger pic-
ture, by arguing that context is important for learners that are placed
in situations similar typical for human concept learners. They conclude
that use of prior greatly increases the efficiency of the learning process,
without detracting from the performance of the learner (Devaney and
Ram 1996, [23]).

Like Devaney and Ram, (Matwin and Kubat 1996, [34]) are inter-
ested in using context for concept learning, and propose that context
deserves more attention in the machine learning community. Further-
more, they argue that context is useful in learning and that learning
tasks cannot be solved satisfactorily while context is ignored. They
identify the most important question in systems which take context
into account to be that of how to take into account the change in
context between the training test and the testing set provided to the
learner.

To support their point, they cite three examples of machine learn-
ing applications where the use of context is “either necessary or at
least highly beneficial” (Matwin and Kubat 1996, [34]). The examples
are: (1) a calendar application which schedules meetings of a univer-
sity professor; the context here consists of the personal priorities of the
professor, and experiments show that the poorest performance of the
system correlates with the semester boundaries, where it takes the sys-
tem some time to learn the new priorities of the professor; (2) Matwim
and Kubat’s application for detecting oil spills on the sea surface; the
context here includes factors such as meteorological conditions, and
they show that taking this information into account improves the pre-
diction accuracy of the system; (3) a sleep analysis performed by Kubat,
Pfurtscheller, and Flotzinger in 1994; in this experiment, the biological
signals studied are subject-dependent, and the context is the sleeper;
in this case, experiments proved that it was useful to look at several
sleepers in order to infer information about the others.

(Matwin and Kubat 1996, [34]) argue that context is “inextrica-
ble from many classification tasks”. They observe that context influ-
ences the saliency of different features of an object at different times.
They further cite Katz, Gately, and Colling (1990) who provide several
strategies for using context in learning and “demonstrate that the use

14

of context can result in substantially more accurate classification.”
One of the major contributions of the paper by Matwin and Ku-

bat [34] is providing a division of concepts into three groups, based on
their sensitivity to context. The groups they identify are: (1) absolute
concepts, that don’t depend on any context, such as the notion of num-
ber, (2) relative concepts, that possess different properties in different
circumstances, such as the notion of poverty, and (3) partially relative
concepts, that have a set of properties which are always present, and
a set of properties that change with context, such as a swimming suit
that always has the same basic components, but whose color and size
vary widely. Matwin and Kubat conclude that using context is neces-
sary in many practical applications.

(Agabra, Alvarez and Brezillon 1997, [15]) provide an example of
such a practical application, in the domain of wine making. They
design a system that uses contextual knowledge, such as the weather at
grapes’ harvest time, to help predict a stop in the normal fermentation
process of the wine. Their idea is that using contextual knowledge can
help account for the causes of stuck fermentation and provide a correct
explanation of why it happened. Their goal is to build a contextual
model of the wine making process, run a simulation and obtain a result
which indicates the risk of stuck fermentation and test the sensibility
of the result to various conditions that appear along the wine making
process. In their design, they use the onion metaphor, initially proposed
by Tichiner, which models contextual knowledge as a core problem to
solve, with contextual knowledge organized in layers around this core.
similarly, Agabra, Alvarez, and Brezillon’s system has layers of context,
one for each step of the wine making process, before the fermentation
step.

Through their work, (Agabra, Alvarez, Brezillon 1997, [15]) demon-
strate that using context can be useful not only in everyday activities,
but also in expert domains. They conclude that contextual knowledge
can be essential to knowledge based systems, and that in expert do-
mains, the expert knowledge can serve as the context for explaining a
problem or evaluating a risk.

The work of Turney (Turney 1996, [42], Turney 1996, [43]) provides
a look at context from yet another perspective, that of identifying con-
text sensitive features in order to improve supervised learning from
examples. (Turney 1996, [42]) provides a formal definition of “what
it means for a feature to be context-sensitive to another feature”, and
claims that research on context demonstrates that exploiting contex-

15

tual information “can improve the performance of machine learning
algorithms”.

(Turney 1996, [42]) proposes a classification of object features re-
sembling the classification of concepts by (Matwin and Kubat 1996,
[34]). This classification includes primary features, that are useful for
classifying object even in isolation from other information; contextual
features, that are useful for classification only in combination with other
features; and irrelevant features, that are never useful. Turney further
argues that it is possible to use our commonsense knowledge about the
world to distinguish between these primary, contextual, and irrelevant
features.

Finally, Lenat’s work in the context of the Cyc system (Lenat 1998,
[22], Lenat, Guha, Pittman, Pratt, Shepherd 1990, [39], Guha, Lenat
1994, [30]) is worthy of attention. (Lenat 1998, [22]) discusses the use
of context from the point of view of the problem of acquiring common-
sense knowledge, and extending the Cyc base of knowledge (Lenat,
Guha, Pittman, Pratt, Shepherd 1990, [39]). Lenat proposes an in-
ternal structure for context, composed of twelve “mostly-independent”
dimensions along which contexts vary, and where each region of the
space defines a context. Lenat argues in favor of this model on the
grounds of efficiency: “it should enable a much more efficient, much
more focused sort of virtual lifting of assertions from one context to
another and [...] it should make it easier to specify the proper context
in which an assertion (or question) should be stated”.

The design and use of context in the system I present in this thesis
draws on several observations and results described above. Specifically,
I:

• Use context to illustrate its usefulness for both concept learn-
ing and classification tasks, as well as for learning and question
answering. My learning system is in a sense a concept forma-
tion system, because it forms concepts about what objects in the
world are like and what properties they have. The learner per-
forms classification tasks in that it decides whether a given object
belongs to a class by using similarity judgments between objects,
which are heavily influenced by the context of the judgment,

• Design and build a learner with attribute incremental features,
which describes the objects it learns about in terms of the kinds
of knowledge present currently in the context of the conversation
with the human user,

16

• Use Matwin and Kubat’s (Matwin and Kubat 1996, [34]) division
of concepts into absolute, relative, and partially relative concepts.
As described in more detail in chapter 3, my system bases many
of its judgments on the stereotype of a class of objects, which
essentially is the union of an absolute concept with several relative
concepts.

2.2 Similarity and Categorization

My thesis also grounds in previous work on judgments of similarity
and categorization of objects. Many noted researchers in artificial in-
telligence and psychology (Tversky 1977, [44], Lakoff 1987, [21], Rosch
1978, [33], Rosch 1975, [32], Tenenbaum 2000, [41], Gentner and Mark-
man 1997, [11], Winston 1980, [47]) have argued that similarity and
categorization are instrumental in cognitive processing and concept for-
mation.

Research on similarity was most influenced by Tversky’s seminal
work on the features of similarity. (Tversky 1977, [44]) argued that
similarity is an organizing principle which people use to classify ob-
jects, to form concepts, and to make generalizations. He proposed a
model of similarity where objects are represented as a set of features,
and the similarity between objects is represented as a linear combina-
tion of their common and distinctive features. Tversky points out that
similarity should not be thought of as a symmetric relation, because
when confronted with stereotypes of a class of objects and with exam-
ples of objects that belong to the class, people tend to believe that the
examples are more similar to the stereotype than vice versa. He cites
Rosch’s work on categorization in support of this observation. He fur-
ther argues that similarity should not be though of as transitive either,
at least in the case where the features on the basis of which similarity
between pairs is asserted are different for the two pairs.

Tversky argues that the classical geometric model of similarity,
where objects are represented as points in a two dimensional space,
and the differences between them are represented as the euclidean dis-
tances between these points, is not adequate. Instead, he proposes
the contrast model, which he derives from qualitative axioms about
the similarity of objects. In this model, all features are given equal
weight when calculating the similarity as a linear combination of com-
mon and distinctive features. This method yields reasonable success,
but Tversky notes that the prediction of similarity improves when con-

17

text is taken into account, where context consists of the “frequency of
mention” of the features.

(Tversky 1977, [44]) goes on to analyze the relations between peo-
ple’s judgments of similarity and difference, as well as the effects of
context on similarity judgments. On the topic of similarity versus dif-
ference, he provides experimental evidence that people observe similar
features more than distinctive features: “the relative weight of the com-
mon and the distinctive features varies with the task and [the data]
support the hypothesis that people attend more to the common fea-
tures in judgments of similarity than in judgments of difference”. On
the topic of similarity in context, he states that judgments of similarity
depend on context in that the salience of object features depends on
the context of the comparison.

Shortly after, (Shepard 1980, [37]) also contains ground breaking
work on similarity. He is primarily interested in how living things re-
spond to stimuli, and how a response learned to one stimulus may gen-
eralize to any other stimulus. He presents several models for assessing
similarity and argues that different models are appropriate for different
types of data, and that even for the same data, using different models
may help bring out different but equally important properties of the
input. In his later work, (Shepard 1987, [38]) is interested in similarity
from the point of view of generalization. He claims that people general-
ize from one situation to another because we believe similar situations
are likely to have the same consequences. He goes even further to assert
that generalization should be the first law of psychology and he envi-
sions generalization as a universal law the governs the functioning of
the universe, and which is not restricted to the behavior of living things.

The work by (Gentner and Markman, 1990, [11]) sheds light on
the cognitive processes that account for similarity and analogy judg-
ments. Gentner and Markman were primarily interested in explaining
the mechanisms of similarity and analogy, and argued that both involve
the same process of structural alignment and mapping.

Their motivation for studying similarity was that similarity is im-
portant for many areas of cognition, and that understanding the pro-
cess which accounts for people’s similarity judgments may enable us
to better understand human thinking in general. Gentner and Mark-
man, as well as other authors (Bassok 1990, [5], Holyoak and Koh 1987,
[14], Kolodner 1993, [18], Novick 1990, [27], Winston 1980, [47]) have
argued that similarity helps us solve new problems, by employing pro-
cedures that we have used to solve prior similar problems. (Gentner

18

and Markman 1990, [11]) also argue that similarity has a central role in
categorization judgments, citing, among others, Rosch’s work for sup-
port: “similarity is often given a central role in categorization [...] It
is common to assume that objects can be categorized on the basis of
perceptual, behavioral, or functional commonalities with the category
representation (e.g. robins are seen as birds because of their perceptual
and behavioral similarity to a prototype bird or to many other birds
that have been encountered).” Gentner and Markman situate their
work on similarity in a broader context by arguing that comparison
processes foster insight into problems, they lead us to new inferences,
and ultimately spark to creative thinking: “comparison processes fos-
ter insight. They highlight commonalities and relevant differences, they
invite new inferences, and they promote new ways of constructing sit-
uations. This creative potential is easiest to notice when the domains
compared are very different [...] even prosaic similarity comparisons
can lead to insights.”

Research on categorization was headed primarily by Eleanor Rosch.
In her seminal work on categorization (Rosch 1965, [32], Rosch 1978,
[33]), she outlines the following two principles for the formation of cate-
gories. The first is that the main goal of forming categories is to provide
the maximum information with the least cognitive effort. The second
is that this maximum is achieved when the categories formed map the
perceived structure of the world as closely as possible. Rosch also notes
that context affects how we categorize objects in categories.

A large part of Rosch’s work is dedicated to investigating and ex-
plaining the role that prototypes (more commonly referred to as stereo-
types) play in our similarity and categorization judgments. She moti-
vates the emergence of prototypes to describe categories of objects as
the need to increase the distinctiveness between different categories
(Rosch 1978, [33]). This means that we use prototypes when we reason
about classes of objects because when we compare two prototypes the
distinction between them is clear cut - in other words, prototypes are
far enough from the boundaries of the categories to create no confusion.
Furthermore, she observes that people rate prototypes reliably: “sub-
jects overwhelmingly agree in their judgments of how good an example
or clear a case members are of a category, even for categories about
whose boundaries they disagree” (Rosch 1978, [33]).

From her experiments, Rosch synthesizes three major conclusions
about the roles of prototypes: (1) prototypes don’t impose any sort of
processing model for categories, but they do pose a constraint on the
processing, namely that process models should not be inconsistent with

19

the facts we know about prototypes; (2) prototypes don’t constitute a
theory of representation of categories, but the facts we know about
prototypes can constrain the models of representation; and (3) proto-
types don’t constitute any particular theory of category, although they
must be learned if a system is to have adequate knowledge of the world.

(Lakoff 1987, [21]) cites Rosch’s work on prototypes in his own in-
quiry on categorization. He observes that we humans use categoriza-
tion all the time, for example in recognizing the objects around us,
and in speaking even the simplest phrases. Therefore, he argues that
understanding the principles behind categorization is crucial for under-
standing the nature of man: “An understanding of how we categorize
is central to any understanding of how we think and how we function,
and therefore central to an understanding of what makes us human”
(Lakoff 1987, [21]).

(Anderson 1991, [4]) points out yet another advantage of categoriza-
tion, namely that knowing that an object belongs to a category means
we can predict a lot about the properties and behavior of that object.

Last but not least, Simon Ullman’s work on using intermediate com-
plexity features in image recognition and classification (Ullman et al.
2002, [35]) suggests a practical guideline for categorizing objects into
classes: by focusing not on the most specific features of the object, nor
on the most general, but rather on the objects’ intermediate features.
(Ullman et al. 2002, [35]) show that features of intermediate complex-
ity are more informative for classification than the very simple or the
very complex features.

The learning system I describe here draws on the research described
above in the following ways:

• I design my learning system to use both similarity and category
judgments in order to deduce properties of objects,

• I use a linear measure of similarity of objects, like the one de-
scribed by (Tversky 1977, [44]), enhanced to weigh features dif-
ferently, based on the context of the comparison; my system com-
pares objects and uses their similarity to deduce what properties
objects have,

• I use intermediate complexity properties of objects to describe
objects and to infer new properties, and

20

• I use comparison of objects with prototypes to determine whether
objects belong to a class, and to further infer what properties
they may have in virtue of belonging to that class. I take Rosch’s
work (Rosch 1978, [33]) a step further, by investigating how well
a learner can do by making inferences about particulars objects
from prototypes.

2.3 The Problem of Representation

The very need for knowledge representation (KR) in areas such as prob-
lem solving, natural language understanding, vision and many more,
has generated much controversy among scientists in the field of AI: is
representation necessary for an intelligent machine, or can one man-
age just fine without it? Brooks has been a devoted proponent of the
latter point of view (Brooks 1991, [8]) and argued that progress in
the field has been held back by the search for the appropriate repre-
sentation, and that one should strictly rely on interfacing to the real
world, through perception and action. “Connectionist” and “situated”
theories of learning also embrace this point of view. ([12]) Connec-
tionism postulates that intelligent cognitive behavior can arise directly
from neural-like mechanisms, such as neural nets, and thus bypasses
the need for representation. Situatedness also bypasses representation
by trying to make behavior emerge solely from interaction with the
environment, à la (Brooks 1991, [8]).

On the other side of the bastion, researchers (Brachman 1990, [7],
Davis, Shrobe, Szolovits 1993, [28], Minsky 1985, [24], [29]) have ar-
gued that knowledge representation acts as a fundamental abstraction
of the world around and that achievement in artificial intelligence is
largely due to the computers’ ability to represent knowledge internally.
For example, (Brachman 1990, [7]) points out that KR allows compu-
tational systems to reason about their environments, their goals, and
themselves. He cites Minsky’s work on the frames representation (Min-
sky 1985, [24]) as a promise that using representations to reason about
the world will have a major influence on artificial systems.

But even among the promoters of KR, the question of just what
role representations play, and which representation is most appropriate
for various machine learning tasks is still under extensive research.

(Davis, Shrobe, Szolovits 1993, [28]) clarified the role of KR by
stating that a knowledge representation has five roles: (1) it serves
as a surrogate for the real world, (2) it reflects a set of ontological
commitments about how to see the world, namely which things the

21

representation pays attention to and which things it blurs from view,
(3) it represents an embedded theory of intelligent reasoning, because
when you choose a particular representation, you automatically com-
mit to a particular theory about what it means to reason intelligently,
(4) it acts as a medium for efficient computation, by defining what is
easy (i.e. polynomial) and what is hard (i.e. exponential) to computer
in this representation, and (5) it acts as a medium of expression, by
prescribing what things are easy to express and what things are hard
to express in that representation.

Based on work in KR, in this thesis I take the stand that having
a representation, and, moreover, having the appropriate representa-
tion, is crucial for building an artificial learning system. The architec-
ture presented here uses a representation first proposed by (Vaina and
Greenblatt 1979, [19]). Vaina and Greenblatt were primarily interested
in implementing a semantic memory. They aimed to study how the
way that knowledge is arranged influences how people understand the
world, how we solve problems, how we remember old facts, and how we
learn new facts. Their model of human memory, called “thread mem-
ory” is especially well-suited for learning. It postulates a thread data
structure, that is a multi-link, loop-free chain of semantic nodes. The
semantic nodes represent the categories to which an object belongs.
For example, a robin can be represented by a thread that looks like
this:

living thing -> animal -> bird -> robin

The most important features of thread memory are:

• its capacity to learn, which (Vaina and Greenblatt 1979, [19])
illustrate with a running program that learns concepts using chil-
dren’s’ books. The researchers assert that the thread memory
model provides a better base for a learning system than other
models,

• threads encode information in the order from the most general
piece of information to the most specific; Vaina and Greenblatt
argue that, in the context of classifying an object in the categories
it belongs to, this organization makes information come out in the
right order, because people think of the most general category of
an object first, before thinking about more specific categories,

• thread memory has redundancy, in that information such as that
a bird is an animal is presumably encoded on the threads of all

22

things which are birds. Namely all these threads contain the
nodes bird -> animal Thus, by looking at any of these birds,
one can see that a bird is an animal,

• the representation is easy to maintain, a property that has im-
portant implications for computational efficiency. For example,
adding more knowledge to a system that uses this representation
involves no modifications to the existing knowledge. They further
point out that this property may simplify implementing context,
and

• the thread memory representation is well suited to compare and
contrast judgments between objects, and to recognition tasks.

Based on Vaina and Greenblatt’s work, I design my learning system
to use threads like the ones in the thread memory representation to
record properties of objects. In my work, I describe the merits of the
thread memory representation in terms of the five roles defined by Davis
et al. (Davis, Shrobe, Szolovits 1993, [28]), and illustrate the usefulness
of thread memory for implementing context and for supporting the
operations of learning and question answering with context.

2.4 Knowledge Acquisition and Learning

In building a learning system, it is important to clearly define what
kind of knowledge the learner is meant to acquire. This topic also has
sparked debates in the field of artificial intelligence.

Several researchers have recently insisted that we should aim to
build Systems with commonsense knowledge (Singh 2002, [40], [1],
Lenat, Guha, Pittman, Pratt, Shepherd 1990, [39], Chklovski 2003,
[9], Chklovski 2003, [10]). The most prominent such effort has been
led by Minsky and Singh, who laid down the basis of the Open Mind
Common Sense project (OMCS, [1]).

The motivation for this work is that computers lack commonsense
knowledge about the world, and that they lack the ability to do com-
monsense reasoning, which means the ability to use commonsense knowl-
edge to solve the kind of problems we encounter every day in our lives.
Minsky and Singh ([1]) define commonsense knowledge to encompass
common knowledge about the world (such as knowledge that if you’re
going to someone’s birthday party, you should bring a gift), but also
knowledge about how to use, combine, and classify the knowledge one
has in order to solve certain problems.

23

OMCS has inspired the recent work of (Chklovski 2003, [10], Chklovski
2003, [9]) on acquiring commonsense knowledge from human contrib-
utors. Chklovski’s goal was to capture the commonsense knowledge
of non-expert contributors, as a step toward constructing a machine
that could reason about the everyday world (Chklovski 2003, [10],
Chklovski 2003, [9]). His method was to use volunteer contributors over
the Internet to acquire assertions for his knowledge base (KB). This
approach represented an innovation over previous approaches (Lenat,
Guha, Pittman, Pratt, Shepherd 1990, [39], Guha, Lenat 1994, [30])
where knowledge was accumulated with an effort of many experts, over
a long period of time. Chklovski also envisioned a repository of com-
monsense knowledge to be a crucial step toward breakthroughs in fields
such as natural language processing and information retrieval. The seed
for Chklovski’s KB was taken from the OMCS KB.

Chklovski’s system acquired its knowledge from assertions provided
by volunteer contributors to the KB, and from its own algorithms to
reason by analogy: given an assertion about a topic, the system guessed
which other topics it already knew about were most similar to it, and
proceeded to ask questions about the new topic, based on its similarity
with these other, known topics. Chklovski’s learning system exhibited
bootstrapping qualities, in the sense that the more knowledge it had,
the more knowledge it could base its questions on.

One of the main contributions of Chklovski’s work, and directly rel-
evant to the work I present here, is his discovery that the commonsense
knowledge volunteered by online contributors falls nicely into thirteen
classes. Chklovski notes that there currently is not universally agreed
upon classification for assertions. Chklovski’s classification, reported in
his PhD thesis (Chklovski 2003, [10]), contains the following classes of
knowledge, in the order from the most populated to the least populated:

1. ACTION, as in “Birds fly”, accounted for 30.5% of all assertions,

2. Qualified-ACTION, as in “Planes fly very fast”, accounted for
17.2% of all assertions,

3. PROPERTY, as in “A swan is white”, accounted for 9.7% of all
assertions,

4. ISA, as in “A bird is an animal”, accounted for 9.0% of all asser-
tions,

5. ACTION-ON, as in “Horses can be ridden”, accounted for 6.6%
of all assertions,

24

6. FUNCTION, as in “Planes are used for transportation”, accounted
for 5.0% of all assertions,

7. PART-OF, as in “A wings is part of a bird”, accounted for 3.3%
of all assertions,

8. Qualified-ISA, as in “Swans are white birds”, accounted for 2.7%
of all assertions,

9. REQUIRES, as in “Flying requires wings”, accounted for 2.3%
of all assertions,

10. DEFINITION, as in “Phones are devices for making calls”, ac-
counted for 1.9% of all assertions,

11. COMPARATIVE, as in “Horses are faster than people”, accounted
for 1.5% of all assertions,

12. MADE-OF, as in “A bird is made of feathers”, accounted for
0.8% of all assertions, and

13. POSSIBLE-STATE, as in “Birds can be flying”, accounted for
0.4% of all assertions.

Chklovski argues that this classification suggests that, in order to
acquire a significant sample of the possible assertions about objects and
their properties, contributors should be queried for knowledge that falls
into all of the strongly populated classes enumerated above.

While evaluating his system, Chklovski points out that two impor-
tant limitations (Chklovski 2003, [10]). One is due to the fact that his
parser accepts only assertions in the form of single sentences which are
syntactically valid and interpretable in isolation from other sentences or
phrases. Furthermore, his system’s goal is to handle knowledge about
classes of objects, rather than about particular objects. These factors
constrain the kinds of assertions the system can be given, and subse-
quently the kinds of knowledge it has about the world. The second
limitation is due to the simplicity of the internal representations used.
Chklovski argues that if more, or more complex representations were
used, more kinds of things could be learned. For example, some im-
portant kinds of commonsense knowledge that Chklovski’s system does
not capture are knowledge about causes and about the motives of ac-
tions taken by people (as exemplified by the sentence“A person stands
on a chair to change a light bulb”), or about how knowledge can be
combined (such as reasoning from “Birds fly” and “Dead things cannot

25

fly” to “Dead birds cannot fly”).

Chklovski’s work profoundly guided the design of my system, as I
describe at the end of this section. However, several other research di-
rections in the area of learning and knowledge acquisition also deserve
brief mention here.

In his work on the Cyc system (Lenat, Guha, Pittman, Pratt, Shep-
herd 1990, [39], Guha, Lenat 1994, [30]), Lenat suggests that there is
a fundamental difference between humans and computers, in terms of
both knowledge content and in how knowledge is used. He notes that
humans are equipped to deal with new and perhaps unexpected situa-
tions as they arise, whereas computers cannot dynamically adjust to a
new situation, when it exceeds their limitations. For example, humans
can find more than one way to solve the same problem, they can ask for
advice, they can read about the problem, or, when all else fails, they
can fall back on commonsense. Lenat believes that it is precisely this
difference that accounts for humans’ superior intelligence.

Yet other authors such as Valiant (Valiant 1984, [45]) have looked
at machine learning from a theoretical perspective. Valiant proposed
a model of learning with three properties, namely that (1) learning is
probabilistic, that is the hypothesis data is generated randomly; (2)
learning is computationally efficient, that is at most polynomial in n,
the number of observations that serve as input data, and (3) the learn-
ing algorithm is appropriately general, that is it can generalize well
given a reasonably large input set. Valiant further demonstrated that it
is possible indeed to build a system with all three characteristics above.

(Pitt, Valiant 1988, [20]) have also been concerned with the compu-
tational limitations of learning, in particular for learning from examples
by way of generalization. The basic idea of learning from examples was
described by Winston (Winston 1993, [48]). It consists of forming a de-
scription of a category of objects based on examples known to belong
to that class; as more examples are presented to the system, the system
expands its description of the category. In 1988, Pitt and Valiant (Pitt,
Valiant 1988, [20]) showed that learning from example is computation-
ally feasible, in the sense that it is possible to learn characterizable
classes of concepts, where the classes are non-trivial for general pur-
pose knowledge, and the computational processes that acquire these
classes require a polynomial number of steps. Pitt and Valiant further
point out that there may be variations in meaning in populations of

26

learners that use generalization.

My learning system draws on the previous work described above in
the following ways:

• My system aims to accumulate commonsense knowledge about
objects and their properties, such as knowledge that birds are
animals, and that birds can fly.

• My system has several methods that it can use to answer a query
posed by the human user, so it has several ways to “solve a prob-
lem” or to “deal with an unexpected situation”.

• The knowledge my system accumulates about objects falls into
seven of Chklovski’s categories. Ultimately, one of my goals is
to evaluate how well my system can reason and learn about the
world, by using these classes of knowledge.

• My system, like Chklovski’s, exhibits bootstrapping properties:
the more knowledge it has, the more knowledge it can use to
answer queries. Furthermore, once it deduces an answer to a
question posed by the user, the system immediately adds the
new information to the knowledge base, for further use.

• Following Chklovski, I analyze my system’s performance in light
of the limitations imposed by its language parser. The parser
I use can take in single sentences or phrases conjoined by “and
then”. It can also handle statements about particular objects,
not just classes of objects. Still, the sentences it can parser are
still meant to be interpretable without much context, and this
biases somewhat the kinds of things the learner can learn about
the world. I discuss this in more detail in the chapter 5.

2.5 The Bridge Project

My learning system also grounds in work on the Bridge project [46].
The Bridge project is a project developed in the Genesis group at the
MIT Computer Science and Artificial Intelligence Laboratory, under
the guidance of Professor Patrick Winston. The main goal of Bridge
[46] is to understand the computational nature of intelligence, and par-
ticularly the way in which the different faculties (vision, motor, linguis-
tic) cooperate to facilitate human intelligence. The learning system I
describe in this thesis is designed and implemented on top of the Bridge

27

infrastructure. I therefore describe the relevant Bridge representations
here, and explain how they are used in my system.

This Bridge infrastructure [13] uses one main abstraction to repre-
sent the world, called a Thing. This abstraction actually comes in three
flavors: a Thing, a Relation, and a Sequence. Bridge provides modules
that implement each of these abstractions. Here is a brief description
of the role of each.

• A Thing represents an object in the world, for example a bird. A
Thing is made of a bundle of Threads. The Bridge Thread struc-
ture is an implementation of the thread structure for the thread
memory model, described in (Vaina and Greenblatt 1979, [19]).
In my learning system, each Thing is equipped at creation with
a bundle of seven Threads, where each Thread stores a specific
type of knowledge. The types of knowledge are those listed in
table 3.1. Each thread has a thread label that identifies the type
of knowledge stored on it. The thread labels are listed in the
first column of table 3.1. Figure 2.1 exemplifies the structure of
a Thing; that particular Thing instance represents a robin, for
which the system knows some isa, can, and has facts.

• A Relation inherits from a Thing. It indicates how an object is
related to another. In the context of language understanding, it
indicates how the subject of a sentence (for example, the bird
object from the sentence “A bird flew to a tree”) relates to the
object (in this case, the tree object.) In the learning system, there
is a Relation for each sentence the system receives as input.

• A Sequence also inherits from a Thing. It is a structure which
can contain an arbitrary number of elements. The Bridge parser
usually creates Sequences of Relations for sentences with several
phrases. For example, given the input sentence “A bird flew to a
tree and then it flew to the lake”, the parser builds a Sequence
of two Relations, for each phrase of the sentence.

An important property of the Bridge representation is its focus on
transitions. Bridge “views” the world in terms of objects moving along
paths (or trajectories), a representation initially proposed by (Jack-
endoff 1983, [16]). Trajectories emphasize the movements of objects in
the physical world. To make this more concrete, a Sequence represents
a path, which tells how an object (usually the subject of a sentence)
moves in time. The natural language parser the learning system uses

28

Figure 2.1: An example of a Thing structure.

is also part of the Bridge system. This parser accepts simple English
sentences as input and outputs Sequences representing Jackendoff tra-
jectories.

In the chapter 3, I discuss at length the assumptions and biases the
Bridge infrastructure (specifically the Thread, Thing, and trajectory
representations and the parser limitations) imposes on the learning
system.

29

Chapter 3

System Design

“A designer knows that he has achieved perfection not when there
is nothing left to add, but when there is nothing left to take away.”
(Antoine de Saint-Exupéry)

This chapter describes the design of the learning system. I first
describe three fundamental ideas that guided my work. Then, I describe
the system’s specifications and discuss the representations the system
uses and their implications for the learning the system aims to do. The
bulk of this chapter is dedicated to describing the conceptual design
and the software design of the learning and reasoning algorithms.

I designed the learning system I describe in this thesis with three
fundamental ideas in mind. I describe these here, before delving into
the details of the design, and I comment briefly on how the system
design incorporates each of these ideas.

The first idea is that part of the thinking and learning that go on
in an intelligent system stem from communication with the outside
world. In common terms, this asserts that speaking with others makes
us smarter, because it forces us to use our language apparatus together
with our other cognitive and reasoning facilities. (I believe this idea
was first formulated by my advisor, Patrick Winston. It has surfaced
numerous times in the conversations we have had about the role of
language, vision, and motor abilities in intelligence.) Speaking with our
peers also makes us learn new facts, and leads us to think up new ideas
that we may not have come up with on our own. The current learning
system can respond to queries posed by a human user in English. It
reflects the idea that communication contributes to intelligence in the
way in which it responds to these queries. Responding to a query

30

involves a process of deducing an answer (which is the most accurate
answer the system can give based on the contents of its knowledge
base), and then learning a new property or classification of the object
from that answer. Thus communicating with a human user usually
results in learning a new fact about the world.

The second idea is that you can’t learn anything unless you almost
know it already. Credit belongs to William Martin. This idea suggests
that learning is incremental, and happens as small leaps of inference
from things that we know to things we don’t know but which can be
easily guessed. The current learning system does just this: it looks
at objects it already knows about and tries to deduce properties for
objects it knows less about, but which are, nonetheless, similar to the
objects it knows.

The third idea is that in order to learn and to be able to conduct
an intelligent conversation, one needs to have a notion of context. As
argued in the previous chapter, context is all around us. Everything
we do, say, and think is based on some context, though we’re seldom
explicitly aware of it. The main goal of this work was to carry over
the notion of context to the machine learning system that I describe
here. Section 3.5 below describes in detail how I represent context
in this system, and how I use context in both learning and question
answering.

3.1 System Specifications

I present here the specifications of the learning system that pertain
to the system’s interface, the learning it does (namely, what kinds of
things it learns), and its question answering capabilities (namely, what
kinds of questions it can answer).

First, I’d like to clarify what this system does and, most impor-
tantly, what it does not focus on. The main focus is on the learn-
ing and question answering algorithms. The system is an incremental
learner, in the sense described by (Devaney and Ram 1996, [23]). It
receives inputs one at a time, and refines its knowledge of the world
dynamically, with each input received. In this work, the focus is not on
natural language parsing. For this reason, the language that the sys-
tem can understand is fairly limited. For input sentences, the system
uses the Bridge parser discussed in chapter 2. For queries, this system
uses a very simple and specialized parser. This parser recognizes only
the kinds of queries I describe in the paragraphs below. The syntax
of these queries is simplified particularly because this parser is just a

31

utility, it is not one of the main focuses of my research. In chapter 5 I
argue that the learning architecture I have built is general enough that
the language parsing limitations do not impose a hard cap on what the
system can learn.

Here are the specifications for the system’s interface, learning capa-
bilities, and question answering capabilities. The system interacts with
the human user by taking as input simple English sentences. These
sentences are either about particular objects, as in “The blue bird flew
to the tree” or about classes of objects, as in “Birds can fly.” Out
of these sentences, the system constructs its store of knowledge. The
system also accepts and answers queries posed in simple English, for
example “Do birds fly?”

The system learns seven kinds of knowledge about objects. As dis-
cussed in chapter 2, I have lifted these kinds of knowledge from Tim
Chklovski’s recent work (Chklovski 2003, [10], Chklovski 2003, [9]) on
acquiring commonsense knowledge from human contributors, by way of
an online acquisition system. From among Chklovski’s fourteen classes
of knowledge about objects, I have picked the seven classes pictured in
table 3.1 below.

Type of
knowledge

Example sentence % in
Chklovski’s
classification

action Birds fly. 47.7%
property Robins are small. 9.7%
isa A robin is a bird. 9.0%
has A bird includes wings. 3.3%
can Birds can fly. 5.0%
requires Birds require wings to

fly.
2.3%

madeof Birds are made of feath-
ers.

0.8%

Table 3.1: The classes of knowledge Squirrel learns.

The action class of knowledge in table 3.1 includes Chklovski’s
ACTION and QUALIFIED-ACTION classes. The isa class includes
Chklovski’s ISA and QUALIFIED-ISA classes. The has class of knowl-
edge is a reformulation of Chklovski’s PART-OF class. The can class
is a generalization of Chklovski’s FUNCTION class.

Together, the seven classes of knowledge in table 3.1 encompass

32

≈87% of all assertions provided to Chklovski’s knowledge acquisition
system. I have chosen to focus specifically on these seven classes in my
work because from these classes, my system can acquire a representative
sample of the common knowledge that people have about objects in the
world.

The system can answer four different kinds of questions, as shown
in table 3.2 below. Note that the first two types of questions ask di-
rectly about what properties an object has. These properties can refer
to any of the seven kinds of knowledge from table 3.1. For example, the
“what is X” category of questions includes all of the following: “what
is a bird?”, “what can a bird do?”, and “what is a bird made of?”

Question type Example input to
Squirrel

Purpose

what is X What is a bird? deduce and learn
new fact about
an object

does X do Y Can planes fly? deduce and learn
new fact about
an object

is X similar to Y Is a plane similar to a
bird?

compare objects
to learn
a new fact about
one of them

describe X Describe birds. synthesize
known facts
about an object

Table 3.2: The kinds of questions Squirrel can answer.

The questions the system aims to answer are meant to make the
system deduce information about classification of objects (this infor-
mation falls into the isa knowledge class), and to deduce properties of
objects (which fall into one of the action, property, has, can, requires,
madeof).

I have chosen the queries above to demonstrate the usefulness of this
learning architecture. I believe that a system that can efficiently make
these kinds of deductions and judgments about objects can be extended
to reason about objects and their properties in a broader sense.

33

3.2 The Representations and Implicit As-
sumptions

Researchers have argued that the representation of the world that an
artificial intelligence system uses has crucial implications for the kind
of reasoning the system can perform (Davis, Shrobe, Szolovits 1993,
[28]). Thus, before describing the design of the learner, I point out the
implicit assumptions that result out of the representations my system
uses.

The main representations, presented in chapter 2, are: the Thread,
a module which is part of the Bridge system, ([13]) and implements a
thread as described by (Vaina and Greenblatt, [19]), the Thing, Rela-
tion, and Sequence modules which are part of the Bridge system ([13]),
and the trajectory representation ([16]), output by the Bridge parser.

The Thread and Thing abstractions, the focus on trajectories of
objects as a way to understand the world, and the seven classes of
knowledge the system is designed to learn have profound implications
for the system.

First, these representations prescribe in what terms the system
views the world. The system views each object in terms of the seven
types of knowledge described in table 3.1, namely what the object does,
what properties it has, what classes of objects it belongs to, what parts
it has, what its capabilities are, what it requires, and what it is made
of. These types of knowledge capture some but not all the knowledge
people have about objects; there are some kinds of knowledge that the
current system does not capture and therefore cannot reason about. I
will argue later, during the evaluation of the system, that the design is
modular and extensible enough to support broader purpose learning.

Second, the use of Threads is important because of the four main
properties of the thread memory representation (Vaina and Greenblatt
1979, [19]): redundancy, storing category information in the order from
the most general category an object belongs to down to the most spe-
cific, ease of maintaining a knowledge base expressed as thread mem-
ory, and the suitability of threads for compare and contrast operations.
These properties shape the computational environment on top of which
the learning and reasoning algorithms are built. The redundancy of in-
formation on things’ isa threads eases the computation the system has
to do. For example, consider all the objects the system knows about
which are birds. Then, the information that a bird is an animal is stored
on most of these Things, in the form animal -> bird. Thus, the sys-
tem can access this information by looking at any of these Things, and

34

needs not do any involved computation to search for the information.
Third, the fact that the system’s view of the world is focused on the

movement of objects along trajectories has implications for the kinds
of things it is easy to express, and maybe more importantly for the
kinds of things it is hard to express in the system. For example, it is
especially hard to capture the notion of time. There is no easy way
to express how objects and their properties change with time, so the
system doesn’t learn to take time into account.

Fourth, the representation implies an underlying model of intel-
ligent reasoning. Specifically, the system assumes that humans use
certain methods to learn and make judgments about the properties of
objects, and it aims to explore how an artificial learner could use these
same methods. For example, I assume that humans use categorization
of objects and similarity of objects to infer object properties. Conse-
quently, the learning and question answering algorithms I describe in
section 3.5 make use of exactly these principles.

Finally, an important fact to keep in mind about the Thing repre-
sentation is that the system I describe here takes this representation for
granted. That is, this work does not focus on exploring how it is that
representations can arise in a system, from interaction with the world.
This is indeed a crucial problem in artificial intelligence in general, and
in the area of knowledge representation in particular. However, this
problem is outside the scope of this work. This work rather assumes
the Thing representation is available to the system, and focuses on
showing what the system can learn about and reason about by using
it.

Before moving on, here are brief explanations of several terms which
I will use often throughout the remainder of this thesis:

• a type is the name of a category of objects, or something that rep-
resents a property of an object. In Squirrel, types are recorded
on the threads of Thing structures. For example: bird is a clas-
sification which may be recorded on the isa thread of an object
which is a robin. Another example is fly, which is a capability
of robins, so it may be recorded on the can thread of an object
which is a robin.

• Thing refers to the data structure I’ve described above and which
represents an object in the world. When thing appears spelled
all in lowercase, it should be interpreted as synonym for object.

• Event and event are wrappers around Relations from a software
perspective, and represent events in the world (such as “A bird

35

flew to a tree”) from a conceptual perspective.

• I use stereotype to refer to what Rosch calls a prototype (Rosch
1978 [33]), that is, an object which is representative of an entire
class of objects. For example, I refer to the stereotypical bird
as an object that has all the generic properties that we associate
with birds, such as the fact that a bird is an animal, that it has
wings, and that it can fly.

3.3 Design Overview

The learning system I have built has three main capabilities: (1) build-
ing a knowledge base, by recording information from input sentences
and query answers, (2) deducing answers to queries, by inspecting the
knowledge base, and (3) learning new facts from input sentences and
query answers. The system learns from input sentences and query an-
swers by recording pieces of information it extracts from these sentences
or answers in a memory object. Learning from query answers effectively
acts as a cache, in that the piece of information in the answer can later
be used without having to be deduced again. The first capability of
the system, that of building a knowledge base, is a side effect of the
learning algorithm.

The main pieces that accomplish the three system capabilities are:
the interaction between the three main modules in the system-the learn-
ing module, Learner, the memory module, Memory, and the natural
language utility, ParsingEngine), the use of context, and the methods
for reasoning about objects by using similarity and categorization.

I first describe the system modules and their interaction. Figure
3.1 represents a Module Dependency Diagram (MDD) for the learning
system.

The most important dependencies are those of the Learner, Memory,
and ParsingEngine modules. The diagram shows that the Learner
depends on the ParsingEngine, Memory, Thing, Event, Context, and
ThingFactory. The ParsingEngine depends on the parsing modules
in the Bridge infrastructure, and on the Event and ThingFactorymod-
ules. The Memory module depends on Thing module.

The Learner, Memory, and ParsingEngine modules encompass the
learning, storing, and language parsing capabilities of the learning sys-
tem. The objects in the world are represented by Thing structures. A
Thing contains several Threads, which implement the thread structure
described in (Vaina and Greenblatt 1979, [19]). The Thing and Thread

36

Figure 3.1: An MDD showing the main modules of the learning system.

modules are part of the Bridge infrastructure ([13]), described in chap-
ter 2. Nearly all modules use Thing structures, because they are the
main abstraction of the world that exists in the system. The following
is a description of the roles of the main modules in the system.

• The Learner and ParsingEnginemodules call on the ThingFactory
module to produce Thing structures. For example, the
ParsingEngine produces Things that correspond to the objects
in a given input sentence.

• The ParsingEngine uses a parser module from the Bridge in-
frastructure ([13]) to parse input sentences into Event structures.
The Events become input to the Learner module. The Learner
extracts the Things representing the sentence subject, verb, and
object from the Event, and stores them in the Memory module.

• The Context module represents the notion of context in learning
and thinking about the world. The Learner manipulates the
Context. It uses it and modifies it during learning and question
answering. Section 3.4 explains in detail what the role of the
context is, and how it is used in the system.

37

Figure 3.2 highlights the functions the systems’ modules serve. The
figure reveals that the system is nicely layered. At the bottom level,
the Thing and Thread structures encompass the representation of the
world. At the second level, the ParsingEngine encompasses natural
language processing. This level is necessary because the system receives
input in the form of simple English sentences. The system also “talks
to itself” using English sentences, as will be explained shortly. The
third level represents the system’s memory. The fourth level represents
the cognitive capabilities of the system, namely the learning. The main
merit of figure 3.2 is that it can be interpreted as the architecture for
a broader-purpose learner and reasoner about the world.

Figure 3.2: An MDD showing the layering of the learning system, by
module function.

The learning and question answering algorithms of the system are
built on top of the basic modules described above. The next two sec-
tions discuss the representation and use of context in the system, and
the algorithms that deduce information about objects in order to re-
spond to user queries about the system’s knowledge.

3.4 Using Context for Learning and Ques-

tion Answering

As humans, we use context in virtually all of our everyday activities.
We use it while speaking to each other and while learning. Most of the

38

time, we use context unconsciously, because we are unaware of how our
minds supply it. Sometimes, we are instructed to use a specific context,
for example in stories which start with “Once upon a time, in a land
far, far away, ...” At other times, our minds supply a default context,
which consists of our commonsense knowledge about the world. But
just what does the notion of ‘context’ refer to?

I define context (informally) in my system as temporal proximity
of information. What this means is best illustrated by a few examples.
Suppose two people carry on a conversation about robins. They talk
about the color of their wings, how fast they fly, and whether their
legs are long or short. Then, the context of the conversation contains
the information most recently exchanged between the speakers. In
this case, the context includes robins (the object which is the subject
of the conversation), as well as robins’ properties (the color of their
wings, plus other properties we know robins have), their capabilities
(such as fly, walk, etc), and the parts robins are made of (such as their
legs). For each speaker, the context might also include memories of
particular robins the speaker has seen at some previous time. The
main idea is that the conversation about robins primes the speakers to
think about robins and their properties, and may also influence how
the speakers reason. For example, if speaker A asks speaker B what
sparrows are like, then B will likely describe sparrows in comparison to
robins, by pointing out the similarities and differences between sparrows
and robins. This scenario suggests that capturing the context of a
conversation may help an artificial system reason more intelligently
about the world.

Here is how I incorporate the use of context in my system. The
‘conversation’ in this case consists of the human user giving the system
input sentences and input questions. The idea is to: build up and
modify context based on the input sentences, to answer queries by
bootstrapping from the current context, and to modify the context
after deducing answers to the queries posed.

I represent context as a container with four elements: a type, a
fixed-length queue of thread labels, a Thing instance, and a Relation
instance. The type is a category of objects, such as robin in the sce-
nario above. With the type, I mean to capture the subject of the
conversation, in other words the thing the speakers talk about. The
thread labels are the names of the seven threads I use in my system,
previously described in table 3.1. These labels are: action, property,
has, can, requires, madeof, isa. The context contains a queue of fixed
length of labels. The length is set to 3 in the implementation I de-
scribe in the next chapter, but can be changed. With these labels, I

39

mean to capture the kinds of object properties the speakers talk about,
such as the subject’s capabilities, or the parts it is made of, or the
categories of objects it belongs to. This queue is also important be-
cause it allows the system to describe objects in terms of the threads
whose labels are in context. This idea is based on the assumption
that the information most relevant to the speakers is the information
most recently exchanged between them. Describing things in different
ways depending on the threads in context makes the learning system
an attribute-incremental system, as described by (Devaney and Ram
1996, [23]). Figure 3.3 shows a picture of a context object.

Figure 3.3: A pictorial representation of the Context object.

From a software engineering point of view, the context is a single-
ton. The Learner and Memory modules change the Context, based
on the operations they perform. Conceptually, the Learner changes
the context while processing an input sentence, and while deducing an
answer to a user query. The Memory changes the context while “re-
flecting” on the knowledge base (KB). (I describe reflection in the next
section.) The following pseudocode illustrates how context changes.

40

input sentence -> Learner.learn(){
extract things from Event;
modify and store things in Memory;
change context;

}
query to system -> Learner.answer(){

formulate answer based on context;
modify context;
answer -> Learner.learn();

}
Memory.reflect(){

decide what to think about based on context;
deduce some new information;
change context;
new information -> Learner.learn();

}

The system is designed to change the context as follows:

• When learning from an input sentence, if the sentence is an asser-
tion about a class of objects, as in “Birds can fly”, the Learner
sets the context type to the name of that class, (here, bird). Oth-
erwise, if the sentence is an assertion about a particular object,
as in “A bird flew to the tree”, the Learner sets the context type
to the most narrow category that it knows the object belongs to.
For example, if the bird in the previous sentence was known to
be a robin, the context type would be robin; otherwise, it would
be bird. I treat isa assertions separately from the other six types
of assertions: in isa assertions, I set the context type to be the
syntactic object of the sentence. For example, given “A bird is
an animal”, the Learner sets the context type to animal.
The Learner further sets the Thing in context to point to the
Thing structure which represents the subject of the sentence, and
sets the Relation in context to point to the Relation structure
which corresponds to the given sentence.
The Learner also pushes the thread label corresponding to the
given sentence on the queue of thread labels in context. So for
example, given the sentence “A bird is an animal” the Learner
pushes isa on the queue.

• When the system has to deduce an answer to a query, it tries
several methods. The Learner changes the context depending on

41

which method was used. I explain this in more detail below, in
the section that describes the model of learning.

• After the system deduces the answer to a query, it expresses the
answer as an English sentence. The Learner changes the context
as if this sentence was an input sentence, so it follows the guideline
described above.

I argue here informally that the way in which the Learner builds
and changes the context is useful. I defer a full discussion and evalu-
ation of the system’s learning performance until chapter 5. Changing
the context according to the guidelines above, in the case of input
sentences, seems to be useful because it models exactly the simple con-
versation scenario I described at the beginning of this section: after
each sentence is processed, the context contains the subject of the sen-
tence, it contains the kind of information about the subject that was
expressed in the sentence, and it contains the relation corresponding to
the sentence. The goal of my system is to explore this use of context
and to illustrate how it improves concept formation about objects and
their properties, by way of similarity and categorization judgments.

I now go on to describe the design of the learning and question an-
swering algorithms, all of which make use of and change the information
in context.

3.5 The Conceptual Model for Learning

The learning is localized in the Learner module. When the system
receives as input an English sentence, the Learner sends it to the
ParsingEngine for parsing. The ParsingEngine returns an Event
object, which is a wrapper around the Relation corresponding to the
sentence. The Learner extracts the subject, the verb, and the object of
the sentence from the Event. It then learns by recording the property
predicated of the subject on one of the subject Thing’s threads. For
example, given the sentence “Birds are animals”, the Learner stores
the type animal on the thread labeled isa of the Thing structure for
bird. Once the Learner has recorded this information on the subject’s
thread, it stores the subject in the system’s memory (by making a call
to the Memory module). The last action the Learner does is to change
the context object, according to the guidelines described above.

The Learner also learns some information about the verbs in the
sentence 1. The system records Thing structures which represent verbs,

1Squirrel, the implementation described in chapter 4 does not use the knowledge

42

and modifies their threads in the same way as it does for Things that
represent objects. A verb has three threads, labeled isa, requires, and
example of. Given the sentence “A bird flew to the tree,” the system
adds the type bird to the example of thread of the Thing representing
the verb fly.

Figure 3.4 shows the conceptual steps in processing an input sen-
tence. The steps are numbered 1 through 6, indicating the order in
which the relevant operations are performed.

Figure 3.4: The steps involved in processing an input sentence.

One important observation is the following. The system can accept
sentences about both particular objects and about classes of objects. A
sentence such as “A bird flew to a tree” is interpreted to be an assertion
about a particular bird. As a result, once the Learner gets the event
from the ParsingEngine, it builds a new Thing structure to represent
this bird. It then adds a trajectory representing moving to a tree to
this bird’s action thread, and stores the Thing structure in Memory. On
the other hand, sentences such as “Birds are animals” are interpreted
as assertions about whole classes of objects. The system keeps one
Thing structure for each class of objects. Thus, when a sentence such
as “Birds are animals” comes in, the system first tries to retrieve the
general bird Thing from its memory. If no such objects exists, then it
creates a new Thing for this class. Here is a piece of pseudo-code for
the learn() method of the Learner module:

Learner.learn(event){
Thing subject = event.getSubject();

about verbs for reasoning about objects’ properties. The system is designed with
the infrastructure already in place for this, so adding reasoning about verbs to the
system is easy. Chapter 5 discusses the merits of reasoning from knowledge about
verbs.

43

Thing object = event.getObject();
Relation rel = event.getRelation();
Thing t = null;
String type = null;
if (isGenericStatement(event)){
t = memory.getGenericThing(subject.getName());
type = getClassName(subject);

}else type = getMostNarrowClass(subject);
t.addType(object, thread_label);
memory.store(t);
memory.store(rel);
context.setParameters(type, thread_label, t, rel);

}

When the system receives a query, such as “Can robins fly?” it tries
to reason about it based on the information currently available in its
memory (KB), and deduce an answer. The system reasons by using
categorization and similarity. The idea is to try to deduce a property
of an object by looking at what classes of objects it belongs to (reason-
ing from categorization), or by looking at other objects similar to it,
and about which the system knows more information (reasoning from
similarity). This design is based on an implicit assumption that (Gen-
tner and Markman 1990, [11]) point out, namely: when reasoning by
similarity, we assume that if two things are similar in some ways, then
they are also similar in other ways. This is exactly the assumption
my system makes–when presented with an object and a question about
whether the object has some property, one of the ways it tries to rea-
son about it is by finding another object which is similar to the given
object, and seeing whether that other object has the desired property.
If the objects are similar, and if that other object does have the desired
property, then the system concludes that the object of interest also has
the property. These ‘other’ objects can be either particular Things that
the system has learned about at some previous time, or stereotypes of
a class of objects.

Before explaining the reasoning algorithms in detail, I explain the
three fundamental ingredients: how the system assesses similarity of
Things, how it represents and manipulates stereotypes, and the struc-
ture and role of the Memory module.

3.5.1 The Similarity Mechanism

The system compares Thing structures to see if they are similar using
a measure of similarity à la (Tversky 1977, [44]). The measure of

44

similarity is a linear combination of the types the two Things have
in common. More specifically, the system calculates a total similarity
score for the two Things. The total similarity score is a weighted sum
of the seven similarity scores, one for each pair of threads with the
same thread label. Each pair of threads is given a default weight of 1,
and the threads whose labels are in context are weighed more than the
others by a factor of 2. (The values of these weights are adjustable.
In chapter 5, I explain which parameters are changeable, and what
can be accomplished by changing them.) For each pair of threads,
the similarity score contains the count of the types that are on both
threads. Thus, the formulas for the similarity score for a pair of threads
and for the total similarity score can be written as shown below. In
these equations, s is the total similarity score. t is the similarity score
for a pair of threads with the same label. wi is the weight of the pair i
of threads.

s = Sumi=1 to 7(ti × wi)
t = Sumi=1 to number of shared types(1)

Once the system calculates the total similarity score for the Things,
it compares it against the total similarity score that would result if the
two Things contained exactly the same types (that is, if both Things
contained the union of their types), call it smax. (If the thread weights
were normalized, the maximum similarity score would be 1, but in
this implementation it is more than 1.) At this point, there are three
possibilities:

• If s ≥ .7 × smax, the system considers that the two Things are
similar.

• Else, if s ≤ .3 × smax, the system considers that the two Things
are dissimilar.

• Finally, if neither of the above is true, the system concludes that it
‘doesn’t know’ whether the Things are similar. In other words, it
doesn’t have enough information to believe that they are similar.

This raw measure of similarity I use relies on the types that the
Things have in common. The idea, already described above, is that if
two Things have many properties in common, then they are likely to
have other properties in common too, possibly exactly the one property
we are interested in. Appendix A gives pseudocode for the methods
that calculate similarity, as explained above.

45

It is important to comment here on the decision to weigh threads dif-
ferently according to whether or not their labels are in context. Weigh-
ing the threads differently is important because it makes the threads in
context (which represent the kind of information most recently received
by the system) more relevant than the rest. Essentially, the effects of
these weights is that when the system compares two Things, it ‘cares
more’ about certain kinds of properties than others. Thus, the system
can judge that two objects are similar in one context, yet dissimilar in
another. Consider the following example. Suppose the system receives
information about birds and fish, such as: “Birds can fly,” “Birds have
wings,” “Birds are made of feathers,” “Fish can swim,” “Fish are made
of scales.” When asked whether birds are similar to fish, the system
would answer no, because birds and fish are described to be made of
different things, and they have different capabilities. Now suppose the
system receives more information, such as: “Birds are animals,” “Fish
are animals,” “Birds breathe,” “Fish breathe.” Now, when the system
is asked again whether fish are similar to birds, it would think they are,
because the more important properties to consider now are what kinds
of things birds and fish are, and what actions they do. This example
illustrates how weighing threads differently can essentially change the
system’s perspective of the world.

3.5.2 Stereotypes for Classes of Objects

The system represents stereotypes as Thing structures. The system
differentiates between two kinds of properties of that a stereotypical
object such as ‘bird’ has. The first type contains properties learned
from assertions such as “Birds are animals”; the system knows this
assertion is about a class of objects, so it considers that it holds true
for all birds that it knows about. The second type contains proper-
ties learned from assertions such as “A bird flew to the tree.” This
assertion is about a particular bird, and so it does not automatically
hold true for other birds. (Matwin and Kubat 1996, [34]) call the first
type of properties absolute properties, that don’t depend on any context
or any other information. They call the second type relative proper-
ties, because the system attributes the second kind of properties to the
stereotypical bird if and only if a majority of all the birds the system
knows about have those properties.

The following example illustrates. Suppose the system knows about
10 particular birds, and that 9 of these have the type wing on their has
thread. Suppose also that the 10th bird has no types on its has thread.
Then, when asked whether a bird (meaning the stereotypical bird) has

46

wings, the system will conclude that it does, because a majority of the
birds it knows about (9 out of 10) do indeed have wings. The process
by which the system looks at all the birds and decides which properties
belong to a majority of them, was called ‘finding the thickest bundle’,
by (Vaina and Greenblatt 1979, [19]).

To summarize: a stereotype for a class of objects consists of the
union of an absolute stereotype (represented by a Thing structure in
Memory and which contains on its threads all the properties learned
from assertions about that class of objects) and a relative stereotype
(that is a Thing with all the properties that belong to a majority of the
particular objects of that class.) The relative stereotype is calculated
on the fly, so that the properties it includes change as the system re-
ceives more input. For example, at some time t, the system may know 4
birds that are gray colored and one that is blue. Suppose that between
t and some later time t’, the system learns about another 10 blue birds.
Then, at t’, there are 11 blue birds and 4 gray birds, for a total of 15.
Then, by t’, the concept of bird will have changed from birds being
gray to being blue. The result of the union of the absolute stereotype
with the relative stereotype is what (Matwin and Kubat 1996, [34]) call
a partially relative concept. Figure 3.5 illustrates the stereotypes the
system contains and how it forms the partially relative stereotype. Ap-
pendix A shows pseudocode for the methods that calculate the relative
stereotype and the partially relative stereotype.

Figure 3.5: Calculating the stereotype of a class of objects from the
absolute and relative stereotypes.

Throughout the rest of this thesis, I use ‘stereotype’ to refer to the
partially relative stereotype.

47

3.5.3 The Memory Module

The main role of the Memory module is to store Thing instances and
to provide an interface for updating the KB and for retrieving Things
from the KB.

The Memory module is designed to contain two threads of opera-
tion 2. In one thread, called the I/O thread, the Memory responds
to the Learner’s requests to retrieve Things and to calculate stereo-
types. This happens, for example, when the Learner wants to look at
a stereotype to answer some question. In the second thread, called the
reflection thread, the Memory runs a process of thinking, or reflection
on its knowledge. This reflection consists of the following steps:

1. The thread picks a Thing or a class of objects to ‘think about’.
What is picked depends on the current context, so for example
if the context type is bird, then the system is likely to pick the
class of birds to ‘think about’. ‘Thinking about’ a particular
Thing or a class of objects means that the system tries to deduce
a property of that Thing or class that it doesn’t already know
(i.e. a type that is not already recorded on any of the Thing’s
threads.) Conceptually, in this step the system sets a goal for
itself (to deduce a new property of an object), and expresses that
goal internally, as an English query.

2. In the second step, the system tries to produce an answer to the
query in the same way that it deals with queries from the human
user in the I/O thread.

3. In the third step, the system has deduced an answer, and proceeds
to learn from this answer as if from an input sentence.

Appendix A contains pseudocode for another possible implementa-
tion of the reflection mechanism, that picks two random Things from
the system’s memory, compares them, and if they are similar, attributes
a property of one of the Things to the other.

There are two important differences between the operations inside
the I/O thread and the reflection thread: (1) the operation in the
reflection thread is prompted by the system’s autonomously picking
something to think about; this turns the system into a rational agent,
capable of setting goals for itself and carrying them out, and (2) whereas
the I/O thread can be idle for long periods of time, the reflection thread

2Squirrel, the running instance of this learning system which I describe in chapter
4, does not implement the reflection thread. However, it implements the infrastruc-
ture on top of which the reflection thread can be easily added.

48

runs continuously. Thus, in effect, the system is always thinking about
something and trying to consolidate its knowledge by deducing new
properties of objects 3. There is also an important similarity between
the I/O thread and the reflection thread, and that is that both are
primed by the current context: the system answers questions by using
and modifying the information in context (as explained below), and it
also picks the objects it thinks about based on the context. Figure 3.6
shows the threaded structure of Memory.

Figure 3.6: The threaded structure of the Memory module.

3.5.4 The Query Answering Methods

The main idea for the design of the query answering methods is to
give the system several different ‘ways to think’ about the query, and
thus several ‘ways to deduce an answer’ to the query. This idea has its
seeds in the ideology of the Open Mind Commonsense Project [1], which
argues that part of the commonsense knowledge that today’s computers
lack has to do with knowing different ways to attack and solve the same
problem. A second important design decision was for the system to try
to use the information in context to guide its reasoning about objects.
Thus, the system design contains four methods for answering a query.
Suppose the query is about a Thing t, for example, “What can t do?”
or “Is t an animal?”. Then, these methods are:

• Look at t’s threads and see if they contain a type that can answer
the question. This is the simplest thing to try; if the information

3Of course, there are a couple of technical details, such as the fact that if the
system sees no input, then it doesn’t really have anything to think about, and if
it has very little input, then it may exhaust the things it can think about fairly
quickly. These are low-level details that I do not discuss at length in this thesis.

49

asked for is already recorded on the t’s threads, then the system
has to look no further.

• Look at the stereotype for the type in context. (If the context
type is bird, then look at the stereotypical bird.) See if t is similar
to this stereotype. If it is, and if the stereotype has the property
that the query asks about, then conclude that t has it also. (For
example, given the query “Is t an animal?”, if the stereotype of
the type is similar to t, and is an animal, then conclude that t is
also an animal.) The hope here is to answer the query by taking
advantage of the context of the ‘conversation’. Also, the hope is
that, if t and the stereotype are similar in other respects, then
they may also be similar with respect to the property the query
is about.

• Look at the thing in context and apply the same similarity judg-
ment as above: if the thing in context is similar to t, and if the
thing in context has the property asked about, then conclude
that t also has this property. Again, this method aims to take
advantage of the context and of reasoning from similarity.

• Look at the types on t’s isa thread, that is, at the categories of
objects that t is known to belong to. Then, calculate the stereo-
types of these types. If any of these stereotypes has the property
in question, then conclude that t also has this property. The hope
here is that t will have the property in virtue of belonging to the
class, as a first approximation 4. The main point here is that
the learner first picks a type of intermediate complexity from the
isa thread. This type is supposed to be a category that is not
too general, nor too specific. For example, when thinking about
robins, and intermediate category would be bird, as compared to
living thing which is too general, or non-cavity nesters which is
too specific. The hope is that the intermediate complexity cate-
gory will yield the optimal information that will allow the system
to answer the query.

In turn, the methods that assess the similarity between two objects
(such as t and a stereotype), do so by trying one of three things:

• Look only at the types on the threads of the two Things, and
calculate a similarity score for the Things according to the method
described in the subsection on similarity above.

4Of course this is a gross judgment, which only takes into account the genus,
not the specific differences. More elaborate algorithms would have to also assess
the similarity of the two objects.

50

• Look at the stereotype of the context type. If both Things are
similar to the stereotype, conclude that they are also similar to
each other. Here, the similarity between each Thing and the
stereotype is calculated by looking only at the Things’ threads,
as in the bullet above.

• Look at the Thing in context. If both Things are similar to it,
then conclude they are also similar to each other.

The specification for the methods listed above says that the method
either returns a positive answer (something like “t is an animal”), or
returns a don’t know answer (something like “I don’t know enough
about t to answer your question.”) For each question received, the
Squirrel implementation described in chapter 4 tries all of the methods
in the order listed above. That is, it first tries to answer the question
by looking only at t’s threads. If this method succeeds to produce a
positive answer, it stops, returns the answer to the user, and proceeds
to learn from it. Otherwise, it goes on to the next method, and so on
until the very last. If the last method produces a don’t know answer
also, the system returns this answer to the user and learns nothing from
the answer. I choose to use this simple ordering of the methods because
the overall focus of this project is a proof of concept that context can
be designed and implemented meaningfully and usefully on top of the
thread memory representation. Chapter 5 discusses the possibility of
ordering the methods more intelligently, for example by choosing their
priority based on the information in context. Such an ordering may lead
to surprising improvements in the quality of the learning and reasoning
the system performs.

Table 3.3 describes in more detail the specifications for each method
and, most importantly, it shows how the learner changes the context,
according to which method the system found successful. Table 3.4 gives
the order in which the system tries the methods, for each type of query
from table 3.2.

51

Method Sample posi-
tive answer

Change in context

Deduction from
t’s thread

t is an animal. Push the thread label onto the
context queue. If answer is posi-
tive, set the context Thing to t.

Compare t with
the stereotype of
the type in con-
text

t is an animal
because it is sim-
ilar to a bird,
and a bird is an
animal.

Push the thread label onto the
context queue. If the answer is
positive, set the context Thing to
the stereotype.

Compare t with
the Thing in
context, call it x

t is an animal
because it is sim-
ilar to x, and x is
an animal.

Push the thread label onto the
context queue. If the answer is
positive, if the Thing in context is
a stereotype, set the context type
to the stereotype’s name; else set
the context type to the most nar-
row category the Thing belongs
to.

Deduction from
the categories of
objects t belongs
to

t is an animal
because t is a
bird, and a bird
is an animal.

Push the thread label onto the
context queue. if the answer is
positive, set the Thing in context
to the stereotype that helped de-
duce the answer.

Table 3.3: The methods used to answer queries about objects’ proper-
ties.

52

Query type Priority of deduction meth-
ods

what is X 1. Look at X’s threads,
2. Look at stereotype of type in
context,
3. Look at Thing in context,
4. Look at X’s categories.

does X do Y 1. Look at X’s threads,
2. Look at stereotype of type in
context,
3. Look at Thing in context,
4. Look at X’s categories.

is X similar to Y 1. Assess similarity from X and
Y’s threads,
2. See if X and Y are similar to
the stereotype of the type in con-
text,
3. See if X and Y are similar to
the Thing in context.

describe X 1. Look at X’s threads.

Table 3.4: Priority of deduction methods for each kind of user query.

53

Chapter 4

Implementation and
Results

“The best evidence for such a proposal is a working computer pro-
gram; this is the only convincing way to show that a theory of learning
is effective, complete, and applicable – not to mention its practical util-
ity.” (Lucia Vaina and Richard Greenblatt)

In this chapter, I present a program called Squirrel, that implements
the learning architecture described in chapter 3. I describe here sev-
eral implementation details about the backend and the user interface
and show two examples from Squirrel’s execution, which illustrate the
learning and reasoning capabilities of the system.

4.1 The Squirrel Implementation

Squirrel implements the learning architecture described in chapter 3.
The entire implementation was done in Java and Java Swing. Its back-
end consists of the Learner, Memory, ParsingEngine, Event, Context,
and ThingFactory modules, plus a few other modules that interact
with the Bridge infrastructure and implement helper functionality. Squir-
rel has a graphical user interface (GUI) that enables the human user to
interact with the learning system. The next two subsections describe
the backend and GUI in detail.

54

4.1.1 The Implementation of the Backend

Below is an explanation for the implementation of the most important
backend modules. One of the merits of this implementation is that
it allows for a runtime scenario where several Learners are instanti-
ated, each with its own Memory, ParsingEngine, and Context. These
Learners could be used for a Kirby-like experiment (Kirby 1998, [17]).
I find this a very interesting project to explore. I comment on it briefly
and offer some suggestions in chapter 6.

• The Learner class implements the learning and reasoning capa-
bilities of the system. The Learner is the only module that the
user directly interacts with (through the user interface). The
Learner receives the user’s inputs and dispatched to the other
modules for computation; once the necessary computation is fin-
ished, the Learner returns a confirmation to the user, through
the system’s GUI.
The Learner contains one Memory, Context, ParsingEngine,
and ThingFactory instance. The Learner keeps a list of all the
Events that it learned from in a given session. The Learner im-
plements a learn() method that takes as input a list of Events
(possibly of length 1), and for each event, it delegates to one of
seven methods, according to the kind of object property that each
event expresses. These methods are:
learnFromClassification(),
learnFromCapability(), learnFromProperty(),
learnFromAction(), learnFromHas(),
learnFromRequires(), and learnFromMadeof().
These seven methods contain the same code template: each of
them extracts the subject, verb, and object out of the event, each
updates the subject and verb’s threads, each stores subject and
object in memory, and each updates the context before returning.
Appendix A shows template for the code of these methods.
The Learner also implements an answerQuery() method, that
takes in a query expressed as an English question, delegates to one
of four methods called qualifyX(), qualifyXY(), compareXY(),
and desctibeThing(), returns an answer to the user, and pos-
sibly learns from the answer (if the answer was a positive one.)
The qualifyX() methods tries to answer “what is X” questions;
qualifyXY() tries to answer “Does X do Y” questions;
compareXY() tries to answer “Is X similar to Y” questions; and
describeThing() tries to answer “Describe X” questions. I show
the code for qualifyX() in appendix A.

55

• The Memory class stores Thing and Relation instances of the Java
Hashtable class. Memory provides methods to retrieve Things
name, and provides an update() method that takes in a Thing
structure and stores it in the appropriate hashtable. The most
interesting method of Memory is the method that calculates a
stereotype from the absolute stereotype and relative stereotype
for the given class of objects. This method produces a new Thing,
which is the union (i.e. contains all the types of) the absolute
stereotype and the relative stereotype, both of which are possibly
empty (i.e. have no types). Appendix A shows the code for
this method. Memory also contains methods to initialize itself by
initializing and starting up the I/O and reflection threads.

• The ParsingEngine class implements methods that call on the
Bridge parser class to parse English sentences input to the sys-
tem. The ParsingEngine then retrieves the trajectory structures
output by this parser and wrap them into Event instances that
can be passed to the Learner module.

• The Event class implements methods for retrieving the subject
and object of the underlying sentence and the Relation corre-
sponding to the sentence.

• The Context class implements the context object as described in
chapter 3. It contains a String instance, a Thing instance, a re-
lation instance, and an instance of the class LStringsQueue that
implements a queue for thread labels. The Context is a singleton
and provides a getContext() method, as well as setter methods
for changing its String, Thing, Relation, and queue elements.

• The ThingFactory class contains Strings (declared public, static,
and final) representing the labels of the Threads attached to
Thing structures. The main role of the ThingFactory class is
to take in Things coming from the Bridge parser and attach to
them the seven object threads (or the three verb threads) that
this learning system needs.

• The Thing class implements several static methods that manip-
ulate the threads of the Bridge Thing structures.

• The Utility class implements a library of methods used by sev-
eral other classes in the system.

56

4.1.2 The Implementation of the User Interface

Squirrel’s GUI was implemented in Java Swing. Through this inter-
face, the human user can provide input sentences (or text files with
sentences) and queries to the Learner. The Learner, in turn, displays
its output to the GUI. Figure 4.1 shows a screenshot of the Squirrel
GUI.

Figure 4.1: A screenshot of the Squirrel GUI.

The GUI contains two text areas. The white area on the left displays
the output of the Learner module (this includes output of the modules
manipulated by the Learner, such as the ParsingEngine and Context
modules). The black area on the right displays output of the Memory
module. This includes, for example, detailed output that the Memory
provides while calculating the stereotype for a class of objects. At the
bottom of the GUI window, there is a text field where the user can

57

type text to interact with the system.
The user interacts with the system either by typing in the text field

or by invoking one of the actions of the toolbar buttons or menu items.
The Labels class contains the strings that can be presented to the
system in order to ask the system to learn from sentences or answer to
queries. Here are a few examples of what the user can type into the
GUI’s text field:

• learn: followed by an English sentence, for example learn: A
bird flew to a tree. This tells the system to learn from the
given sentence. As the systems processes this sentence, it displays
output in the left text area. For example, it shows the Event
corresponding to the sentence, and prints a confirmation message
to the user.

• learn from file: followed by a file name, for example learn
from file: afile.txt This tells the system to read the file
and learn from all sentences in the file, in the order in which they
appear in the file.

• answer: followed by a query, for example answer: can bird
fly? This tells the system to answer the given query.

The following is an explanation of the functionality present in the
GUI’s menubar and toolbar.

The menubar contains menus titled File, Learner, and Help. From
the File menu, the user can:

• Choose the New Learner option. This instantiates a fresh Learner
object, with a fresh memory, parsing engine, and context. This
effectively means that the user starts interacting with a new sys-
tem, which has no knowledge about the world.

• Choose the Save session option. This saves the output of the
system to a text file. The output contains the outputs of the
Learner, Memory, ParsingEngine, Context, and Event modules.

• Choose the Quit option, which quits the program.

From the Learner menu, the user can:

• Choose the Retrieve option. This lets the user view: all the
Things in memory, all the Relations in memory, all the stereo-
types in memory, all the events the learner has learned from dur-
ing the current session, or the very last events that the learner
learned from.

58

• Choose the Mode option. This lets the user choose various set-
tings for the running program, such as controlling the amount of
output that the learner and memory instances provide.

From the Help menu, the user can:

• Choose the Show Help option, to view detailed help information
about how to interact with the system.

• Choose the About option, to view information about the current
Squirrel version.

The toolbar contains buttons that provide shortcuts for: viewing
the last events the Learner learned from, saving the output of the
current session to a text file, reseting the Learner, viewing the Help
dialog, and quitting the program.

4.2 Concrete Learning Examples

To illustrate the learning and reasoning capabilities of the system, I
present here three examples from Squirrel’s execution. The first exam-
ple, described in subsection 4.2.1, illustrates how the system deduces
that robins fly by reasoning that robins are birds and that birds can fly.
The second example, described in subsection 4.2.2, illustrates how the
system deduces that planes fly by reasoning that planes are similar to
robins and that robins fly. The third example, described in subsection
4.2.3 illustrates how the system picks different attributes to describe
a robin, according to which object properties are rendered relevant by
the context.

4.2.1 Robins fly because they are birds, and birds
can fly

In the first example, the learner first reads and learns from a text file
containing several sentences about properties of birds and robins. The
input file contains the following sentences. (The syntax of the sentences
is a little strange, because the parser is not very sophisticated. When
the subject noun has plural form, the sentences is interpreted to be an
assertion about a class, although the verb is in the singular form.)

Birds is an animal.
Birds has wings.
Birds has legs.

59

Birds is made of feathers.
Birds fly.
Birds walk.
Birds is small.
Birds is black.

Robins is an animal.
Robins is a bird.
Robins is a wild_bird.
Robins has wings.
Robins is made of feathers.

Here is output from the actual execution of the program. The first
few lines give the user feedback about the setting up and calibration
of the system. At this time, the system reads two files that contain
basic linguistic knowledge for its natural language parser. The next
chunk of output shows the events that correspond to the sentences in
the file above, that the learner learns from. I show only the first two
such events here.

Initializing basic linguistic knowledge...
Parsing Engine > I’m loading basic linguistic knowledge
from data/wordk
Parsing Engine > I’ve processed from
bridge/experiments/learner/data/wordk
5162 Things.
Parsing Engine > Processed 45 different verbs.
Parsing Engine > Processed 21 different nouns.
Parsing Engine > Calibrating LLearner...
Parsing Engine > Finished calibrating.
Hello. I’m ready to learn!

I’m trying to learn from a file called data/story1
I’m trying to learn from file
bridge/experiments/learner/data/story1

I’m learning from the event:
Event: classification-8619
With relation: thing: classification-8619
(thing intangiblething event classification,
features complete)
thing: birds-8625 (subject)
(thing animal birds, features classification)

60

thing: animal-8624 (object)
(thing animal, features identifier an complete)
With subject: thing: birds-8625
(thing animal birds, features classification)
First object: thing: animal-8624
(thing animal, features identifier an complete)
All object(s):
(
thing: animal-8624
(thing animal, features identifier an complete)
)

I’ve learned that bird-8748 is a animal

I’m learning from the event:
Event: have-8631
With relation: thing: have-8631
(thing event relation have)
thing: birds-8628 (subject)
(thing birds, features noun identifier complete)
thing: wings-8632 (object)
(thing wings, features noun identifier complete)
With subject: thing: birds-8628
(thing birds, features noun identifier complete)
First object: thing: wings-8632
(thing wings, features noun identifier complete)
All object(s):
(
thing: wings-8632
(thing wings, features noun identifier complete)
)

I’ve learned that bird-8748 has wings

The output shown above appears in the white text area of the GUI
window. While the system processes the input file, the black text area
of the GUI window shows output of the Memory and Context modules.
For example, the following output is displayed in the right area after
the processing of each of the first three sentences in the file above.

<<< Context: type=animal thread labels=isa
Thing=bird-8748 Relation=classification-8619 >>>

61

<<< Context: type=bird thread labels=has isa
Thing=bird-8748 Relation=have-8631 >>>

<<< Context: type=bird thread labels=has isa
Thing=bird-8748 Relation=have-8640 >>>

Once the system parsed the input file, I asked it “What does robin
do?” Here is the corresponding output.

You’ve asked: what does robin do?. I’m thinking...
Let’s see. I’m looking at the threads of robin-8757
to see what it does
I don’t know because I haven’t learned what robin-8757
does
Let’s see. I’m thinking about whether I can say anything
about robin-8757 by looking at the type in context...
Let’s see. I’m comparing the threads of robin-8757
and robin-8760
I think that robin-8757 is similar to robin
Let’s see. I’m looking at the threads of robin-8760
to see what it does
I don’t know because I haven’t learned what robin-8760
does
I don’t know because I can’t deduce anything from
the type robin
Let’s see. I’m trying to think about whether I can deduce
anything about robin-8757
by looking at whether it’s similar to the thing
in context...
I don’t know because I can’t deduce anything from
the thing in context.
Let’s see. I’m trying to think about what robin-8757
does by looking at what robin-8757 is...
I’m trying to think about robin-8757 by looking at the
intermediate type: bird
Let’s see. I’m looking at the threads of bird-8763
to see what it does
bird-8763 does fly because I’ve learned that bird-8763
does fly
robin-8757 does fly because robin-8757 is a bird and
I know that bird-8763 does fly
robin-8757 does fly because I’ve looked at
what kind of thing robin is.

62

I conclude that robin-8757 does fly
** I will learn that: robins fly
I’m trying to learn from the phrase ‘‘robins fly’’

I’m learning from the event:
Event: fly-8772
With relation: thing: fly-8772
(thing event go fly)
thing: robins-8768 (subject)
(thing robins, features noun identifier complete)
thing: path-8771 (object)
(thing path, features empty)
sequence (0 elements)

With subject: thing: robins-8768
(thing robins, features noun identifier complete)
No objects.

I’ve learned that robin-8754 fly

To answer the question, the system tries the methods described in
chapter 3. As the output shows, the system tries several dead ends
until it gets to thinking about what kind of thing a robin is. Then, it
reasons that a robin is a bird, and remembers that birds fly. Therefore,
it concludes that robins also fly, in virtue of being birds. Once the
system obtains the answer, it proceeds to learn from it, as it would
from an input sentence.

4.2.2 Planes fly because they are similar to robins,
and robins fly

In the second example the system reads an input file with the following
sentences.

Birds is an animal.
Birds has wings.
Birds has legs.
Birds is made of feathers.
Birds fly.
Birds walk.
Birds is small.
Birds is black.

Robins is an animal.

63

Robins is a bird.
Robins is a wild_bird.
Robins has wings.
Robins is made of feathers.

Planes has wings.
Planes is black.
Planes is big.
Planes requires wings.
Robins requires wings.

Once the system learned from the sentences, I asked it “Can planes
fly?” Here is the output for this question.

You’ve asked: can plane fly?. I’m thinking...
Let’s see. I’m thinking about whether plane-8865 can
fly by looking at its threads...
I don’t know because I haven’t learned whether
plane-8865 can fly
Let’s see. I’m thinking about whether I can say
anything about plane-8865 by looking at the type
in context...
Let’s see. I’m comparing the threads of
plane-8865 and robin-8868
I think that plane-8865 is similar to robin
Let’s see. I’m thinking about whether robin-8868
can fly by looking at its threads...
robin-8868 can fly because I’ve learned that
robin-8868 can fly
plane-8865 can fly because plane-8865 is a robin
and I know that robin can fly
plane-8865 can fly because I’ve compared plane
with the type in context.
I conclude that plane-8865 can fly
** I will learn that: planes can fly
I’m trying to learn from the phrase ‘‘planes can fly’’

I’m learning from the event:
Event: fly-8878
With relation: thing: fly-8878
(thing event go fly, features can)
thing: planes-8873 (subject)
(thing planes, features noun identifier complete)

64

thing: path-8877 (object)
(thing path, features empty)
sequence (0 elements)

With subject: thing: planes-8873
(thing planes, features noun identifier complete)
No objects.

I’ve learned that plane-8803 can fly

The system answers this question by comparing planes with the
context type, which happens to be robin. It discovers that planes are
similar to robins, and concludes that planes fly because it knows that
robins fly.

4.2.3 A robin is made of feathers, has wings, and is
a bird

In the third example, the system first receives the following sentences.

Robins is an animal.
Robins is a bird.
Robins is a wild_bird.
Robins has wings.
Robins is made of feathers.

After learning from these sentences, the context contains the thread
labels madeof, has, and isa. Once the system processed these sentences,
I asked it: Describe robin. Here is the corresponding output.

You’ve asked: describe robin. I’m thinking...
Let’s see. I’m thinking about robin
I conclude that robin is made of feathers,
has wings, is bird

The output shows that the system describes robin in terms of the
threads in context. That is, it describes robin in terms of what it is
made of, what parts it has, and what kind of thing it is. At this point,
I entered two more input sentences:

Robins can fly.
Robins requires wings.

Once the system processed these new sentences, I asked it again:
Describe robin. The output is shown bellow.

65

You’ve asked: describe robin. I’m thinking...
Let’s see. I’m thinking about robin
I conclude that robin requires wings,
can fly, is made of feathers

The output shows that the system’s description of a robin has now
changed, because of the change in context. After the system processes
the last two input sentences above, the context contains the thread
labels requires, can, and madeof. Thus, the relevant properties of an
object are now what it requires, what it can do, and what it is made
of, and the system’s answer reflects this change.

66

Chapter 5

Evaluation and
Discussion

“The man with insight enough to admit his limitations comes near-
est to perfection.” (Johann Wolfgang von Goethe)

In this chapter, I evaluate the learning architecture I described and
the implementation I built with respect to the kinds of learning it sup-
ports and its extensibility to broader purpose learning and reasoning.
At the end, I point out the surprises I have come upon while working
on this project.

5.1 System Evaluation

The examples from the previous chapter illustrate how Squirrel pro-
ceeds to learn the properties about objects specified in table 3.1. Fur-
thermore, the conceptual design of the learning and reasoning methods
allows this architecture to learn broader purpose knowledge about ob-
jects, and to reason more abstractly about the world. The software
design of the modules that comprise the system is modular enough to
render the system easy to understand and to extend with more layers
of abstract reasoning.

For example, the system can learn about actions (verbs) by using
the same infrastructure currently in place for learning about objects.
I believe that learning about actions is important because it can help
with the particularly puzzling case of the penguin that is a bird and
is similar to birds in many respects, yet does not fly. How could the

67

system described here arrive to know that penguins can’t fly? I con-
sider this example important enough to dedicate the next subsection
to suggesting a solution to this ‘puzzle’.

5.1.1 Penguins can’t fly

In the current setup, the system is likely to deduce that penguins fly,
either by reasoning that penguins are birds and birds fly, or by reasoning
that penguins are similar to birds (or to some particular species of
birds). Also, the system described so far is unsupervised, so there is
no way for the human to interact and tell the system it has drawn a
wrong conclusion. So how could the system then learn that penguins
cannot fly?

One way this may be accomplished is by augmenting the system to
also reason about objects from the information it has about actions.
Suppose the system knew that flying requires the flying animal to have
hollow bones, so as to minimize its weight. One way it could deduce
this fact in the first place is by noticing that all objects that are known
to fly have hollow bones on their has or property threads. Then, the
system could reason that because penguins have solid bones, they can-
not fly. More generally, the system could learn exceptions to a rule by
bootstrapping from the knowledge actions and objects.

This solution is actually an instance of the generalization and spe-
cialization mechanisms for machine learning proposed by (Winston
1993, [48]). In this case, the requires thread acts as a requires link
which is part of the description of the class of objects that are birds.

5.1.2 Contributions of the Learning Architecture

The main contributions of the learning architecture and its Squirrel
implementation are the following:

• Squirrel illustrates the benefits of using context to learn and rea-
son about objects’ properties. The examples from chapter 4 show
that context provides the learner with the appropriate informa-
tion it needs in order to think about objects and to reason about
their properties. The learner could have reasoned by using a
traditional rule-based mechanism or a statistical algorithm. I
believe, however, that using context (possibly layered on top of
traditional methods) can significantly improve the learning capa-
bilities of a system.

68

• Squirrel illustrates the benefits of being able to ‘think’ about the
world in more than one way. The examples in chapter 4 show
that Squirrel is able to try several ways to deduce whether an
object has a particular property. The system can try to reason
about what kind of thing the object is, or it can compare it to
other objects it knows more about. I believe that all of these
are sensible ways in which we, humans, also attack the same
problems.

• Squirrel offers reasons as support for the judgments it makes
about objects. As the output from chapter 4 shows, Squirrel
‘knows’ why it concluded that an object has a particular prop-
erty. For example, if it knows that a robin is a bird and a bird
can fly, then it concludes that a robin can also fly because a robin
is a bird. Thus, Squirrel is able to cite support for its conclusions
about how the world works.

• Squirrel illustrates how a system can reason about the world by
relying on the fundamental cognitive processes of similarity and
categorization. Reasoning by similarity helps the system build
its knowledge of the world incrementally, by inferring new prop-
erties of an object from its similarity with another, better known
object. Reasoning by categorization helps the system abstract
its knowledge of the world, by creating stereotypes to represent
groups of objects.

• Squirrel represents an attempt to create a system that sets its
own goals for learning about the world. The system is designed
to ‘reflect’ or to ‘think’ by choosing a category of objects or a
particular object that the system has learned about in the past
and trying to deduce new properties of that category or object.
Thus, provided a reasonably large input to start off with, a sys-
tem like Squirrel can be expected to consolidate its knowledge by
deducing new facts and making new predictions about the world.

An important observation about the learning architecture described
in chapter 3 and its implementation described in chapter 4 is that while
the architecture relies on the existence of several parameters (such as
the weights of the threads for calculating similarity scores), the im-
plementation chooses concrete values for these parameters. These val-
ues can vary in different implementations. By varying them, one can
hope to optimally tune the learning system. I believe that one of the
best ways to accomplish this tuning is by using a parameter adjust-
ing scheme (such as a neural net, a genetic algorithm, or any other

69

computational scheme) to learn the ‘best’ values for these parameters
based on the kinds of sentences the system receives as input and on the
context the system builds from the input.

Besides the merits described above, Squirrel also has several lim-
itations. These limitations stem from: (1) the underlying Thing and
trajectory representations that the system uses to model the real world,
and (2) from the restrictions that the language parser places on the kind
of inputs that can be presented to the system.

In general, having only one kind of representation of the world re-
stricts a system to being able to reason efficiently only about some (not
all) aspects of the world. Squirrel reasons very efficiently about cate-
gories that objects belong to, about what parts they have, and so on,
but cannot reason, for example, about object properties that change
with time. This is a limitation inherent in the underlying Thing/Thread
representation. (Chklovski 2003, [10]) also discusses the importance of
using multiple representations. He asserts that his learner could reason
better given more (or more detailed) representations, and also given
a more detailed model of which properties of objects imply the pres-
ence or absence of which other properties (Chklovski 2003, [9]). This
is especially true of my system. I believe the system could learn more
effectively if it had a way to tell, for example, that the presence of
types on some thread t1 implies the same types should be present on
thread t2. A concrete example is that types that appear on the action
thread of a Thing should also appear on the can thread of that Thing.
One could accomplish this kind of learning by designing the system to
compare the types on pairs of threads and to see which threads are sim-
ilar, meaning which threads have approximately the same types, across
classes of objects. What this scenario would require is the ‘right’ notion
of similarity for threads.

The Bridge parsing module also restricts the kinds of things my sys-
tem can learn because it imposes restrictions on the kinds of sentences
the system can receive as input. For example, the sentences have to
be assertions that are interpretable in isolation (such as “A bird flew
to the tree”), or one can string several assertions together to refer to
objects already spoken about (such as “A bird flew to the tree and then
the bird landed on a rock.”) From the point of view of the learning
and reasoning the system is designed to do, I believe these limitations
are only superficial. That is, the framework for learning with context,
and the design of the learner to reason from similarity, categorization,
and stereotypes is general enough that the system can acquire broader
kinds of knowledge once we substitute in a more sophisticated parser.

70

From a practical point of view, it is interesting to point out what
tasks this system could be used for. For one thing, the examples in
chapter 4 show that Squirrel is an effective inference engine, so it could
be used to reason about expert domains. I believe that a more exotic
task that Squirrel could perform well on is recognizing metaphors in
natural language. The system could base its metaphor recognition on
lack of similarity between two things. The following example illustrates.
Suppose the system receives as input a phrase such as “Words are
daughters of the earth”, or “language is the instrument of science”
1. The system could compare the subject and object of the sentence,
that is compare word with daughter, or language with instrument. In
cases where the comparison indicates the two things are dissimilar, the
system could conclude the sentence contains a metaphor, because it
brings together things that the system knows are dissimilar in the real,
objective world.

One final note. The design of the learning architecture includes
a reflection thread in the system’s memory, whose role is to pseudo-
randomly pick things to think about (I say pseudo-randomly because
what is picked is meant to be primed on the context at the time the
choice is made.) This source of randomness could lead one to observe
interesting differences in the knowledge acquired by different Learner
instances. For example, one learner may think a lot about robins and
arrive to be quite an ‘expert’ on what robins are, how they behave, etc,
while another learner may arrive to know a lot about mallards. This
‘evolution’ could be exploited by setting up the learners to ‘talk’ to each
other, by uttering assertions to each other; if the kinds of assertions a
learner utters are primed on the kinds of things the learner thinks about
or knows a lot about, then this setup would effectively accomplish the
transfer of knowledge from one learner to another.

5.2 Surprises

I have had several surprises while working on the design and implemen-
tation of this learner. I have found that:

• Context helps significantly with query answering, because it cap-
tures the relevant information that the system needs to bootstrap
its reasoning from,

• Reasoning by similarity and categorization is highly effective and
can form the basis for a more abstract reasoning platform,

1Taken from Samuel Johnson, quoted in Minsky 1988, [25]

71

• Using intermediate complexity categories to classify objects and
deduce their properties seems to work better than using more
specific or more general categories,

• It was very convenient to build the system to ‘talk’ to itself while
processing information. Squirrel uses English phrases to pass
information around internally–for example, once it deduces an
answer to a query, it expresses it in English, and passes this En-
glish phrase on to its learning method. English is also used in the
Bridge system as an intermediary for translating from Jackend-
off trajectory representations (Jackendoff 1983, [16]) to Borchardt
change frames (Borchardt 1993, [6]). The translator was designed
and implemented by Seth Tardiff, a member of the Genesis group.
My system as well as the translator thus suggest that simple En-
glish is a clean interface not only between human and machine,
but also within the machine.

• The idea about using a measure of similarity of threads to deduce
which properties imply the presence (or absence) of which other
properties lead me to an interesting observation about the role of
rules in a learning or reasoning system. The observation is that
rules act as a shortcut for reasoning that is learned by the sys-
tem throughout the system’s evolution, rather than as a primary
mechanism for learning. In the past, authors have asserted (Min-
sky 1988, [25]) that, although we do seem to use rules, rules are
probably not hard-coded in the brain because it is evolutionarily
more efficient to learn them.

The evaluation of the current system, coupled with the surprises I
have observed while building it, leads me to suggest several salient ideas
for how to build a architecture to support broader purpose learning and
reasoning about the world. I describe these ideas in the next chapter.

72

Chapter 6

Salient Ideas for
Learning with Context

“The best way to predict the future is to invent it.” (Alan Kay)

While the previous chapters have described and evaluated the sys-
tem I have built and hinted that it is possible to build a broader purpose
learner and reasoner, this chapter suggests the steps to get there. The
most important steps have to do with using more and richer representa-
tions of the world, making better use of context in reasoning about the
world, designing better learning heuristics, and using a better model
for the system’s memory.

6.1 Richer Representations of the World

I believe that having several representations of the world instead of
just one, and having the ability to reason about which representation
is most appropriate for a given problem is one of the keys to achieving
human-like intelligence, and beyond. I have already argued in chapter
5 that richer internal representations can help improve the learning
and reasoning of the system. Here, I have two concrete suggestions in
mind, namely using Borchardt transition frames to represent events in
the world (Borchardt 1993, [6]) and using Allen time representations
(Allen 1983, 1984 [2, 3]) to capture the notion of time passing and of
the world changing with time. I think that experimenting with various
representations can yield surprising insight into the problem of building
an architecture capable of more abstract reasoning about the world.

73

6.2 Better Use of Context

The current work is a step toward incorporating context in machine
learning. Context, however, can be exploited much more.

For example, context can be used by the architecture described in
this thesis not only to provide information (a type, a Thing, a Relation)
to guide each question answering method, but furthermore to guide
the system to choose which method is most appropriate for answering
a given question, or what is the most appropriate priority queue for the
methods.

Also, as mentioned before, context can be used to prime the system’s
‘thinking’. Just like question answering takes context into account, it’s
natural for the reflection that the system does to be guided by the
context. As a concrete example, if the system has recently seen a lot of
input information about birds, then it should be likely to think about
birds in the near future. I believe that implementing thinking in this
way will improve the quality of the information that the system deduces
and maintains in its KB.

From a software engineering perspective, a better way to implement
context in a learning system such as the one described in this thesis is
the following. The context is essentially an observer of the information
that passes around the system and is a blackboard for the modules that
need context information to do their job. The context should be able to
see the input that the system receives for learning or the information
that the system deduces, and the responses it gives to queries. The
context changes itself based on the information it sees pass around.
For example, it keeps a history of the latest system utterances that
it observed and updates its components according to these utterances.
With this design, the other modules in the system that need to make
decisions based on context can query the context for its value, then
make their decisions. Moreover, these modules need not worry about
updating the context themselves. The main advantage of this approach
is that the context object becomes a useful abstraction from a software
engineering perspective, rather than being just a container of several
data types.

6.3 Better Learning and Reasoning Heuris-

tics

There are several respects in which the system’s heuristics for reasoning
and learning can be improved. The most important are:

74

• The system could learn that the presence of certain properties im-
plies the presence or absence of other properties. I have discussed
this in more detail in chapter 5.

• The system relies on several parameters for learning and rea-
soning. I have discussed in chapter 5 that the optimal values
for these parameters could be learned by a parameter adjusting
scheme, instead of being hard-coded in the implementation.

• As discussed in chapter 5, the system can be augmented to learn
about actions in the same way that it learns about objects. Be-
sides expanding the kinds of knowledge the system has about the
world, learning about actions can contribute to make the learning
about objects and their properties more efficient. For example,
in a scenario where the system knows that fly is a move kind of
action, the system could deduce that a bird can move from having
seen it fly.

• Another important aspect of how we humans learn, as Minsky
and Singh describe in the OMCS paradigm ([1]), is that we tend
remember the ways in which we reasoned about things and solved
problems in the past. This helps us solve similar problems more
easily in the future. Accordingly, it may turn out to be useful
to design the learning system to keep track of which methods
(out of all the methods in its repertoire) worked to reason about
particular situations or answer particular queries.

• The current system is unsupervised. I believe it would be inter-
esting to experiment with supervised learning in this architecture.
The supervised mode can be set up such that when the learner
deduces a piece of information, it asks the human user for con-
firmation. The merit of this mode is that it enables the system
to quickly validate the inferences it makes about the world. For
example, suppose that when asked, “Is a robin an animal?”, the
system sees that some (but not most) robins are birds and that all
birds are animals. Then, the system can ask, “Is a robin a bird?”.
An affirmative answer gives the system the necessary information
on the spot. In the unsupervised mode, this scenario has a dif-
ferent outcome: the system answers the question “Is a robin an
animal?” in the negative, until it sees a majority of robins which
are birds, so that its concept of the stereotypical robin changes.

• I believe a lot could be learned from performing a Kirby-like ex-
periment (Kirby 1998, [17]) that involved a population of learners,

75

each with the architecture presented here. Each learner could
‘broadcast’ its utterances (that is, the deductions the learner
makes during reflection, or the answers it deduces to queries)
to the entire population. Each learner could take another’s ut-
terances as its own new inputs. The idea of performing such
an experiment comes from the general belief in psychology that
developments in human intelligence were importantly shaped by
social complexities ([12]). The Machiavellian Intelligence Hypoth-
esis ([12], Byrne and Whiten 1988, [31]) also supports this idea.
It states that the advanced cognitive processes of primates are
primarily adaptations to the special complexities of their social
lives, rather than non-social environmental problems such as find-
ing food. I believe such an experiment could turn out surprising
results about the rate at which ‘correct’ facts about the world
can be learned collectively versus individually. It would also be
fascinating to investigate whether the ‘chatting’ of the learners
can give rise to differences in the concepts learned.

6.4 Better Models of Memory

The design of the system does not currently include a thorough model of
memory. In essence the Memory module implements a long term mem-
ory. I believe there might be something to be gained from designing the
memory more carefully. For example, it may be useful to distinguish
between implicit and explicit memory. Implicit memory allows us to
learn new skills based on previous experience, without our recollecting
any particular events, or without our even realizing that prior knowl-
edge is used. Explicit memory has to do with explicit recollection of
events or points in time.

Explicit memory could help with reasoning about objects. The
system could keep records of the judgments it makes, where the records
contain the method (or methods) the system finds useful in answering
a particular type of questions. For example, suppose the system finds it
useful to answer questions about robins by looking at what properties
they inherit from birds. Then, when presented with similar questions,
the system could ‘recall’ the methods it used in the past, and attempt
to use them again to answer the new questions. In the robin and bird
example above, the system could attempt to answer new questions
about robins by thinking again about birds.

76

6.5 Autonomy... and All That Jazz

Finally, the bigger vision I have started out with was to create a ratio-
nal learner. ‘Rational’ traditionally means that it can be expected to
achieve its goals, given its available knowledge base ([12]). Currently,
Squirrel maintains a repository of knowledge that it can expand and
reason about. The next grand step is: how can Squirrel be made to
‘act’ based on its knowledge? That is, how can it set goals for itself
and carry them through? I believe part of this lies in the design and
implementation of the reflection thread. To reflect, the system picks an
object to think about, or poses itself a question to answer about some
object’s property. This can essentially be seen as as setting a goal, and
answering the question can be seen as carrying the goal through. I be-
lieve, however, that there is much more to do in this research direction.

77

Chapter 7

Contributions

“There is a single light of science, and to brighten it anywhere is to
brighten it everywhere.” (Isaac Asimov)

In this thesis, I have made the following contributions toward build-
ing a machine that can learn and reason about common aspects of the
world.

• I have designed and implemented a learning architecture that
uses similarity and categorization judgments, and the context it
builds from information recently received, to reason and learn
about objects and their properties. This architecture provides
the basic infrastructure on top of which more efficient learners
can be built.

• I have designed this architecture to be modular, and easily exten-
sible to support supervised learning, learning about actions, and
concurrent reflection and forgetting, that have potential to reveal
new surprises about artificial learning.

• In the area of context in machine learning, I contributed by defin-
ing context as temporal proximity of information. I have imple-
mented this notion of context on top of a thread memory system.
In this implementation, the context has seven dimensions, with
each dimension representing a particular kind of property that
an object can have, such as a capability of the object, or an isa
property.

• In the area of similarity and categorization, I have contributed
by illustrating how a system can reason about the world by re-

78

lying on these fundamental cognitive processes. I showed that
reasoning by similarity helps the system build its knowledge of
the world incrementally, by inferring new properties of an object
from its similarity with another, better known object. I further
shows that reasoning by categorization helps the system abstract
its knowledge of the world, by creating stereotypes to represent
groups of objects.

• In the area of acquiring commonsense knowledge, I have con-
tributed by building a system that can learn seven of the thirteen
kinds of commonsense knowledge that people have about objects
in the world. I further illustrated the benefits of being able to
think and reason about the world in more than one way. This idea
of having multiple methods to think about something or to solve
a problem is one of the hallmarks of the Open Mind Common
Sense paradigm.

• In the area of learning, I have contributed the design of a reflection
mechanism that allows a system to set its own learning goals by
picking things to think about and by posing itself questions about
the world. The result of reflecting is that the system can deduce
new information about objects given an initial input of reasonable
size, such as an input file with twenty simple English sentences.

• Finally, I have suggested a set of salient properties for building
a more efficient platform for learning with context. The most
important are the use for multiple representations and the idea
of priming the system’s reasoning and learning on the context
built from information recently received or information recently
exchanged with a human user or with another system.

79

Appendix A

Examples of Squirrel
Code

A.1 Pseudocode for the Assessing the Sim-

ilarity of Two Things

The method Learner.compareFromThreadsXY(), whose code is given
below, compares two Things according to a linear measure of the types
their threads have in common. It calls on the methods
LThing.countCommonTypes and
LThing.countMinTypes, also shown below. The LThing module im-
plements several useful methods that manipulate Things and Threads.

// requires x, y not null
private String compareFromThreadsXY(Thing x, Thing y){
/* This method compares the x and y by looking at
the types on their threads;
the threads in context weigh more in the
comparison than the others;
the weights and similarity threshold can be
changed (in the future they can be learned by
a parameter adjusting algorithm)

Calculate a similarity score for the two things:
simScore = Sum_threads-in-common{threadSimScore};
threadSimScore = (number of types in common) *

(thread weight)

80

this method doesn’t run into trouble if one tries
to compare things with different threads.
In that case, there will be fewer threads
in common which will drive the overall
similarity score down.

if simScore > high_threshold,
return LLabels.similarLabel;

if simScore < low_thresholds,
return LLabels.differentLabel;

else return LLabels.dontknowLabel;

Possible extension: if during the calculation
of the per thread similarity scores, a thread
that is not currently in context proves
to have a very high score (that is, many types
are in common), then weigh it more, and add it
to the context.

When the two things are indeed similar,
picks one randomly and sets the context
thing to it.
*/

String answer = ‘‘’’;
print(‘‘Let’s see. I’m comparing the threads of’’
+x.getName()+‘‘and’’ +y.getName());

List threadsInCommon =
LThing.getCommonThreads(x, y);
if (threadsInCommon.size() == 0)
return(LLabels.differentLabel);
else {
double simScore = 0.0;
// similarity score of x and y
// over all threads
double maxScore = 0.0;
// maximum possible similarity score
// for these x and y
int commonTypes = 0;
int totalTypes = 0;
double threadWeight = 0;

81

for (int i=0; i<threadsInCommon.size(); i+=2){
Thread t1 = (Thread)threadsInCommon.get(i);
Thread t2 = (Thread)threadsInCommon.get(i+1);

commonTypes = LThing.countCommonTypes(t1, t2);
totalTypes = LThing.countMinTypes(t1, t2);

if (context.containsLabel(LThing.getLabel(t1)))
threadWeight = contextThreadWeight;
else threadWeight = defaultThreadWeight;
simScore += commonTypes * threadWeight;
maxScore += totalTypes * threadWeight;

}

if (simScore > highSimThreshold*maxScore){
answer = LLabels.similarLabel;
Random generator = new Random();
int index = generator.nextInt(1);
context.setThing(index == 0 ? x : y);

}
else if (simScore < lowSimThreshold*maxScore)
answer = LLabels.differentLabel;

else answer = LLabels.dontknowLabel;
}
return(answer);

}

/**
* Returns the number of types (besides the thread label)
* that th1 and th2 have on common.
*
* @exception NullPointerException if any arg is null
* IllegalArgumentException if th1 and th2
* do not have the same label.
*/
public static int countCommonTypes(Thread th1,

Thread th2){
if (th1.size() == 0) return(0);
else if (th2.size() == 0) return(0);
int count = 0;
List types1 = getTypes(th1);

82

List types2 = getTypes(th2);
String label1 = (String)types1.remove(0);
String label2 = (String)types2.remove(0);
if (!label1.equals(label2))
throw new IllegalArgumentException();

for (int i=0; i<types1.size(); i++){
String type = (String)types1.get(i);
if (types2.contains(type)) count++;

}
return(count);

}

/**
* Returns the minimum of the number of types,
* on th1 and th2 excluding the thread labels.
*
* @exception NullPointerException if any arg is null
*/
public static int countMinTypes(Thread th1,

Thread th2){
int count1 = th1.size() - 1;
int count2 = th2.size() - 1;
if (count1 < count2) return(count1);
return(count2);

}

A.2 Code for Calculating Stereotypes

The following is the code of the Memory.findGenericThing method,
that calculates the partially relative stereotype of a class of objects.
The partially relative stereotype is the union of an absolute stereo-
type and a relative stereotype. The union is calculated by the method
LThing.unionOfThings, also shown bellow. The relative stereotype
contains the types that belong to most of the exemplars of the class.
Its calculation relies on the LThing.intersectThreads method, also
shown bellow.

/**
* Returns the stereotype Thing for the given type,
* and stores this stereotype in generics;
* if type is null or empty, returns null and
* stores nothing.

83

* The stereotype is the union of the generic
* absolute for that type (if it exists), and a
* stereotype calculated from the frames in things.
*/
// This method is designed for isa types;
// if type is something that would go an a
// different thread, this method might not give
// the result you expect
public synchronized Thing findGenericThing(String type){
if (type == null || type.equals(‘‘’’)) return null;
type = type.trim().toLowerCase();

Thing absolute = getAbsStereotype(type);
Collection things = getThings(type);
if (verbose)
print(‘‘Building’’ +type+
‘‘stereotype from’’ + things.size()+

‘‘things and’’ +
(absolute == null ? ‘‘no’’ : ‘‘one’’)+
‘‘absolute stereotype.’’+
(things.size() == 0 ? ‘‘’’ :
‘‘The things are:\n’’+
LUtility.collectionToString(things)));

if (things.size() == 0){
Thing st = factory.createGeneric(type);
if (absolute != null){
st = LThing.unionOfThings(st, absolute);
LThing.removeType(st, LLabels.genericAbs);
st.setName(type+st.getNameSuffix());

}
storeGeneric(st);
return st;

}else {
Thing temp = factory.createGeneric();
Bundle b = temp.getBundle();
Iterator it = b.iterator();
while(it.hasNext()){
Thread th = (Thread)(it.next());
if (th.contains(LLabels.generic))
th.remove(LLabels.generic);
List intersection =

84

LThing.intersectThreads(things,
LThing.getLabel(th),
threshold);

th = LThing.copyTypes(intersection, th);
}
temp.addType(LLabels.generic, LThingFactory.ISA);
if (absolute != null){
temp = LThing.unionOfThings(temp, absolute);
LThing.removeType(temp, LLabels.genericAbs);

}
temp.setName(type+ ‘‘-’’+
LThing.extractSuffix(temp.getName()));

storeGeneric(temp);
return temp;

}
}

/**
* Returns a new Thing, which contains,
* on each thread, a union of the t1’s and t2’s
* types on the threads with the same label.
*
* @exception NullPointerException if any
* arg is null
* @exception IllegalArgumentException if t1
* and t2 don’t both have
* threads with the same labels
*
* @modifies nothing
*/
public static Thing unionOfThings(Thing t1, Thing t2){
if (! (isThing(t1) && isThing(t2) ||

isVerb(t1) && isVerb(t2)))
throw new IllegalArgumentException(‘‘Things’’+

t1.getName()+ ‘‘and’’ +
t2.getName()+
‘‘contain different labeled threads’’+
‘‘ and cannot be ORed:\n’’+
t1.toString(true)+ ‘‘\n’’+t2.toString(true));

Bundle b = new Bundle();
Bundle t1b = t1.getBundle();

85

for (int i=0; i<t1b.size(); i++){
Thread th1 = (Thread)(t1b.get(i));
b.add(unionOfThreads(th1,
t2.getThread(getLabel(th1))));

}
Thing newt = new Thing();
newt.setBundle(b);
return newt;

}

/**
* Returns a new Thread, which contains
* all the types on t1 and t2.
*
* @requires no arg is null
*/
public static Thread unionOfThreads(Thread t1, Thread t2){
List types1 = getTypes(t1);
List types2 = getTypes(t2);
for (int i=0; i<types2.size(); i++){
String tp = (String)(types2.get(i));
if (!types1.contains(tp)) types1.add(tp);

}
Thread newt = copyTypes(types1, new Thread());
return newt;

}

/**
* Returns a List which contains the types
* contained by a majority of the threads with
* the given label, of the things in the given
* collection; threadLabel is the first element
* in the list; threshold represents the proportion
* that determines the ‘‘majority’’;
* if things or threadLabel is empty, or
* if none of the things in things have threads
* labeled threadLabel, returns null.
*
* @exception NullPointerException if any arg is null
* @requires no arg is null, threshold is between 0, 1.
*/
public static List intersectThreads(Collection things,

86

String threadLabel,
double threshold){

if (things.size() == 0 || threadLabel.equals(‘‘’’)){
if(verbose)
print(‘‘Empty collection or thread label’’+
‘‘in intersectThreads()’’);

return null;
}
Collection threads = new ArrayList();
Iterator it = things.iterator();
while(it.hasNext()){
Thing t = (Thing)(it.next());
Thread th = t.getThread(threadLabel);
if (th != null) threads.add(th);

}
if (threads.size() == 0){
if (verbose)
print(‘‘No thing contained threads with label’’ +

threadLabel);
return null;

}

List visited = new ArrayList();
List newTypes = new ArrayList();
newTypes.add(threadLabel);
it = threads.iterator();
while(it.hasNext()){
Thread th = (Thread)it.next();
List types = getTypes(th);
types.remove(threadLabel);
for (int i=0; i<types.size(); i++){
String type = (String)types.get(i);
if (!visited.contains(type)){
if (mostHaveType(threads, type, threshold))

newTypes.add(type);
visited.add(type);

}
}

}
return newTypes;

}

87

/*
* Returns true if a proportion equal to threshold if
* the given threads contain type.
*
* @requires the args are not null, threshold is between
* 0 and 1.
*/
private static boolean mostHaveType(Collection threads,

String type,
double threshold){

if (threads.isEmpty() || type.equals(‘‘’’)) return false;
int total = threads.size();
double num = 0.0;
Iterator it = threads.iterator();
while(it.hasNext()){
Thread th = (Thread)it.next();
if (th.contains(type)) num += 1.0;

}
if (num/total >= threshold) return true;
return false;

}

A.3 Pseudocode for the Reflection Thread

of Memory

The following is pseudocode for the reflection thread, as designed in
the first version of Squirrel, version 1.0. I have built Squirrel 1.0 in
the spring and summer of 2003. The version described in this thesis is
version 2.0, built throughout the fall of 2003 and spring of 2004.

The reflection code bellow represents the first idea I have had about
how to build a reflection mechanism. Its behavior is simpler than the
behavior described in chapter 3 of this thesis: the thread picks two
Things at random from memory, called a datum and a pattern. The
goal is to learn something new about the datum by looking at the pat-
tern. To do this, the system first sees if the two Things are similar. If
they are, then it assigns the datum a property of the pattern. The pat-
tern can be either a particular Thing or a stereotype. This algorithms
is perhaps similar to the Self Organizing Maps paradigm.

reflect(){
pick a Thing; // this is the datum

88

pick either another Thing or a stereotype;
// this is the pattern
if (compareFromThreadsXY(datum, pattern).equals(
LLabels.similarLabel)){
pick a thread label;
pick a type on pattern’s thread with this label;
// repeat the above until you find a type that
// belongs to the pattern but not the datum
record the type on the datum’s thread

}

A.4 Code Template for the Learn Methods

of the Learner

The following is a code template for the learnFromXYZ() method of
the Learner class.

// Learns from the given event;
// if e==null or e.isEmpty(), does nothing
private void learnFromXYZ(LEvent e){
// extract the subject and object
// (if the object is a sequence, this methods
// assumes the first object is the desired one);
// see if the sentence is a statement about
// generic objects or a particular object;
// if the there is a Thing in LMemory with the
// subject’s name, retrieve it, else initialize
// a new Thing;
// add the object’s type to the subject’s isa thread
Thing subject = e.getSubject();
Thing object = e.getObject();
String name = subject.getName();
String type = subject.getType();
Thing t = null;
if (engine.isGenericStatement(e)){
String tp = engine.getGenericName(type);
t = memory.getAbsStereotype(tp);
if (t == null){
if (engine.isVerb(tp))
t = factory.createGenericVerb(tp);

else t = factory.createGenericAbsolute(tp);

89

}
}else{
String nm = factory.getMapping(name);
if (nm != null) t = memory.getThing(nm);
if (t == null) t = factory.createThing(subject);

}
String what = object.getType();
t.addType(what, LThingFactory.xyz_thread_label);
memory.update(t);
Relation rel = e.getRelation();
memory.update(rel); // record the Relation
print(‘‘I’ve learned that’’ + t.getName()+

xyz_thread_label +
object.getType() + ‘‘\n’’);

// change the context according to the input
context.setParameters(what,
LThingFactory.xyz_thread_label, t, rel);

}

A.5 Code of the Qualify Method of the
Learner

The following is the code of the Learner.qualifyFromThingX()method.
This is one of the methods called by Learner.qualifyX()while trying
to answer a query like “What is X?”

// requires thread_label is one of
// LThingFactory.THING_THREADS,
// x != null
private String qualifyFromThingX(String thread_label,

Thing x){
// this method tries to return a type from
// the thread with the given thread label,
// from the thing in context.
// it adds thread_label to the context.
// if there is no such type, returns the empty string;
// if there is such a type, it changes the type
// in context to the most specific type of the
// thing in context.
//

90

String name = x.getName();
String answer = LLabels.dontknowLabel;
String reason =
‘‘I can’t deduce anything from the thing in context.’’;

print(‘‘Let’s see.’’+
‘‘I’m trying to think about whether I can deduce’’+
‘‘ anything about’’+name+
‘‘ by looking at whether it’s similar to’’+
‘‘the thing in context...’’);
context.addLabel(thread_label);
Thing toc = context.getThing();

if (toc != null && !LThing.thingEquals(toc, x)){
String toc_name = toc.getName();
String temp = name+
LThingFactory.threadToWord(thread_label);

if (LThing.isStereotype(toc) &&
!LThing.hasType(x,
LThing.getMostSpecificType(toc), LThingFactory.ISA)){}

else {
// proceed
String result = compareFromThreadsXY(x, toc);
if (! result.equals(LLabels.similarLabel)){
// don’t know whether they are similar,
// or know they are dissimilar
// answer = LLabels.dontknowLabel;
reason = toc_name+ ‘‘tells me nothing about’’ +name;

}else {
// x and toc are similar,
// so check what toc has on its thread
print(‘‘I think that’’ +name+ ‘‘is similar to’’
+toc_name);

String a_type = LThing.getAType(toc, thread_label);
if (a_type == null){}
else {

answer = temp+a_type;
reason = name+toc_name+
‘‘are similar and I know that’’ +toc_name+
LThingFactory.threadToWord(thread_label)+ a_type;
context.setType(LThing.isStereotype(toc) ?

91

LThing.extractNameFromSuffixedName(toc.getName()) :
LThing.getMostSpecificType(toc));

}
}

}
}
print(answer+ ‘‘because’’ +reason);
return(answer);

}

92

Bibliography

[1] The open mind commonsense project. Online resource, at: http:
//commonsense.media.mit.edu/.

[2] J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[3] J. F. Allen. A general model of action and time. Artificial Intelli-
gence, 23(2), 1984.

[4] J. R. Anderson. The adaptive nature of human categorization.
Psychological Review, 98(3):409–429, 1991.

[5] M. Bassok. Transfer of domain-specific problem-solving proce-
dures. Journal of Experimental Psychology: Learning, Memory
and Cognition, (16):522–533, 1990.

[6] G. C. Borchardt. Casual reconstruction. A.I.Memo No. 1403, MIT
Artificial Intelligence Laboratory, 1993.

[7] R. Brachman. The future of knowledge representation. In Proceed-
ings of the Eighth National Conference on Artificial Intelligence,
1990.

[8] R. A. Brooks. Intelligence without representation. Artificial Intel-
ligence, 47:139–159, 1991.

[9] T. Chklovski. Learner: A system for acquiring commonsense
knowledge by analogy. In Proceedings of the international con-
ference on Knowledge capture, pages 4–12, 2003.

[10] T. Chklovski. Using analogy to acquire commonsense knowledge
from human contributors. Technical report, MIT Artificial Intel-
ligence Laboratory, February 2003.

93

[11] A. B. Markman D. Gentner. Structure mapping in analogy and
similarity. American Psychologist, 52(1):45–56, 1997.

[12] F. C. Keil Edited by R. A. Wilson. The MIT Encyclopedia of the
Cognitive Sciences (MITECS). MIT Press, 2003.

[13] P. Winston et al. Four powerful pieces. Online resource, at http:
//www.ai.mit.edu/projects/genesis/frames.html.

[14] K. J. Holyoak and K. Koh. The pragmatics of analogical transfer.
In G.H. Bower (Ed.), The psychology of learning and motivation:
Advances in research and theory, pp. 59-87, New York: Academic
Press, 1985.

[15] P. Brezillon J. Agabra, I. Alvarez. Contextual knowledge based
system: A study and design in enology. In Proceedings of the In-
ternational and Interdisciplinary Conference on Modeling and Us-
ing Context (CONTEXT-97), pages 351–362. Federal University
of Rio de Janeiro, February 1997.

[16] R. Jackendoff. Semantics of Spatial Expressions. 1983. in Seman-
tics and Cognition.

[17] S. Kirby. Language evolution without natural selection: From
vocabulary to syntax in a population of learners. Technical report,
Language Evolution and Computation Research Unit, University
of Edinburgh, 1998.

[18] J. Kolodner. Case-based reasoning. Morgan Kaufmann, San Ma-
teo, California, 1993.

[19] R. D. Greenblatt L. M. Vaina. The use of thread memory in
amnesic aphasia and concept learning. AI working paper, MIT
Artificial Intelligence Laboratory, 1979.

[20] L. G. Valiant L. Pitt. Computational limitations on learning from
examples. Journal of the ACM, 35:965–984, 1988.

[21] G. Lakoff. Women, fire, and dangerous things. Univ. of Chicago
Press, 1987. Chapter One, The Importance of Categorization.

[22] D. Lenat. The dimensions of context-space. online documentation
of CyCorp, October 1998.

[23] A. Ram M. Devaney. Dynamically adjusting concepts to accomo-
date changing contexts. In Proc. ICML-96 Workshop on Learning
in Context-Sensitive Domains, July 1996.

94

[24] M. Minsky. A framework for representing knowledge. 1985. In
P. H. Winston, ed., The Psychology of Computer Vision, pages
211-277, McGraw-Hill, New York.

[25] M. Minsky. The Society of Mind. Simon and Schuster, Inc., first
touchstone edition edition, 1988.

[26] P. Brezillon N. M. Bigolin. An experience using context in trans-
lation from systems requirements to conceptual model. In Proc.
International and Interdisciplinary Conference on Modeling and
Using Context (CONTEXT-97), pages 319–330. Federal Univer-
sity of Rio de Janeiro, February 1997.

[27] L. R. Novick. Representational transfer in problem solving. Psy-
chological Science, (1):128–132, 1990.

[28] P. Szolovits R. Davis, H. Shrobe. What is a knowledge represen-
tation? AI Magazine, 14(1):17–33, 1993.

[29] D. L. McGuinness R. J. Brachman. Knowledge representation,
connectionism, and conceptual retrieval. In Proceedings of the 11th
annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 161–174, 1988.

[30] D. B. Lenat R. V. Guha. Enabling agents to work together. Com-
munications of the ACM, 37(7), July 1994.

[31] A. Whiten R. W. Byrne. Machiavellian Intelligence: Social Exper-
tise and the Evolution of Intellect in Monkeys, Apes and Humans.
Oxford: Oxford University Press, 1988.

[32] E. Rosch. Cognitive representations of semantic categories. Jour-
nal of Experimental Psychology: General, (194):192–233, 1975.

[33] E. Rosch. Principles of Categorization. New Jersey: Lawrence
Erlbaum, e. rosch and b. b. lloyd edition, 1978.

[34] M. Kubat S. Matwin. The role of context in concept learning.
Invited talk at the ICML-96 Workshop on Learning in Context-
Sensitive Domains, July 1996.

[35] E. Sali S. Ullman, M. Vidal-Naquet. Visual features of intermedi-
ate complexity and their use in classification. Nature, 5(7), July
2002.

95

[36] M. Sala. On the importance of context to improve knowledge
discovery. In Proc. International and Interdisciplinary Conference
on Modeling and Using Context (CONTEXT-97), pages 331–342.
Federal University of Rio de Janeiro, February 1997.

[37] R. N. Shepard. Multidimensional scaling, tree-fitting, and cluster-
ing. Science, 210(4468):390–398, October 1980.

[38] R. N. Shepard. Toward a universal law of generalization for psy-
cholofical science. Science, September 1987.

[39] D. B. Lenat R.V. Guha K. Pittman D. Pratt M. Shepherd. Cyc:
Toward programs with common sense. Communications of the
ACM, 33(8), August 1990.

[40] P. Singh. The open mind common sense project. Article published
on KurzweilAI.net, January 2002.

[41] J. B. Tenenbaum. Rules and Similarity in Concept Learning, pages
56–65. Advances in Neural Information Processing Systems. MIT
Press, Cambridge, Massachusetts, s. a. solla, t. k. leen, k.-r. muller
edition, 2000.

[42] P. Turney. The identification of context-sensitive features: A for-
mal definition of context for concept learning. In Proc. ICML-96
Workshop on Learning in Context-Sensitive Domain, July 1996.

[43] P. Turney. The management of context-sensitive features: A re-
view of strategies. In Proc. ICML-96 Workshop on Learning in
Context-Sensitive Domains, July 1996.

[44] A. Tversky. Features of similarity. Psychological Review, 84(4),
July 1977.

[45] L. G. Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134–1142, 1984.

[46] P. Winston. 20 ways to contribute to the bridge project.
Online resource, http://www.ai.mit.edu/projects/genesis/
projects2002.html.

[47] P. H. Winston. Learning and reasoning by analogy. Communica-
tions of the ACM, (23):689–703, 1980.

[48] P. H. Winston. Artificial Intelligence. Addison-Wesley, third edi-
tion, 1993.

96

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

