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Abstract

We present a set of techniques that can be used to represent and de-
tect shapes in images. Our methods revolve around a particular shape
representation based on the description of objects using triangulated
polygons. This representation is similar to the medial axis transform
and has important properties from a computational perspective. The
first problem we consider is the detection of non-rigid objects in images
using deformable models. We present an efficient algorithm to solve
this problem in a wide range of situations, and show examples in both
natural and medical images. We also consider the problem of learning
an accurate non-rigid shape model for a class of objects from exam-
ples. We show how to learn good models while constraining them to
the form required by the detection algorithm. Finally, we consider the
problem of low-level image segmentation and grouping. We describe
a stochastic grammar that generates arbitrary triangulated polygons
while capturing Gestalt principles of shape regularity. This grammar
is used as a prior model over random shapes in a low level algorithm
that detects objects in images.
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Chapter 1

Introduction

The study of shape is a recurring theme in computer vision. For exam-
ple, shape is one of the main sources of information that can be used
for object recognition. In medical image analysis, geometrical models
of anatomical structures play an important role in automatic tissue
segmentation. The shape of an organ can also be used to diagnose dis-
eases. In a completely different setting, shape plays an important role
in the perception of optical illusions (we tend to see particular shapes)
and this can be used to explain how our visual system interprets the
ambiguous and incomplete information available in an image.

Characterizing the shape of a specific rigid object is not a partic-
ularly hard problem, although using the shape information to solve
perceptual tasks is not easy. The shape representation problem be-
comes more difficult when we try to characterize generic object classes
such as shoes, cars, elephants and so on. No two objects in a class have
the same exact shape, but it seems clear that we can classify objects
in such classes using only geometrical information. One of the ma-
jor challenges in generic object recognition is specifying which are the
important geometrical features of a particular object class, and which
features are irrelevant.

The shape of an object can be described in many ways and different
representations may be appropriate for different tasks. Theoretically
two descriptions might be equivalent in the sense that one can be con-
structed from the other, but in practice each representation will make
explicit different properties of objects. From an algorithmic perspec-
tive, it is important to consider how a shape representation can be used
in a computational theory of vision. For example, we want to be able to
quickly find and identify the objects in an image. Many of the theories
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that have been developed for shape analysis and interpretation do not
lead to practical algorithms. Simulated annealing and other generic
optimization methods are often used as a black box by the computer
vision community, yet these are inherently slow computations.

One of our main goals is to develop techniques that can be used to
represent and detect relatively generic objects. In particular we em-
phasize the importance of efficient algorithms for image analysis. The
techniques we describe in this thesis revolve around a particular shape
representation, based on the description of objects using triangulated
polygons. As we show in the next chapter, the triangles that decompose
a polygon without holes are connected together in a tree structure, and
this has important algorithmic consequences. By picking a particu-
lar triangulation for the polygons we obtain decompositions of objects
into meaningful parts. This yields a discrete representation that is
closely related to Blum’s medial axis transform [6]. Moreover, the tri-
angulated polygons allow us to describe complex shapes using simple
building blocks (the triangles).

We consider two quite different shape detection problems. In the
first problem the goal is to find the location of a deformable shape in
an image. This problem is important for the recognition of non-rigid
objects. In particular, objects in many generic classes can be described
as deformed versions of an ideal two-dimensional template. In this set-
ting, the location of a deformable shape is given by a continuous map
from a template to an image. Figure 1.1 illustrates how we use a de-
formable template to detect a particular anatomical structure in an MR
image. We will show how triangulated polygons provide rich models
for deformable shapes. These models can capture both boundary and
interior information of an object and the object can be deformed in
an intuitive way. Equally important, we present an efficient algorithm
to find the optimal location for a deformable shape in an image. In
contrast, previous methods that take into account the interior of de-
formable templates are too slow for practical use or rely on local search
techniques to perform detection. The local search techniques require
initialization near the correct answer, while our algorithm finds the
optimal location for the object without such information.

Initially we use templates that are constructed from a single picture
of an object. In this case the deformation model for the template is
relatively generic. We then describe how we can learn a deformable
template model for a class of objects by observing multiple instances
of the objects in the class. In this case we obtain a deformation model
that can be quite specific, capturing which parts of the template are
deformable and which parts are mostly rigid. Figure 1.2 illustrates
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f : →

Figure 1.1: The function f maps a template to an image, character-
izing the location and shape of a non-rigid object in the image.

a b c

Figure 1.2: Two examples of a deformable object (a and b), and the
learned model (c). The color of each triangle in the model indicates
how much their shapes vary across different examples (darker triangles
vary more).

the learning procedure for a simple object. The learning method is
extremely useful for constructing good models of different object classes
in an easy and automatic way.

The second main problem we consider falls into the category of low-
level segmentation and grouping. The goal of a segmentation algorithm
is to identify parts of an image that are likely to correspond to indi-
vidual objects. This task is different from the shape detection problem
described above because the segmentation algorithm is not searching
for a specific object, as it does not know in advance which objects are
present in the scene. We approach this problem in a new way, provid-
ing a system that generates multiple hypotheses for possible objects in
the image. The output of our system is not meant to be a final answer
to an application, but the first step in solving a perceptual problem.
For example, each hypothesis could be matched against a database of
known objects to establish their identities.

To find unknown objects in images, a segmentation algorithm must
make assumptions about the appearance of typical objects. The Gestalt
psychologists identified a number of laws that guide the grouping of to-
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Figure 1.3: An input image and two different hypothesis for the
shapes in the image as generated by the low-level detection algorithm.

kens by the human visual system. For example, some of the most
important grouping cues are that object boundaries tend to be con-
tinuous and smooth almost everywhere. We will describe a stochastic
grammar that generates triangulated polygons and captures these and
other grouping cues including contour closure and self similarities. The
grammar defines a distribution over random shapes where shapes that
look natural have higher probability of being created. Together with
a model of how images are generated we obtain a posterior distribu-
tion over random shapes in an image. By sampling shapes from this
distribution we obtain hypotheses for the objects in a scene. Each hy-
pothesis looks natural and their boundaries align with places where the
image has high gradient magnitude. Figure 1.3 illustrates some of the
hypotheses generated for a simple image.

In the next section we review some of the shape representations that
have been previously used in computer vision. In Chapter 2 we describe
how we can represent objects using triangulated polygons and study a
number of properties of this representation. In Chapter 3 we show
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how triangulated polygons can be used to model deformable shapes
and how these models can be used to efficiently detect the location
of non-rigid objects in images. In Chapter 4 we show how we can
learn deformable template models from multiple examples of objects in
a class. In Chapter 5 we describe the shape grammar that generates
triangulated polygons and its application in the shape detection system
that performs low-level segmentation. In the last chapter we summarize
our results and describe some ideas for future work.

1.1 Shape Representations

The geometric properties of any specific rigid object are relatively well
understood. We know how three-dimensional features such as cor-
ners or edges project into images, and there are a number of methods
that can be used to represent rigid shapes and locate their projections.
Some techniques, such as the alignment method [23], use explicit three-
dimensional representations. Other techniques, such as linear combina-
tion of views [40], capture the appearance of three-dimensional shapes
using a small number of two-dimensional pictures. These and similar
techniques assume that all shape variation comes from the viewpoint
dependency of two-dimensional images.

A number of representations describe objects in terms of a small
set of generic parts. This includes representations based on generalized
cylinders [29] and geons [5]. These approaches are appealing because
they provide symbolic descriptions of objects, and make semantic in-
formation explicit. A shortcoming is that some objects do not have
a clear decomposition into generic parts. For example, what are the
parts that make up a shoe? Another problem is that we do not know
how to extract generic parts from images in a robust way. On the other
hand, models known as pictorial structures [15, 14] have been success-
fully used to characterize and detect objects that are described by a
small number of rigid parts connected in a deformable configuration. In
the pictorial structure approach, generic parts are not extracted from
images on their own, the whole object model is used at once. Our
shape representation is similar to the pictorial structure models in that
objects are represented by a number parts connected together. When
matching a triangulated polygon model to an image we take the same
approach as the pictorial structures techniques, considering the whole
model at once instead of trying to detect the generic parts individually.

We can represent objects in terms of their boundaries, which for
two-dimensional objects are curves, and for three-dimensional objects
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are surfaces. Such representations are commonly used both in the con-
text of image segmentation and object recognition. One example is
a popular technique for image segmentation known as active contour
models or snakes [26]. Boundary models are also used for generic ob-
ject recognition. For example, the work in [2] describes how we can
measure similarity between objects in terms of the amount of stretch-
ing and bending necessary to turn the boundary of one object into
the boundary of another one. Similarly, in [19] deformable boundary
models were used to represent generic objects. In this case the models
were used to detect instances of the generic class in noisy images. One
problem with deformable boundary models is that they do not capture
well how the interior of objects deforms.

Blum introduced a representation known as the medial axis trans-
form [6] that is now widely used. The medial axis of an object is
defined as the set of centers of all maximally inscribed disks (disks that
are contained inside the object but not contained in any other such
disk). The medial axis transform is the medial axis together with the
radius of each maximal disk. For two-dimensional objects the medial
axis is one-dimensional and if the shape has no holes the medial axis has
no loops. The tree structure is appealing from a computational point
of view. The medial axis captures local symmetries of an object and
provides a natural decomposition of the object into parts (correspond-
ing to branches in the one-dimensional structure). A closely related
representation known as the shock graph [37] makes even more infor-
mation explicit. In general, representations based on the medial axis
seem well suited to capture the geometry of generic objects. A model
of how the shock graph deforms and changes structure was presented in
[34]. As shown in [33], medial axis models can better capture natural
deformations of objects when compared to boundary models. Another
example of generic object recognition using a representation related to
the medial axis transform is described in [43]. Our triangulated poly-
gon representation is closely related to the medial axis transform. In
particular our models capture local symmetries and provide natural
decompositions of shapes into parts.

Statistical shape theory [38, 12] can be used to study objects that
are defined by a set of labeled landmarks, where each landmark marks
the locations of an important object feature. In this scenario, the space
of possible object shapes can be described using differential geometry,
leading to a natural notion of distance between shapes. Moreover, with
this approach we can characterize generic object classes using proba-
bility distributions in shape space. In computer vision these techniques
became popular with the active shape models [7]. While active shape
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models can capture the typical variation in shape among a class of ob-
jects fairly well, the problem of detecting objects in images using these
models is hard and so far we need to resort to local search methods.
These methods perform well as long as a good initial guess for the lo-
cation of the target object is available, but they do not tend to work
without such information. As demonstrated in [1] the object detection
problem can be solved efficiently if we constrain the distribution over
shapes to be of a particular form, in terms of decomposable graphs.
This is a promising approach and is closely related to how we represent
deformable shapes. As shown in the next chapter, a triangulation of a
polygon yields a natural decomposable graph.
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Chapter 2

Triangulated Polygons

In this chapter we describe our representation of objects using trian-
gulated polygons. Intuitively, a polygonal boundary is used to approx-
imate the actual boundary of an object, and a triangulation provides
a decomposition of the object into parts. Some examples are shown
in Figure 2.1. As we will see below, this representation has many nice
properties. It captures perceptually important features of an object and
its structure can be exploited by efficient computational mechanisms.

We assume that objects are connected subsets of R
2 whose bound-

aries are smooth except at a finite number of points. Also, we only con-
sider objects without holes (their boundaries are simple closed curves).
In this case an object can be approximated to any desired precision by
a simple polygon, which is a polygon without holes. A triangulation of a
polygon P is a decomposition of P into triangles, defined by diagonals.

Figure 2.1: Rabbit, pear, and hand represented by triangulated poly-
gons. The polygonal boundaries represent the outlines, while the tri-
angulations decompose the objects into parts.
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Figure 2.2: A triangulated polygon and its dual graph. If the polygon
is simple the dual graph is a tree.

Each diagonal is a line segment that connects two vertices of P and
lies in the interior of the polygon. Moreover, no two diagonals cross.
We know (see [11]) that every simple polygon can be triangulated, and
any triangulation of a polygon with n vertices consists of exactly n− 2
triangles.

There is a natural graph structure associated with a triangulated
polygon. The nodes of the graph are the polygon vertices, and the
edges include both the polygon boundary and the diagonals in the
triangulation. Any triangulation of a simple polygon has an important
property which will play a key role in the rest of our work. First, if T
is a triangulated polygon we denote its dual graph by GT . The nodes
of GT correspond to the triangles in T , and two nodes are connected
when the corresponding triangles share an edge. Figure 2.2 illustrates
a triangulated polygon and its dual graph.

Proposition 2.1. If T is a triangulation of a simple polygon, then its
dual graph GT is always a tree.

Proof. To see this, just note that each diagonal in T cuts the polygon
into two disjoint parts, so removing an edge from GT disconnects the
graph. The dual graph would have cycles if the polygon had holes, and
this is why we consider only simple polygons.

Note that every tree has a leaf, and a leaf in GT corresponds to a
triangle with some polygon vertex v that is not in any other triangle.
If we delete v and its triangle from T we obtain a new triangulated
polygon. Repeating this procedure we get an order of elimination for
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the vertices and triangles of T . The order is such that when eliminating
the i-th vertex, it is in exactly one triangle of the current triangulated
polygon. If we consider the graph structure defined by T , this ordering
is a perfect elimination scheme for the vertices of the graph. Graphs
which admit perfect elimination schemes form an important class which
we discuss in Section 2.1.

In principle there are many possible ways to triangulate a poly-
gon but if we use a particular class of triangulations known as con-
strained Delaunay triangulations (CDT) we obtain a representation
that is closely related to the medial axis transform. A good introduc-
tion to the Delaunay triangulation can be found in [3]. To define the
CDT we need to introduce the notion of visibility. Given a polygon P ,
we say that a point a is visible to a point b if the line segment ab lies
entirely inside the polygon. Similarly, a is visible to the line segment
bc if it is visible to some point on bc.

Definition 2.1. For a polygon P , the constrained Delaunay graph
contains the edge ab if and only if a is visible to b and there is a circle
through a and b that contains no vertex c visible to ab.

If no four vertices are collinear then this definition yields the (unique)
CDT of the polygon. Otherwise we call any triangulation obtained by
adding diagonals to the constrained Delaunay graph a CDT. A con-
strained Delaunay triangulation can be computed efficiently and yields
a decomposition of the polygon into meaningful parts. We can see the
relationship between the CDT and the medial axis transform by con-
sidering what happens as the distance between neighboring polygon
vertices decreases. In the limit the circles that define the Delaunay
graph are inscribed in the polygon, and correspond to the disks that
define the medial axis.

By looking at Figure 2.1 we can see how the diagonals in a CDT
decompose the objects into natural parts. For example, there is a
diagonal separating each finger from the rest of the hand and a diagonal
separating each leg of the rabbit from the body. It is known (see [22,
36]) that a natural way to decompose objects into parts is to split them
at places where the boundary has curvature minima. This is because
joining two parts together usually creates such minima. Figure 2.3
illustrates how the CDT always includes diagonals that split a limb
from the rest of an object and diagonals that cut objects at points
where they are “pinched”. In both cases the diagonals connect pairs of
boundary points with locally minimal curvature.

There are three possible types of triangles in a triangulated polygon,
corresponding to nodes of different degrees in the dual graph. The
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Figure 2.3: Limbs and pinch points are naturally represented in the
CDT. These pictures show the defining circle for a diagonal that corre-
sponds to a limb boundary and a diagonal that corresponds to a pinch
point.

t0 t1 t2

Figure 2.4: Different triangle types. The first triangle type corre-
sponds to ends of branches, the second type corresponds to branches
and necks while the last corresponds to connections between multiple
branches and necks.

three types are shown in Figure 2.4, where solid edges are part of the
polygon boundary, and dotted edges are diagonals in the triangulation.
Sequences of triangles of the second type form branches (or necks) of a
shape. Triangles of the first type correspond to ends of branches, and
triangles of the third type connect multiple branches together. We can
see how in Figure 2.1 each finger in the hand and both rabbit legs are
formed by sequences of triangles of the second type and end with a
triangle of the first type.

Counting the number of triangles of each type in a triangulated
polygon gives very coarse geometric information that may be useful for
generic object recognition and classification. For example, the number
of junction triangles gives a measure of the “branchiness” of an object.
Some care must be taken because different triangulations of the same
polygon will have different structure. If the polygon vertices are in
general position then the CDT is unique and we can count the number
of triangles of each type in this triangulation. Another source of coarse
geometric information is to consider the structure of the dual graph of
a triangulated polygon. Blum studied such information in the context
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Figure 2.5: The rabbit ear can be bent by changing the shape of a
single triangle (painted gray).

of the medial axis transform, and recently the combinatorial structure
of the shock graph has also been used for generic object recognition.

A nice property of triangulated polygons is that the triangulations
give a simple and intuitive way to non-rigidly deform the objects. For
example, the rabbit’s ear in Figure 2.5 can be bent by changing the
shape of a single triangle. In the next chapter we will use this idea to
detect non-rigid objects in images. The exact relationship between the
shape of a triangulated polygon and the shape of each of its triangles
will be clarified in Section 2.3.

2.1 Chordal Graphs and k-trees

Chordal graphs and k-trees play an important role in our work, so we
review some of their properties here (see [16] and [10] for more details).

Definition 2.2. A graph is chordal if every cycle of length at least 4
has a chord (a chord is an edge between non-consecutive vertices of the
cycle).

Chordal graphs are also known as triangulated or decomposable
graphs. These graphs are important because many problems that are
hard to solve for arbitrary graphs can be efficiently solved in this re-
stricted class. Most algorithms for chordal graphs rely on the following
characterization. Recall that a clique in a graph is a set of nodes where
there is an edge between each pair of them. If G is a graph and S is
a subset of its nodes, then the graph induced by S consists of S itself
and all edges from G that connect pairs of nodes in S. A vertex of a
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graph is called simplicial if its neighbors form a clique. Every chordal
graph has a simplicial vertex, and actually something stronger is true.

Definition 2.3. Let G be a graph and σ = (v1, . . . , vn) be an ordering
of its vertices. The ordering is a perfect elimination scheme if each vi

is a simplicial vertex of the subgraph induced by {vi, . . . , vn}.

It turns out that G is chordal if and only if G admits a perfect elimi-
nation scheme. Moreover, there are efficient algorithms to find a perfect
elimination scheme for a chordal graph. We have already shown that
the graph structure of a triangulated simple polygon admits a perfect
elimination scheme. In the next chapter we will use this fact to detect
deformable objects in images using dynamic programming. Triangu-
lations of simple polygons actually belong to a well-known subclass of
chordal graphs.

Definition 2.4. A clique on k+1 vertices is a k-tree. Given any k-tree
T on n vertices, we can construct a k-tree on n+1 vertices by adding a
new vertex to T which is made adjacent to each vertex of some k-clique.

Every maximal clique in a k-tree has size k + 1 and a k-tree can be
thought of as a set of k-dimensional simplices connected along (k − 1)-
dimensional faces. With this interpretation k-trees are acyclic simpli-
cial complexes. The class of graphs corresponding to triangulations of
simple polygons are called planar 2-trees. These are exactly the 2-trees
where at most two triangles meet at any particular edge.

2.2 Shape of Landmark Data

In this section we review some basic concepts from statistical shape
theory. First we define what we mean by the shape of an object that
lives in an Euclidean space. The following definition is from [12]:

Definition 2.5. Shape is all the geometrical information that remains
when location, scale and rotational effects are filtered out from an object.

This makes the shape of an object invariant to Euclidean similarity
transformations. In particular, two objects have the same shape if one
can be translated, scaled and rotated to exactly match the other one.
Figure 2.6 illustrates different objects that have the same shape.

To describe shape we consider the location of a finite number of
points on each object. Points that mark the location of important ob-
ject features are called landmarks. For example, to describe the shape
of a maple leaf we might choose landmarks as illustrated in Figure 2.7.
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Figure 2.6: Different objects with the same shape.

We will always assume that landmarks are labeled so that each one
corresponds to a particular object feature. In the case of a triangu-
lated polygon we can take the vertices as the landmarks. Note that a
polygon is fully determined by the location of its vertices. In general
the set of landmarks on an object provides a partial description of the
object.

Definition 2.6. A configuration is the set of landmarks on a particular
object. The configuration of an object with k landmarks in m dimen-
sions is given by a k × m matrix X, where the i-th row of X gives the
coordinates of the i-th landmark.

The configuration space is the set of all possible configurations for
an object and it usually equals Rkm minus some possible singularities
(we may want to exclude configurations where landmarks coincide). Let
∼ denote the equivalence relation defined by X ∼ Y when X is related
to Y by a similarity transformation. The space of possible shapes is
the set of equivalence classes defined by ∼. We denote the shape of
X by [X ] and we say that a shape is degenerate if it is the shape of a
configuration with coinciding landmarks.

2.3 Shape of Triangulated Polygons

Suppose we have an object with n labeled landmarks in R2. The object
is described by a n×2 configuration matrix X , and its shape is given by
[X ]. We will show that if we eliminate some singularities, [X ] is deter-
mined by the shapes of the triangles in a 2-tree over the landmarks, and
each triangle can have an arbitrary non-degenerate shape. This means
that by fixing a 2-tree over the landmarks we obtain a decomposition
of the object into parts (the triangles) with shapes that are indepen-
dent of each other. In particular, a triangulation of a polygon defines
a 2-tree, so we can represent the shape of a triangulated polygon by
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Figure 2.7: The red crosses indicate landmarks marking some of the
important features of a maple leaf.

describing the graph structure of the triangulation and specifying the
shape of each triangle.

Let T be a 2-tree with vertices (v1, . . . , vn). The 2-tree defines a set
of triangles (the 3 cliques in the graph), and we will use (vi, vj , vk) ∈ T
to denote that three particular vertices form a triangle in T . We denote
by Xi the i-th row of X . Similarly Xijk is the sub-matrix obtained
by selecting rows i, j and k of X . Consider configurations X for n
landmarks in R

2 where Xi, Xj and Xk are all different for each triangle
(vi, vj , vk) ∈ T . Clearly, X defines a non-degenerate shape [Xijk] for
each triangle (vi, vj , vk) ∈ T . In fact, [X ] defines the shape of each
triangle because X ∼ Y implies Xijk ∼ Yijk. The following theorem
shows a converse to this statement.

Theorem 2.1. For a fixed 2-tree T , and non-degenerate shapes s(i, j, k)
for each triangle of T , there is a unique shape [X ] such that [Xijk] =
s(i, j, k).

Proof. If n = 3 we only have one triangle and the result is trivial. Now
suppose n > 3. Let vi be a simplicial vertex of T . We know vi is in
exactly one triangle, say with vj and vk. Let T ′ be the 2-tree obtained
by deleting vi from T , and X ′ the matrix X without the i-th row. By
induction we can assume [X ′] is defined by the shapes of the triangles
in T ′. For fixed vj and vk, each position of vi gives a different shape
for the triangle (i, j, k). Moreover, by varying vi we can obtain any
triangle shape. So X is defined by X ′ and the shape s(i, j, k).
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This result is important because it allows us to describe the shape
space for a triangulated polygon in terms of shape spaces for triangles.
Let M be a space of triangles. There are two canonical choices for M ,
either Kendall’s or Bookstein’s space of triangles [38]. A triangulated
polygon on n vertices has n − 2 triangles and we can take its shape
space to be M1×M2× · · ·×Mn−2. The metric structure of M induces
a canonical metric on the cross product space. Figure 2.5 shows how
an object can be deformed by changing the shape of a single triangle.
The figure on the left is a point in shape space (x1, x2, . . . , xn−2), where
xi ∈ Mi. The figure on the right has the same coordinates except for
one of the xj that changes.
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Chapter 3

Deformable Template
Matching

In this chapter we address the problem of detecting non-rigid objects
in images. Our approach falls within the framework of deformable
template matching, where one wants to find a non-rigid transformation
that maps a model to the image. Figure 3.1 illustrates the situation,
where we have a template and a non-rigid map that indicates how the
template is deformed to align with the target object in an image.

An energy function associates a cost with each potential transforma-
tion of the model, and we want to find a transformation with the lowest
possible cost. Typically the energy function is a sum of two terms: the
data term attracts the deformed model toward salient image features,
while another term penalizes large deformations of the model. Most of
the existing non-rigid matching techniques require initialization near
the final solution or are too slow for practical use. This is because the

f : →

Figure 3.1: The function f maps a template to an image, character-
izing the location and shape of a non-rigid object.
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number of possible transformations of a template is usually very large.
In contrast, we present an algorithm that can quickly find a global op-
timal non-rigid transformation without any initialization. The search
over transformations is done efficiently by exploiting special properties
of triangulated polygons and their deformations.

We consider energy functions that can be written as a sum of terms,
one for each triangle in a triangulated polygon template. This type of
energy function is quite general, and can be used to represent a wide
range of deformable template models, including models that represent
the boundary and the internal structure of a two-dimensional non-rigid
object. Even when we use an energy function with a data term that
depends only on the boundary of a shape we take into account region
information when measuring shape deformation. In this way we ob-
tain more realistic models of deformation than are possible using only
boundary models.

Our experimental results illustrate the robustness of our method,
showing accurate detection of non-rigid objects even in highly clut-
tered scenes. We show results both on medical and natural images,
demonstrating the wide applicability of these techniques.

3.1 Related Work

The basic idea of matching a deformable model to an image goes back to
Fischler and Elschlager [15] and Widrow [41]. More recently, Grenan-
der [18] introduced a framework that provides a very general setting to
represent deformable objects. Other influential models were presented
in [25] and [7]. A few efficient and provably good matching algorithms
have been developed for restricted sets of deformable models. For ex-
ample, in [9] a dynamic programming algorithm was used to detect
open deformable contours in images. Dynamic programming was also
used in [1] to match models consisting of a number of landmarks with
positions constrained by a decomposable graphical model. Efficient al-
gorithms also exist for the related problem of computing a non-rigid
match between two pre-segmented objects (such as [2] and [34]).

3.2 Matching

Let P be a simple polygon corresponding to an object template. An em-
bedding of P in the plane is defined by a continuous function f :P →R2,
where f is defined over both the boundary and interior of the polygon.
We consider a set of embeddings that are extensions of maps g :V →R2,
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where V are the vertices of P . Let T be a triangulation of P . The trian-
gulation gives a natural extension of g to all of the polygon as a piece-
wise affine map f . The function f sends each triangle (v1, v2, v3) ∈ T
to the triangle (g(v1), g(v2), g(v3)) using linear interpolation. In this
way, f restricted to each triangle t ∈ T is an affine map ft. To see
that f is well defined (and continuous) just note that if two triangles
a, b ∈ T touch, then fa and fb agree along the intersection of a and
b. What may seem surprising is that all embeddings which map each
triangle according to an affine transformation are extensions of some g.
This follows from the fact that an affine transformation is defined by
the image of three non-collinear points.

We define an energy function that assigns a cost to each map g, rel-
ative to an image I. The matching problem is to find g with minimum
energy (corresponding to the best location for the deformable template
in the image). Consider energy functions with the following structural
form:

E(g, I) =
∑

(vi,vj ,vk)∈T

cijk(g(vi), g(vj), g(vk), I). (3.1)

Each term cijk should take into account the shape of the embedded
triangle and the image data covered by the embedding. For the experi-
ments in this chapter we use a simple energy function similar to typical
deformable template matching costs. For each triangle t, a deformation
cost measures how far the corresponding affine map ft is from a simi-
larity transformation. This makes our models invariant to translations,
rotations and uniform scalings, which is important for detecting objects
from arbitrary viewpoints. A data cost attracts the boundary of the
embedded polygon to image locations with high gradient magnitude.
In particular, we expect the target object to have different intensity
or color from the background, and the intensity gradient should be
roughly perpendicular to the object boundary. More details are given
in the next section.

While the implementation described here uses a fairly simple energy
function, the formulation can handle richer concepts. For example, the
deformation costs could be tuned for individual triangles, taking into
account that different parts of the shape may be more flexible than
others. This involves selecting different costs cijk for each triangle
in T . In fact, in the next chapter we describe a method that learns
deformation parameters from training data. Also, the data costs could
take into account the whole area covered by the embedded polygon.
For example, if we have a grayscale or color texture map associated
with a model we can use the correlation between the deformed texture
map and the image to obtain a data cost.
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3.3 Energy Function

In our framework, each triangle in a template is mapped to the image
plane by an affine transformation. In matrix form, we can write the
affine transformation as h(x) = Ax + a. We restrict our attention to
transformations which preserve orientation (det(A) > 0). This ensures
that the corresponding embedding f is locally one-to-one. Let α and
β be the singular values of A. The transformation h takes a unit circle
to an ellipse with major and minor axes of length α and β. The value
log(α/β) is called the log-anisotropy of h and is commonly used as a
measure of how far h is from a similarity transform (see [38]). We use
the log-anisotropy measure to assign a deformation cost for each affine
map (and let the cost be infinity if the affine map is not orientation
preserving). The deformation costs are combined with a data cost that
attracts the template boundary to locations in the image that have
high gradient magnitude,

E(g, I) =
∑
t∈T

def(ft)2 − λ

∫
∂P

‖(∇I ◦ f)(s) × f ′(s)‖
‖f ′(s)‖ ds,

where def(ft) is the log-anisotropy of ft. The term ‖(∇I ◦f)(s)×f ′(s)‖
is the component of the image gradient that is perpendicular to the
shape boundary at f(s). We divide the gradient term in the integral
by ‖f ′(s)‖ to make the energy scale invariant. Note that the integral
can be broken up into an integral for each edge in the polygon. This
allows us to write the energy function in the form of equation (3.1),
where the cost for each triangle will be the deformation cost plus one
integral term for each boundary edge that belongs to the triangle.

3.4 Algorithm

The matching problem is to find a map g :V →R2 with lowest possible
energy. The only approximation we make is to consider a finite set of
possible locations for each polygon vertex. Let G ⊂ R2 be a grid of
locations in the image. For example, each location in the grid could
correspond to an image pixel. Normally we use a coarser grid, with
about 50 × 50 locations independent of the image size. In the discrete
setting g maps each vertex vi to a location li ∈ G. For a polygon with
n vertices, the number of different such maps is |G|n. The form of
the energy function in equation (3.1) is quite general, and we depend
on the structure of T to be able to find an optimal g efficiently. Our
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Figure 3.2: Perfect elimination scheme for the vertices of a triangu-
lated simple polygon.

matching algorithm finds an optimal map in time O(n|G|3), which is
exponentially better than just trying all possible maps.

As described in Chapter 2, there is a nice order of elimination for
the vertices and triangles of a triangulated simple polygon (a perfect
elimination scheme). The order is such that when eliminating the i-th
vertex, it is in exactly one triangle of the current triangulated polygon.
Figure 3.2 shows a triangulated polygon with vertices labeled by their
order in a perfect elimination scheme. A perfect elimination order can
be computed in time linear in the number of polygon vertices using one
of the algorithms in [16].

The matching algorithm works by sequentially eliminating the ver-
tices of T using the perfect elimination scheme. This is an instance of
a well known dynamic programming technique (see [4]). After elimi-
nating v1, . . . , vi−1, vertex vi is in exactly one triangle, say with nodes
vj and vk. The two nodes vj and vk are the parents of vi, which we
indicate by letting p[i].a = j and p[i].b = k. We compute the cost of the
best placement for vi as a function of the locations for vj and vk. This
cost is stored in V [j, k](lj , lk). When we get to the last two vertices we
can solve for their best location and trace back to find the best location
of the other vertices, as is typical in dynamic programming.

31



Algorithm Match(I)
(∗ Find the best embedding of a shape in an image ∗)
1. for i = 1 to n − 2
2. (∗ Eliminate the i-th vertex ∗)
3. j ← p[i].a
4. k ← p[i].b
5. for each pair of locations lj and lk in G
6. V [j, k](lj , lk) ← minli∈G cijk(li, lj, lk, I)

+ V [i, j](li, lj) + V [i, k](li, lk)
7. Pick ln−1 and ln minimizing V [n − 1, n] and trace back to obtain

the other optimal locations.

This algorithm runs in O(nm3) time and uses O(nm2) space, where
n is the number of vertices in the polygon and m is the number of
possible locations for each vertex. In practice we can speed up the
algorithm by noting that given positions lj and lk for the parents of
the i-th vertex there is a unique similarity transformation taking vj and
vk to the respective locations. This similarity transformation defines
an ideal location for vi. We only need to consider locations for vi that
are near this ideal location, because locations that are far introduce too
much deformation in the model. With this optimization the running
time of the algorithm is essentially O(nm2).

Note that in line 7 of the matching algorithm each entry in V [n −
1, n] corresponds to the quality of an optimal embedding for the de-
formable shape given particular locations for vn−1 and vn. We can
detect multiple instances of a shape in a single image by finding peaks
in V [n− 1, n]. To generate multiple detections we can trace back from
each peak that has a value above some given fixed threshold.

32



3.5 Experimental Results

We present experimental results of our matching algorithm on both
medical and natural images. In each case we used a binary picture of the
target object to build a triangulated polygon template. From the binary
picture we computed a polygonal approximation of the object and then
we computed the CDT of the resulting polygon. For the matching
results shown here we used a grid of 60 × 60 possible locations in the
image for the vertices of the polygon. The matching algorithm took
approximately five minutes in each image when running on a standard
1Ghz Pentium III machine.

Corpus callosum: Figure 3.3 shows a model for the corpus callosum
generated from a manually segmented brain MRI. The best match of
the model to several new images is shown in Figure 3.4. Note how these
images have very low contrast, and the shape of the corpus callosum
varies considerably across them. We are able to reliably locate the
boundary of the corpus callosum in each case. The quality of our results
is similar to the quality of results obtained using the best available
methods for model based segmentation of medical images (such as [28]).
The main advantage of our method is that it does not require any
initialization.

Maple leaves: Figure 3.5 shows a model for maple leaves, constructed
from a binary silhouette. The best match of the model to a few images
is shown in Figure 3.6. The leaves in each image are different, and the
viewing direction varies. Note how our method can handle the variation
in shape even in the presence of occlusion and clutter. In particular,
the last image shows how we can “hallucinate” the location of a large
occluded part of the leaf. Techniques that rely on local search to find
non-rigid transformations tend to fail on cluttered images because they
get stuck on local optimum solutions as we demonstrate below. Since
our models are invariant to similarity transformations we can detect
the target object independent of of its position, scale and orientation.
Figure 3.7 demonstrates detections at very different scales.

To check the performance of our algorithm on inputs with low signal
to noise ratio we corrupted one of the leaf images with random Gaussian
noise. Figure 3.8 shows the corrupted image with increasing amounts
of noise (corresponding to σ = 50, 150 and 250) and the matching
results for each input. We can identify the approximate location of the
leaf even when it is barely visible. In Figure 3.9 we demonstrate how
our matching algorithm can be used to detect multiple instances of an
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Figure 3.3: A model for the corpus callosum generated from a binary
picture. The picture comes from a manually segmented MRI.

Figure 3.4: Matching the corpus callosum model to different images.
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Figure 3.5: A model for maple leaves generated from a binary picture.

Figure 3.6: Matching the leaf model to different images.
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object in an image. As discussed in the last section we simply selected
peaks in V [n − 1, n] with value above a pre-determined threshold to
generate each detection.

We can see that our matching algorithm performs well in hard situ-
ations. In contrast, local search methods tend to fail in such cases. To
illustrate this we obtained a public implementation of a popular tech-
nique known as active appearance models [39]. Every local search tech-
nique depends heavily on initialization, so we show results of matching
using different initialization parameters on a fixed image. Figure 3.10
shows some cases where the local search method worked well, while
Figure 3.11 shows cases where the method did not work. It is clear
that good initialization parameters are vital for obtaining reliable re-
sults with a local search technique. These experiments illustrate the
advantage of global methods.
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Figure 3.7: Our models are invariant to similarity transformations
so we can detect deformable objects at arbitrary scale, position and
orientation.
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Figure 3.8: Matching in an image corrupted by increasing amounts
of Gaussian noise.
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Figure 3.9: Detection of multiple leaves in one image.
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Initial pose Final match

Figure 3.10: Cases where a local search method worked well. Each
row corresponds to an experiment, the first image gives the initializa-
tion parameters and the second image shows the matching results.
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Initial pose Final match

Figure 3.11: Cases where the local search method did not work.
When the initialization parameters are far from the correct solution
the method can give arbitrary results.
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Chapter 4

Learning Deformable
Template Models

In this chapter we describe how we can learn deformable shape models
from examples. Intuitively the learning problem is the following. We
are given a number of examples for the shape of an object, each of
which is a polygon on a fixed number of vertices. Moreover, the vertices
of each example are in correspondence with each other. We want to
find a triangulated model that can be easily deformed into each of
the examples. Each triangle in the triangulated model should have an
ideal shape and a parameter that controls how much it is allowed to
deform. Figure 4.1 illustrates the learning procedure. Each triangle in
the model is shown in its ideal shape, and the triangles are color coded,
indicating how much they are allowed to deform.

There are other techniques such as active shape models [7] that
can capture the typical shape variation for a class of objects. Our
models are unique in that they can capture objects that deform by
large amounts. Moreover, we concentrate on models that can be used
by the efficient matching algorithm described in the last chapter.

4.1 Statistical framework

We want to model the shape of a polygon on n vertices. Each instance
of the polygon is given by a n × 2 configuration matrix X where the
i-th row gives the location of the i-th polygon vertex. The deformable
object detection problem can be posed in a statistical framework in the
following way. Given an image I, we want to find the location for the
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a b c

Figure 4.1: Two examples of a deformable object (a and b), and the
learned model (c). The color of each triangle in the model indicates
how much their shapes vary across different examples (darker triangles
vary more).

object that has highest probability of being its true position. Using
Bayes’ law, the optimal location for the object is defined as,

X∗ = argmax
X

p(X |I) = arg max
X

p(I|X)p(X),

where p(I|X) is normally called the likelihood model, and p(X) is a
prior distribution over configurations. The likelihood model encodes
the image formation process. For example, the image tends to have
high gradient near the object boundary. The prior distribution p(X)
encodes which configurations the object is likely to assume.

The matching problem from the last chapter can be cast in this
statistical framework, by considering the energy we were minimizing as
the negative logarithm of the posterior p(X |I) (up to an additive con-
stant). Previously we defined the location of a deformable template by
a map from the vertices of the template to the image plane g :V →R2.
In this setting, the configuration of the object in the image is given by
Xi = g(vi). The energy function we used for the matching experiments
was defined in Section 3.3,

E(g, I) =
∑
t∈T

def(ft)2 − λ

∫
∂P

‖(∇I ◦ f)(s) × f ′(s)‖
‖f ′(s)‖ ds.

The first term in the energy is a cost for deforming the template, and
corresponds to the negative logarithm of p(X). The second term in
the energy encourages the shape boundary to align with areas in the
image with high gradient, and corresponds to the negative logarithm
of p(I|X).

The choice of the deformation costs in the energy function above
is somewhat arbitrary. The learning problem we address is to find a
prior distribution p̂(X) that approximates the true one by observing
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random examples of the object. This will allow us to have more specific
deformation models for different objects. By restricting p̂(X) to a class
of functions that can be expressed in a particular form we can use the
learned model to detect shapes in images using the techniques from the
last chapter.

4.2 Procrustes Mean Shape

Before describing how we learn deformable shape models we review a
standard method to estimate the mean shape of landmark data known
as generalized Procrustes analysis (see [12] or [17] for more details).
This is very similar to the learning procedure used for active shape
models.

In two-dimensions the analysis is simplified using complex arith-
metic. We identify a landmark (x, y) ∈ R2 with x+ iy ∈ C. In this case
a configuration is given by a vector of complex numbers. Note that two
configurations x, y ∈ Cn have the same shape when y = c1n + βeiθx,
where 1n is the vector of n ones, c is a complex number correspond-
ing to a translation, β > 0 corresponds to a change of scale and θ
corresponds to a rotation.

Say we have a set of random configurations {x1, . . . , xm}. Suppose
each sample is obtained from a mean configuration µ by a small per-
turbation εi and a similarity transformation,

xi = ci1n + βie
iθ(µ + εi).

The perturbations account both for measurement error and varia-
tion in the shape of a population. We assume that the perturbations
are independent and identically distributed according to a spherical
Gaussian distribution. In this case a maximum likelihood estimate of
the mean shape µ can be obtained using Procrustes analysis. First we
translate the samples so that xj

∗1k = 0, where y∗ denotes the trans-
pose of the complex conjugate of y. This does not change the shape of
the configurations and simplifies the analysis.

Definition 4.1. The full Procrustes mean shape [µ̂] is obtained by the
following minimization over a mean configuration µ,

µ̂ = argmin
||µ||=1

min
βj,θj

m∑
j=1

||µ − βje
iθj xj ||2.

The mean shape defined by [µ̂] is also the maximum likelihood es-
timate of the modal shape under various distributions in shape space.
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The mean configuration can be computed efficiently by solving a com-
plex eigenvector problem. The solution is given by the eigenvector
corresponding to the largest eigenvalue of the complex sum of squares
and products matrix,

S =
m∑

j=1

xjxj
∗/(xj

∗xj).

Once we have computed the mean configuration, the optimal alignment
between each configuration and the mean can be easily computed,

zj = xj
∗µ̂xj/(xj

∗xj).

These are called the full Procrustes coordinates of the configurations.
For each configuration we define the Procrustes residuals by rj = zj−µ̂.
The sum of squares of the residuals gives an overall measure of shape
variability. More detailed analysis of the variability can be performed
using principal component analysis as discussed in [7].

Definition 4.2. An overall measure of shape variability is given by the
root mean square of the residuals,

RMS(µ̂) =

√√√√ 1
n

m∑
j=1

||rj ||2.

One problem with Procrustes analysis comes from the assumption
that objects can be approximately aligned using similarity transforma-
tions. In practice this means that these techniques are useful to model
objects that are almost rigid. In the next section we will relax this
assumption using models based on triangulated polygons. Our tech-
niques can be used to represent objects that are almost rigid locally,
but can have large global deformations.

4.3 Deformable Templates

Now we turn to the problem of learning a deformable template model
for an object. We need to estimate a prior distribution for the con-
figuration of the object, and the distribution should be in a form that
can be used by our matching algorithm. The matching algorithm can
handle arbitrary energy functions that are a sum of costs, one for each
triangle in a 2-tree over the landmarks in the model,

E(X, I) =
∑

(vi,vj ,vk)∈T

cijk(Xi, Xj , Xk, I).

46



The energy function corresponds to the negative log of the posterior
p(X |I) ∝ p(I|X)p(X). Thus, one requirement for the prior distribution
is that its negative logarithm be a sum of costs, one for each triangle
in a 2-tree. This is the form we would obtain by assuming that the
shapes of each triangle in the model are independent. As described in
Section 2.3 the shape of a set of landmarks is defined by a 2-tree over
the landmarks and the shapes of each triangle in the 2-tree. This means
that if we take the product of priors for the shape of each triangle in
a 2-tree we do indeed get a distribution over the shape of the whole
object.

The energy function also needs to take into account the image data,
which is the contribution coming from the likelihood model p(I|X). At
a minimum, the likelihood model should depend on the boundary of
the deformable object. This implies that the 2-tree that we choose for
the model should include all the edges corresponding to the polygon
boundary. If we want the likelihood to depend on the interior of the
object then we need the 2-tree to be a planar triangulation of each
polygon. In this way the interior of the object will be decomposed into
parts by the triangles in the model. For now we require only that the
2-tree include the polygon boundary.

Let E = {X1, . . . , Xm} be a set of random configurations for a
polygon on n vertices and let T be a 2-tree over the polygon vertices.
To define the prior over configurations let

pT (X) =
∏

(vi,vj ,vk)∈T

pijk(Xijk),

where Xijk is the sub-configuration of X containing the landmarks i,
j and k. We use the model from the last section for each triangle in
T . That is, for each triangle (vi, vj , vk) ∈ T we assume that the sub-
configurations {X1

ijk, . . . , Xm
ijk} were obtained from a mean triangle

µijk by a spherical Gaussian perturbation and an arbitrary similarity
transformation.

When T is fixed we can estimate the prior p̂T (X) using general-
ized Procrustes analysis for each triangle in the model. The Procrustes
residuals give an estimate for the standard deviation of the perturba-
tion vector for each triangle. Triangles with small residuals correspond
to areas of the model that are almost rigid, while triangles with large
residuals correspond to parts of the model that tend to deform. Note
how this procedure does not assume that the polygons can be accurately
aligned to each other using similarity transformations. The alignment
only needs to be relatively accurate for each set of corresponding tri-
angles in the samples. Intuitively, our models makes sense under an
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assumption that objects are locally almost rigid.
Now we consider the case where no triangulation is given a priori.

In this case the learning algorithm has to automatically select a com-
mon triangulation for the polygons. The choice can be made using a
maximum-likelihood principle. Let T be the set of 2-trees that have
the n-cycle (v1, . . . , vn, v1) as a subgraph. These are the 2-trees that
contain all edges corresponding to the boundary of the deformable ob-
ject. The following theorem makes it possible for us to efficiently select
an optimal model.

Theorem 4.1. Elements of T correspond to triangulations of a convex
n-gon with boundary vertices labeled by (v1, . . . , vn).

Proof. First, if we have a triangulation of a convex n-gon, the boundary
edges form the cycle (x1, . . . , xn, x1), and we know that any triangula-
tion of a simple polygon is a 2-tree.

Now suppose we have a 2-tree T with the special cycle. If n = 3 the
2-tree is a triangle and we are done. We proceed by induction. Let xi

be a simplicial vertex of T . This vertex must be connected to xi−1 and
xi+1 by the cycle condition. Since xi is simplicial, it is not connected to
any other vertices, and xi−1 is connected to xi+1. Removing xi from T
we obtain a 2-tree T ′ over the remaining n − 1 vertices, with the cycle
(x1, . . . , xi−1, xi+1, . . . , xn) in T ′. By induction, T ′ is a triangulation
of the convex (n − 1)-gon induced by the remaining vertices. Adding
the triangle (xi−1, xi, xi+1) we obtain a triangulation of the convex
n-gon.

This correspondence implies that when searching for the graphical
structure of our model we can search over triangulations of a convex
n-gon. A well known algorithm (see [8]) can be used to find an optimal
triangulation for a convex polygon, where the cost of the triangulation
is a sum of costs, one for each triangle. Now it remains to see that this
can be used to solve our problem, and what the costs for each triangle
should be.

The maximum-likelihood estimate for the model is defined as,

T̂ = argmax
T∈T

m∏
l=1

∏
(vi,vj ,vk)∈T

p̂ijk(X l
ijk),

where p̂ijk is the maximum likelihood estimate for the shape prior of
triangle (vi, vj , vk). By taking the negative logarithm of this equation
we can express the optimal 2-tree as the one minimizing a sum of costs
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for each triangle,

T̂ = argmin
T∈T

∑
(vi,vj ,vk)∈T

cijk, where cijk = −
m∑

l=1

log p̂ijk(X l
ijk).

With some algebra we can see that the costs are equal to the log of
the root mean square of the Procrustes residuals up to multiplicative
and additive constants. These constants do not affect the solution for
the optimal 2-tree so we can take cijk = log RMS(µ̂ijk). Because of the
logarithmic dependence on the residuals, the maximum-likelihood solu-
tion for the deformable model tends to concentrate all of the variation
in shape to as few triangles as possible. Intuitively, the learning pro-
cedure should select models that are rigid almost everywhere, keeping
the deformations localized.

Recall that we may want to enforce that the learned model yield
a planar triangulation for each input polygon. If this is the case we
just need to set cijk = ∞ for each triangle that is not in the interior
of some polygon. The planarity requirement may not be satisfiable as
not every set of polygons have a common planar triangulation. If this
is the case the optimal triangulation with the modified cijk will have
infinite cost.

We do not have to restrict the prior model for the shape of each
triangle to the ones learned with Procrustes analysis. The method
just described works with any choice of prior for the triangle shapes.
Whatever form we choose for the prior distribution of a triangle, we
just need to compute the costs cijk accordingly. Then the optimal tri-
angulation is selected with the same algorithm. Note that the optimal
triangulation may be different for different choices of priors. A number
of different shape priors for landmark data that could be used here are
described in [12].
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Procrustes mean Deformable mean

Figure 4.2: Comparing Procrustes and deformable mean shapes. Two
input polygons are shown in (a) and (b). Procrustes analysis breaks
down when the samples can not be aligned using similarity transfor-
mations.

4.4 Experimental Results

One problem with Procrustes analysis (and active shape models) is
the assumption that objects from a population can be approximately
aligned using similarity transformations. When this assumption breaks,
the Procrustes mean shape can be quite bad as shown in Figure 4.2.
The same figure shows a model learned with our technique, which only
assumes that the object is locally almost rigid. The mean shape com-
puted by our method is exactly what we expect from a deformable
average of the two objects shown.

Hand model: We obtained a database with 40 pictures of hands.
Each picture was annotated with the location of 56 landmarks located
along the boundary of the hand. We can consider the landmarks as the
vertices of polygons that approximate the boundary of each hand. Some
examples of the objects in this data set are shown in Figure 4.3. The
model selected by our learning algorithm is shown in Figure 4.4. The
graphical structure of the model is somewhat surprising, we expected
something more like a Delauney triangulation. But this structure is op-
timal in the maximum likelihood sense, given the class of distributions
we are using for the shape of each triangle. To see that the learned
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model does indeed capture the typical variation in the shape of the
hands we generated the random samples from p̂(X). The random sam-
ples are shown in Figure 4.5. Note how the shape variation among the
samples is similar to the variability present in the training set.

Maple Leaf model: We also trained a model to capture the shapes
of maple leafs. In this case we had 34 example pictures, each anno-
tated with the location of curvature extrema along the boundaries of
each leave. Some examples of the objects in this data set are shown
in Figure 4.6. For this experiment we enforced the constraint that the
learned model be planar. The model selected is shown in Figure 4.7.
Random samples from the estimated shape prior are shown in Fig-
ure 4.8. Again we see that our model seems to capture the typical
shapes of maple leaves well.
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Figure 4.3: A few of a total of 40 samples of hands.
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Figure 4.4: Deformable model learned for the hand data (without the
planarity constraint).
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Figure 4.5: Random samples from the prior model for the hands.
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Figure 4.6: A few of a total of 34 maple leaves.
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Figure 4.7: Deformable model learned for the maple leaf data (with
the planarity constraint).
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Figure 4.8: Random samples from the prior model for the leaves.
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Chapter 5

Random shapes

In this chapter we consider the problem of detecting objects in images
without knowing their identities in advance. In computer vision this is
the goal of a low-level segmentation or grouping algorithm. In Chap-
ter 3 we were able to detect objects in very noisy images because we had
strong prior knowledge about the shapes of the objects we were looking
for. One of the main challenges we face now is to build a prior model
for shapes that is strong enough to interpret the ambiguous informa-
tion in an image, but generic enough to capture most of the objects in
a typical scene.

It seems clear that the shapes we usually encounter are not com-
pletely random, they have certain regularities. For example, shapes
formed by random walks are too irregular when compared to the shape
of a typical object. The regularities of natural shapes can be used to
infer the locations of the objects in an image. Many theories in per-
ceptual science suggest that our visual system favors the perception
of some shapes over others. This is illustrated by the pictures in Fig-
ure 5.1. The Gestalt psychologists identified certain properties which
guide the grouping of tokens such as edges and corners in our visual
system. Some of the strong grouping cues are: proximity, continuity,
collinearity, cocircularity, parallelism, symmetry and closure.

Intuitively, the tokens in an image should be grouped into regular
shapes. This idea has been previously studied in computer vision (for
example [35], [31], [30], [24], [27] and [42]). We propose a method in
which a pre-attentive process searches the image for regular shapes to
generate object hypotheses. These hypotheses must then be processed
further in a way that depends on the perceptual task at hand. For ex-
ample, each hypothesis could be matched against a database of known
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(a) (b)

Figure 5.1: (a) In this picture we are inclined to see a triangle even
though it is not really there. (b) Our visual system automatically
groups some of the edges into a “peanut” shape.

objects to establish identities. Our algorithm works by sampling shapes
from a particular distribution that depends on an input image. The
distribution is constructed so that shapes with high probability look
natural, and their boundaries align with areas of the image that have
high gradient magnitude. Our notion of natural shapes is motivated
by the gestalt grouping laws.

We start by defining a stochastic grammar that generates random
triangulated polygons. This grammar can be tuned to capture many
of the Gestalt grouping laws. For example, with the correct choice of
parameters the random shapes generated tend to have smooth bound-
ary and a nice decomposition into elongated parts. In this way we
obtain a generic but rich prior model for the objects in an image. We
combine this prior with a likelihood model that defines the probability
of observing an image given the presence of a particular shape in the
scene. These two distributions together define a posterior distribution
over random shapes in a scene. Samples from the posterior provide
good hypotheses for the objects in an image.

5.1 Shape Grammar

As described in Chapter 2, if T is a triangulation of a simple polygon,
then its dual graph GT is a tree. Figure 5.2 shows a triangulated
polygon and its dual graph. There are three possible types of triangles
in T , corresponding to nodes of different degrees in GT . The three
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Figure 5.2: A triangulated polygon and its dual graph. If the polygon
is simple the dual graph is a tree.

Type 0
x0 x2

x1

Type 1
x0 x2

x1

Type 2
x0 x2

x1

Figure 5.3: Different triangle types in a triangulated polygon. The
types corresponds to nodes of different degrees in the dual graph.

triangle types are shown in Figure 5.3, where solid edges are part of the
polygon boundary, and dotted edges are diagonals in the triangulation.
For the rest of this chapter we will use a particular labeling of the
triangle vertices as shown in this picture. In this way, a triangle is
defined by its type and the location of its vertices x0, x1, x2 ∈ R2.
Sequences of triangles of the second type form branches (or necks) of
the shape. Triangles of the first type correspond to ends of branches,
and triangles of the third type connect multiple branches together.

A procedure to generate triangulated polygons is given by the fol-
lowing growth process. Initially a seed triangle is selected from one of
the three possible types. Then each dotted edge of the seed grows into
a new triangle. Growth continues along newly created dotted edges
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until all branches end by growing a triangle of the first type with only
one dotted edge. A similar process for growing combinatorial struc-
tures known as n-clusters is described in [21]. The growth process can
be made stochastic by defining a few probability distributions. Let a
triangle of type i be selected (initially or during growth) with proba-
bility ti. As an example, imagine picking t1 to be the largest value.
This would encourage growth of shapes with long branches. Similarly,
t2 will control the number of branches in the shape. Besides the three
parameters ti, we also have a distribution that controls the shape of
each triangle created. The probability that a shape [X ] is selected for
a triangle of type i equals si([X ]).

The growth process can be characterized by a stochastic context
free grammar (or a tree automaton, see [13]). The grammar not only
generates triangulated polygons, it also generates objects with over-
lapping parts as illustrated in Figure 5.4. To be precise, the grammar
generates planar 2-trees (see Section 2.1) that are embedded in the
plane by a map that is not necessarily one to one. Let t = {0, 1, 2} be
the three possible triangle types. There are two types of symbols in the
grammar. The possible triangles created during growth are elements
of t × R2 × R2 × R2, corresponding to a type and the location of the
vertices. There are also symbols corresponding to edges that need to
grow, and these are elements of R2 ×R2. The edges are oriented so the
grammar remembers to which side of the edge the next triangle should
grow. Figure 5.5 illustrates the production rules for the grammar. Note
that there are two different rules to grow a triangle of type one, corre-
sponding to a choice of how the new triangle is glued to the edge that
is growing. We simply let both choices have equal probability.

To understand the effect of the ti, consider the dual graph of a
triangulated polygon generated by the stochastic process just described.
The growth of the dual graph starts in a root node that has one, two
or three children with probability t0, t1 and t2 respectively. Now each
child of the root grows according to a Galton-Watson process (see [20]),
where we start with a single node that has i children with probability
ti and the children themselves reproduce with the same distribution.

An important parameter of the Galton-Watson process is the ex-
pected number of children for each node or Malthusian parameter,
which we denote by m. In our process, m = t1 + 2t2. When m < 1
the probability that the growth process eventually terminates is one.
From now on we will always assume that m < 1, which is equivalent to
saying t2 < t0. In this case we can define a distribution over triangu-
lated polygons by letting p(T ) be proportional to the probability that
the grammar would generate T .
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Figure 5.4: The grammar can generate objects that cross over them-
selves, this never happens in a triangulated polygon.

Let e, b and j be random variables corresponding to the number
of end, branch and junction triangles in a random shape, and n =
e + b + j is the overall number of triangles. For the Galton-Watson
process (which corresponds to growth from each child of the root) we
can compute the expected number of nodes generated, which we denote
by x,

x = 1 + (x)t1 + (2x)t2 ⇒ x = 1/(t0 − t2).

The number of nodes in the dual graph is obtained as one node for the
root plus the number of nodes in the subtrees rooted at each children
of the root. So the expected value of n is,

E(n) = 1 + (x)t0 + (2x)t1 + (3x)t2.

Substituting for x we get,

E(n) =
2

t0 − t2
. (5.1)

Similarly we can compute the expected number of junction triangles
in a random shape. The number of junction triangles is interesting
because it gives a measure of the complexity of the shape, in particular
it is a measure of the number of parts (limbs, necks, etc). For the
Galton-Watson process, let y be the expected number of nodes with
degree 3 (two children),

y = (y)t1 + (1 + 2y)t2 ⇒ y = t2/(t0 − t2).

63



a b

Type 1

ca

b

Type 2

b

ca

Type 1

ca

b

Start

Type 2

b

ca

Type 1

b

ca

Type 0

b

ca

Type 0

ca

b

Figure 5.5: Production rules for the context free grammar. The vari-
ables a, b and c correspond to locations in the plane. The three vari-
ables are selected in a production from the start symbol, but only c is
selected in a production from an edge.
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Now we compute the expected number of junction triangles in the whole
shape. The number of junction triangles equals the number of such
triangles in each subtree of the root plus one if the root itself is a
junction triangle,

E(j) = (y)t0 + (2y)t1 + (1 + 3y)t2.

Substituting for y we get,

E(j) =
2t2

t0 − t2
. (5.2)

Equations 5.1 and 5.2 give us intuition to the effect of using different
parameters. Also, these equations show that the three parameters t0,
t1 and t2 are uniquely defined by the expected number of triangles and
the expected number of junction triangles in a random shape. We can
compute the ti corresponding to any pair E(n) and E(j) such that
E(n) ≥ 2 and E(n) ≥ 2E(j) + 2. These requirements are necessary
for consistency, since our growth process always creates at least two
triangles and the number of triangles is always at least twice the number
of junction triangles plus two.

t0 = (2 + E(j))/E(n),
t1 = 1 − (2E(j) + 2)/E(n),
t2 = E(j)/E(n).

While the ti control the combinatorial structure of the random
shapes their geometry is highly dependent on the choice of shape for
each triangle. The triangle shapes are chosen according to distributions
that depend on the triangle type. As an example we can define,

si([X ]) ∝ e−ki def(Xi,X)2 ,

where Xi is an ideal triangle of type i and def(Xi, X) is the log-
anisotropy of the map taking Xi to X as defined in Chapter 3. The
constant ki controls how much the shapes are allowed to vary. For the
experiments in this chapter we chose both X0 and X2 to be equilateral
triangles and X1 to be isosceles, with a smaller side corresponding to
the polygon boundary edge. This choice for X1 generates shapes that
tend to have smooth boundaries. Figure 5.6 shows what happens when
we connect multiple triangles of type one with alternating or similar
orientations.

Figure 5.7 shows some random shapes generated by the random
process with E(n) = 20, E(j) = 1, and the choice for si([X ]) described

65



Figure 5.6: Connecting multiple neck triangles in alternating orien-
tations to form an elongated shape, and with the same orientation to
form a bend. If the neck triangles tend to be isosceles and thin than
the shape boundary tends to be smooth.

above. Note how the shapes have a nice decomposition into parts, and
each part has an elongated structure, with smooth boundaries almost
everywhere. These examples illustrate some of the gestalt principles
captured by our shape grammar. In the next section we will show how
the grammar can be used for low-level grouping and segmentation.

5.2 Sampling Shapes From Images

Now we describe how the prior on random shapes defined by the stochas-
tic grammar can be combined with a likelihood model to yield a poste-
rior p(T |I) over triangulated polygons in an image. We then show how
to sample from the posterior using a dynamic programming procedure.
These samples provide good hypothesis for the objects in a scene.

The shape grammar generates triangulated polygons rooted at a
particular triangle r where growth starts. Let Tr denote a rooted shape.
Recall that each triangle created during growth is an element of t×R

2×
R2 × R2, corresponding to a type and the location of the vertices. We
assume that the likelihood p(I|Tr) factors into a product of terms, one
for each triangle and it does not depend on the choice of the root,

p(I|T ) =
∏

(i,a,b,c)∈T

πi(a, b, c, I).

For example, we expect the image to have high gradient perpendicular
to the boundary of the objects in the scene. So we can use a function
similar to the data term defined in Chapter 3,

P (I|T ) ∝ exp
(

λ

∫
∂P

‖(∇I ◦ f)(s) × f ′(s)‖ ds

)
,

where ∂P is the boundary of the polygon defined by T , and f(s) is a
parametrization of the boundary by arclength. This function can be
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Figure 5.7: Random shapes generated by the stochastic grammar.
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a

b

Figure 5.8: A partial shape generated from the edge (a, b).

written as a product of terms corresponding to the triangles in T . In
this case each term takes into account the piece of the polygon boundary
that belongs to a particular triangle.

Using Bayes’ law we can write the posterior distribution for rooted
shapes given an observed image as,

p(Tr|I) ∝ p(Tr)p(I|T ).

There are two approximations we need to make to be able to sam-
ple from the posterior distribution efficiently. We consider only shapes
where the depth of the dual graph is bounded by a constant d (the
depth of a rooted graph is the maximum distance from a leaf to the
root). This should not be a problem since shapes with too many tri-
angles have low prior probability. Moreover, the running time of our
sampling algorithm is linear in d, so we can let this constant be rela-
tively large. We also only consider shapes where the location of each
vertex is constrained to lie on a grid G, as opposed to an arbitrary
location in the plane.

To sample from the posterior we first pick a root triangle, then pick
the triangles connected to the root and so on. The root should be
selected according to its the marginal distribution,

p(r|I) =
∑
Tr

p(Tr|I). (5.3)

Note that the sum is over all shapes rooted at r, and with the depth
of the dual graph bounded by d. Computing this marginal is possi-
ble because the triangles in a shape are connected together in a tree
structure.

Let T(a,b) denote a partial shape generated from an edge (a, b) as
illustrated in Figure 5.8. We denote the probability that the grammar
would generate T(a,b) starting from the edge (a, b) by p(T(a,b)). The
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posterior probability of T(a,b) given an image is given by,

p(T(a,b)|I) ∝ p(T(a,b))
∏

(i,a,b,c)∈T(a,b)

πi(a, b, c, I).

We define the following quantities in analogy to the forward and back-
ward weights of a Hidden Markov Model (see [32]),

Vj(a, b) =
∑

T(a,b)

p(T(a,b)|I),

where the sum is taken over all partial shapes with depth at most j.
Here we measure depth by imagining the root to be a triangle that
would be immediately before the edge (a, b). The quantities Vj(a, b)
can be computed recursively using a dynamic programming procedure,

V0(a, b) = 0,

Vj(a, b) = t0
∑

c

s0([b, c, a])π0(b, c, a, I) +

(t1/2)
∑

c

s1([b, c, a])π1(b, c, a, I)Vj−1(a, c) +

(t1/2)
∑

c

s1([c, a, b])π1(c, a, b, I)Vj−1(c, b) +

t2
∑

c

s2([b, c, a])π2(b, c, a, I)Vj−1(a, c)Vi−1(c, b).

Now, depending on the type of the root triangle we can rewrite the
marginal distribution in equation 5.3 as,

p((0, a, b, c)|I) ∝ t0 s0([a, b, c])Vd(a, c),
p((1, a, b, c)|I) ∝ t1 s1([a, b, c])Vd(a, c)Vd(c, b),
p((2, a, b, c)|I) ∝ t2 s2([a, b, c])Vd(a, c)Vd(c, b)Vd(b, a).

The equations above provide a way to sample the root triangle from
its marginal distribution. The running time necessary for computing
all the Vj(a, b) and the marginal distribution for the root triangle is
O(d|G|3). Once we compute these quantities we can obtain multiple
samples for the root very fast (its just a discrete distribution). After
choosing r = (i, a, b, c) we need to sample the triangles connected to
the root. We then sample the triangles that are at distance two from
the root, and so on. When sampling a triangle at distance j from
the root, we have an edge (a, b) that is growing. We need to sample
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the location c of another vertex and a triangle type according to the
following distribution:

p((0, b, c, a)|I, (a, b)) ∝ t0 s0([b, c, a]),
p((1, b, c, a)|I, (a, b)) ∝ (t1/2) s1([b, c, a])Vd−j(a, c),
p((1, c, a, b)|I, (a, b)) ∝ (t1/2) s1([c, a, b])Vd−j(c, b),
p((2, b, c, a)|I, (a, b)) ∝ t1 s1([b, c, a])Vj(a, c)Vd−j(c, b).

In each case we simply compute the discrete distribution and then
sample from it. Note that for a triangle at depth d the only choices
with non-zero probability will have type zero, as V0(a, b) = 0.

5.3 Experimental Results

For the experiments in this section we used a grid of 40 × 40 locations
for the vertices of the shapes. We used the likelihood model defined in
the last section, and the same grammar parameters used to generate
the random shapes in Figure 5.7.

Figure 5.9 shows some of the random samples generated from a
synthetic image with one object. Most of the samples correspond to a
good interpretation of the scene. Note how we obtain multiple similar
samples, they just correspond to different representations of the object
in terms of triangulated polygons. In Figure 5.10 we show random
samples from another synthetic image. In this case the samples are
split between the two objects in the image. Again, the samples give a
good interpretation of this scene.

Figures 5.11 and 5.12 illustrate samples obtained from real pictures.
For the mushroom image, we obtained different samples corresponding
to competing interpretations of the scene. In one case the whole mush-
room is considered an object, with in another case the stem comes out
on its own.
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Figure 5.9: Some of the random shapes from an image with one object.
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Figure 5.10: Some of the random shapes from an image with two
objects. Both objects are found among the hypothesis generated.
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Figure 5.11: Samples from an image of a bird.
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Figure 5.12: Samples from an image of a mushroom.
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Chapter 6

Conclusion

In this thesis we have described how triangulated polygons can be used
to represent planar shapes. This representation is closely related to the
medial axis transform and provides a natural decomposition of arbi-
trary planar shapes into simple parts. The triangles that decompose
a polygon without holes are connected together in a tree structure,
and this has important computational consequences. For example, we
have shown how triangulated polygon models can be used to repre-
sent and detect non-rigid objects in images. Our detection algorithm
efficiently computes a global optimal solution to the deformable tem-
plate matching problem and has a wide range of applications. We have
also considered the problem of learning accurate non-rigid shape mod-
els for a class of objects. Our learning method computes good models
while constraining them to be in the form required by the detection
algorithm. Finally, we described a stochastic grammar that generates
arbitrary triangulated polygons. The grammar captures many of the
Gestalt principles of shape regularity and can be used as a prior model
to detect objects in images.

6.1 Future Work

One important question is whether the techniques described in this
thesis can be extended to three dimensions. This would be useful for
medical image analysis, where we would like to detect structures in
volumetric images. Unfortunately, obvious ways to extend the trian-
gulated polygon models will not work. For example, we could consider
decompositions of three dimensional objects into tetrahedra. But even
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for objects without holes the tetrahedra will not necessarily be con-
nected together in a tree structure.

Our matching procedure allows the triangles in a model to deform,
but keeps the structure of the model fixed. It would be interesting to
allow the model structure to change. This is important if we want to
compute matchings between objects that have a different number of
vertices or different triangulations. We could use some of the ideas in
[34] to study how to move in the space of triangulated polygons.

The shape grammar described in the last chapter can be made more
specific by using higher level constructs. We could have non-terminal
symbols in the grammar that correspond to things like “elongated
branch”, “pinch point” and “bend”. These symbols would then produce
arrangements of triangles, constrained to follow a general structure but
not with fixed geometry. Using these higher level constructs we might
be able to build grammars that are tuned to generate particular classes
of objects.

We would like to explore how to perform recognition of triangulated
polygons. With the techniques from the last chapter we are able to gen-
erate hypotheses for the objects in a scene. It would be nice if we could
recognize the identities of the objects based on their representation as
triangulated polygons. For example, the number of triangles of each
type gives a coarse description for a triangulated polygon that may be
useful for recognition.
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