View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by DSpace@MIT

lab

@ MIT

massachusetts institute of technology — artificial intelligence laboratory

The Architect's Collaborator: Toward
Intelligent Tools for Conceptual
Design

Kimberle Koile

Al Technical Report 2001-001 January 2001

© 2001 massachusetts institute of technology, cambridge, ma 02139 usa — www.ai.mit.edu

https://core.ac.uk/display/4384119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TheArchitect’s Collaborator:
Toward Intelligent Tools for Conceptual Design

by
Kimberle Koile

Submitted to the Department of Electrical Engineering
and Computer Science in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTSINSTITUTE OF TECHNOLOGY
February 2001

© Massachusetts Institute of Technology, 2001. All Rights Reserved.

TheArchitect’s Collaborator:
Toward Intelligent Toolsfor Conceptual Design

by
Kimberle Koile

Submitted to the Department of Electrical Engineering and
Computer Science on February 5, 2001, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Abstract

In early stages of architectural design, as in other design domains, the language used is
often very abstract. In architectural design, for example, architects and their clients use
experiential terms such as “private” or “open” to describe spaces. If we are to build
programs that can help designers during this early-stage design, we must give those
programs the capability to deal with concepts on the level of such abstractions. The work
reported in this thesis sought to do that, focusing on two key questions. How are abstract
terms such as “private” and “open” translated into physical form? How might one build a
tool to assist designers with this process?

The Architect’s Collaborator (TAC) was built to explore these issues. It is a design assis-
tant that supports iterative design refinement, and that represents and reasons about how
experiential qualities are manifested in physical form. Given a starting design and a set of
design goals, TAC explores the space of possible designs in search of solutions that satisfy
the goals. It employs a strategy we've called dependency-directed redesign: it evaluates a
design with respect to a set of goals, then uses an explanation of the evaluation to guide
proposal and refinement of repair suggestions; it then carries out the repair suggestions to
create new designs.

A series of experiments was run to study TAC's behavior. Issues of control structure, goal
set size, goal order, and modification operator capabilities were explored. In addition,
TAC's use as a design assistant was studied in an experiment using a house in the process
of being redesigned. TAC's use as an analysis tool was studied in an experiment using
Frank Lloyd Wright's Prairie houses.

Thesis Supervisor: Randall Davis
Title: Professor

Acknowledgments

It's about adventure.
— Richard Feynman

Researching and writing this thesis has certainly been an adventure—in Al, in archi-
tecture, in remembering to eat and sleep. | am profoundly grateful to those who helped me
along the way.

My Committee:
Randy Davis, Aaron Fleisher, Howie Shrobe, Patrick Winston

Al:
Randy Davis, Howie Shrobe, Patrick Winston, John Aspinall, Tomas L ozano-Peréz

Architecture:

Aaron Fleisher, Richard Krauss, Duncan Kincaid, Mark Gross, Stephen Ervin, Bill
Mitchell, Bill Porter, Don Schon, The Architects Collaborative

Life

John and Michael Aspinall, Earl and Carmon Koile, Kristen Wells, Stephen Koile,
Scott McKay and Laura Need, Andee Rubin and Liz Bradley, Annie LaCourt and
Mark Burstein, Una-May O’Rellly, Lisa Tucker-Kellogg, Sue Felshin, Larry Hunter,
Noel Chiappa, Susan Wilson

Table of Contents

4 o [Tt o o SRR 13
I 1N o o] = o ST 13
2 O 01 s o) 1T (o] TR 15
L3 AN EXAIMPIE. ..ottt 16
IR Vo 1AV (oo OSSP 25
1.5GUIdEtO ThISDOCUMENLoiuiiieeiiiieerteeie sttt sb et se e sre e e sneeeas 29

N o] o] €0 7= o o OSSP PRSP 31
2.1 THE DESION PrOCESS......ctiieectecie ettt ettt ettt e sttt e et e s e s seeeeeneesteennesneenneenneeneeneen 31
2.2 A DESIGN ASSISEANTeeiieieeiteeieeiee sttt sttt sttt et et esseesbe et e e beesbe et e sreenae et e eneees 32
2.3 TAC aSDESIGN ASSISIANT.....ccueeuieieieieriesie et 32

2.3.1 Dependency-Directed REAESIQNccoveiiiieiiiie e 33
P I 1 01 1 T0 = 0o TSR 35

3 Defining aDesign Problem ... 39
3.1 REPIESENtING DESIONS.....eeieieieicie ettt e b e te e e sreeaeeneesreenneenee e 39
3.2 Representing DESIGN GOalS........ooeiiiriieiieseeie ettt 44

3.2.1 DeSigN CharaCteriSliCS.......couruireriirieriesierieie ettt sr e sne e 44
3. 2.2 TAC-FUNCLONSoouiiiiiiieieieie ettt sttt sa et sbesbenne s 50
3.3 Design Problem EXamPIe........o.o e 51

4 Evaluating DeSIgN GOaIS......cccieriiiiieieresie sttt 53
Tz 1 01 o] =SS 53
T o= g = 1 o RS 57

5 SUQQESLING REPAITS ..ottt bbb e bbb e b nae s 61
5.1 TYPES Of SUGQESLIONSeeveeeieie et ettt ettt st e s e beetesseesneeneeneesreenneenne e 61
5.2 Representing and Using Repair KNOWIAGEcoveivrieiiirieieee e 63

5.2.1 FIXErSanNd SEENS......cceeiieieeiecie ettt ae e nre s e 64
5.2.2 Increasers, Decreasers, and INfIUBNCES..........ovvviieninenenenee e 67
5.3 COMPOUNT SUJGESLIONS......cuveeierieerieeiieeesieeeesieeseeeseesseesteseesseessessesseessesneesseessesnesssesnees 71
5.4 More Examples of SUGQEStiNg REPAITS........ccvreririiereresese s 71

6 PerformMiNg REPAITS....ccoi ittt e b e et e b e te e e e saeenneenneeneenns 85

A O] 1 o] IS U (o (U = R TRR 91
8 RO Y= /T S 91
7.2 Goal Interaction: Conflict and SYNEIQYcccoeeeeiiereeiie e 92
7.3 THe CONLIrOl SLIUCLUIESocviiieiieesiee ettt sttt s ae e sneeeas 96

7.3.1 Sequential-with-LOOKANEA...........cceiiriiiriirecee e 96
7.3.2 SEOUENLIAL ..ottt e b b re e 119
7.3.3 CONCUITENL ...ttt ettt st et s be e e e e e be e s e e e sbe e esneesseesareeaneesnseenneesnneans 128
A o= O L= OSSPSR 143
AL 100107 (o] o SRR 147
7.5.1 ldentifying EQUIVAIENT DESIGNScceeiueeiiiierieeie et 147
7.5.2 Limiting ITEratiON.........oiiiiiieieieiesie e 149
SIS T 0107 PSR RR 151
7.7 EXPEITMENES. ...ttt et st e et e st e tesaee st e seeeneesseenbeeneesseenseenseaseenseeneesseensennsans 153

8 EXE CISES TN AT CNITECIUN ... 169

8.1 Design: Chatham HOUSE.........ccecouiiieiecie ettt st n e s e enna s 169
8.2 ANAYSIS: Praifi@ HOUSEScoiuiiiiiiieieeie sttt sttt sttt e e e sne e 204

S = 1o VYo PSSR 211
9.1 Reasoning MethOdOIOQIES.........cccueiieiieieceerie ettt e e ne s 211

S N0 I R . =110 o PSP 211

0.1.2 Case AGPLALION.......ccereeeeieriesie ettt 214

9.1.3 Performance-based ReEfINEMENLt...........coceeiiiinenese e 216

9.2 Experiential KNOWIEAJE.coiiiiiiieieeesee ettt s 217
0 I 0 o 11 o 221
LO.1 FULUFE WOKK ...ttt sttt st sbenne s 221
F0.2 SUMIMEIY ...t ettt ettt et e s e e e te e s e e e se e saeeebeeeaseeseesaeeabeeemseeaseesaneeaneesnneenseesnneans 223
S = 1= 0SSR 225
O = 1] o] T =" VS 225
R.2 HTUSLrationN CreOITSveeeeieeieeiesiee ettt sttt ee e 230
F Y o] o1 8o [oS F TSP 231
A Diagram CONVENLIONS........cceeiuiiieiieiteeeeseesieseesteesteseesseesseseesseessesseesseeseaseesseensesseesseassens 231
B KNOWIEAGE BASE......coeiiiiiiiee ettt sttt sttt st sttt 233
C LANQUAGE TEIMS.....ctiiieiieeiieete sttt sttt e s sb e s se e b e eseesaeesne e s e s neennesnnesneenneennens 241
D Alternate Territory MOGEISc.ocuiiieieee ettt nre e 243
E EXPlanation EXAMPIES.........ooeiiiiiiieieee ettt 245
F Modifying Edge and Territory MOGES..........oooiiiiiiniieeeee e 251
G Details of ArChiteCtUre EXEITISEScuveuieieiisiesiestesiee ettt 253

List of Figures

00 A 1 =S o o S 13
1.2 Studio at Taliesin West, by Frank LIoyd Wright...........ccccoiieiiiiicieseeeceeeee e 14
IR T N V71 o I 0 1 o PSR 14
1.4 Living room in the Hanna house, by Frank LIoyd Wrightcccooeviiiniinenenencncne 15
1.5 Design example: first floor, second floor, section through stair.cccoceeeeveieiievieenee 17
1.6 TAC computes and displays the regions created by the physical form..............ccccoeeeeee. 18
1.7 Theshaded areaisvisible from the Living region; * representsaviewpoint 18
1.8 Shaded areaisvisible from the front door; * represents aviewpoint at front door........... 19
1.9 Verifying that a screen (in lower design) decreases visual OpeNNESS..........ccceeeveeereennenne 20
1.10 Two new designs: each has stair rotated to increase visual Openness...........ccocevvrereeeneee. 21
1.11 Visible areas and visual openness measures for deSign #2.ccceeveeveveeceeceseeseeen 22
1.12 Visible areas and visual openness measures for front door in design #2.ccccceveenee. 22
1.13 Comparison of stair access path lengths and changesin direction...........ccccocevevvrerennene 23
1.14 Rejected new designs with the stair on an exterior edge.ccccvvveveeveveececce e, 24
3.1 Partial design element model (left) and derived edge model (right).cccoeveeieniiieennene 40
3.2 TAC'sinputisintheform of adesign element model and an edge model. 41
3.3 Mrs. Thomas Gale house, Oak Park, 111inois (1904, 1909)cccceceieereeieeseeie e 42
3.4 Modelsfor the Mrs. Thomas Gal@ NOUSE.ccooeriiiiiniiiisie e 43
3.5 Shaded region of Gale Living territory isvisible from Dining territory;c.ccoeeveereenens 45
3.6 Living territory of Gale house and view to Dining territory.ccccvveevveveceesecie e 46
3.7 Pathfor calculating change in direction from Gale Front door to Living territory........... 47
3.8 Dependency links for example design CharaCteristiCs.ooovvevvrereneeieeiesese e 50
4.1 Hoorplan and territory model for Tomek house main (second) floor.cccceeveviennee. 53
4.2 Shaded region of Living territory isvisible from Dining territory...........ccooeeveeneeneneenne. 54
4.3 Living territory of Tomek house; view to Dining territory.c.ccooeveveieneneneseseseeens 55
4.4 Hoorplan showing Gale doors used for per cei ved- nai n- ent ryness comparison......... 55
4.5 Path from usual approach point (0) to Gale Front dOor...........cccceveeieneenerieneeseee e 56
4.6 Explanationfor (visually-open Living from Dini NQ) . .comeemrmeeneeeeneenes 57
4.7 Explanation for physi cal -accessi bi | ity EXPreSSION.cccceeerueeieeieerieeieeseereeeeesreenes 59
5.1 Territory model for Tomek house main (second) flOOr.ccceveriiieniinii s 62
5.2 “Punctured” fireplace in the Robie house, designed by Frank Lloyd Wright. 63
5.3 Searching for fixersin the explanation...............ccccveieieereeie e 65
5.4 Explanationfor (visually-open Living from DiniNg) . .ioieiieenieesieeeseeenns 68
5.5 Floorplan and territory model for Horner house main (first) floor..........cccocevvviienincnnens 72
5.6 Part of explanation for (on-interior-edge fireplace LiVing). ... 74
5.7 How sone-fi xer proposes moving the fireplace or adding anew fireplace. 75
5.8 Two new Horner designs with afireplace on an interior edge..........ccocvvevereninenenennns 76
5.9 The Chatham house and approach paths to exterior doors............ccocvveereeceveesecie e 77
5.10 Directions of influence for per cei ved- mai n- ent ryness.....ccccceeveeviieeieesceesee e 78
5.11 New Chatham designs with Front door having more perceived-main-entryness.............. 81
6.1 Tomek territory models: with fireplace and WithOUL.c.ccooeverieieeie e 86
6.2 Territory model for Chatham house, first floor.ccooeeiiiiiiiii e 87
6.3 New Chatham design with Stair rotated.ccceeereeieieierere e 87

6.4 Boundsfor Living and DiNiNG tEITItONES.ccueireerieieresiesiesie et 88

6.5 Rotating astair without removing projected edges.ccovvveveeciiiesiece e 89
7.1 Sequentia control structure; lookahead is used to propose suggestionsin step 1. 97
7.2 Suggestion proposal using l00KaNEaM...........c.overirieieiee e 98
7.3 Lookahead resultsfor vi sual | y- open and firepl ace- count goaS.c.cccevveverrenne. 101
7.4 Tomek#1 and region of Living territory visible from Dining territory.cccooeevveennee. 102
7.5 Lookahead resultsfor vi sual | y-open and vi si bl e-center goals.ccocevererereenne. 104
7.6 New designsfor Tomek vi sual | y- open and vi si bl e-cent er goals.ccccceeveruennen. 104
7.7 Floorplan and territory model for Horner house main (first) floor..........ccccoceneeivnenee. 105
7.8 Fivedesignswith fireplace moved to interior edge, one with new fireplace added........ 107
7.9 Horner#l: one of the designsto berepaired.cccoveeeiieiece s 108
7.10 Lookahead resultsfor vi sual | y- open andfi repl ace-on-interi or-edgegodls......110
7.11 Repair of Horner#1 resultsin four new designs which are solutions. ..o 111
7.12 Horner#1#3, with fireplace moved to interior edge and punctured.............cccoceveeveeneenee. 112
7.13 Horner#6: anew fireplace has been added to HOrNer.ccoooeveeiiniiicneneeeeee 112
7.14 Territory model FOr HOMNEIHL.ouoiiirereseseeieeee et 114
7.15 Lookahead resultsfor firepl ace- on-exteri or-edge goal.ccceveevveceveeseeceeseenn. 116
7.16 TAC checksfor conflict between suggestions for current goal and other goals. 117
7.17 New designs with fireplace on exterior €4ge..........cccovererirerenenereeeee s 117
7.18 Sequential CONIOl SITUCLUIE.ooeeiieeie et ns 120
7.19 Suggestion proposal for the sequential control StrUCLUre.ooceevieeeieeneniereee e 121
7.20 Designsto be repaired so that vi sual | y- open goal iSsatisfied.ccocevevireienenienne. 124
7.21 Design to be repaired to have one fireplace.ccocveeeieevece s 126
7.22 Concurrent CONLIOl SIIUCKUIE..........oiueiiiee ettt eas 129
7.23 Concurrent-l00KaNEAAcoiviiiiiere e es 130
7.24 Pruning of suggestions for vi sual | y- open and vi si bl e-cent er goals.........cccceeueee.. 135
7.25 Territory model FOr HOMEIL.cc.ooiiieiieieeesee e 137
7.26 Territory model fOr HOMNEIHL.ceoiiiiiieieseneeee et 143
7.27 Same designs generated via different modification Steps..........ccevveeevieveciececce e, 147
7.28 Comparison of solutions with stair punctured in slightly different locations.................. 148
7.29 Two designs stopped at iteration limit with sequential control structure. 150
7.30 Territory model FOr HOMMENooieece e 153
7.31 Four solutions for the control structures with optimal goal order.cccceeeeveriereenee. 157
7.32 Five extra solutions found for sequential-with-lookahead and concurrent control structures

With NONOPLIMal QOal OFAEN.........cceeeieeee e 159
7.33 Comparison of two solutions for sequential control structure............cccoceeevveieeieneenne. 160
7.34 Extranew solutions for sequential control structure with nonoptimal goal order........... 161
7.35 Two extra solutions for control structures with move operator.cccceeeveveecesneenee. 163
7.36 Examples of extra solutions for concurrent with move Operator............ccoceeeeereeinseene. 164
7.37 Examples of extra solutions for sequential with move operator.cccocevevenerenienne. 165
7.38 Nonminimal solution avoided by sequential with lookbehind.cccoeveiienneeee. 167
8.1 The Chatham NOUSE.cccooiiiie et 169
8.2 The Chatham house first floor and approach paths to exterior doors...........c.ccoevreruenee 170
8.3 View from front door into [IVING FOOM..........ccveieiieiece e 171
8.4 View from living room to diniNG FOOM.ccciiiiiierierie e ee e 171
8.5 Teritory model and approach paths for Chatham............cccocviiiiiiiice 174

8.6 Designs TAC proposes with front door as perceived main entry.........ccoceeceeeesieereeenne. 175

8.7 Designs TAC proposes with side door as perceived main entry.ccccceeeeeveeceerieennene 176
8.8 Two designs: perceived main entry isfront door (Ieft) or side door (right).................... 177
8.9 Chatham#2 visual openness and accessibility of Living from front door. 177
8.10 Decreasing visual openness by replacing open edges withwalls...........cccccoveveieevieenee. 179
8.11 Decreasing visua openness by replacing open edges with screens.ccceccveeerienneene 180
8.12 Designswith visual openness repaired to belessthan 0.8. ..., 181
8.13 Design derived from #1, path change in direction has been repaired.............c..ccoce.e... 182
8.14 New designs for Chatham#2#2 after repairing for visual openness > 0.3..........cccceeeee. 184
8.15 New designs for Chatham#2#3 after repairing for visual openness> 0.3............ccceeee. 185
8.16 Starting design (#2), solutions for Living visual openness and path from front door. ... 186
8.17 Starting design with side door as perceived main entry.c.ccocererieneenesinsee e 187
8.18 Chatham#10 visual openness and accessibility of Living from sidedoor. 188
8.19 New designs with visual openness increased between Living and side door.................. 189
8.20 Another design with visual openness increased between Living and side door.............. 190
8.21 New designs left after pruning those whose intended goal was not met............c............ 190
8.22 Decreasing change in direction between Living territory and side door......................... 191
8.23 Starting design (top), solutions for Living visual openness and path from side door. 192
8.24 Visua openness of Dining territory from Living territory; valueis 0.42.............cco.e...... 193
8.25 Designsthat increase visua openness of Dining from Living.cccceccvveveececeesiecnene, 194
8.26 More designs that increase visual openness of Dining from Living.cccccecevveeiiennenne 195
8.27 Screenifying the stair: awall has been replaced with a screen in the Chatham house. ... 196
8.28 Use space model for Chatham#10#1#4. territories carry indication of intended use...... 196
8.29 New designs with kitchen activity adjacent to dining actiVity.ccccceeererinneenenenne 197
8.30 Architects design (top) and two Of TAC SAESINS.cceveereeeirrierie e 200
8.31 Architects' aternate design (top) and two of TAC' SAeSIgNS.ccovveveevverieecieceerieeen 201
8.32 Prairie and Transition House data sets; * indicates main living Space.c.ccceceeveeenene. 206
8.33 Non-Prairie House data set; * indicates main [iving SPace.c.ccoceeeeeereeneriesesiesennenn 207
8.34 Experimental results for Prairie, Non-Prairie, and Transition houses.ccccceevveneee. 208
Nt R o To o) = o = V1Y oo RSP URR 231
A.2 Model for floorplan ShOWN iN FIQUIE A.L.......cceiieiiieieiere e 232
D.1 Territory model for Tomek house first flOor.cccceveeviiie i, 243
D.2 Alternate territory model for Tomek house first floor.ccooeeieeiineninieceeeeee 243
E.1 Three explanalion tEMPIELES.ccoiireiiririeieee et 246
F.1 Portion of territory model for Chatham.cccoveeiieii i 251
F.2 Portion of edge model for Chatham. ... 251
F.3 Remove stair' SProjeCtet UQES.oov ittt 251
F.4 Carry out modifiCation: rotate SLaIl.cceeeeeieeieeie e e 252
F.5 Add projected edgesfor stair and WallS...........ccceeveriiiiiiniineseeeeee e 252
F.6 Identify new territories by finding closed polygonsin edge modelccocoenineneee 252
G.1 Designs TAC proposes with front door as perceived main entry..........cccceevececeesveennene. 254
G.2 Designs TAC proposes with front door or side door as perceived main entry................ 255
G.3 Designswith side door as perceived main entry, CONt' d.c.ccevveeveeeereereseeneese e 256

10

List of Tables

7.1 Comparing CONtrol StrUCIUrE fEAIUIMNES.eiirerieieeere s s 151
7.2 Summary oOf eXperiment PAramMELEN'S.cccccveveereeeeseerre e steere e sre e s e e e sreesre e oen 155
7.3 Results of experiments with optimal goal Order...........cooeeverenienene e 156
7.4 Results of experiments with nonoptimal goal Order............ccoevvreninineninieesesese e e 158
7.5 Results of adding move to exterior edge as means of increasing visual openness; optimal goal

(0] [SRS 162
7.6 Results of adding move to exterior edge as means of increasing visual openness; nonoptimal

(00 o (0 = S 163
7.7 Results of experiments with lookbehind and nonoptimal goal order...........ccoevveevennn oo 166

11

12

Chapter 1

| ntroduction

TheArchitect’s Collaborator (TAC) is a prototype design support system for early stages of archi-
tectural design. It supports iterative design refinement, representing and reasoning about how
experiential qualities are manifested in physical form. It assists adesigner in specifying goals and
in exploring the space of possible designs. It evaluates design goals, proposes and refines repair
suggestions for unsatisfied goals, and carries out those suggestions to create new designs.

The Architect’s Collaborator was built in order to answer two questions:

» How are experiential qualities translated into physical form?

* How might atool assist designers with this process?

Before discussing TAC's answers, it's important to know what we mean by experiential quali-
ties and by their being manifested in physical form.

1.1 The Problem

By experiential qualities we mean qualities such as openness or privacy, concepts that architects
and their clients use when describing buildings and spaces. By physical form we mean the design
elements—walls, windows, doors—that create buildings and spaces. Experiential qualities and
physical form are intimately related: The form that creates a space shapes the way in which we
experience that space. This shaping of experience is what we mean by experientia qualities being
manifested in physical form. Here are some examples.

Imagine sitting at one of the desks shown in Figure 1.1.

Figure 1.1: Classroom.
13

Now imagine sitting at one of the desks shown in Figure 1.2, and ask yourself why your expe-
rience would be so different.

Figure 1.2: Studio at Taliesin West, by Frank LIoyd Wright

You'll invariably think about the height of the ceiling, the light from above, the natural wood.
All these aspects shape your experience, and not accidentally. Frank Lloyd Wright intended and
expected for you to be profoundly influenced by this environment.

Looking at another example, imagine how it would feel to sit in the living room shown below.

Figure 1.3: Living room.
14

Now imagine sitting in the living room shown in Figure 1.4. Why does this living room feel
different?

Figure 1.4: Living room in the Hanna house, by Frank Lloyd Wright

Two living rooms; two very different uses of materials, light, arrangements of walls and
windows; and two very different experiences.

As these two examples have illustrated, experiential qualities of a space are manifested in the
physical form that creates that space. What's more, those experiential qualities are paramount in

architectural design. As Frank Lloyd Wright said of another of his buildings:t

...the reality of the building did not consist in the walls and in the roof, but in
the space within to be lived in.

1.2 Our Solution

In the course of building The Architect’s Collaborator we discovered how experiential qualities
could be tranglated into physical form, and how atool could assist designers with this process.

» How are experientia qualities translated into physical form?

TAC's languages and representations formalize abstract concepts such as openness and
privacy, and relate those concepts to arrangements of physical form.

* How might atool assist designers with this process?

TAC enables designers to specify design goals and explore the space of possible designs satis-
fying those goals. TAC employs what we've called dependency-directed redesign: it evaluates

1. Unity Templein Oak Park, Illinois.
15

design goals, proposes and refines repair suggestions, and creates new designs by carrying out
those suggestions. By means of dependency-directed redesign, TAC is able to deal with issues of
a very large search space, noninvertible evaluation functions, complex interactions between
design modification operators, and multiple conflicting goals.

1.3An Example
We envision The Architect’s Collaborator being used in the following fashion.

Imagine that you're sketching a design, pen in hand. You tell the computer near
you that the design is for a client who wants a house with main living spaces that
feel open to one another, but private with respect to the front door. You have ideas
about physical forms that manifest feelings of privacy and others that manifest
feelings of openness, and you're translating those ideas into lines and annotations
on apage. You stop to assess your latest sketch and ask the computer for its com-
ments. It shows you regions defined by your proposed physical forms. It shows
you what is visible from each region and from the front door. You notice that a
large portion of the living room is visible from the front door, so you add a screen;
the computer shows you what is now visible with a screen in place. You also notice
that the stair blocks the view of the dining room from the living room. You ask the
computer to increase the visual openness of the dining room without sacrificing
privacy with respect to the front door or ease of accessto the stairs. It suggests two
other locations for the stair, showing you how the visual openness, privacy, and
access are affected by each location. It shows you several other possible stair loca-
tions, but points out that in these cases, while visual openness increases, privacy of
the dining room decreases, and the stair is not as easily accessed. You like one of
the first two proposed locations, accept it, and continue sketching and consulting
with your computer.

As shown in the following example, The Architect’s Collaborator is able to perform all the
steps in the above scenario, apart from operating on a sketched design. It:

1. displays regions defined by the physical form

2. computes and displays visual openness measurements for all regions

3. computes and displays visual openness measurements for the living region from the front
door, with and without a screen®

4. proposes repair suggestions for increasing visual openness between dining and living
5. creates new designs by carrying out repair suggestions

6. evaluates all goalsto check for solutions

7. displays rejected designs

2. By “screen” we mean a perforated structure such as a stair railing or a bookcase without a back. An example of a
screen is shown in Figure 8.27.

16

Consider the design below.

‘.. - _____f - = _————=. = :I'I.:
'| i3 E
! Playroom . Kitchen 1, _F
| Veranda i
gy y
it
Feas Thi
| 1

i Lol

3 Living Dining Porch:iI

| —-E T s i ol A e A R il .-

Bedroom

Mast er
Bedroom

Figure 1.5: Design example: first floor, second floor, section through stai r3

3. Drawings courtesy of Duncan Kincaid and Daniel Gorini. See Appendix A for a description of diagram conventions
used throughout this document.

17

1. Displaying regions
We consider thefirst floor of this design. The designer asks TAC to display the regions defined

by the physical form,* then he supplies region names based on intended use.

Playroom Bath Kitc hen

il e E—————Npee— D

———————— - - - -]

l_._._._.]]

Figure 1.6: TAC computes and displays the regions created by the physical form.

2. Computing and displaying visual openness measurements

The designer is interested in visibility issues and asks TAC to display what is visible from
each region and from the front door. TAC responds by computing and displaying visual openness
measures, which represent the portion of an area that is visible from a particular location. The
portion of the design visible from the Living region is shown below.

[———-—

|
|
S

-

C——

Visual openness from center of Living: .28
Visual openness of Dining from Living: .18

Figure 1.7: The shaded areais visible from the Living region; * represents a viewpoint
at the center of the region. The first visual openness measure represents the portion of all

regions visible from the viewpoint; the second measure represents the portion of the Dining
region visible from the viewpoint.

4. A note about TAC's use of 2D floorplans: TAC is interesting because of its design capabilities, not its visualization
capabilities. More sophisticated visualization capabilities (e.g. 3D, virtual reality) are possible, but are outside the scope
of this research.

18

The figure below shows the area visible from the front door and gives the visual openness
measurements that represent the portion of Living and Dining regions visible from the front door.

[———-

L F |

IO
Visual openness from Front-door: .35

Visual openness of Dining from Front—-door: .13
Visual openness of Living from Front-door: .75

Figure 1.8: Shaded areais visible from the front door; * represents a viewpoint at front door.

3. Computing and displaying visual openness measurements for Living from front door with
and without an added screen

The designer notices that alarge portion of the Living region is visible from the front door and
asks TAC to add a screen between the Entry and Living regions and then to calculate the visual
openness of the Living region from the front door for the new design. TAC verifies that the visual
openness decreases. (Alternatively, the designer could ask TAC to decrease the visual openness
between the Living and Entry territories, and TAC would suggest adding the screen.) The original
design and the new design, along with their visual openness measurements, are shown in Figure
1.9.

19

[———-—

r——-
|

L
. 1

Visual openness of Living from Front-door: .75

|
| I

]
|
|
|
L | I
3 — ===

| I

l

Visual openness of Living from Front-door: .27

Figure 1.9: Verifying that a screen (in lower design) decreases visual openness
of the Living region from front door; * represents viewpoint at front door.

4. Proposing repair suggestions for increasing visual openness of Dining from Living

The designer notices that a stair blocks much of the view of the Dining region from the Living
region. He asks TAC to suggest ways to make the Dining region visually open from the Living
region, while keeping both regions relatively private with respect to the front door and keeping the
stair easily accessible. TAC trangdlates “relatively private” into a goal about visual openness with
respect to the front door, and it translates “ easily accessible” into a goal about length and change
in direction along the shortest path between the stair and the exterior doors (front door and back
door). TAC now has three goals: have more visua openness between the Dining and Living
regions; have no more than 40% of the Dining and Living regions visible from the front door (i.e.
have the visual openness values less than 0.40); have the path length and change in direction
between the stair and exterior doors less than or equal to current values. Only the first of these
goals, the visual openness between the Dining and Living regions, is not satisfied. To satisfy this

20

goal, TAC proposes rotating the stair 90 degrees or 270 degrees, or moving the stair to any of six
exterior edges.

5. Creating new designs

TAC carries out its suggestions, creating two new designs with the stair rotated and six new
designs with the stair on an exterior edge. The two designs with rotated stair are shown below.
(The other new designs are discussed in step 7.)

[———-

|
|
|

| S—
K1
ROTATE-ELT
Stair 96.8

| I

#2
ROTATE-ELT
Stair 278.8

Figure 1.10: Two new designs: each has stair rotated to increase visual openness
of Dining from Living.

Checking the visual openness of the Dining region in the new designs, TAC finds that more of
the Dining region is now visible from the Living region so turning the stair had the intended
effect. Figure 1.11 shows the visual openness measurements for one of the new designs, design
#2, which is shown at the bottom of Figure 1.10.

21

1

1 * - 1

e —

Visual openness from center of Living: .42
Visual openness of Dining from Living: .55

Figure 1.11: Visible areas and visual openness measures for design #2.

6. Evaluating all goals

The visual openness goal is satisfied for both new designs, so TAC checks that the other two
goals, which were previoudly satisfied, are still satisfied in the designs.

Figure 1.12 shows one of the results of checking the second goal, which specifies that the
visua openness of the Living and Dining region from the front door be less than 0.40. The portion
of the Living region that is visible has not changed, so it is still acceptable. A larger portion of the
Dining region is visible, but it is acceptable because it is less than the specified threshold. Thus,
the second goal is still satisfied.

| I

Visual openness from Front-door: .32
Visual openness of Dining from Front—-door: .34
Visual openness of Living from Front-door: .27

Figure 1.12: Visible areas and visual openness measures for front door in design #2.

22

Figure 1.13 shows one of the results of checking the third goal, which specifies that the stair
be as“easily accessible” asin the starting design, i.e. that the values for path length and change of
direction of the paths from the exterior doors be no larger than original values. In both new
designs, the values have decreased.

Path from Front door to Stair: 25.3 ft, 162.8 degrees,
Path from Back door to Stair: 19.4 ft, 137.1 degrees,

[———-—

- -—— —

|
==

Path from Front door to Stair: 25.8 ft, 88.5 degrees,
Path from Back door to Stair: 11.1 ft, 14,7 degrees,

Figure 1.13: Comparison of stair access path lengths and changes in direction
for starting design (top) and new design #2 (bottom).

All three goals—to increase visual openness between the Living and Dining regions to more
than the current values; to keep the visual openness of the Living and Dining regions with respect
to the front door less than 0.40 (i.e. so that less than 40% of each region is visible from the front
door), and to keep the path length or change in direction between the stair and exterior doors less
than or equal to original values—are satisfied for both new designs, so they are solutions.

23

7. Displaying rejected designs

The designer asks TAC to display new designs that were rejected. The designs, shown in Fig-
ure 1.14, have the stair moved to an exterior edge. The move increased the visual openness of the
Dining region from the Living region. TAC rejected these designs, however, because they do not
satisfy the other two criteria, namely to keep the Dining and Living regions relatively private with
respect to the front door (by keeping the visual openness values less than 0.40), and to keep the
stair easily accessible from the exterior doors (by keeping path length and changes in direction
less than or equal to original values). The rejected designs have more of the Dining region visible
from the front door, and have at least one stair access path that is either longer or has a larger
changein direction than in the starting design.

r= r—
| |
—- — | = — - p——
' '
l p— l pr—
| |
| |
- ! L L
B3 w4
HOVE-TO-EDGE HOVE-TO-EDGE
Statr Statr
(38,1 38,9)(37.9 38,9 (15,6 38,9)(26.4 36,9)
r— r—
| |
—- — | — = E— Ia—
' '
l pr— l pr—
| |
| |
L ! | E— !
#S (1]
HOVE-TO-EDGE HOVE-TO-EDGE
Statr Statr
$37.9 38,9)(38,1 30,9) (26,4 38,9)(15.6 30,9)
r— r—
| |
- T I = — I
' '
I pr— I p—
| |
e | ——
L L L !
#? [3]
HOVE-TO-EDGE HOVE-TO-EDGE
Statr Statr
(18,2 38,9(15.1 38,9 (58,1 38,9)(42.2 36,9

Figure 1.14: Rejected new designs with the stair on an exterior edge.®

5. When moving the stair in this example, TAC did not take into account other possible stair-related issues, e.g. accessto
the basement and second floor.

24

The above example gives a flavor of how TAC works. As will be shown in subsequent chap-
ters, TAC's languages and representations enable it to transate design goals stated in terms of
experiential qualities into operators on physical form. Its control structure, which employs what
we've called dependency-directed redesign, enables it to methodically and efficiently explore a
large design space in search of solutions satisfying multiple goals.

TAC is notable as an artificia intelligence tool because of its knowledge, languages, represen-
tations, and dependency-directed redesign mechanism. It is notable as an architecture tool because
it contributes to the clarification of terms used in architectural discourse, serves as arepository for
reusable design knowledge, functions as both a design brainstorming tool and an analysis tool,
and provides an example of how to distribute tasks between a designer and a computer assistant.

1.4 Motivation

TAC supports the early conceptual stage of design. Its domain is architecture, and its goal is to
facilitate the design of physical form that manifests desired experiential qualities. Why focus on
conceptual design? Why focus on architectural design and the relationship between physical form
and human experience? Why is this problem interesting from an artificial intelligence point of
view or from a designer’s point of view?

Why focus on atool for conceptual design?

Because there are very few tools for conceptual design.

In early stages of design, the language used is often very abstract. Architects and their clients
use experiential terms such as “private” and “open”. Engineers might talk about designing a piece
of equipment that is “easy to maintain”. Clothing designerstalk of “baggy” clothing.

In addition, the specification of a design problem evolves along with solutions to the problem.
Itisrarely possibleto specify apriori all design objectives and their relative priorities; some objec-
tives may become apparent only after proposing and evaluating potential solutions (e.g. see Law-
son, 1990; Akin, 1986; Schon, 1983). The designer simultaneously explores both the space of
design problems and the space of design solutions.

In later stages, a designer performs more routine tasks such as resizing design elements,
choosing particular design element types (e.g. kind of window) from a catalog, and positioning
design elementsin awell-understood portion of the design (e.g. placing refrigerator and stoveina
kitchen). Computer-aided design (CAD) tools are available for these tasks. Most are drawing tools
and are helpful in later stages, but require more precision than is available or appropriate for early

25

stages of design; they are awkward to use when a design problem is not yet well-defined. In addi-
tion, there is a danger that the precision required by these tools may cause an early drawing to be
perceived as a design solution.

Other computer-aided design tools are intended to be analysis tools, but are often awkward
and distracting to use. Current computer-aided design systems are inadequate as design tools, and
particularly as conceptual design tools.

Krauss (2000):

Presently, designers do not use computer-aided design systems in early stages of
design largely because the present generation of design programs handle only a
few, generally simple sets of variables and take too much effort to use for the value
gained. For example, acommon type of program is one that devel ops a space alo-
cation diagram, derived from a designated set of spaces and a matrix that indicates
the relative importance for proximity between each set of spaces. The list of
spaces usually has to be constructed specifically for the routine, and the develop-
ment of the matrix, which requires cramming a set of complex judgments into a
crude and laborious format, is a step extraneous to the real design process. Hence,
such programs are not in popular use.

Flemming(1994):

Frustrations generated by working with commercial CAD systems that appeared
simply too “dumb” to be of use in the most interesting phases of design provided a
motivation [for becoming interested in Al]. In an attempt to be applicable over the
broadest range of disciplines and applications, these systems restricted themselves
(and dtill do) to the support of the most external manifestations of design
processes, the preparation of drawings and geometric models, and to the purely
syntactic aspects of these representations. They did not support synthesis and inter-
pretation, processes that are highly exploratory in nature and demand fast response
and active participation from a computer system.

Why focus on architectural design and relating physical form to human experience?

Architectural design is well-suited to our research for several reasons. Most design problems
exhibit the difficulties outlined above—they are exploratory in nature; involve the use of abstract,
experiential terms; and require construction of both problem specification and solution. The
design problems generally involve many conflicting design goals—a good test for our system. In
addition, architectural theorists have written extensively about various aspects of the design pro-
cess, providing a good groundwork for computational studies.

Why focus on the relationship between physical form and human experience? Because it is

26

essential to architectural design and has not been addressed to date by computer-aided architec-
tural design tools. Architects design spaces that people inhabit, focusing on both the physical form
and how that form will affect the inhabitants. They and their clients describe spaces as private,
sunny, open, spacious, inviting, etc. Architects use their knowledge from past experiences, from
environment behavior research, and from their own theories to create spaces with experiential

qualities such as these.® As discussed in the chapters that follow, this knowledge can be articul ated
and structured as general design principles (e.g. Wright, 1954; Moore, et a., 1974; Alexander, et
a., 1977; Zeisel and Welch, 1981; Hertzberger, 1993) and used as a basis for a design support
system that reasons about experiential qualities and physical form asin the opening scenario.

Why isthis problem interesting from an Al point of view?

Design isinherently knowledge-based, intelligent behavior. It generally requires some degree
of purposeful behavior—a designer has some number of things in mind that he wants to accom-
plish, then his task is to figure out how to build something that accomplishes them (while the
description of what to accomplish constantly changes). When those things are experiential quali-
ties, he must accomplish them indirectly through his choice of physical form. Classic Al issues
have to be addressed in order to build computational tools to support this task. For example:

» Knowledge representation: How can abstract concepts such as “open” and “ private” be oper-
ationalized? How can terms for such qualities be mapped to methods for accomplishing them?
Can the same representations be used by the various components of a design tool ?

* Reasoning and problem solving strategies: How can the search for design solutions avoid the
combinatoric problems inherently associated with large search spaces? How are solutions found
when evaluation functions are noninvertible and operators interact in complex ways? How are
solutions found for multiple conflicting goals?

6. For examples of the relationship between experiential qualities and physical form see the journal Environment and Behav-
ior. Also see Broadbent (1980) for a good survey of environmental psychology and a discussion of the intersection of psychology,
sociology, anthropology, and architecture. See Hillier and Hanson (1984) for discussion of the relationship between sociology and
architecture. See Rapoport (1969, 1977) for discussion of the relationship between anthropology and architecture.

27

Why isthis problem of interest from a designer’s point of view?

Clarification of termsin architecture is along-standing need.

John Louis Petit (1854)

| am far from thinking that nhomenclature is a remedy for every defect in art or
science: still | cannot but feel that confusion of terms generally springs from, and
always leads to, confusion of ideas.

By providing a language and a framework for representing the relationships between experi-
ential qualities and physical form, TAC has the potential to help clarify architectural terms. Such
clarification will enable better communication among designers and between designers and cli-
ents.

In addition, TAC can serve as an example of a design tool that aleviates some of the frustra-
tions with existing computer-aided design tools. The comments from Krauss (1970) are still apro-
pos:

A number of computer operations such as cost checking, sorting of program
issues, and space allocation have been developed to aid the architect in his work.
None, however, have been put into common usage. One of the difficultiesin adopt-
ing these techniques is that they are developed for solving problemsin afar differ-
ent context than for architectural design. In some cases the aiding routine may
require definition of design criteria which is not possible to give in the way
required; in others the procedure may be so awkward to the designer that little or
nothing is gained; or the tools are not sufficiently useful by themselves, without a
surrounding system of more useful computer aid to warrant use.

TAC aimsto be a component in such a “surrounding system”, providing an intelligent partner

that facilitates design by providing a rich framework for representing designs and design know!-
edge, and by efficiently searching for solutions.

28

1.5 Guideto This Document

This document is organized around the steps involved in using TAC to find solutions to a
design problem. Each step is illustrated using examples taken from the set of Frank Lloyd
Wright's Prairie houses. A reader interested in what TAC does, rather than how TAC works, may
want to focus on Chapters 1 and 8.

Chapter 1 introduces the problem and TAC's solution, gives an example of TAC's functional-
ity, and discusses the motivation for building TAC.

Chapter 2 describes our approach to building TAC.

Chapter 3 describes TAC's representations for design problems, designs, characteristics, and
goals.

Chapter 4 describes TAC's goal evaluation.
Chapter 5 describes how TAC proposes repair suggestions using explanations.
Chapter 6 describes how TAC carries out repair suggestions to create new designs.

Chapter 7 describes TAC's control structure and discusses related issues of goal interaction,
goal order, and termination. It also presents the results of experiments run to test three different
control structures.

Chapter 8 describes two exercises given TAC: a design example using alocal house that was
in the process of being redesigned, and an analysis example using Frank Lloyd Wright's Prairie
houses.

Chapter 9 discusses related work.

Chapter 10 summarizes TAC's contributions and discusses future work.

29

30

Chapter 2

Approach

This chapter presents our view of the design process and our rationale for building a design assis-
tant instead of an automatic design generation system. It also gives an overview of TAC's depen-
dency-directed redesign strategy and discusses the sources of TAC's intelligence.

2.1 The Design Process

TAC adopts the view that architectural design is an exploratory search of a design space, trying to
turn goals, often unarticulable at the beginning of the process, into physical form that realizes
those goals.k Several factors contribute to the need for exploration of the search space, e.g. the
complexity of simultaneously satisfying many potentially conflicting goals, the fact that the goals
themselves evolve along with the design, and the absence of afixed set of modification operators
that result in new designs. As aresult, it is very difficult to produce feasible solutionsin one or a
few steps. Instead, adesigner engagesin an iterative cycle of goal specification and design refine-
ment: articulate design goals, produce a potential solution, evaluate it, modify it, and continue
until a solution is found. More specifically, a designer proposes an initial design for a problem,
perhaps sketching a new design or selecting a previous design that solved a similar problem. He
then may modify the design in an attempt to satisfy articulated goals, employing a generate-and-
test model. Alternatively, he may proceed in a more opportunistic fashion, noticing new goals as
he works and modifying a design in accordance with those goals rather than focusing on previ-
oudly articulated goals. In either of these situations, the designer is exploring adesign space viaan
iterative evaluation and modification cycle that is guided by characteristics he desiresin a solution
and knowledge about how to achieve those characteristics.

1. Recorded observations of designersin action have led to this view of the design process. Rather than reiterate the observa-
tions here, the reader is referred to an in-depth study by Krauss and Meyer (1970). See Akin (1986) for a summary and referenceto
earlier studies (e.g. Eastman, 1969, 1970; Foz, 1973). See also Lawson (1994), Rowe (1987). See Schon (1983) for a competing
theory that says designers “know it when they see it” and often cannot articulate goals. For additional theoretical views on the
nature of the design process see Simon (1969, 1973, 1975), Jones (1970), Broadbent (1973), Wade (1977), Heath (1984), Cross
(1991).

31

2.2 A Design Assistant

TAC functions as a design assistant because, even though much progress has been made in model -
ing design decision-making (e.g. Akin, 1986; Smithers, 1996), the design processis not yet under-
stood well enough to build a fully automated system. We believe that an appropriate conceptual
design tool acts as an assistant, complementing a human designer so that human and computer
together work better, faster, and more easily than either working aone.

A human designer knows how to ascertain client needs, specify design goals, and adjust
design goal sets and priorities, especially when clients’ needs change; he is good at defining and
extending a problem specification as he designs (e.g. Schon, 1983; Akin, 1986; Rowe, 1987;
Lawson, 1990). Heis good at generating and sketching initial designs, before design goals can be
articulated. He knows how to shift his focus of attention between various aspects of a design. He
knows how to dynamically add to his design knowledge, inventing new ways to satisfy design

goals as he designs. He also knows how to judge when to stop, which is often not obvious because

thereisno single right answer.?

Computers have avauablerole to play as assistants. They can explore a design space method-
ically and can manage the complexity of many conflicting design goals. Humans have trouble
dealing with such complexity due to limited capacity of short-term memory and the difficulty of
deducing al consequences of particular design modifications. Computers are far less susceptible
to such overload. Computers can provide languages and frameworks for helping a designer articu-
late and store design knowledge. They also can more easily and quickly generate and keep track
of alternatives, and modify and redraw representations of designs.

TAC takes on the tasks computers do well, leaving the tasks humans do well to the designer.

2.3 TAC as Design Assistant

As noted earlier, current CAD tools do not support exploration, and as a result are often extrane-
ous to the design process. They also have simple design vocabularies and require too much preci-
sion. TAC assists the designer with all but one of these problems. TAC supports exploration by
focusing on the evaluation and repair cycle that is central to design, thereby being an integral part
of the process rather than extraneous to it. It assists a designer in specifying design goals, eval uat-
ing a design with respect to those goals, and repairing the design if necessary. In the process, it
generates alternatives easily and quickly, helping to manage the complexity of satisfying multiple
goalsin adomain in which modification operators interact and evaluation functions are not easily

2. Seediscussion of satisficing in Simon (1969).

32

inverted. In addition, its broad vocabulary is that of the designer, and as such, includes terms for
experiential qualities and elements of physical form. TAC does not deal with the precision issue
that hampers CAD drawing tools.

There are aspects of the design process that TAC does not address. It |eaves the task of gener-
ating an initial design to the designer. It also leaves the task of design goal specification and
respecification to the designer, focusing on design refinement rather than goal refinement. Finally,
it generates multiple solutions when they exist, leaving the task of ranking the solutions to the
designer.

2.3.1 Dependency-Directed Redesign

TAC'’s dependency-directed redesign strategy embodies a variation of generate-and-test (or
more accurately, test-and-generate): given an initial design and a set of goals, TAC evaluates a
design with respect to the goals, then generates new designs by proposing, refining, and carrying
out repair suggestions (i.e. design modifications). The generate step, which we call repair, is
dependency-directed, guided by knowledge of two kinds of dependencies. general dependencies
between experiential qualities and physical form, which include methods for realizing qualitiesin
form; and specific dependencies for a particular design, which serve as explanations for unsatis-
fied goals. If adesign does not satisfy all goals, TAC uses the explanations to search its knowledge
base for design modification operators likely to repair the design so that all goals become satis-
fied.

Three aspects of the architecture domain motivated our choice of dependency-directed rede-
sign as acontrol structure: some evaluation functions cannot be easily inverted to set the values of
design characteristics, the effects of operators are difficult to predict, and multiple interacting
goals cannot be easily satisfied in one or afew steps.

1. The values of some design characteristics cannot be set.

Some design modification operators directly set the values of design characteristics. Changing
the color of adoor in adesign, for example, is straightforward because color is a directly settable
design attribute. Many design characteristics in this domain—and all that represent experiential
gualities—are not directly settable, however. Instead, their values are changed by modifying the
physical form. If we want half of the living room visible from the dining room, for example, we
might turn an intervening stair as in the opening scenario. More of the living room may indeed be
visible, but it is difficult to guarantee that the visibility value will be 0.5. Visibility is an example
of a characteristic measured via a computational geometry routine whose result depends crucially
on the specific arrangement of design elements, and that is therefore not easily inverted. For such

acharacteristic it is easier to carry out an operator and measure the characteristic in the resulting
new design, i.e. to employ TAC's version of generate and test.

2. The effects of operators are difficult to predict.

Effects of operators are difficult to predict because an operator may not have its intended
effect or may have unintended effects, and because operators may interact.

An operator has an intended effect that is stated in terms of adesired value for a characteristic
of adesign, e.g. increasing the number of fireplaces in a design. When design characteristics can
be measured independently of context, as with counting the number of fireplaces, the effects of
operators that modify those characteristics can be predicted. Adding a fireplace always increases
the number of fireplaces in adesign regardless of the specific geometry of the design. Other char-
acteristics depend on the particular arrangement of design elements, and the effects of operators
intended to achieve those characteristics cannot be predicted. To make al of one space visible
from another, for example, a wall might be moved. For some arrangements of design elements,
moving the wall may satisfy the visibility goal. In others, an intervening design element (e.g. a
stair) may keep the move operator from having its intended effect on visibility. Attempting to pre-
dict whether the goal will be satisfied requires just as much work as performing the move opera-
tion and checking the design.

An operator aso may have unintended effects. Moving the wall may increase visibility
between two spaces as intended, but may block the view between two other spaces. It is very
difficult at best, and impossible at worst, to precompute all effects of operators; it iseasier to carry
out an operator, then check the design to determine which aspects of the design have been
affected.

Finally, the effects of combinations of operators can be more difficult to predict than effects of
single operators. Operators can interact in complicated ways: one operator may move a fireplace
to a particular location, displacing a bookcase; a second operator may move the bookcase back to
its original location, moving the fireplace to yet another location; a third operator may move the
bookcase yet again. Because each move causes the design to be dightly different, new locations
may become apparent after performing the move. As aresult, it is difficult to predict where each
design element will end up, much less what the effect will be on characteristics such as visibility.
It is easier to determine the combined effect of a sequence of operators by carrying out the opera-
tors.

Each of these examples hasillustrated that a generate and test strategy is appropriate when the
effects of operators are unpredictable.

3.Multiple interacting goals cannot be easily satisfied in one or afew steps.

As previously mentioned, there is no obvious path from problem definition to solution, espe-
cially with interacting design goals and operators whose effects are not completely predictable. It
is possible, however, to generate a design that satisfies a subset of the design goals. Such designs,
even if not solutions, are often useful intermediate steps from which progress toward a solution
can be made. An enabling assumption for this approach is that some goals will be independent, so
that working on one goal does not always cause a previoudly satisfied goal to become unsatisfied.
For the goals that do interact, some amount of work to reevaluate and resatisfy goals is necessary,
hence the iteration between evaluation and repair.

The difficulties of reasoning with noninvertible evaluation functions, predicting operator
effects, and of satisfying multiple design goals in this domain lead to the choice of an iterative
control structure that focuses on evaluation and repair. TAC proposes and refines suggestions for
modifying adesign, then carries out the suggestions and eval uates the resulting new designsto see
if intended goals are satisfied. If some of the goals are now satisfied for a new design, TAC
assumes that it is making progress and attempts to repair the design by starting a new evaluation
and repair cycle.

2.3.2 Intelligence

TAC's intelligence derives from the richness of its knowledge base and representations, and its
informed search of repair suggestion space.

Knowledge

TAC's knowledge consists of both general knowledge and domain knowledge. The general
knowledge is used by TAC's reasoners to explain their reasoning, do simple arithmetic, compare
and rank vectors using a partial order, deduce part-whole relationships, and manipul ate nodes and
arcsin agraph.

The domain knowledge is amajor source of TAC's power as an architectural design assistant.
It includes general design principles as well as specific methods for modifying designs. It is orga-
nized around types of design elements, which represent physical form such as walls and doors;
and design characteristics, which represent properties of a design and range from very concrete
details such as sguare footage to very abstract qualities such as openness or privacy. Much of
TAC's intelligence derives from its mapping of experiential qualities to details of physical form.
TAC knows, for example, that it can make one space more visible from another by removing inter-

35

vening walls. It knows that it can make a space feel more private by making less of it visible or
making the path to it from afront door less direct.

TAC aso knows about characteristics of Frank Lloyd Wright's Prairie houses. It knows, for
example, that Prairie houses often have large main living spaces containing a fireplace that
symbolizes home and hearth. (See Section 8.2 for discussion.) Such knowledge servesto illustrate
that TAC can represent not only general architectural knowledge, but a designer’s particular pref-
erences as well.

Representation

TAC's representation languages enable close coupling between TAC's components. The
results of one component are used as input for the next: evaluation results in the form of explana-
tions are the input to the repair suggestion mechanism; repair suggestions are the input to design
creation. TAC's languages enable this smooth integration by sharing a common syntax and by
being expressive, concise, and unambiguous.

TAC's representation of designs supports evaluation of a wide variety of design characteris-
tics. Some of the characteristics are concerned with the geometry of design elements (e.g their
sizes and location); others are concerned with the boundaries of spaces or circulation pathsin a
design. TAC handles the requirements for different information by representing a design as a set
of models, each representing a different aspect of a design. It then chooses the model appropriate
for aparticular task.

Reasoning and Search

Exhaustive search of the design space is not an option in this domain; there are far too many
possible designs. TAC limits its search by first searching repair suggestion space and pruning that
space, so that it proposes only repairs that have a good chance of leading to solutions. It carries
out the repair suggestions, modifying the original design to create new designs that it thinks are
likely to satisfy at least some of the specified goals. It then attempts to repair any of the new
designs that are not solutions.

TAC'’s repair suggestion mechanism identifies relevant suggestions by comparing desired
values of design characteristics with actual values. It figures out, for example, that if acharacteris-
tic's actual value is less than desired, it must increase the value. It checks its knowledge base for
modifications that are likely to increase the characteristic’s value, then checks the particular
design to determine which of the modifications are relevant to the current context. It proposes and
carries out the selected modifications, then checks each resulting new design to make sure the
modification had the intended effect.

36

In summary, TAC isan intelligent design assistant that employs a strategy we've called depen-
dency-directed redesign which enables it to evaluate designs with respect to a set of design goals,
propose and refine repair suggestions, then carry out those suggestions to create new designs that
satisfy the goals.

37

38

Chapter 3

Defining a Design Problem

TAC is organized around the notion of a design problem, by which we mean a design and a set of
design goals. Let's say that we have adesign and a set of design goals of the sort mentioned in the
opening scenario, e.g. we want living spaces that feel “open” to one another, but “private” with
respect to the front door, and we want the stair to be “easily accessible”. We aso might want the
design to have four bedrooms. It'sfairly easy to translate having four bedrooms into a particular
design; it's much harder to transate qualities such as open, private, and accessible. The mapping
between these qualities and physical form is not straightforward. It is possible, however, to repre-
sent these qualities in such away that they can be measured and reasoned about, and thus used to
create designs that satisfy desired goals.

3.1 Representing Designs

A design is represented by five kinds of models—a design element model, an edge model, a terri-
tory model, a use space model, and a circulation model. Each of the models abstracts different
design details, enabling easier, faster access to information relevant to a particular task.

The design element model contains information about design elements, i.e. the objects that
create physical form: walls, windows, doorways, fireplaces, etc. Included is information about
size, location, materials, and component parts.

The edge model is a two-dimensional geometric abstraction of the design element model and
contains points and nonoverlapping edges. Each edge in the edge model is the result of applying
one or more abstraction methods to particular design elements. The information summarizing the
origins of an edge is caled the edge's derivation, and as described later, is used by TAC when
suggesting repairs and creating new designs. There are three edge derivation methods: an edge
may be a one-dimensional abstraction of a design element, such as a wall; a member of a two-
dimensional footprint (i.e. outline) of a design element, such as afireplace; or a one-dimensional
projection of adesign element. A projection, also called a projected edge, does not correspond to
aphysical object, but is an extension of edges derived from design elements. As shown in Figure
3.1, projected edges extend in either parallel or orthogona directions from a design element.

39

r . n p——— - - — = ——
wall W1 ewl —€l'e2 le3
¥ N' efpl '____(34___
I ew2a efpd efp2]
1\ e8, efp3 e5
fireplace FP ! |
:e7 :e6
1 1
1 1
1 1
<—wall W2 ew2b —> 1 :
| |
1 1
1 1
1 1
== = === == —

Figure 3.1: Partial design element model (left) and derived edge model (right).

Projected edges, shown dotted, end at intersection with design elements, shown solid.

Edge derivations:

ewl isderived from wall W1 via abstraction.

ew?2a, ew2b are derived from wall W2 via abstraction.

efpl - efp4 are derived from fireplace FP viafootprint.

el - e8 are projected edges with the following derivations:
el from W1 viaorthogonal projection, W2 viaparallel projection
e2 from W1 viaorthogonal projection and from FP via orthogonal and parallel projections
€3-e8 from FP via orthogonal and parallel projections

Projected edges help bound territories—regions of space defined by design elements. TAC's
territories are bounded, i.e. closed polygons, though they may overlap, and larger territories may
be formed by unioning smaller ones. (For discussion of territories, see Alexander, et al., 1977,
Hertzberger, 1993. For discussion of territories and their formalization, see Kincaid, 1997.) Terri-
tories are represented as ordered sets of edges and grouped into aterritory model, another geomet-
ric abstraction of the design element model. A design model may have several territory models; it

has only one edge model.*

Each territory model may be associated with one or more use space models. A use space
model contains a set of use spaces, each of whichisaterritory plus an activity label, e.g. “dining”.

The activity label represents the intended use of the territory.?

1. For clarity of exposition, designsin this document will have one territory model, and territories will be room-sized.
2. In this document, territories will be named using terms such as Living and Dining, rather than, e.g. T13799. The
names, however, do not carry functional information; use spaces represent that information. An example of reasoning
with use spacesis presented in Section 8.1.

40

Finally, a circulation model is a graph with nodes representing doorways and arcs represent-
ing paths between doorway midpoints. The nodes and arcs contain dimension and location infor-
mation.

The figure below summarizes the relationshi ps between the five kinds of models. TAC's repre-
sentation for adesign differs from other work in the field in three significant ways. (1) Design ele-
ments are the fundamental units of design; they are manipulated in order to satisfy design goals.
(2) Territories are derived from the design elements instead of being supplied apriori. (3) Territo-
ries and their intended uses are represented separately. Focusing on design elements and deriving
territories from them is paramount when reasoning about physical form. Other systems either
represent only design elements or only spaces. Neither of these representations enables trandation
of abstract design goals into physical form. Finally, representing use spaces and territories sepa-
rately enables TAC to reason about physical form independently of intended use.

o
%ﬁ% ————> Design

|
v

TAC design element model

walls, windows, etc.

l

edge model
points, edges

— T

circulation model territory model
doorway nodes with arcs between regions induced by walls, etc.

L

use space model
territories paired with uses

Figure 3.2: TAC'sinput isin the form of a design element model and an edge model .3
Circulation and territory models are automatically derived; a use space model
is defined with input from the user.

3. Design element and edge models currently are entered by hand using a 2D design editor. In future versions, they will
be derived automatically from an annotated sketch (Gross, 1996).

41

Figure 3.3 shows the Mrs. Thomas Gale house, a Prairie house designed by Frank Lloyd
Wright. Figure 3.4 shows diagrams of models for the first floor of this house.

Figure 3.3: Mrs. Thomas Gale house, Oak Park, Illinois (1904, 1909)

42

door

a. Design element model

AR

;L7

SAYAYANR YRR e

s

d. Territory model

b. Edge model

c. Circulation model

Reception

~

s LR
A T R
N A AR
R T R N R R Y
L N N
ATATATATATAT AT

oS N N N N N s

‘Terrace =

e. Use space model

Figure 3.4: Models for the Mrs. Thomas Gale house.
a. Floorplan showing several design elements in the design element model.
b. Edge model: contains points and edges derived from design elements.
c. Circulation model: shows paths from exterior approach point through interior.

d. Territory model: territories formed by design elements; overlapping territories shown.

e. Use space model: use spaces, which are territories plus activity labels.

43

3.2 Representing Design Goals

In addition to a design, a design problem also contains design goals, which specify desired
features for a design. Design goals are represented as an expression and a desired value for the
expression. If we'd likeaLiving territory to be visually open from a Dining territory, for example,
we specify the expression (vi sual | y- open Living from Di ni ng) and adesired value of t r ue.
If we'd like one fireplace in a Living territory, we specify the expression (firepl ace-count in
Li vi ng) and adesired value of 1. Both vi sual | y- open and fi repl ace- count are examples of
design characteristics, constructs that represent TAC's architectural knowledge. TAC also
contains domain-independent knowledge from geometry, arithmetic, logic, and computation. It
represents this knowledge using TAC-functions. Design characteristics and TAC-functions are
TAC's main source of knowledge and form the core of the languages used throughout TAC—by
the designer to define other design characteristics and to specify goals, and by TAC to construct
explanations for goal evaluations and to propose repair suggestions.

3.2.1 Design Characteristics

What isa design characteristic?

Design characteristics represent architectural properties of a design; they are concepts such as
visual openness, physical accessibility, square footage. They are quantitative-, qualitative-, bool-
ean-, set-, or vector-valued. Some design characteristics, such as square footage, can be computed
directly from design elements, which represent physical form. Other design characteristics, such
asthose that represent experientia qualities, are derived from the computed design characteristics
and are related to physical form viathose characteristics. The decision about which design charac-
teristics are calculated directly from a design and which are derived from other design characteris-
ticsis made by the designer.

Design characteristics form a decomposition hierarchy, with characteristics computed from
physical form at the bottom and those derived from them higher up. In thisway experiential qual-
ities such as privacy are mapped into details of physical form. The following design characteris-
tics, which appear in examples throughout this document, illustrate this mapping. The
decomposition hierarchy for these characteristics is shown at the end of this section.

Example 1. Vi sual - openness is quantitative-valued and measures the portion of a territory

visible from another territory.® It produces a value between 0 and 1.0. In the Gale house, for
example, the vi sual - openness of the Living territory from the Dining territory is 0.78. Figure

3.5 shows the visible portion of the Living territory. Figure 3.6 shows the view from the Living
territory toward the Dining territory.

| P

Figure 3.5: Shaded region of Gale Living territory isvisible from Dining territory;
vi sual - openness value of Living from Dining is0.78.
Each * represents a viewpoint used by the visibility calculation.

4. The visual openness routine works from the 2D territory model: it tiles a territory, figures out which tiles are visible
from specified viewpoints, then calculates the ratio of visible tiles to total number of tiles. Tile size and viewpoint place-

ment are user-controlled parameters. Defaults: 6” squaretiles; viewpoints at territory center and along relevant openings,
2.0 feet inside the territory and 1.5 feet apart.

45

Figure 3.6: Living territory of Gale house; view to Dining territory.

Example 2: Vi sual | y- open is boolean-valued and defined in terms of vi sual - openness by
putting a threshold on vi sual - openness: A territory is considered vi sual | y- open from another
territory if at least 0.6 of itsareais visible from the other territory. The Living territory in the Gale
house is considered vi sual | y- open from the Dining territory because its vi sual - openness
valueis0.78.

Example 3: Privacy is vector-valued, with components for vi sual - openness and physi -
cal -accessibility. Visual-openness IS described above. Physical -accessibility is
vector-valued, with components for distance between two design objects and change in direction

along the shortest path between two design objects®. Each of these components is quantitative-
valued. The distance is calculated from the locations of the two design objects, the change in
direction is calculated from a path derived from the physical form. (See Figure 3.7 for an exam-
ple) The design characteristic privacy thus has components for visua openness, distance
between two design objects, and change in direction along a path between two design objects. We
could define a boolean-valued design characteristic called pri vat e by putting thresholds on some
or al of these. Notice, however, that the components for pri vacy are incommensurate, and it's
not necessarily meaningful, nor obvious how to combine them into asingle boolean-valued design

5. We use the term “design object” to mean a design element (e.g. wall), territory, use space, or design.

46

characteristic representing the concept of being private. We'll see later that even without defining
boolean-valued characteristics for vector-valued characteristics, TAC can rank values for vector-
valued characteristics and reason about how to increase or decrease them by using a partial order.

—
Frontdoor
Living

——— .~ —

Figure 3.7: Path for calculating change in direction from Gale Front door to Living territory.
Changein direction is 207.0 degrees; path was found using the circulation model.

Example 4: Per cei ved- mai n- ent r yness isVvector-valued and gives ameasure of the percep-
tion of an exterior door as a main entry. Characteristics that influence a visitor’s choice of door
when approaching a house are components of percei ved- nai n-entryness. These include
whether the door is visible from the street, whether there is a path that leads to the door from the
street and how straight that path is, how far the door is from the street, and how formal the door is.
We define a door as formal if it is of solid wood instead of glass and/or is hinged rather than
diding.

Example 5. The design characteristic perceived-main-entry is defined in terms of
per cei ved- mai n- ent ryness. Its value is the exterior door that is most likely to be perceived as
the main entry, i.e. the exterior door with the largest per cei ved- mai n-ent ryness value. TAC
constructs a partial order that ranks exterior doors by their per cei ved- mai n- ent r yness values,

47

and returns the top of the partial order as the value of per cei ved- mai n-ent ry. (TAC's construc-
tion and use of a partial order is discussed in more detail |ater.)

How are design characteristics defined?

As the above examples have illustrated, design characteristics are related to physical form and
often to other design characteristics. A characteristic is directly related to physical form by means
of an opague evaluation function that operates on one or several of the models representing a
design. The characteristic vi sual - openness, for example, is calculated via a computational
geometry routine that operates on a design’s territory model. As noted earlier, characteristics
directly related to physical form are at the bottom of a decomposition hierarchy, with characteris-
tics derived from them higher up. The decomposition hierarchy is implemented via three kinds of
dependencies each of which isillustrated below.

Example 1: The design characteristic vi sual | y- open is related to vi sual - openness by
providing it with an evaluation function body that checks whether a vi sual - openness value is
greater than 0.6: (gt (vi sual - openness x fromy) 0.6). Thefunction body iswritten using a
Lisp-like functional language which we've called the design characteristic definition language.
The language’ s terms are the names of design characteristics and TAC-functions, variable names,
and constants. The names of design characteristics or TAC-functions occupy the first (functional)

position of expressions.® (See Appendix B for alist of design characteristics and TAC functions,
and Appendix C for lists of language terms.)

Example 2: The design characteristic pri vacy has two components, vi sual - openness and
physi cal - accessi bi | i ty. The design characteristic physi cal - accessi bility, in turn, has
two components, di st ance-btw and change-i n-direction-btw. Each of these components
has an opaque evaluation function. The evaluation function for pri vacy collects all components
into avector of design characteristic expressions. ((vi sual - openness x fromy) (distance-
btw x and y) (change-in-direction-btw x and y)). It evaluates each of those expressions
with respect to supplied arguments, examining design element, edge, territory, and circulation
models in the process, and returns a vector consisting of the visual openness between the two
arguments, distance between the two arguments, and change in direction between the two argu-
ments.

6. Throughout this document, we present TAC expressions using a more English-like syntax than is implemented.
Examples of TAC's expression syntax can be found in Appendix B.

48

Example 3: A design characteristic may have necessary conditions, which turn the body of the
characteristic’'s evaluation functioninto ani f statement:

i f necessary conditions are true
t hen compute avalue
el se return the symbol no- val ue.

The design characteristic per cei ved- mai n-entryness, for example, has components
representing physical accessibility and formality of a door. The characteristic also has two neces-
sary conditions: for an exterior door to be perceived as a main entry, the door must be visible from

and have a path from the usual approach poi nt.” The defined domain of a desi gn characteristic
provides an additional implicit necessary condition: only exterior doors have per cei ved- nai n-
ent ryness values. The components and necessary conditions for per cei ved- mai n-ent ryness
are represented using expressions in TAC's design characteristic definition language:

per cei ved- mai n-entryness (Xx)
* necessary conditions ((built-exterior-paths to x from usual - approach)
(visible-fromx usual - approach))
e components ((physical -accessibility of x from usual - approach)
(formality-of-entry x))

The design characteristics in the above definition are as follows. bui | t - ext eri or - pat hs
returns a set of exterior paths between two objects; vi si bl e- f r omdetermines whether one object
isvisible from asecond; physi cal - accessi bi | i ty, discussed earlier, returns values for distance
between and change in direction along a path between two objects; f or mal i t y- of - ent ry returns
avector containing values for door sol i di t y, which represents the portion of a door that iswood,
and degr ee- of - hi nge, which represents door hinge type. The design characteristic, degr ee- of -
hi nge, isan example of a qualitative-valued design characteristic whose range is an ordered set of
values. A hinged door has a higher degr ee- of - hi nge value than a dliding door, for example.
Relating door hinge type to formality, we say that a hinged door is more formal than a dliding

door.8

The value returned for the design characteristic per cei ved- mai n- ent ryness is thus either
the vector of values ((di st ance-btw x and usual - appr oach) (change-in-direction-btw x
and usual - approach) (solidity of x) (degree-of-hinge of x)) orthesymbol no-val ue.

7. The usua approach point represents the primary location from which someone would approach abuilding. A building
may have several approach points; one of them may be deemed the usual one.

8. Cdling this design characteristic “degree-of-hinge’ is a bit awkward; the important point is that its values can be
ranked.

49

As noted above, design characteristics form a decomposition hierarchy. This hierarchy is
established via dependencies derived from eval uation function bodies, components, and necessary
conditions. Shown below are dependencies for the above examples. Characteristics at the bottom
of the hierarchy, i.e. with no characteristics below them, are computed directly from design
objects.

perceived-main-entry
1
evaluation function body

perceived-main-entryness

privacy NN
/\ necessary conditions
components —
_ components \ built-exterior-paths
visually -open \

‘ visible-from

evaluation function body / physical-accessibility formality-of-entry

\ AN ™~

visual-openness components components

/ ~—
\ solidity degree-of -hinge

change-in-direction-btw distance-btw

Figure 3.8: Dependency links for example design characteristics.

3.2.2 TAC-Functions

TAC-functions extend the expressiveness of TAC's languages—design characteristic definition
language, goal specification language, and repair suggestion language—and are used in the same
way that design characteristics are: in functional expressions and as a repository for knowledge
about how to construct explanations and suggest repairs. As previously mentioned, design charac-
teristics represent architectural concepts. TAC-functions represent domain independent concepts
such as geometric concepts, arithmetic relations, logical relations, and computational constructs.

Example 1: gt

The TAC-function gt was shown previously in the evaluation function body for the design
characteristic vi sual | y- open: (gt (visual -openness of x fromy) 0.6).The TAC-func-
tion gt is boolean-valued and generalizes mathematical greater-than by working not just on
numbers but also on a number and the symbol no- val ue. Any value is considered greater than

no- val ue.

50

Example 2: nor e- of
The TAC-function nore-of further generalizes mathematical greater-than by providing a
comparison function for members of vectors and ordered sets. The function might be used, for

example, to express a desired relationship between two per cei ved- mai n-ent ryness values:
(ror e-of (perceived-main-entryness of Front-door)
t han (perceived-main-entryness of Side-door))

Vector values such as per cei ved- mai n-ent ryness are compared by comparing their corre-
sponding components: A vector is greater than another vector if all components are greater than or
egual to the corresponding components in the other vector, and at least one component is strictly
greater. The semantics of the vector must be known: the semantics of each component determines
the appropriate component comparison function. A per cei ved- mai n- ent ryness vaue is more
than another one, for example, if its first two components, which represent physical accessibility,
are smaller; and its last two components, which represent formality, are larger. In other words, an
exterior door has more per cei ved- mai n- ent ryness than another if it is closer to the usual
approach, reached through a straighter path, is composed of more wood, and is hinged (e.g. as
opposed to diding). We'll see later how TAC represents the knowledge that enables it to automat-
icaly define anor e- of function for each vector-valued design characteristic.

Values that are members of ordered sets are compared via nor e- of by comparing their posi-
tionsin the set: avalue is greater than another if it islater (or earlier) in the set. As with vectors,
the semantics of the ordered set must be known. The value hi nged is considered more than sl i d-
i ng when considering the design characteristic degr ee- of - hi nge, for example.

3.3 Design Problem Example

We define a design problem by specifying a design and a set of design goals. Given the design
characteristic vi sual | y- open introduced earlier, for example, we can define a design problem by
specifying the Gale design and the design goals:

<desi gn-problem Gale-1>
design: <design: Gal e>
goal s:
(<goal : (visually-open D ning fromlLiving) true>
<goal : (visually-open Dining fromKitchen) true>
<goal : (visually-open Dining from Front-door) false>) 9

9. The printed representation for a goa shows the expression immediately following the term “goal”; the desired value
follows the expression. The printed representation for a design object isits name.

51

Given this design problem, TAC will start with the Gale design and search for new
designs with the Dining territory visually open from the Living and Kitchen territories,
and not visually open from the front door.

52

Chapter 4

Evaluating Design Goals

A design goal is evaluated by evaluating its expression; a value and an explanation are returned.
TAC determines whether or not a goal is satisfied by comparing this returned value with the
desired value stored in the goal. The following sections give examples of evaluating design goals
and describe explanations and how they are generated. Chapter 5 discusses the use of explanations
asthe starting point for TAC's repair suggestion mechanism.

4.1 Examples

Example 1: vi sual | y- open
Below is a territory model for the main floor of the Tomek house, a Prairie house designed and
built by Frank LIoyd Wright in 1904. (See Appendix D for an aternate territory model containing
territories smaller than room-size.)

Beceptio n

Kitchen ,
_4{- Hal |

—1—5--T--- 1—
M- | Fireplacel Alcove
Nook . i . '
\ Dining :Sta|r Living ' Terrace

- —
o B |

- f—

Figure 4.1: Floorplan and territory model for Tomek house main (second) floor.

53

Let's say that we want the Living territory to be visually open from the Dining territory. We
specify the goal: <goal : (vi sual | y-open Living from Dining) true>.
Evaluating the goal, TAC returns:
goal satisfied? no
desired value: true

actual value: fal se
explanation for actual value: <expl : (vi sual | y-open Living from Dining) fal se>

If we examine the explanation, which we do in more detail in the next section, we find that for
aterritory to bevi sual | y- open from another, the vi sual - openness value must be greater than
0.6. The vi sual - openness value of the Living territory from the Dining territory is 0.44, so the
above vi sual | y- open goal is not satisfied. Figure 4.2 shows the result of the vi sual - openness
calculation. The photograph in Figure 4.3 shows the lack of visual openness between the Living
and Dining territories.

h_

—

]

Figure 4.2: Shaded region of Living territory isvisible from Dining territory;
vi sual - openness Vvalue of Living from Dining is 0.44.

Each * represents a viewpoint used in the calculation.

.”'q|
ln',lll

Figure 4.3: Living territory of Tomek house and view to Dining territory.

Example 2: per cei ved- mai n-entryness

Returning to the Gale house, introduced in Section 3.1, let’s say that we want the front door to
have a higher per cei ved- mai n- ent ryness value than the largest (middle) terrace door, called
Terrace-door-2.

Front-door

E"‘P'_’u"‘:
g"; 2.2:"' :.3\/ FH
SN NV

7
HHeEd

Terrace-door-2

Figure 4.4: Floorplan showing doors used for per cei ved- mai n- ent r yness comparison.

55

We specify the goal:

<goal : (rnore-of (perceived-min-entryness of Front-door)
t han (perceived-main-entryness of Terrace-door-2)) true>

TAC evaluates the goal and returns:
goal satisfied? yes
desired value: true
actual value: true
explanation for actual value:
<expl : (nore-of (perceived-nmain-entryness of Front-door)...) false>

The explanation for the goal expression’s value tells us that the expression reduces to
(nore-of ((37.68 149.54 0.5 hinged) no-val ue), which then reduces to t r ue. Further
examining the explanation we find that the vector (37.68 149.54 0.5 hinged) is the
per cei ved- mai n-ent ryness Vvalue for the front door, and that this value represents distance (in
feet) between the door and the usual approach point, the changein direction (in degrees) along the
shortest path between the door and the usual approach point, the portion of the door that is wood,
and the door hinge type. We find that no- val ue isthe per cei ved- mai n- ent ryness value for the
middle terrace door, and that the door does not have a value because no exterior paths lead to it
from the usual approach point.

Figure 4.5 shows the path used to calculate the distance between and change in direction
between the Gale front door and the usual approach point.

r

Jd

/

_ -1

r—
1
1
I
| L —_———— —
1
I
1
1
I
1
o

Figure 4.5: Path from usual approach point (O) to Gale Front door.
56

4.2 Explanations

An explanation represents a trace of a goal expression’s evaluation. It is a tree whose nodes
contain information about each step in the evaluation. By walking down the tree from the top
explanation node, TAC can trace the reduction of the original goal expression to a value and
reason about why a particular goa is not satisfied. It then can use that information to propose
suggestions for repairing the design. Using an explanation to guide repair is akey step in TAC's
dependency-directed redesign.

Example 1: vi sual | y- open
In the first example in the previous section, TAC evaluated this goal for the Tomek house:

<goal : (visually-open Living from D ning) true>

As shown in Figure 4.6 below, the trace of the evaluation is:

* start with the goal expression: (vi sual | y-open Living from Di ni ng)

* substitute vi sual | y- open's evaluation function body into the goal expression:
(gt (visual -openness Living fromDining) 0.6)

» reduce the embedded function body expressionto avalue: (gt 0.44 0. 6)

* reduce the resulting expression to avalue: fal se

> (visual |l y-open Living from Dining)
7 val ue:

1 substitute evaluation function body

~~ [(gt (visual -openness of Living from D ning) O0.86)
7 val ue:

reduce expression

expl arati on

Y

\ (vi sual -openness of Living from Di ning)

S (gt 0.44 0.6) val ue: 0.44
N < val ue:

! reduce expression

~

- fal se

Figure 4.6: Explanation for (vi sual | y-open Living from Di ni ng).
Explanation nodes are boxed; dotted lines show propagation of value back to goal expression.
57

Each step in the trace is represented as an explanation node. Each node contains:

* an expression for the evaluation step

* avalue for the expression

» adescriptor for the evaluation step’s method; choices are:
- reduce expression
- substitute eval uation function body
- collect components

Figure 4.6 illustrates two of the three descriptors for an evaluation step—reduce expression
and substitute evaluation function body. The third descriptor, collect components, results in a
more complex explanation structure and is illustrated in the next example. (See Appendix E for
more details about constructing explanations.)

58

Example 2: physi cal -accessibility

Consider the second goal introduced in the previous section which specifies that the Gale
house front door have more per cei ved- mai n- ent r yness than the middle terrace door:

<goal : (mnore-of (perceived-nmain-entryness of Front-door)

t han (perceived-mi n-entryness of Terrace-door-2)) true>

Recall that the value of per cei ved- mai n- ent ryness is avector whose first two components
represent physi cal - accessi bi lity. The explanation for these two components for the Gale
front door is shown in Figure 4.7. Notice that the first step in the evaluation is to collect compo-
nents, and that the result of this step, namely the expression (make- vector ...) containsexpla
nations for each of the components. We'll see later that TAC uses these component explanations
when suggesting modifications to a design that will increase or decrease the per cei ved- mai n-
ent ryness of an exterior door.

(physi cal -accessibility of Front-door from usual-approach)
7 val ue:

1 col l ect conponents
(distance-btw ...)

I

! exd anati on val ue: 37.68
\ >
-

~| (nmake-vector (di stance-btw Front-door and usual - appr oach)

7 (change-in-direction-btw Front-door and usual -approach))
/ val ue:
, | valuer
I
! reduce expressi on
" expl anati on i/
\
‘\ (change-in-direction-btw ...)
s _| (make-vector 37.68 2.61) val ue: 2.61

> val ue:

! reduce expression

S~ (37.68 2.61)
Figure 4.7: Explanation for physi cal - accessi bi | i t y expression.
Explanation nodes are boxed; dotted lines show propagation of value.

59

60

Chapter 5

Suggesting Repairs

We saw in a previous example that the Living territory in the Tomek house is not visually open
from the Dining territory. What changes might a designer suggest in order to fix this situation?
Since the value of the design characteristic vi sual - openness is not high enough, a designer
might suggest increasing that value. What changes to the design might make this true? A
designer might suggest removing or puncturing any objects that block the view between the two
territories. The fireplace blocks the view, so he might suggest removing the fireplace, or perhaps
puncturing it, as Frank Lloyd Wright did in the Robie house.

These suggestions are examples of the kinds of suggestions that TAC makes. Note that the
suggestions can be made at any of several levels of abstraction. To make the Living territory
visualy open from the Dining territory:

Suggestion 1. Increasethevi sual - openness value. This suggestion is called a value sugges-
tion; it suggests a direction in which to change a design characteristic's value.

Suggestion 2: Remove any design element that is blocking the view. This suggestioniscalled
adesign suggestion; it suggests design modifications in terms of categories of design elements.

Suggestion 3: Remove the fireplace. This suggestion is called a design element suggestion; it
suggests design modifications in terms of specific design elements.

Notice that the language used in the suggestions is not the same as the language used to spec-
ify design goals. TAC must map the design goal specification language, which contains terms for
architectural and mathematical concepts, into the repair suggestion language, which contains
terms for design modifications. The next sections describe the different types of suggestions and
the representation that enables this mapping.

5.1 Types of Suggestions

TAC begins by proposing repair suggestions at the highest level of abstraction—value sugges-
tions. Value suggestions are stated in terms of design characteristics' values and propose satisfy-
ing a goal by increasing, decreasing, setting, or keeping a particular value the same. For the first
three of these value changes, TAC trand ates the suggested change into design suggestions, which

61

propose modifications stated in terms of abstract categories of design elements, e.g. remove all
elements blocking a view between two things. TAC does not propose design suggestions for keep-
ing a value the same because many arrangements of design elements can yield a particular value.
TAC assumes that if a desired value changes, the repair mechanism will modify the design so as
to restore the desired value. (Chapter 7 explains how.) From design suggestions, TAC then pro-
poses design element suggestions, which specify modifications to particular design elements.
Separating suggestions into different levels of abstraction allows TAC to save more detailed infor-
mation about why a particular design modification was performed, and, as discussed in Chapter 7,
to search more efficiently for design solutions by reasoning about interactions between sugges-
tions.

The following example illustrates the hierarchy of suggestion types.

ﬁceptio nl
Kitchen , { |
— Hall ! !
— 7" 'I—I l_
| Fireplacel Alcove
Nook i '
\ Dining :St air J Living . Terrace
— - —
d 1 1

Figure5.1: Territory model for Tomek house main (second) floor.

Let's again specify a goal stating that we want the Tomek Living territory to be visually open
from the Dining territory:

<goal : (visually-open Living from Di ning) true>.

TAC evaluates the goal, and as we've seen, finds it not satisfied.

TAC then proposes a value suggestion®:
(i ncrease-val ue of (visual-openness of Living from Dining)
until visual -openness greater than 0.6)

Checking its knowledge base, TAC finds that removing or puncturing design elements that
block the view between two thingsislikely to increase visual openness, so for the Living and Din-
ing territories it proposes:

(or (renove bl ocki ng-el ements-btw Living and Di ni ng)
(puncture bl ocki ng-el ements-btw Living and Di ni ng))

1. Toimprove readibility, the printed representation for a suggestion will be written in amore English-like syntax than is
implemented.

62

Checking the design, it determines that the fireplace blocks the view, so it substitutes that
element into the above suggestions and proposes design element suggestions:

(or (renove Fireplacel)
(puncture Fireplacel))

Aswe'll seelater, TAC creates adesign for each of these suggestions. An example of a punc-
tured fireplace is shown below.

'
)
— o e— b -

Figure 5.2: “Punctured” fireplace in the Robie house, designed by Frank Lloyd Wright.
View is from the Living territory into the Dining territory.

5.2 Representing and Using Repair Knowledge

The knowledge needed for suggesting repairs is associated with design characteristics and TAC-
functions. Design characteristics and TAC-functions have what we call fixers, domain-indepen-
dent functions that know how to “fix” undesired values. Fixers propose value suggestions: they
reason about how to get from a current design characteristic value to a particular desired value and
recommend increasing, decreasing, setting, or keeping values. Fixers rely on design characteris-
tics having what we call setters, increasers, and decreasers, each of which represents knowledge
needed for trandating val ue suggestions into design and design element suggestions, i.e. for trans-
lating a suggestion stated in terms of changing a value into suggestions stated in terms of modifi-
cations to particular design elements.

63

5.2.1 Fixersand Setters

We consider the design characteristic vi si bl e- cent er to illustrate TAC's representation and use
of repair knowledge. This design characteristic tells us whether or not aterritory's center isvisible
from another territory's center. It is boolean-valued and takes two arguments, each of which isa
territory. Its evaluation function is defined in terms of the design characteristic vi si bl e-f r omi

vi si bl e-center (x vy)

* evaluation function body (vi sible-from (center of x) (center of y))

Let's say that we want the center of the Living territory in the Tomek house to be visible from
the center of the Dining territory. We specify the design goal:

<goal : (visible-center Living fromDining) true>

Evaluating the goal, TAC finds that it is unsatisfied and returns:
goal satisfied? no
desired value: true
actual value: fal se
explanation object for actual value: <expl : (vi si bl e-center Living from Dining) false>

To propose repair suggestions for making the Living territory’s center visible from the Dining
territory’s center, TAC uses the goal expression’s explanation. Beginning at the root node of the
explanation, TAC regresses a desired value through the tree until it finds an explanation node con-
taining an expression whose undesired value it knows how to "fix". TAC knows how to fix an
expression if the design characteristic (or TAC-function) in the functional position has a fixer
associated withit.

For the goal above, TAC starts with the explanation node for the goal expression (vi si bl e-
center Living from Dining) shown at the top of Figure 5.3. It checks to see whether the
design characteristic vi si bl e-cent er has a fixer, and it doesn't find one. TAC then follows a
link viavi si bl e- cent er 's evaluation function body to the next explanation node, which contains
the expression (visi bl e-from (center of Living) (center of Dining)). Itfindsthat
vi si bl e-fromhas afixer. So it calls the fixer, which proposes value suggestions for fixing the
vi si bl e- f romexpression’s undesired value of f al se.

— T

(visible-center Living from Dining)
value: false

vi si bl e-center
fixer? NO

substitute eval uation function

— T

(visible-from (center of Living) (center of Dining)
value: false

vi si bl e-from
fixer? YES

r educe expressi on

Figure 5.3: Searching for fixersin the explanation
for (visi bl e-center Living from Dini ng) . Boxes represent explanation nodes.

Recall that fixers reason about how to get from one value to another value. In the above exam-
ple, there is not much reasoning in figuring out how to suggest getting from avalue of f al se to a
value of true: If the valueisfal se and the desired value ist r ue, suggest setting the value to
true. Later stepsin the suggestion proposal process will figure out how to “set” the value. As
we'll see, TAC doesn’t actually set the value. Instead, it suggests design modifications that it
expects will cause adesign characteristic to have the desired value.

Continuing with the example, TAC calls the fixer for vi si bl e- cent er , which proposes the
following val ue suggestion:

(set-value of (visible-from(center of Living) (center of Dining))
to true)

TAC then checks its knowledge base to see if it knows how to “set” a value for the design
characteristic vi si bl e-from i.e., it looks for setters associated with vi si bl e-from Setters are
design modification expressions, which consist of a design modification operator, also called a
modifier, followed by an argument that describes a design element or set of design elements. For
the design characteristic vi si bl e- f r om for example, TAC finds the following setters:

65

visible-from (x y)

* settersfor true
((renove bl ocki ng-el ements-btw x and vy)
(puncture bl ocking-el ements-btw x and y at sight-line-btw x and vy)
(screenify bl ocking-elenents-btw x and y at sight-line-btw x and y))

* settersfor false
((add bl ocki ng-el ement-btw x and y al ong sight-line-btw x and y)
(fill * any (open-edges-btw x y) along sight-line-btw x y))2

To make two things visible from one another, the setters recommend removing the design
elements that block the view (termed blocking elements), puncturing the blocking elements along

the line of sight, or screenifying the blocking elements along the line of sight.3

To propose suggestions to set the value of the expression

(visible-from (center of Living) (center of Dining)) totrue, TAC substitutes
(center of Living) and(center of Dining) forx andy inthe setters and proposes:

(or (renove bl ocking-elenents-btw (center of Living) and (center of Dining))
(puncture bl ocki ng-el enments-btw (center of Living) and (center of D ning)
at sight-line-btw centers)

(screenify bl ocking-el enents-btw (center of Living) and (center of Dining)
at sight-line-btw centers))

TAC then identifies the actual blocking elementsin the design (by mapping edges in the terri-
tory model to the design elements from which they are derived) and substitutes the elements into
the design suggestion expressions. The fireplace, called Fireplacel, blocks the view, so TAC
proposes removing it or puncturing it along the sight line between centers:

(or (renove Fireplacel)
(puncture Fireplacel at <edge: 111.06... >))4

Note that the last design suggestion, to screenify blocking elements, did not create a design
element suggestion. TAC checks the applicability of each suggested modification operator, and
finds that a fireplace can be removed or punctured, but not screenified. (See Appendix B for alist
of modification operators.)

2. TACuses“*” and “any” as syntactic sugar for iteration; “*” is aplaceholder for each value returned by the expression
following “any”.

3. To screenify isto replace part or al of an opaque design element with a screen.

4. A sight line between two pointsis represented as an edge between the two points. <edge: 111. 06. .. > isan abbre-
viated notation for an edge; 111. 06 represents the x coordinate of one of the edge's endpoints.

66

5.2.2 Increasers, Decreasers, and | nfluences

The design characteristic vi si bl e-fromis an example of a design characteristic for which we
can define modification methods for setting its value. What about design characteristics whose
value we don’t know how to set? We may know, for example, how to increase the value of
vi sual - openness between two territories, but not how to set vi sual - openness to a particular
value. We say that the design characteristic vi si bl e- f r omis partially invertibl e’ we say that the
design characteristic vi sual - openness is noninvertible.

Since the value of a noninvertible design characteristic cannot be set, TAC does not have
setters for such a characteristic. Instead, TAC has increasers and decreasers, which, like setters,
are design modification expressions consisting of a design modification operator and an argument
that reduces to adesign element or a set of design elements.

To illustrate how TAC proposes suggestions for noninvertible design characteristics, we return
tothevi sual | y- open example for the Tomek house.

Recall that the design characteristic vi sual | y- open is defined in terms of the design charac-

teristic vi sual - openness:

vi sual | y-open (x vy)
* evaluation function body (gt (visual -openness of x fromy) O0.6)

We'd like the Living territory to be visualy open from the Dining territory, so we specify the

goa: <goal: (visually-open Living from Dining) true>.

Evaluating the design goal, TAC finds that it is not satisfied and returns the explanation shown
in Figure 4.6 and again here.

5. We use the term “partialy invertible’ rather than “invertible” because modification operators may not have their
intended effects. See Section 2.3.1 for adiscussion of this issue.

67

> (visual |l y-open Living from Dining)
7 val ue:

1 substitute evaluation function body

~~ [(gt (visual -openness of Living from D ning) O0.86)
7 val ue:

! reduce expression

expl amati on

\ (vi sual - openness of Living from Di ning)

AN (gt 0.44 0.6) val ue: 0.44

N val ue:

V%

I reduce expression

- fal se

Figure5.4: Explanation for (vi sual | y-open Living from Dining).
Boxes represent explanation nodes; dotted lines show propagation of value.

To propose value suggestions for making the Living territory visually open from the Dining
territory, TAC starts at the root of the explanation and searches for afixer. It doesn’t find afixer for
the design characteristic vi sual | y- open, so it follows a link to the next explanation node and
checks the TAC-function gt .

TAC finds that gt hasafixer, caled gt - fi xer. TAC calls it and proposes increasing the value
of vi sual - openness until it is greater than 0.6:

(i ncrease-val ue of (visual-openness of Living from Dini ng)
until visual -openness greater than 0.6)

How did TAC propose this suggestion?
Thegt - fi xer knows four ways to fix expressions of the form (gt x y) so that they are true:

* setting x such that x is greater thany
e increasing x until x is greater thany
* setting y such that y isless than x
* decreasing y until y islessthan x

68

In this example, x is the explanation node whose expression is (vi sual - openness Li vi ng
Di ni ng) , andy isthe constant 0.6. Sincey isa constant, it cannot be changed, so the last two pos-
sible suggestions, setting or increasing its value, are not relevant. That leaves either setting the
vi sual - openness value or increasing it.

If TAC isto set, increase, or decrease the value of an expression, the design characteristic or
TAC-function in the functional position of the expression must have a setter, increaser, or
decreaser. In the case of visual openness, its value cannot be set directly. The value is calculated
by an opagque geometric procedure that figures out how much of aterritory is visible from a spec-
ified location. The procedure is not invertible: it cannot be reversed to figure out how the design
should be changed to realize a particular value. Hence, the design characteristic vi sual - open-
ness does not have setters, and TAC does not suggest setting the value.

One suggestion remains. increasing the vi sual - openness value. There are ways to increase
or decrease visua openness. Increasing the opacity of design elements between the two territories
in question is likely to decrease the visual openness; decreasing the opacity of the design elements
is likely to increase the visual openness. So we think of the opacity of intervening design
elements as influencing the value of visual openness. Since visual openness increases as opacity
of design elements decreases, we think of opacity as negatively influencing visual openness. In
more mathematical terms, a positive influence is present when a monotonically increasing func-
tion relates the two design characteristics; a negative influence is present with a monotonically
decreasing function.

To change the value of visual openness, we thus ook at ways to change the opacity of inter-
vening design elementts. To decrease the opacity of a design element we might remove that
element, puncture it, turn it into a screen, move it somewhere else, or make it transparent (e.g. out
of glass). To increase opacity, we might fill in a half-height wall to make it full height, turn an
open doorway into a screen, or replace awindow with awall.

TAC represents an influence as a direction and a design characteristic expression. For exam-
ple, TAC represents the negative influence of opacity on visual openness in the definition of the
design characteristic vi sual - openness:

vi sual - openness

e influences ((- (opacity-of-elements-btw x y)))

TAC represents the methods for increasing or decreasing opacity as increasers and decreasers,
respectively, on the design-characteristic opaci t y- of - el enent s- bt w.

69

opacity-of -el enents-btw (x y)

* decreasers ((renove bl ocki ng-el ements-btw x and y)
(puncture bl ocki ng-el ements-btw x and vy)
(screenify bl ocking-el enents-btw x and y))

* increasers ((fill * any (open-edges-btw x and y))
(screenify * any (open-edges-btw x and y)))

Getting back to the current example, TAC is left with one possible value suggestion for
making the Living territory visually open to the Dining territory: increasing the vi sual - open-
ness value until it is greater than 0.6. TAC doesn't find increasers on vi sual - openness S0 it fol-
lows an influence link to opaci ty- of - el enent s- bt w. Since the influence is in the negative
direction, to increase visual openness, TAC must decrease opacity, so it looks for decreasers and
finds those shown above. TAC then suggests:

(i ncrease-val ue of (visual-openness of Living from Dining)
until visual -openness greater than 0.6)

Following the influence link, it suggests:

(decrease-val ue of (opacity-of-el enents-btw Living and Di ni ng)
until visual -openness greater than 0.6)

After proposing this suggestion, TAC substitutes the current arguments, Li vi ng and Di ni ng,
into the decreasers for the design characteristic opaci t y- of - el ement s- bt w and proposes these
design suggestions:

(or (renove bl ocki ng-el ements-btw Living and Di ni ng)

(puncture bl ocki ng-el ement s-btw Li ving and Di ni ng)
(screenify bl ocking-el ements-btw Living and Di ni ng))

As in the previous example, TAC then proposes design element suggestions by substituting
the actual blocking elements into the design suggestion expressions. It thus proposes removing or
puncturing the existing fireplace, again pruning the inapplicable screenify suggestion:

(or (renove Fireplacel)
(puncture Firepl acel))

Summarizing, the goal <goal : (vi sual | y-open Living from Dining) true>isunsatis
fied because the vi sual - openness valueis 0.44, which is not greater than the required minimum
value of 0.6. TAC reasons that it must increase the value until it is greater than 0.6. To do this, it
must decrease the opacity of elements between Living and Dining territories. To decrease opacity,
it proposes removing, puncturing, or screenifying any elements that block the view between the
two territories. It finds that the fireplace blocks the view, so it proposes removing or puncturing
the fireplace; it prunes the screenify suggestion because fireplaces are not screenified.

70

5.3 Compound Suggestions

So far we've described simple suggestions, suggestions that contain a single design modification
operator. TAC also may propose compound suggestions, which are conjunctions of simple
suggestions.

In the vi sual - openness example above, TAC proposed either removing or puncturing the
fireplace. Had another design element been blocking the view, for example the staircase, TAC also
would have proposed:

(and (renove Fireplacel)
(renove Staircasel))

(and (puncture Firepl acel)
(puncture Staircasel))

Each of these suggestions is a compound suggestion and is carried out by performing the first
simple suggestion’s modification and creating a new design, then performing the second simple
suggestion’s modification on the new design. (Carrying out suggestions is discussed in Chapter
6.)

5.4 M ore Examples of Suggesting Repairs

The following examples further illustrate TAC's suggestion mechanism. The first example looks
at requesting a fireplace on an interior edge and illustrates TAC's use of existential quantification
and constraints in suggestions. The second example looks at proposing suggestions for a vector-
valued design characteristic and illustrates TAC's use of vector comparison functions. The third
example illustrates TAC's use of a partial order to compare and rank the values of vector-valued
design characteristics.

Example 1: on-i nteri or - edge
Figure 5.5 shows a territory model for another Frank LIoyd Wright Prairie house, the Horner
house, built in 1908.

71

Terrace
penoa
HIF D
i : inin
% cﬁt:.r' i ’
......... 1 S : I -
= e« T e e —-
] ; ::T I:
4 i Reception: | Kitc hen
i | H Ha” f é-
o ! tair
O L 1 = |
p] =y 1]
I 3
L H -t - Fireplacel
" 1 .,é Living
N LI
_______ o Terrace

Figure 5.5: Floorplan and territory model for Horner house main (first) floor.

A goa often satisfied in the Prairie houses is having a fireplace on an interior edge of the
Living territory:
<goal : (on-interior-edge fireplace Living) true>.

The design characteristic on-interior-edge takes an element type and a territory (or
design) and checks all the elements of the specified type in the territory (or design) to see if at
least one of them is on an interior edge. Its evaluation function body is defined in terms of the
TAC-function sone, which takes a predicate and a sequence of objects:

on-interior-edge (type territory)
* evaluation function body (sone el enment-on-interior-edge
(el enents-of -type type territory))

TAC finds the above goa unsatisfied for the Horner house and returns:
goal satisfied? no
desired value: true
actua value: fal se
explanation for actual value:
<expl:(on-interior-edge fireplace Living) false>

72

TAC examines the explanation and proposes two value suggestions: making the existing fire-
place be on an interior edge or increasing the number of fireplacesin the Living territory to two,
making sure that the new fireplace is on an interior edge.

(or (set-value of (elenment-on-interior-edge Fireplacel)
to true)

(i ncrease-val ue of (elenent-count fireplace in Living)
to 2 such that on-interior-edge is true))

TAC then trand ates the val ue suggestions into design suggestions, proposing to move the fire-
place to an interior edge or add a new fireplace to an interior edge:

(or (nove Fireplacel to any interior-edges-for Fireplacel)
(add fireplace to Living such that on-interior-edge))

Checking the design, TAC proposes moving the fireplace to particular edges or adding a new

fireplace to an interior edge.®

(or (nove Fireplacel to <edge: 15.75...>)
(rmove Fireplacel to <edge: 29.06...>)

(add fireplace to Living such that on-interior-edge))

How does TAC propose these suggestions? It starts with the explanation for the goal’s expres-
sion, (on-interior-edge fireplace Living),andregressesthe desired value of t r ue through
the tree, part of which is shown in Figure 5.6.

6. Theadd routineis opague, so this design suggestion is not expanded further to specify a particular location.

73

(on-interior-edge fireplace Living)
val ue: false

substitute evaluation function body

(sone el ement-on-interior-edge (el ements-of-type fireplace Living))
val ue: false

r educe expressi on

(sone el enment-on-interior-edge (Fireplacel))
value: false

Figure5.6: Part of explanation for (on-interior-edge fireplace Living).

From the root explanation node, TAC walks down the tree looking for afixer for the desired
valuet r ue. The design characteristic on-i nt eri or - edge doesn’t have one, so TAC followsalink
to the next explanation node, which represents substitution of on-i nt eri or - edge’s evaluation
function body into the goal expression. The TAC-function in the functional position of this node’'s
expression, sone, has afixer, namely some- fi xer . Thesone-fi xer knows that the TAC-function
some, which has the semantics of existential quantification, takes a boolean-valued design charac-
teristic and a set-valued design characteristic as arguments. It also knows that in order for an
expression of theform (sone x y) to betrue, the boolean-valued characteristic x must be true for
at least one of the members of the sety. So it suggests either fixing any of the current members of
y SO that x istrue, or fixing the set so that it contains a new member for which x is true. In this
example, x is the design characteristic el ement - on-i nteri or - edge, which checks whether a
particular design element is on an interior edge; and y is the set of fireplaces in the Living terri-
tory, represented by the expression (el enent s- of -t ype fireplace Living), which reducesto
the set containing Fireplacel. TAC calls the some- fi xer, which proposes the value suggestions
shown earlier: set thevalue of el enent -on-interior-edge totrue for Fireplacel; or increase
the count of fireplaces in the Living territory to two, making sure that the new fireplace is on an

74

interior edge by saving on- i nt eri or - edge as aconstraint in the suggestion.”

For the first value suggestion, TAC finds the setter for el enent -on-interi or - edge: for a
design element x, (nmove x to any (interior-edges-for x)). TAC substitutes the fireplace
for x, identifies relevant interior edges, and proposes moving the fireplace to those edges.

For the second value suggestion, TAC finds the increaser for el enent -t ype- count : given a
type x and aterritory y, (add x to y). It proposes adding afireplace to the Living territory and
includes the constraint that the new fireplace be on an interior edge. The constraint is passed on to
the add modifier which uses the information when locating a new fireplace in the design.

Thus, TAC proposes:

(or (nove Fireplacel to <edge: 15.75...>)
(rmove Fireplacel to <edge: 29.06...>)

(add fireplace to Living such that on-interior-edge))

Figure 5.7 summarizes how TAC'ssone- f i xer proposes the above suggestions.

(some el ement-on-interior-edge (el ements-of-type fireplace...))

A y

L T
! 1
1
some-fixer finds setter for element-on-interior-edge /
and suggests nove Fireplacel to an interior edge /

1

sonme-fi xer suggests adding to set of el enents-of-type
fireplace with add fireplace such that on-interior-edge

Figure5.7: How sone- fi xer proposes moving the fireplace or adding a new fireplace.

Two of the new designs that have afireplace on an interior edge are shown in Figure 5.8.

7. TAC knows that increasing the count, which is represented by the design characteristic el enent - count , increases
the size of the set returned by el enent s- of - t ype because the evaluation function body of el ement - count is
(nunber - of (el ements-of-type ...)).SeeAppendix B for definitions of design characteristics. Constraints are
represented as expressionsin a constraint specification language, which is the same as the goal specification language.

75

H

Figure 5.8: Two new Horner designs with afireplace on an interior edge.

Example 2: per cei ved- mai n- ent ryness

So far, we've seen how TAC proposes suggestions for setting boolean-valued design characteris-
tics, and for increasing or decreasing quantitative-valued design characteristics. How does TAC
propose suggestions for vector-valued design characteristics?

Recall that the design characteristic per cei ved- mai n-entryness gives a measure of the
perception of an exterior door as a main entry. Earlier we noted several factors that might influ-
ence avisitor’'s choice of door: visibility and the presence of built paths to the door from the usual
approach point, distance and straightness of path between the door and the usual approach point,
portion of the door that iswood, and the type of hinge on the door. The first two of these we repre-
sented as necessary conditions on per cei ved- mai n- ent r yness—they must be true for an
exterior door to have a value. The second two we represented as components of physi cal -
accessi bi | i ty. Thelast two we represented as components of f or mal i ty- of -entry.

Let's specify a goal regarding the perceived main entry for the Chatham house, a house in

Arlington, Massachusetts.® A fl oorplan for the first floor is shown in Figure 5.5. Also shown are
two possible approaches to the house: one to the front door and one to the side door.

8. The Chatham house was in the conceptua design stage of remodeling when this research was being carried out.
Comparisons of TAC's design suggestions and the architects' suggestions are discussed in Section 8.1.

76

Kit chen Bath Playroom
/1 side door |
i I
) _
a
/ Porch .
/ 1
)/ Living — Dining back door 7
, 1
/ E— _
/) [front door ! —
/ ¢ t
, A
/ |
o. N —

Figure 5.9: The Chatham house and approach paths to exterior doors.
The usual approach point ismarked by O.

The house is situated on a corner lot, and the usual point from which it is approached is the

corner between the two exterior doors.? Both doors are visible and accessible from the corner, so
we assume a visitor will approach the door that he perceives as the main entry. The back door is
not visible. If we want avisitor to approach the front door rather than the side door, we specify the
godl:

<goal : (nore-of (perceived-nain-entryness of Front-door)
t han (perceived-nmain-entryness of Side-door)) true>

The per cei ved- mai n-ent ryness values, representing distance between the door and the
usual approach point (in feet), change in direction between the door and the usual approach point
(in degrees), portion of door that iswood, and door hinge type, are:

front door: ((23.95 117.24) (1.0 hinged))

sidedoor: ((22.03 48.94) (0.5 hinged)).

To determine whether the front door’s value is more than the side door’s, TAC uses the vector
comparison function nor e- of . In the case of per cei ved- mai n-ent ryness, the exterior door
that ismore easily accessible from the usual approach (closer and with a straighter path) and more
formal (more solid, i.e. less glass, and hinged) has a higher per cei ved- mai n- ent ryness value.

9. A visitor walks up the driveway either to steps that lead to the side door or to awalk that leads to the front door.

77

TAC figures out that a higher per cei ved- mai n-ent ryness value means smaller distance and

change in direction values and larger solidity and hinge-type values.1° To explain TAC's reason-
ing, we return to the idea of influences introduced earlier.

Recall that influences represent relationships between design characteristics. A negative influ-
ence between two design characteristics implies that as one increases, the other decreases, and
vice versa. Similarly, a positive influence implies that as one increases (or decreases), so does the
other. In the case of avector-valued design characteristic the components can be considered influ-
ences. An exterior door’s per cei ved- mai n- ent r yness value increases, for example, as the door
becomes more physically accessible and more formal. We represent knowledge such as this by
extending component information for vector-valued design characteristics to include influence
information. TAC then is able to figure out the behavior of the nor e- of function for vector-valued
design characteristics by checking the directions of influence for the characteristics components.
Thus, influence information serves to inform both the nore- of comparison function and the
suggestion proposal mechanism.

Figure 5.10 summarizes the directions of influence for per cei ved- mai n- ent ryness and its
components. (See Appendix B for details of the design characteristic definitions.)

(percei ved-mai n-entryness of x)

N

(physical -accessibility of x (formality-of-entry x)
from usual - appr oach)

(di stance-btw x & usual - approach)

(solidity of x) (degree-of-hinge x)
(change-in-direction-btw x & usual - approach)

Figure 5.10: Directions of influence for per cei ved- mai n- ent r yness.
Getting back to the Chatham example, TAC compares the percei ved- mai n-entryness

values for the front door and the side door and finds that the front door does not have a higher
value: the front door isfurther from the usual approach point and reached viaamore crooked path.

10. Asmentioned in Section 3.2.2, only one component must be strictly larger (or smaller); the rest may be greater than
(less than) or equal.

78

TAC proposes increasing the value of perceived-nai n-entryness for the front door,
decreasing the value of percei ved- mai n-entryness for the side door, or removing the side
door’sper cei ved- mai n- ent ryness value (by setting the value to the symbol no- val ue):

(or (increase-value of (perceived-nain-entryness of Front-door)
until (nore-of (perceived-nain-entryness of Front-door)
than (perceived-nmai n-entryness of Side-door)))
(decrease-val ue of (perceived-nain-entryness of Side-door)
until (less-of (perceived-nmain-entryness of Side-door)
than (perceived-nai n-entryness of Front-door)))
(set-val ue of (perceived-nmain-entryness of Side-door)
to no-val ue))

How did TAC propose these suggestions? The first two suggestions look very much like those
proposed by the gt - fi xer introduced earlier. For (nore-of x than y) to have avaueof true,
TAC suggests increasing x until x is more thany, or decreasing y until y isless than x. The third
suggestion above is anew idea: for the expression (nore-of x than y) tohaveavaueof true,
set the value of y to the symbol no- val ue. Because any value is more than no- val ue, the expres-
sion will have the desired value of t r ue for any value x.

TAC follows influence links to determine how to increase or decrease per cei ved- mai n-
ent ryness component values, and follows necessary condition links to determine how to set a

per cei ved- mai n- ent ryness value to no-val ue.!! It then proposes value suggestions, saving a
stopping condition (unti | ...) in each suggestion:

(or ;; increase pmel2 of Front-door until nore than that of Side-door
(and decrease di stance between Front-door and usual - approach
until (pme of Front-door) is nmore than (pne of Side-door)
decrease change in direction between Front-door and usual - approach
until (pme of Front-door) is nore than (pne of Side-door))
;; decrease pne for Side-door until less than that of Front-door
(and increase distance between Side-door and usual - approach
until (pme of Side-door) is less than (pme of Front-door)
i ncrease change in direction between Side-door and usual - approach
until (prme of Side-door) is less than (pnme of Front-door))
;; make pnme of Side-door be no-val ue
(or make Side-door not an exterior door
renove exterior paths between Side-door and usual - approach
nmake Si de-door not visible from usual -approach))

11. Recall that the necessary conditions stipulate that the door must have a built exterior path to it from the usua
approach point and that it must be visible from the usual approach point. Also recall that the design characteristic’'s
domain stipulates an implicit necessary condition: only exterior doors have perceived-main-entryness values.

12. “pme” stands for perceived-main-entryness.

79

Checking its knowledge base for ways to accomplish the above suggestions, and checking the
design for edges that might block the view of the side door, TAC proposes the suggestions shown
below. (Stopping conditions are the same as those shown above.)

(or ;; increase prme of Front-door until nore than that of Side-door
(and nove Front-door unti
maybe nove exterior territories for Front-door
decrease change in direction between Front-door and usual - approach

until
maybe nmove exterior access territories for Front-door)
decrease pne for Side-door until |ess than that of Front-door

(and nove Side-door unti

maybe nove exterior territories for Side-door

i ncrease change in direction between Side-door and usual - approach

until
maybe nove exterior access territories for Side-door)
make pre of Side-door be no-val ue

(and repl ace Side-door with w ndow

renove exterior territories and paths for Side-door)
(and repl ace Side-door with wall

renove exterior territories and paths for Side-door)
renmove exterior paths between Side-door and usual approach
fill <edge: 6.00 20.44...> along <edge: 10.11...>
fill <edge: 6.00 22.89...> along <edge: 10.11...>)

Two things to note: First, thefi || suggestions are intended to make the side door not visible
from the usual approach point by filling open edges, e.g. by replacing them with awall. Second,
the compound suggestions each have additional simple suggestions that represent constraints on
design modification operators. In this example, moving an exterior door may result in also moving
any exterior territories associated with it (e.g. a porch and steps). Decreasing change in direction
along a path resultsin removing or moving a design element that blocks a more direct path, which
may necessitate also changing other connected territories. Removing the railing and entering a
different side of a porch, for example, necessitates moving porch steps to the new entry side. See
design Chatham#1 in Figure 5.11 for an example. Similarly, replacing an exterior door with a
window necessitates also removing any exterior territories associated with the former door (e.g.
porch, steps, walks). See design Chatham#2 in Figure 5.11.

In each of the two designs shown below, the front door has a higher per cei ved- mai n-entry-
ness value than the side door. In Chatham#1, shown on the left, the front door and porch have
been moved closer to the usual approach point, and the approach path has been straightened by
entering the porch from the side rather than the front; the associated porch steps have been moved
to accommodate the new entry side. In Chatham#2, shown on the right, the front door has a higher
per cei ved- mai n-ent ryness value because the side door is no longer an entry; it has been
replaced by awindow. Additional designsthat TAC creates are shown in Section 8.1.

80

[———
M
' |
. |
1 | — L —
AN U SN SN E— S SN L—
Ll
et g
Ll 1
Ll 1
Ll 1
: 1 1 : ! Ll
] —_—]
- [R
d] o d ' I‘ “r=
I SRR I e S anl
Lecccccccccccca= . Lecccccccccccccccc= o
CHATHANK 1 CHATHANK2
HOVE REPLACE
Front-d S1de-door MITH WINDOW

Qor
HAYBE-HOVE-EXTERIOR-TERRITORIES REMOVE-EXTERIOR-TERRITORIES-AND-PATHS

Front=door . -
DECREASE-CHANGE-IN-DIRECT ION >1de=door
Front-doof USUAL-APPROACH

HAYBE-MOVE-EXT ERI OR-RCCESS

Front-=door

Figure5.11: New Chatham designs with Front door having more perceived-main-entryness.

Example 3: one-perceived-main-entry

Let’s now say that we're interested in having one perceived main entry, which we'll define as
having one exterior door whose per cei ved- mai n- ent r yness value is more than all others. How
does TAC either find the single object with the highest value, or propose suggestions for making a
single object have a highest value? The key idea is to use a partial order: TAC puts all exterior
doors into a partial order based on their per cei ved- mai n- ent r yness values, comparing each
per cei ved- mai n-entryness value against all others using the vector comparison function
nor e- of .

To have one perceived main entry means to have a single object at the top of the partia order.
If there is no single object at the top, TAC proposes suggestions for moving each object up in the
partial order and suggestions for moving al others down, so that there is a top object.

Two design characteristics, perceived-main-entry and one- perceived-main-entry,
represent the notion of having a single perceived main entry. The design characteristic
per cei ved- mai n- ent ry takes adesign as an argument and returns an exterior door or the symbol
no- val ue. Its evaluation function is defined in terms of the TAC-functions or der ed- el enent s
andt op- of :

perceived-main-entry (x)

* evaluation function body
(top-of (ordered-elenents x perceived-nmai n-entryness nore-of)

81

The TAC-function or der ed- el enent s takes a design, a design characteristic to be used for
comparison, and a comparison function. It collects design elements whose type matches the spec-
ified design characteristic's domain and constructs a partial order of those elements using the
supplied comparison function. The TAC-function t op- of takes a partial order and returns the top
object or no- val ue.

The design characteristic one- per cei ved- mai n-entry takes a design as an argument and
returnst r ue if the design has aper cei ved- mai n-entry, f al se otherwise:

one- percei ved-mai n-entry

» evaluation functionbody (i f is-a-value (perceived-main-entry x)
true
el se fal se)

If we're interested in having one perceived main entry for the Chatham house, we specify a
goa with the expression (one- per cei ved- mai n-entry Chat han) and avalue of t r ue:

<goal : (one-perceived-min-entry Chat han) true>

TAC finds that the goal is not satisfied and returns an explanation. Examining the per cei ved-
mai n- ent ryness partial order in the explanation, TAC finds no top, so it proposes making either
door the top of the partial order:

(or make Front-door top
nmake Si de-door top)

TAC knows that to make an object be at the top of a partial order, it must make the object’s
value dominate all other values, and it uses the nor e- of function’s fixer to accomplish this. It
proposes increasing or decreasing per cei ved- mai n- ent r yness values or setting a door’s value
to no- val ue, asin Example 2.

TAC proposes:

(or ;; make Front-door top

i ncrease Front-door pme val ue

set Side-door pme val ue to no-val ue
decrease Side-door pne val ue

;; nmake Side-door top

i ncrease Side-door pne val ue

set Front-door pne val ue to no-val ue
decrease Front-door pne val ue)

TAC then proposes increasing, decreasing, or setting particular per cei ved- mai n- ent ryness
component and necessary condition values:

82

(or

(or

;; increase Front-door pme until nore than Side-door’s
(and decrease distance between Front-door and usual - approach
decrease change in direction between Front-door and usual - approach)
;; set Side-door pne to no-val ue
(or nmake Side-door not an exterior door
renove exterior paths between Side-door and usual - approach
make Side-door not visible from usual -approach)
;; decrease Side-door pne until less than Front-door’s
(and increase distance between Side-door and usual - approach
i ncrease change in direction between Side-door and usual - approach)
;; increase Side-door pne until nore than Front-door’s
increase solidity of Side-door to 1.0
;; set Front-door pne to no-val ue
(or make Front-door not an exterior door
renove exterior paths between Front-door and usual - approach
make Front-door not visible from usual -approach)
;; decrease Front-door pne until |less than Side-door’s
decrease solidity of front door to 0.5)

TAC then proposes the following 14 specific suggestions, similar to those in Example 2:

;; increase Front-door pne until nore than Side-door’s
(and nove Front-door unti

maybe nove exterior territories for Front-door

decrease change in direction between Front-door and usual - approach

unti |

maybe nove exterior access territories for Front-door)
;; set Side-door pne to no-val ue
(and repl ace Side-door with wi ndow

renove exterior territories and paths for Side-door)
(and repl ace Side-door with wal

renove exterior territories and paths for Side-door)
renove exterior paths between Side-door and usual approach
fill <edge: 6.00 20.44...> along <edge: 10.11...>
fill <edge: 6.00 22.89...> along <edge: 10.11...>
;; decrease Side-door pne until |ess than Front-door’s
(and nove Side-door unti

maybe nove exterior territories for Side-door

i ncrease change in direction between Side-door and usual - approach

unti |

maybe nove exterior access territories for Side-door)
;; increase Side-door pne until nore than Front-door’s
increase solidity of Side-door to 1.0
;; set Front-door pme to no-val ue
(and repl ace Front-door with w ndow

renove exterior territories and paths for Front-door)
(and repl ace Front-door with wall

renove exterior territories and paths for Front-door)
renmove exterior paths between Front-door and usual - approach
fill <edge: 10.11 30.89...> along <edge: 25.00...>

83

fill <edge: 22.33 30.89...> along <edge: 25.00...>
decrease Front-door pne until |ess than Side-door’s
decrease solidity of front door to 0.5)

Designs created by carrying out these suggestions are shown in Section 8.1 and Appendix G.

Chapter 6

Performing Repairs

After proposing repair suggestions for a design that does not satisfy desired goals, TAC performs
repairs by carrying out the suggestions. The result is a set of new designs. Carrying out sugges-
tions is straightforward, but involves details having to do with the automatic derivation of territo-
ries from design elements.

Creating a New Design

Carrying out a suggestion for a design is a four step process. Make a copy of the design,
perform the proposed modification on the new design, update the circulation model, update the
territory model.

A modification operator may affect all models that represent a design. It changes the design
element model, for example, by removing, moving, or puncturing a particular design element.
Since the edges in an edge model are derived from the design elements, each of these operators
also changes the edge model. The circulation model is changed since it is derived from the edge
model. It must be updated by creating nodes and arcs for new doorways, and by removing arcs for
doorways (and their corresponding nodes) that have been removed. The territory model may or
may not be changed. If a design element’s edges help form a territory boundary and the design
element is moved or removed, then the territory’s boundary may change. If as aresult of changes,
the territory is no longer well-formed, by which we mean bounded by a connected set of edges,
then it is removed. TAC then attempts to redefine the territory using both old and new edges. An

example of TAC's territory redefinition procedure is shown later in this section.!

| dentity I ssues

Repair suggestions are intended, of course, to cause an unsatisfied goal to become satisfied.
After carrying out a suggestion, TAC checks the resulting new design to see if the unsatisfied goal
is now satisfied. Given a goa specifying that the Living territory in the Tomek house be visually
open from the Dining territory, for example, TAC suggests removing the fireplace, creates a new
design with the fireplace removed, then checks whether the Living territory in the new design is

1. Many computational geometry routines depend on having closed polygons, hence our insistence on well-formedness.
TAC redefines territories and defines new territories by walking through all edgesin the new edge model, identifying all
closed polygons not already part of defined territories.

85

visually open from the Dining territory. In this example, checking for goal satisfaction is straight-
forward because the two design objects in the goal—the Living and Dining territories—have not
changed. Even though the fireplace helped bound the Living territory in the previous design,
removing it does not change the territory’s bounds: the fireplace and stair shared an edge, so that
edge, now belonging only to the stair, still bounds the territory. Figure 6.1 shows the unchanged
territory boundaries and the results of TAC's vi sual - openness caculations for the original
design and the new design.

- Living !_
i :
—
. |
| | .
L*'.T'_"i Living !_
% SltaurI :
Dining ¥ k- —
£ 1 |

Figure 6.1: Tomek territory models: with fireplace and without.
Shaded region isvisible; each * isaviewpoint. Vi sual - openness of Living
from Dining in Tomek (top model) is 0.44; with fireplace removed, it is 1.0
(assuming the edge shared by fireplace and stair is replaced by a stair railing).

What happens if a new design is modified in such away that one of the design objects speci-
fied in the intended goal no longer exists? How can the goal be evaluated in the new design? This
problem is a difficult and important one and has been encountered in other evaluation and repair
systems in which objects can appear and disappear (e.g. Simmons, 1988). We did not study the
problem extensively, but rather mimicked what human designers do in such situations: map
objectsin anew design to objectsin a previous design using an “approximately the same” test. An
exampleillustrates.

86

Consider the Chatham house introduced earlier, and imagine that we want the Living territory
to be visually open from the Dining territory. TAC finds that the Living territory is not visually
open from the Dining territory. Results of the visual openness calculation are shown in Figure 6.2.

||

1

Living

i

=

=
Dining

Figure 6.2: Territory model for Chatham house, first floor.
Region of Living territory visible from Dining is shown shaded;
vi sual - openness valueis 0.55.

One of TAC's suggestions for making the Living territory visually open from the Dining isto
rotate the stair. Figure 6.3 shows a new territory model with the stair rotated and the region of the
Living territory now visible from the Dining territory.

=
I
|
I
| e L T T —
|
I :-. _______ I |
== . T .
Lo-- — -
. ' '
Stair 1+ = -
e I | b
Livin 1 \ %Dini -
g ! | 3'EDlnlng F
R , % ==

Figure 6.3: New Chatham design with stair rotated.
vi sual - openness value of Living from Diningis0.94.

While the Living territory in the new design is visually open from the Dining territory, the
territory bounds have changed (Figure 6.4), and the original territories for which the goal was
specified no longer exist. The origina territories were removed because they were not well-
formed after stair rotation. TAC was able to create new territories based on the new stair location
and map them to the original territories.? It then eval uated the goal with respect to the new territo-
ries. In other cases, the physical form may be so changed that new territories cannot be mapped to
old ones. In such a situation, it is not possible to check for goal satisfaction, and TAC signals this
to the designer.

Stair

Living Dining

Stair
Living Dining

Figure 6.4: Bounds for Living and Dining territories.
Top shows user-defined territoriesin original design;
bottom shows TAC-defined territories in new design.

2. The territories were partially bounded by edges of the stair and edges projected from the stair. Rotation of the stair
created new projected edges and changed edge locations in such away that the original territories were no longer well-
formed (i.e. closed polygons). TAC defined new territories by identifying all closed polygons in the new design. It then
mapped new territories to old ones by finding unions of polygons that most closely matched original territory bounds.
See Appendix F for more details about edge and territory model modifications.

88

Bookkeeping I ssues

To ssimplify keeping track of edges and their derivations, and to ensure that no edges overlap,
projected edges derived from the design element to be modified are removed prior to the modifi-
cation. (Recall that projected edges do not correspond to design elements, but rather are exten-
sions of one or more edges derived from design elements. See Section 3.1 for examples.) The
modification is then carried out, and new projected edges are added back for the modified design
element. Some of these new projected edges may help form boundaries for new territories. In the
above example, the projected edges for the stair were removed prior to rotation. Figure 6.5 below
shows the overlapping edges that result if projected edges are not removed prior to rotating the
stair. See Appendix F for more details about removing projected edges.

Figure 6.5: Rotating a stair without removing projected edges.

To simplify an edge model after a modification has been carried out, TAC attempts to decrease

the number of edges by combining neighboring edges into single edges where possibl e3If edges
are not combined, the edge models for designs that are several modifications from an original
design run the risk of containing many small edges. with each new modification, new edges are
added, each of which may split existing edges (since edges do not overlap). In amodel with many
small edges, tests for sameness among designs are less efficient and more difficult, and the
number of suggestions needlessly increases when a modifier is dependent on particular edge loca
tions. Combining edges where possible helps guard against this situation.

3. Two edges can be combined if they have the same derivation information and their shared endpoint has only the two
edges.

89

90

Chapter 7

Control Structure

So far we've seen how TAC represents a design problem as a design and a set of design goals,
evaluates design goals, suggests repairs, and carries out the repairs to create new designs. This
chapter describes TAC's control structure—how it puts these steps together to perform its depen-
dency-directed redesign, searching a design space for solutions to a design problem by iterating
through an evaluate and repair cycle guided by knowledge of which goals need satisfying and how
to satisfy them.

This chapter describes three control structures, starting with the one TAC uses, then discusses
the issues of goal order and termination, and presents the results of a series of experiments that
explored TAC's behavior under different circumstances.

7.1 Overview

Asdiscussed in Chapter 2, simultaneously satisfying multiple goals can be very difficult. It is
possible, however, to generate an intermediate design that satisfies a subset of the goals, then
repair that design to satisfy remaining goals. This approach works because designs generated in
this way are often useful intermediate points from which further progress is possible. We experi-
mented with three different control structures for solving design problems in this manner. The
control structures share the following characteristics:

* They search for minimal solutions, i.e. solutions that are the fewest number of modifica-

tion steps from the original design.

» They reduce search by searching the repair suggestion space before creating new
designs. They differ in how suggestions are generated and pruned.

» They create new designs by carrying out repair suggestions. They then iterate through
evaluation and repair cycles for each new design, stopping when the design is a solution,
when the intended goal for the design is not satisfied,! when they have seen the design
before, or when they have reached an iteration limit. When a particular design satisfies
some but not all goals, they repair the design, i.e. enter a new evaluation and repair cycle
with that design as the starting point.

1. Recall that a suggestion, and by extension the designs generated by carrying out a suggestion, have an intended goal:
the unsatisfied goal expected to be satisfied after carrying out the suggestion.

91

TAC uses what we call the sequential-with-lookahead control structure, which focuses on a
single goal at atime, checking for interactions between suggestions for that goal and suggestions
for al other goals. It creates new designs by carrying out each surviving suggestion. These new
designs then are used as starting points for working on the next goal, and so on. After the last goal
has been checked, TAC attempts to repair any designs that do not satisfy all goals.

The other two control structures were designed to test the effectiveness of this control struc-
ture’'s two components. sequential design generation and lookahead suggestion proposal. The
sequential control structure focuses on sequential design generation: it proposes suggestions and
creates new designs sequentially asingle goal at atime. It does no lookahead, so it does not check
suggestions for interactions with other goals. Instead, it creates new designs for all suggestions.
The concurrent control structure focuses on the lookahead mechanism: it uses a similar mecha
nism to check for interactions prior to creating designs. In the context of the original design, it
proposes suggestions for al goals at the same time, then checks those suggestions for interaction.
In contrast, the sequential-with-lookahead and sequential control structures propose suggestions
for one goal at atimein the context of a new design. The sequential-with-lookahead control struc-
ture proved to combine benefits and avoids costs of the other two control structures.

The following sections describe the control structures, starting with a discussion of the impor-
tant issue of goal interaction.

7.2 Goal Interaction: Conflict and Synergy

A key aspect of TAC'sintelligenceisits ability to search the suggestion space prior to creating
new designs: TAC avoids generating designs it knows won't satisfy the goals, and it seeks out
designs that accomplish the goals efficiently. To limit its design generation, TAC looks for poten-
tial interaction between goals: It looks for conflict, situations in which satisfying a new goal will
cause an aready satisfied goal to become unsatisfied (or “clobbered”); and synergy, situations in
which a single modification will result in more than one unsatisfied goal becoming satisfied. By
spotting conflict or synergy, TAC avoids unnecessary design modification steps. We've identified
three kinds of conflict and synergy: obvious, predictable, and unpredictable. TAC handles the first
two of these: obvious interactions are detected by comparing goals, predictable interactions are
detected by comparing suggestions for goals. Unpredictable interactions, by their very nature,
cannot be detected ahead of time.

92

Obvious I nteraction

Conflict and synergy sometimes can be spotted at the goal level by comparing goal expres-
sions and desired values. TAC always checks first for this kind of interaction, which we've called
obvious.

Consider two goals, one that specifies aLiving territory visually open from a Dining territory,
and one that specifies a Living territory not visually open from a Dining territory:
<goal : (visually-open Living from D ning) true>
<goal : (visually-open Living from D ning) false>
It's easy to see that these two goals conflict: the expressions are the same and the desired values
are incompatible. We've called this kind of interaction obvious conflict.

Similarly, consider a goal that specifies a vi sual - openness value greater than 0.6 and one
that specifiesavi sual - openness value greater than 0.5:
<goal : (gt (visual -openness Living fromDining) 0.6) true>
<goal : (gt (visual-openness Living fromD ning) 0.5) true>
It's easy to see that satisfying the first goal will satisfy the second goal. We've called this kind of
interaction obvious synergy.

Predictable I nter action

Most of the time, however, interaction cannot be detected at the goa level because goal
expressions differ more than those above. So TAC also checks for interaction at the suggestion
level: It looks for conflict and synergy between suggestions for goals. Interactions detected at the
suggestion level are called predictable.

Consider two goals for the Tomek house, one that specifies that the Living territory be visually
open from the Dining territory and one that specifies one fireplace in the Living territory:2
<goal : (visually-open Living from D ning) true>
<goal : (fireplace-count in Living) 1>
It's not easy to tell whether there isinteraction between these goals. If TAC looks at the following
suggestions for the each of these goals, however, it can detect a conflict.

To satisfy thevi sual | y- open goal, TAC proposes to remove or puncture the fireplace (which
islocated in the Living territory and blocks the view between Living and Dining):

(or (renove Fireplacel)
(puncture Firepl acel))

2. For readability, the el ement - count characteristic, mentioned in Section 5.4, has been replaced by fi r epl ace-
count . Theexpression (fi repl ace-count in Living) isequivalentto (el ement - count fireplace Living).

93

To keep thefirepl ace- count goal satisfied, TAC suggests keeping the count at 1.

(keep-val ue of (fireplace-count in Living) 1)

The first suggestion above, to remove the fireplace, would reduce the number of fireplacesin
the Living territory to zero, which conflicts with the desire to keep onefireplace there. TAC isable
to prune that suggestion and avoid creating a design that cannot achieve both goals. We call this
situation predictable conflict. Note that there is a remaining suggestion for the vi sual | y- open
goal, namely to puncture the fireplace, so the goals themselves are not in conflict.

Just as conflict can be predictable, so can synergy. Consider two other goals for the Tomek
house, one specifying that the Living territory be visually open from the Dining territory, and one
specifying that the center of the Living territory be visible from the center of the Dining territory:
<goal : (visually-open Living from Dining) true>
<goal : (visible-center Living fromDining>) true>

It's not easy to spot interaction between these two goals, so TAC checks for interaction at the
suggestion level.

To satisfy thevi sual | y- open goal, TAC suggests removing or puncturing the fireplace:

(or (renove Fireplacel)

(puncture Firepl acel))

To satisfy the vi si bl e-center goal, TAC suggests removing the fireplace or puncturing it
along the line of sight between territory centers:

(or (renove Fireplacel)

(puncture Fireplacel at <edge: 111.07...>))3

Removing the fireplace may satisfy both goals since this suggestion is proposed for both
goals. We've called this situation predictable synergy. Puncturing the fireplace along the line of
sight may also satisfy both goals and is a more subtle example of predictable synergy. TAC
proposes puncturing the fireplace to make the Living territory visually open. It also proposes
puncturing the fireplace to make the center of the Living territory visible, but specifies a particular
location for the puncture. The second suggestion subsumes the first (by being more specific) and
therefore may satisfy both goals.

Unpredictable Interaction

As discussed earlier, it's very difficult in this domain to predict al effects or interactions of
maodification operators. As aresult, it’s not always possible to predict conflict or synergy. Carrying
out a modification and checking the resulting new design for goal satisfaction, however, may
reveal aconflict or synergy. We've called this situation unpredictable interaction.

3. Recdll that <edge: 111.06. .. > represents the sight line between centers.

94

Consider the two goals:*
<goal : (fireplace-on-interior-edge of Living) true>
<goal : (visually-open Living from D ning) true>
and a suggestion for satisfying the first goal:

(rmove Fireplacel to <edge 14.11...>).

It's difficult to predict how moving the fireplace will affect the visual openness. Unlike the
previous example, which relied on a simple counting routine to detect conflict, this example
involves a more complicated computational geometry routine that requires a specific arrangement
of design elements. In order to calculate a visual openness value, the design elements must be in
their designated locations. In this example, rather than trying to predict how moving the fireplace
to a new location will affect visual openness, it's easier to move the fireplace, then check the
resulting new design. It turns out that moving the fireplace to the interior edge in this example
blocks the view and decreases the visual openness between the Living and Dining territories,
thereby conflicting with the goal of having the Living territory visually open from the Dining
territory. This situation exhibits an unpredictable conflict.

Synergy can be unpredictable as well. Consider goals for afireplace on an exterior edge and a
visually open Living territory:
<goal : (fireplace-on-exterior-edge of Living) true>
<goal : (visually-open Living fromDi ning) true>
and a suggestion for satisfying the fireplace location goal:
(rmove Fireplacel to <edge 101.33...>).

The suggestion, which moves the fireplace from between the two territories to an exterior
edge, may unblock the view between the Living and Dining territories, thereby causing the Living
territory to be visually open from the Dining territory. This suggestion satisfies the first goal, as
intended, but may also inadvertently satisfy the second goal. We've called this situation unpredict-
able synergy. As with unpredictable conflict, TAC does not attempt to predict this interaction
because carrying out the suggestion and checking the resulting design is easier.

A final note: TAC does not resolve conflicts between goals. When no solutions are found for a
design problem, TAC stops. As mentioned Chapter 10, later versions of TAC could try standard
conflict resolution techniques, e.g. modifying goal parameters or leaving conflicting goals out of
the goal set.

4. For readability, theon-i nteri or - edge design characteristic, discussed in Section 5.4, has been replaced by f i r e-
pl ace-on-interior-edge. Theexpression (firepl ace-on-interior-edge in Living) isequivaent to
(on-interior-edge fireplace Living).

95

7.3 The Control Structures

7.3.1 Sequential-with-L ookahead

In the sequential-with-lookahead control structure, TAC proposes repair suggestions for a
single goal at a time, refines those suggestions by checking them for interactions with all other
goals, then creates new designs for the refined suggestions. It prunes some of the new designs
created for one goal (e.g. designs that don’t satisfy the goal), then uses the remaining designs as
starting points for satisfying the next goal, and so on. After TAC has made one pass through the
goals, it attempts to repair any designs that do not satisfy al goals. for each design, it starts a new
cycle of proposing, refining, and carrying out repair suggestions.

TAC controlsits search for design solutions by using alookahead mechanism to spot potential
interactions among repair suggestions prior to creating new designs. It checksfirst for interactions
at the highest level of abstraction, among value suggestions, which propose satisfying a goal by
changing a design characteristic’s value (e.g. by increasing) or keeping a value the same. It then
checksfor interactions among design suggestions, which propose design modifications in terms of
categories of design elements. Finally, TAC checks for interactions at the lowest level of abstrac-
tion, among design element suggestions, which propose design modifications in terms of particu-
lar design elements.

The sequential-with-lookahead control structure is summarized in Figure 7.1; the lookahead
mechanism is summarized in Figure 7.2. A description and examples of how the control structure
and lookahead mechanism work follow the figures.

A final note: TAC rarely detected interactions at the design suggestion level, so the discussion
that follows in this and subsequent sections focuses on value and design element suggestions. The
figures also reflect this focus.

96

Given design Dg, goals G =G4 UGS = {g"; g% gY5 ...} U {g%; 95, ¢%;... }.

@ Starting with D, propose suggestions s;
for g1 and create new designs. Check

D
0 designs for uniqueness, satisfied g1,
satisfied GY, satisfied G. Save as
gY4q S1 S, S3 solutions those that satisfy G, save for

N repair those that sati sfy GY; discard th ose
that are not unique or do not sat isfy gY .

Dy Do
discard
gu2 S4 /s Sg S7 Sg
@ Starti ng with new designs Dy, D> that
S ! have not be ensaved or discarded, propose

Dy Dg P{ Dy Dg suggestionsfor gu2 and create new
discard solution designs. Save or discard designs as in
step above (checking gU2 satis faction

gY3 S9 10 |S11
instead of g!1).

Do | Dio |P11

solution l/ save for repair

@ For each of remaining gYj, continue
proposing suggestions, creating
and checking new designs. With last

goal guq, save designs for repair that
u sati sify gUq (rather than GY).
9q s s
n-1 n
N\ 4
Dk | D1 [Pk+2 DX |Pn
solution discard save for repair discard save for repair

@ Aft ernew designs have beencreated for last goal guq and checked as above,
repair designs that were saved for repair.

@ After all designs have been repaired, return solutions.

Figure 7.1: Sequential control structure; lookahead is used to propose suggestionsin step 1.

97

Given design D, goalsG=GUUG® = {g!4, gY, gY5 ... } U {g5; g5, g5;...}, and goal g{.
D, g4,

1. Propose value vY, —suggestions for gU: ﬂ\
u. u

2. Propose value suggestions VXj,k for each goalin G- gY¥;={gS; g5, gy, gl5 ..}

(Note: ij k are keep-value suggestions; vUj k are increase-, decrease-, or

set-value suggestions.)

AREN

s s
VP11 Vi q Yy g vlg g e

3. For each value suggestion vUi n
check with each vXij for conflict, or synergy with more specific suggestion;

if conflict found, prune VY; . if synergy found, replace V4 .

SR VARRN

u u u
Vi Viz Vv >/\ VP11 VS vy g wlg g

4. Propose design element suggestions s; ; for value suggestions vUi n (for goal gUi).

Propose design element suggestions Sj.q for value suggestions vUj,k (for G- gy).

For eachs; .
check with each vXJ- i for conflict; if conflict found, prune s; ..

. check with each Sj.q for synergy with more specific suggestion; if synergy found,

replace sj o with sj q.
check with each Si.q for conflict; if conflict found and Si.q is only suggestion for guj,

prune s; .
vy

1 V&2
A\ ~
i Sp21 S
VALV
\ synerﬁ/

u
vS11 V31 Vip g vz v

conflict

5. Resultis set of design element suggestions for goal gY;: {si2 S22 Sia -1}

Figure 7.2: Suggestion proposal using lookahead.
98

TAC starts with a design and a set of goals G, and determines which of the goals are satisfied
(call this set G°) and which are unsatisfied (call this set G*). As shown in Figure 7.1, for each
unsatisfied goal, TAC proposes design element suggestions s; using the lookahead routine shown
in Figure 7.2. It creates one new design per suggestion, checking whether it should:

(a) savethe design as asolution, e.g. Dg and Dg in Figure 7.1;

(b) discard the design (because it’'s been seen before or itsintended goal wasn't satisfied),

e.g. D3 and Dg;
(c) skip modifications for the rest of the unsatisfied goals and save the design for repair

(because unsatisfied goals are now satisfied, but some formerly satisfied goals are now
unsatisfied), e.g. Dy 1;
(d) continue attempting to satisfy each of the remaining unsatisfied goals.
Examples below illustrate each of these situations.

After iteration through the unsatisfied goals, TAC has three sets of designs:. those that are solu-
tions, those that have been discarded, and those that are to be repaired. For each design in this last
set, TAC enters a repair cycle: it creates a new design problem and evaluates goals, suggests
repairs, and creates new designs. Finally, after TAC has finished repairing designs, it returns the
original design problem, the set of design solutions, and the design problems created in its search
for solutions. The suggestions and new designs created in the search are stored in the design prob-
lems.

As shown in Figure 7.2, TAC uses a lookahead routine to refine suggestions for each unsatis-
fied goal. The routine checks for interactions among and across all three types of suggestions.
Given adesign and an unsatisfied goal, TAC proposes value suggestions for that goal, then checks
those suggestions against value suggestions for the other goals, pruning when it detects conflict or
synergy. It then proposes design and design element suggestions, checking them for potential
conflict or synergy interactions with value, design, and design element suggestions for the other
goals. If TAC detects any interaction, it again prunes the set of suggestions for the unsatisfied
goal. Design element suggestions for the unsatisfied goal may be pruned further by alookbehind
routine, which checks these suggestions against the suggestions aready carried out to yield the
design. If a proposed suggestion is the same as one that has already been carried out for the
design, then TAC prunesit. An experiment illustrating this lookbehind mechanism is discussed in
Section 7.6.

The examples below, taken from the previous section, illustrate the sequential-with-lookahead
control structure.

99

Example 1: Predictable conflict

Let's say that we want the Living territory in the Tomek house to be visually open from the
Dining territory, and we want one fireplace in the Living territory. We specify two goals:

<goal : (visually-open Living from Di ning) true>
<goal : (fireplace-count in Living) 1>

TAC determines that the Living territory is not visually open from the Dining territory, but it
does contain one fireplace. It proposes a suggestion for the unsatisfied vi sual | y- open goal:

(i ncrease-val ue of (visual-openness of Living from Dining)
until visual -openness greater than 0.6)

It then performs lookahead by proposing a suggestion for the remaining fi r epl ace- count
goal:

(keep-val ue of (fireplace-count in Living) 1)

TAC detects no interaction between these two suggestions, so it proceeds by checking its
knowledge base for ways to increase visual openness. It finds that removing or puncturing design

elements that block the view between Living and Dining territories may increase visual openness,

so it proposes:®

(or (renove bl ocki ng-el ements-btw Living and Di ni ng)
(puncture bl ocki ng-el ements-btw Living and Di ni ng))

Checking the design, it finds that the fireplace blocks the view, so it more specificaly
Proposes:

(or (renove Fireplacel)
(puncture Fireplacel))

TAC then performs lookahead to check for conflict or synergy between these suggestions and
the lookahead suggestion, which proposes keeping the fireplace count at one. It spots a conflict
with the first suggestion: as discussed in the previous section, removing the fireplace changes the
number of fireplaces in the Living territory to zero, which conflicts with keeping the number of
fireplaces at one. TAC prunes the remove suggestion, then checks the puncture suggestion. It spots
no interaction between this suggestion and the lookahead suggestion, so it leaves the puncture
suggestion as is. The lookahead comparisons are summarized in Figure 7.3.

5. The screenify suggestion has been left out in order to simplify this and subseguent examples.

100

Suggestions for Lookahead suggestions for
visually-open fireplace-count

(increase-value of < . >

. . . (keep-value of
(visual-openness of Living from Dining)...) (fireplace-count in Living) 1)

(or (remove blocking-element s-btw Living & Dining)
(puncture blocking-element s-btw Living & Dining))

(or{remove Freplacel) <«—

(puncture Fireplacel))

Figure 7.3: Lookahead resultsfor vi sual | y- open and fi r epl ace- count goals.

TAC carries out the puncture suggestion, creating a new design Tomek#1 which has the
fireplace punctured at a default location (through the middle). TAC checks that the intended goal
for the suggested modification is satisfied: it checks that the Living territory in Tomek#1 is visu-
aly open from the Dining territory. It finds this true, so TAC continues.

Had the design not satisfied the intended goal, TAC would have discarded the design. It would
not have attempted to repair the design because it assumesthat if a modification doesn’t do what it
IS supposed to do, the resulting design isn't any closer to a solution than the original design. (As
we'll see, TAC repairs designs when an intended goal has been satisfied, but other goals remain
unsatisfied.)

Figure 7.4 shows Tomek#1 and the region of the Living territory visible from the Dining
territory. Thevi sual - openness hasincreased to 0.61 from the original value of 0.44.

101

|
_

A
t

Figure 7.4: Tomek#1 and region of Living territory visible from Dining territory.®
Shaded region isvisible; each * represents a viewpoint.

Having generated the new design Tomek#1 for the only unsatisfied goal (the vi sual | y- open
goal), TAC now checksthis design to seeif the previoudly satisfied goal—having one fireplace in
the Living territory—has been clobbered by the visual openness modification. The goal is till
satisfied, so Tomek#1 isasolution. TAC stops at this point because it has generated designs for all
unsatisfied goals (one goal, in this case) and has no designsto repair.

Example 2: Predictable synergy

Returning again to a previous example, let’s say that we want the Living territory to be visu-
ally open from the Dining territory in the Tomek house, and we want the center of the Living ter-
ritory to be visible from the center of the Dining territory. We specify the two goals:
<goal : (visually-open Living fromDi ning) true>
<goal : (visible-center Living fromDining) true>

TAC determines that both goals are unsatisfied. It proposes a suggestion for the first goal:

(i ncrease-val ue of (visual-openness of Living from Di ni ng)
until visual -openness greater than 0.6)

It then performs lookahead, comparing this suggestion with a value suggestion for the remain-
ing vi si bl e- cent er goal:

(set-value of (visible-from(center of Living) (center of Dining))
to true)

TAC finds no interaction, so it continues. Checking its knowledge base, it again finds that
visual openness may be increased by removing or puncturing design el ementsthat block the view.

6. The 2D projection of the fireplace puncture has been used in the visual openness calculation.

102

It proposes these suggestions:

(or (renove bl ocki ng-el ements-btw Living and Di ni ng)
(puncture bl ocki ng-el ements-btw Living and Di ni ng))

Finding that the fireplace blocks the view, it then proposes more specifically:

(or (renove Fireplacel>)
(puncture Fireplacel))

TAC then performs lookahead by checking the above suggestions against suggestions for the
vi si bl e-cent er goal. For thisgoal, TAC finds that it can make the center of the Living territory
visible from the center of the Dining territory by removing or puncturing design elements along
the line of sight between the two territories. It proposes the following suggestions:

(or (renove bl ocki ng-el ements-btw (center of Living) and (center of Dining))
(puncture bl ocking-el ements-btw (center of Living) and (center of Dining)
at sight-line-btw centers))

Substituting the blocking element, the fireplace, into the above suggestions, TAC proposes:
(or (renove Fireplacel>)
(puncture Fireplacel at <edge: 111.06...>))

Asnoted earlier, there are synergies between suggestions for the two goals. Removing thefire-
place may satisfy both goals; TAC leaves this suggestion as is. More interestingly, puncturing the
fireplace at a particular location (for the vi si bl e- cent er goal) is similar to, but more specific
than, puncturing the fireplace at a default location (for the vi sual | y- open goal). TAC chooses
the more specific suggestion, using a unification-like expression matching routine to detect
subsumption.

The lookahead comparisons are summarized in Figure 7.5.

103

Suggestions for Lookahead suggestions for
visually-open visible-center

(increase-value of (set-value of (visible-from

(visual-openness of Living from Dining)...) (center of Living)
(center of Dining))
t o true)

(or (remove blocking-elements-btw < . E (or (remove blocking-element s-btw

Living & Dining) (center of Living) ...)
(puncture blocking-elements-btw (puncture blocking-elements-btw
Living & Dining)) (center of Living) ...))
(or (remove Fireplacel) (or (remove Fireplacel)

“punctare-Fireplaced)) (puncture Fireplacel at

<edge:111.06...>))

Figure 7.5: Lookahead resultsfor vi sual | y- open and vi si bl e- cent er goals.

After lookahead, TAC creates a new design for each of its two suggestions:

(remove Fireplacel) — Tomek#1, with the fireplace removed,;

(puncture Fireplacel at <edge: 111.06...>)) — Tomek#2, with the fireplace punc-
tured along the sight line between territory centers.

Territory models for the new designs are shown below.

-r - -'
I
1o : i
- J J
TOMEK#1 TOMEK#2
REMOVE-ELT PUNCTURE
Fireplacel Fireplace

1 AT
C111.1 51, 15(78.3 53.7)

Figure 7.6: New designs for Tomek vi sual | y- open and vi si bl e- cent er goals.

104

TAC checks that the intended goal for each modification is satisfied: it finds that the Living
territory in each design isindeed visually open from the Dining territory. It then continues, using
each of these designs as a starting point for evaluating, suggesting repairs, and creating new
designs for the next unsatisfied goal, namely, thevi si bl e- center goal.

For Tomek#1, TAC finds that the vi si bl e-center goal is now satisfied, so it proposes no
suggestions. Removing the fireplace caused both unsatisfied goals to become satisfied (not too
surprisingly, since the lookahead mechanism proposed that suggestion for both goals). For
Tomek#2, TAC aso finds the goal satisfied, so again proposes no suggestions. Thus, Tomek#1
and Tomek#2 are both solutions. TAC now has generated new designs for al unsatisfied goals,
and since it has no designsto repair, it stops.

Example 3: Unpredictable conflict

Let’s return to the another Frank Lloyd Wright Prairie house, the Horner house, which was
introduced in Section 5.4 and is shown again bel ow.

Terrace
e
il . Dini
i : inin
%‘ cﬁ:'.f' i ’
......... 'L S : N [
= e . T e e —-
T IHE.| =
4 i Reception: - Kitc hen
i [Hall 'é-
ol P tair
O L 1 = |
i 3
L H -t . Fireplacel
" 1 J’% Living <
4 t;..,,-_.....
_______ o Terrace

Figure 7.7: Floorplan and territory model for Horner house main (first) floor.

105

We specify two goals that are often satisfied in Frank Lloyd Wright's Prairie houses: a
fireplace on an interior edge of the Living territory, and the Living territory visually open from the
Dining territory.

<goal : (fireplace-on-interior-edge of Living) true>
<goal : (visually-open Living from Di ning) true>

TAC determines that the visually open goal is satisfied, but that the house does not have afire-
place on aninterior edge. TAC proposes two suggestions for the unsatisfied goal: make Fireplacel
be on an interior edge (so that the design characteristic fi r epl ace- on-i nt eri or - edge is true),
or increase the number of fireplaces by adding one to an interior edge.

(or (set-value of (on-interior-edge Fireplacel)
to true)
(i ncrease-val ue of (fireplace-count in Living)
to 2 such that on-interior-edge is true))

TAC checks these suggestions against a suggestion proposed for the remaining vi sual | y-
open goal:

(keep-val ue of (visual-openness Living fromD ning greater than 0.6)
true)

It detects no interaction so it continues, checking its knowledge base for ways to satisfy the
fireplace-on-interior-edge god. It finds that it can either move the existing fireplace to an
interior edge or add a new fireplace to an interior edge:

(or (nove Fireplacel to any interior-edges-for Fireplacel)
(add fireplace to Living such that on-interior-edge))

It then identifies the interior edges in the Living territory and proposes:”

(or (nove Fireplacel to <edge: 18.75...>)
(rmove Fireplacel to <edge: 15.75...>)
(rmove Fireplacel to <edge: 29.06...>)
(move Fireplacel to <edge: 31.69...>)
(nmove Fireplacel to <edge: 15.75...>)
(add fireplace to Living such that on-interior-edge))

TAC checks these suggestions for conflict or synergy with the suggestion to keep the visual
openness value greater than 0.6. It finds no interaction, so it carries out the suggestions and creates
six new designs, shown in Figure 7.8.

7. The add routine is opaque, so this design suggestion is not expanded further to specify a particular location. The
current version of the add routine produces one new design, rather than all possible designs.

106

= R R
i) CEE il

HORNER#1 HORHER#2 HORHER#S
HOVE-TO-EDGE HOVE-TO-EDGE HOVE-TO-EDGE
F1reglace1 F1reglace1 Fireplacel
(18,8 52.7)(27.6 52.7) (15,8 52.7)(158.8 52.7) (29,1 52.7)(31.7 52.7)
= R :T"'FI_'
1 1

s
=
T
1
I
— [

HORNER#4 HORNER#S HORHER#ZG
P repIgcat. Fireolacht. PIREPLACE T0-EDGE
replace -
(31,7 52.7)(31.7 54.3) (15,8 54.8)(15.8 52.7; (15,8 S2.7)(27.6 52.7)

Figure 7.8: Five designs with fireplace moved to interior edge, one with new fireplace added.

The intended goal, having a fireplace on an interior edge, is satisfied for all designs except
Horner#4 and Horner#5. (A less stringent definition might have allowed these configurations
which have the back of the fireplace on both an interior edge and an exterior edge.) These two
designs are discarded, and the remaining designs are checked to make sure the vi sual | y- open
goadl is still satisfied. The Living territory is still visually open from the Dining territory in Hor-
ner#2 and Horner#3, so these two designs are solutions. The Living territory is not visually open
in Horner#1 and Horner#6. The modifications have clobbered the vi sual | y- open goal, so these

107

two designs must be repaired. In one of these designs, Horner#1 shown below, the vi sual - open-
ness valueis 0.5; we'd likefor it to be greater than 0.6.

Dining
©

_I-— EXEEEES

Figure 7.9: Horner#1: one of the designs to be repaired.
Shaded region isvisible; * represents a viewpoint.

To repair Horner#1, TAC proposes increasing the visual openness:

(i ncrease-val ue of (visual-openness of Living from Dining)
until visual -openness greater than 0.6)

It then performs lookahead by proposing a suggestion for the remaining firepl ace- on-
i nterior-edge godl. It proposes that some fireplace be kept on an interior edge of the Living
territory:
(keep-val ue of (sone fireplace in Living on-interior-edge)
true)

TAC spots no interaction between these two suggestions, so it continues, proposing sugges-
tions for increasing visual openness:

(or (renove bl ocking-el enents-btw Living and Di ni ng)
(puncture bl ocki ng-el ements-btw Living and Di ni ng))

108

Checking the design, TAC finds that three design elements—the fireplace, a bookcase, the

stair—block the view, so it proposes:®
(or (renove Fireplacel)
(renove Bookcasel)
(remove Stair)
(puncture Firepl acel)
(puncture Stair)
(and (renmpve Fireplacel) (renove Stair))
(and (puncture Fireplacel) (puncture Stair)))

TAC checks these suggestions against the lookahead suggestion, which proposes keeping a
fireplace on an interior edge. TAC notices that removing the fireplace would conflict, since there
would be no fireplace at all. It prunes that suggestion and is then left with:

(or (renove Bookcasel)

(remove Stair)
(puncture Fireplacel)

(puncture Stair)
(and (puncture Fireplacel) (puncture Stair)))

The lookahead comparisons are summarized in Figure 7.10.

8. TAC does not propose al possible combinations or orderings of modifications. The conjunctionsin this example are
the result of TAC's finding that regions of the Living territory are blocked by more than one element.

109

Suggestions for Lookahead suggestions for
visually-open fireplace-on-interior-edge

(increase-value of (keep-value of

(visual-openness of Living from Dining)...) (some fireplaces in Living
on-interior-edge) true)

(or (remove blocking-elements-btw
Living & Dining)
(puncture blocking-elements-bt w
Living & Dining))

(or—{remeve—tireplaced)-
(remove Bookcasel)
(remove Stair)
(puncture Fireplacel)

(puncture Stair)_ _ /
fend—remeove—Hreplace—{remeve—Stat-

(and (puncture Fireplace) (puncture Stair)))

Figure 7.10: Lookahead resultsfor vi sual | y- open andfirepl ace- on-i nteri or - edge goals.

TAC carries out the five suggestions that remain after pruning. The first four suggestions—
removing the bookcase, removing the stair, puncturing the fireplace, puncturing the stair—yield
solutions. The last suggestion results in a duplicate design, which is discarded: TAC carries out
that suggestion’s first modification (puncturing the fireplace), finds the intended vi sual | y- open
goal satisfied, so it doesn’t carry out the second modification. As aresult, the design isthe same as
the one produced by the third suggestion and is discarded. The issue of samenessis a complicated
one, and we've chosen a strict definition: Two designs are the same if they contain the same edges
and the same design elements. The more general and difficult problem of determining what
“same-as’ means for architectural designs is a research question in itself. (See Section 7.4.1 for
further discussion.)

At this point, Horner#1 has been repaired, and TAC has found four solutions to add to its
previous two. The four new solutions are shown in Figure 7.11. One of the solutions, along with
itsimproved visua openness value, is shown in Figure 7.12.

110

HORNER#1#1

HOVE-TO- EDGE
Fireplace

a18 52 ?)(2? 6 52.7)
EHOVE-E

BOOkC&S&l

HORHERZ 183

HOVE- TO EDGE
Firepla
513(52 ?)(2? 6 52.7)

Flrep]acei

HORNERg1#2

HOVE-TO- EDGE
Fireplace

a18 52 ?)(2? 6 52.7)
EHOVE-E
Statr

Ij---

:H:rt“-*

HORNER#1#4

HOVE-TO- EDGE
Fireplace

5 15, 52 ?)(2? 6 52.7)
UNCTURE

Statr

Figure 7.11: Repair of Horner#1 resultsin four new designs which are solutions.

111

Dining
=

I EX XXX

e
Rl

Living

Figure 7.12: Horner#1#3, with fireplace moved to interior edge and punctured.
Shaded region of Living territory isvisible from Dining territory.
The visual opennessvalueis 0.8.

Repair of Horner#6 proceeds similarly. Recall that Horner#6 has two fireplaces, Fireplacel in
the original location on an exterior wall, and Fireplace2 which was added to an interior edge.

Fireplace2

Fireplacel

Figure 7.13: Horner#6: a new fireplace has been added to Horner.

112

Horner#6 has afireplace on an interior edge, but the Living territory isno longer visually open
from the Dining territory. TAC proposes increasing the visual openness:

(i ncrease-val ue of (visual-openness of Living from Dini ng)
until visual -openness greater than 0.6)

It performs lookahead by comparing the suggestion above with a suggestion for the remaining
fireplace-on-interior-edge goa:
(keep-val ue of (some fireplace in Living on-interior-edge)
true)

TAC spots no interaction, so it proposes increasing visual openness by removing or punctur-
ing the bookcase, the stair, or Fireplace2:

(or (renove Firepl ace2)
(renove Bookcasel)
(remove Stair)
(puncture Firepl ace2)
(puncture Stair)
(and (renove Fireplace2) (renove Stair))
(and (puncture Fireplace2) (puncture Stair)))

TAC checks each of these suggestions against the lookahead suggestion, which proposes
keeping afireplace on an interior edge, and does not spot conflicts. The first suggestion, to remove
Fireplace2, will indeed cause the design to no longer have afireplace on an interior edge, but this
conflict cannot be spotted ssmply by comparing suggestions; the design must be checked. Since
the lookahead mechanism reasons about suggestions, rather than checking the design, it leavesthe
remove suggestion as is.

TAC creates one new design for each suggestion. The first suggestion results in a design
identical to the starting design, so it is discarded. The next four suggestions yield solutions. The

last two suggestions result in designs that are discarded because they are identical to two of the

solutions.®

At this point, TAC has no more designsto repair and returns its ten solutions.

As afinal note, if we add a design goal stipulating that we want only one fireplace in the
Living territory, TAC's lookahead mechanism prunes the suggestion to add a fireplace. Horner#6
and its four solutions are not created, and TAC returns six solutions.

9. Aswhen repairing Horner#1, the first modification in each conjunction satisfied the intended vi sual | y- open goal,
so the second modification was unnecessary.

113

Example 4: Unpredictable synergy
Let’sreturn to adesign discussed in the previous example, Horner#1, shown in Figure 7.9, and
again below.

Bookcasel

Fireplacel

Living

Figure 7.14: Territory model for Horner#1.

Let's say that we're interested in having one fireplace, a fireplace on an exterior edge, and the
Living territory visually open from the Dining territory. We specify the goals:

<goal : (fireplace-count in Living) 1>
<goal : (fireplace-on-exterior-edge of Living) true>
<goal : (visually-open Living fromDining>) true>

TAC finds that the last two goals are unsatisfied. It proposes value suggestions for the first
unsatisfied goal, having afireplace on an exterior edge: make Fireplacel be on an exterior edge or
increase the number of fireplaces by adding one to an exterior edge.

(or (set-value of (on-exterior-edge Fireplacel)
to true)
(i ncrease-val ue of (fireplace-count in Living)
to 2 such that on-exterior-edge is true))

To perform lookahead, TAC proposes suggestions for the two remaining goals:

(and (keep-value of (fireplace-count in Living) 1)
(i ncrease-val ue of (visual-openness of Living from Dini ng)
until visual -openness greater than 0.6))

114

It checks the firepl ace-on-exterior-edge suggestions against these lookahead sugges-
tions and spots a conflict: The second fi repl ace- on- ext eri or - edge suggestion increases the
fireplace count, conflicting with keeping the number of fireplaces at one, so it is pruned. The
suggestion to make Fireplacel be on an exterior edge remains.

(set-val ue of (on-exterior-edge Fireplacel)
to true)

TAC checks its knowledge base and finds that it can set the value of the on- ext eri or - edge
characteristic to true for a design element by moving that element to an exterior edge. For
Fireplacel, it proposes:

(rmove Fireplacel to any exterior-edges-for Fireplacel)

Checking the design, it finds two exterior edges appropriate for Fireplacel, and proposes. 10

(or (nove Fireplacel to <edge: (15.75...>)
(move Fireplacel to <edge: (31.69...>))

TAC then returns to its lookahead suggestions—keeping the fireplace count at one and
increasing visual openness. For the second of these suggestions, it further proposes:

(or (renove bl ocki ng-el ements-btw Living and Di ni ng)
(puncture bl ocki ng-el ements-btw Living and Di ning))

It then checks the design, and proposes:

(or (renove Fireplacel)
(renmove Stair)
(renove Bookcasel)
(puncture Firepl acel)
(puncture Stair)
(and (renove Fireplacel) (renove Stair))
(and (puncture Fireplacel) (puncture Stair)))

TAC checks the move suggestions proposed for satisfying the firepl ace- on-exteri or-
edge goal against these lookahead suggestions. It does not find conflicts, so it leaves the move
suggestions as they are.

L ookahead comparisons are summarized in Figure 7.15.

10. TAC wastold to choose only edges that were long enough to accommodate the fireplace.

115

Suggestions for Lookahead suggestions for

fireplace-on-exterior-edge fireplace-count, visually-open
(or (set-value of (and (keep-value of
(on-exterior-edge Fireplacel) (fireplace-count Living) 1)

t o true)
(inerease-vaieof E. repiace-cotint M I:”"ga)

(increase-value of
(visual-openness ...))

(move Fireplacel to any (or (remove blocking-elements-btw

exterior-edges-for Fireplacel) Living & Dining)
(puncture blocking-elements-btw
Living & Dining))

(or (move Fireplacel to <edge: 15.75...>) (or (remove Fireplacel)

(move Fireplacel to <edge: 31.69...>)) (remove Bookcasel)

(remove Stair)

(puncture Fireplacel)

(puncture Stair)

(and (remove Fireplace)
(remove Stair))

(and (puncture Fireplace)
(puncture Stair)))

Figure 7.15: Lookahead resultsfor fi r epl ace- on-ext eri or - edge goal.

Notice that TAC does not need to check for conflict among the lookahead suggestions; e.g. it
does not need to prune the suggestion for removing a fireplace, even though it looks as if that
suggestion will conflict with keeping the number of fireplaces at one. The extra work is unneces-
sary because the lookahead suggestions are used only to check for interaction with the currently
proposed suggestions, those for the fi repl ace- on-ext eri or - edge goal in this example. When
suggestions are proposed for thevi sual | y- open goal in alater step, TAC will prune any conflict-
ing suggestions at that point.

Figure 7.16 illustrates checking for conflicts between suggestions and lookahead suggestions
in the example above. The firepl ace-on-exterior-edge goa is g!Y;, the firepl ace- count

goa isg®;, and thevi sual | y- open goal isg",.

116

Suggestions for g4;: Lookahead suggestions for G-gY;:

/j:i\ gSl g<§
viig V% vS11 vis 1
V\\conflic't‘JA,r A
1
/\ no checking ‘\
‘Gt sz D

S1,1 S1,2

Figure 7.16: TAC checksfor conflict between suggestions for current goal and other goals,
not among lookahead suggestions for other goals. g¥ and g are unsatisfied
and satisfied goals; v, are value suggestions; s, are design element suggestions.

TAC now has two suggestions for satisfying the fireplace on exterior edge goal:

(or (nove Fireplacel to <edge: (15.75...>)
(nmove Fireplacel to <edge: (31.69...>))

It creates a new design for each suggestion (Figure 7.17).

HORHER#1#1 HORHER#1g2
HOVE-TO-EDGE HOVE-TO-EDGE
Fireplacel Fireplacel
(15.8 63.8)(15.8 57.7) (31.7 56.1)(31.7 62.3)

Figure 7.17: New designs with fireplace on exterior edge.

117

TAC uses these two designs as starting points for satisfying the second unsatisfied goal,
having the Living territory visually open from the Dining territory. TAC checksthat goal and finds
it now satisfied, so it proposes no suggestions and generates no new designs. TAC has discovered
a synergy: moving the fireplace to an exterior edge has also satisfied the vi sual | y- open goal.
Discovered synergies could be added to TAC's knowledge base. In this example, moving an object
to an exterior edge could be added as a means of increasing avi sual - openness value (i.e. as an

increaser on the design characteristic vi sual - openness!?).

TAC has now generated designs for the unsatisfied goals and has no designs to repairs, so it
returns the two solutions shown above.

Benefits and Costs

As the exampl es above have shown, the sequential-with-lookahead control structure works on
asingle goal at atime, proposing repair suggestions and creating designs as it searches breadth-
first for design solutions. The design space is exponential in nature, but the lookahead mechanism
helps control the search. As shown in Figure 7.1, the tree of designs has a branching factor (s) of
the number of suggestions per goal, which is not a constant, but in practice averages about six. It
has a depth (u) of the number of unsatisfied goals. In the worst case, the size of the tree would be

sY. The lookahead mechanism decreases the size, however, by pruning suggestions prior to design
creation, decreasing both s and u. It decreases the number of suggestions (branching factor) by
detecting conflict at various levels of abstraction; it decreases the number of unsatisfied goals
(depth) by detecting synergy between suggestions. The lookahead mechanism also reduces
exponential growth by pruning designs that are not unique, thereby eliminating duplicate portions
of the tree that would be generated below them.

The sequential-with-lookahead control structure does have costs. Each new design repaired is
the root of a new tree of designs. If the repair successfully accomplishes its goal, however, the
new designs have fewer unsatisfied goals than their precursors, and the new trees are smaller than
the previous ones. The sequential-with-lookahead control structure also incurs the cost of produc-
ing suggestions for each goal multiple times. suggestions for a goal are proposed once when that
goal is the focus of suggestion proposal, and every time lookahead runs for the remaining goals.
In the worst case, each formerly satisfied goal becomes unsatisfied in a new design, causing TAC
to propose suggestions for al goals each time it does lookahead. In the best case, however, the
number of unsatisfied goals decreases with each new design generated, thereby decreasing the
number of times|ookahead runs. In either case, suggestion proposal is aless costly operation than

11. or asadecreaser on opaci ty- of - el ement s- bt w.

118

design creation: it requires alookup of design modification methods in the knowledge base and a
simple matching of expression arguments to the current context; design creation requires copying
and modifying designs. The small cost of proposing suggestions is offset by the benefit that the
lookahead mechanism offersin decreasing the number of designs generated.

7.3.2 Sequential

In the sequential control structure, TAC proposes suggestions and creates new designs for one
goal at a time, as the sequentia-with-lookahead control structure does. TAC doesn't check
suggestions against other goals, however, so it doesn't spot conflicts or synergy opportunities.
Instead, it creates new designs for al suggestions. As a result, TAC running with this control
structure may search alarger portion of the design space, and may exhibit more looping behavior,
as one goal’s modification undoes the effect of another goal’s modification. The control structure
for sequential design generation was shown in Figure 7.1 and is shown again here in Figure 7.18.
The suggestion proposal mechanism for the sequential control structure (without lookahead) is
summarized in Figure 7.19.

119

Given design Dg, goals G =G4 UGS = {g"; g% gY5 ...} U {g%; 95, ¢%;... }.

@ Starting with D, propose suggestions s;
for g1 and create new designs. Check

D
0 designs for uniqueness, satisfied g1,
satisfied GY, satisfied G. Save as
gY4q S1 S, S3 solutions those that satisfy G, save for

N repair those that sati sfy GY; discard th ose
that are not unique or do not sat isfy gY .

Dy Do
discard
gu2 S4 /s Sg S7 Sg
@ Starti ng with new designs Dy, D> that
S ! have not be ensaved or discarded, propose

Dy Dg P{ Dy Dg suggestionsfor gu2 and create new
discard solution designs. Save or discard designs as in
step above (checking gU2 satis faction

gY3 S9 10 |S11
instead of g!1).

Do | Dio |P11

solution l/ save for repair

@ For each of remaining gYj, continue
proposing suggestions, creating
and checking new designs. With last

goal guq, save designs for repair that
u sati sify gUq (rather than GY).
9q s s
n-1 n
N\ 4
Dk | D1 [Pk+2 DX |Pn
solution discard save for repair discard save for repair

@ Aft ernew designs have beencreated for last goal guq and checked as above,
repair designs that were saved for repair.

@ After all designs have been repaired, return solutions.

Figure 7.18: Sequential control structure.

120

Given design D, goalsG = GUYU G5 = {g4, g4, gY5 ...} U {g5; g5, g5;...}, and goal gY.

1. Propose value vY, = suggestions for gU:

2. Propose design element suggestions s; , for value suggestions vui n

A A\._

Si1 Si2 Si3 Si4 Si5 Si6

3. Resultis set of design element suggestions forgoal g¥;: {sj1 Sj2 Si3 Sj4 -}

Figure 7.19: Suggestion proposal for the sequential control structure.

As shown in the above figure, suggestion proposal is very straightforward: TAC proposes
value suggestions for a goal, then design suggestions (not shown in the figure), then design
element suggestions. It does no pruning on the set of suggestions, but creates one new design for
each suggestion, checking the designs and saving or discarding them as described for the sequen-
tial-with-lookahead control structure. (See Figure 7.18.)

The examples below, discussed in the previous section, illustrate the sequential control struc-
ture and how it differs from sequential -with-lookahead.

Example 1:
Let's again say that we want the Living territory in the Tomek house to be visually open from
the Dining territory, and we want one fireplace in the Living territory. We specify two goals:

<goal : (visually-open Living from D ning) true>
<goal : (fireplace-count in Living) 1>

Thefirst goal is not satisfied; the second one is. TAC proposes suggestions for the unsatisfied
vi sual | y- open goal. The suggestions are the same as with the sequential-with-lookahead control

structure.1?

12. Inthisand subsequent examplesin this section, only design element suggestions will be shown.

121

Remove or puncture the existing fireplace, Fireplacel:

(or (renove Fireplacel)
(puncture Fireplacel))

TAC creates new designs, one for each suggestion. Tomek#1 has the fireplace removed,
Tomek#2 has the fireplace punctured at a default location. TAC finds the intended vi sual | y-
open goal satisfied for each new design, so it proceeds with checking the remaining fi r epl ace-
count goal. Tomek#1 no longer has onefireplace, so it is saved for repair. Tomek#2 does have one
fireplace, so both goals are satisfied, and Tomek#2 is a solution.

TAC proceeds to repair Tomek#1, proposing suggestions for increasing the fireplace count to
one from zero:

(add fireplace to Living)

TAC carries out this suggestion, creating a new design Tomek#1#1 with afireplace added to a
default location in the Living territory. TAC reaches a solution quickly if the add routine happens
to locate the new fireplace in such a way that the vi sual | y- open goal remains satisfied, or if
subsequently puncturing the fireplace in its new location causes that goal to be satisfied. Alter-
nately, if the add routine locates the new fireplace in the original fireplace's location, TAC will
notice that it has seen the design before and will stop. Finaly, if the add routine places the fire-
place in a new location which causes the vi sual | y- open goal to become unsatisfied, TAC may
loop removing the fireplace, adding it back, removing it again, etc. The looping results when a
design modification, adding a fireplace in this case, can produce dightly different designs. The
dlight difference can result, for example, from an intervening modification that splits an edge into
two edges. Recall that our definition of “same-as’ is very strict and requires designs to have
exactly the same edges and design elements. Since TAC doesn’'t measure degrees of sameness,
dlight differences between designs may cause TAC to continue its repair cycle. The issue of 1oop-
ing is discussed further in Section 7.4.

The sequential control structure produces the same solution for the above example as the
sequential-with-lookahead control structure. Depending on how the add routine is implemented, it
may also produce several other solutions with fireplaces in different locations. (Note that if the
knowledge base had included moving the fireplace as a means of increasing visual openness, then
the sequential-with-lookahead control structure also would have produced designs with fireplaces
in the new locations.)

122

Example 2:

Again let’s say that we want the Living territory to be visually open from the Dining territory
in the Tomek house, and we want the center of the Living territory to be visible from the center of
the Dining territory. We specify the two goals:
<goal : (visually-open Living from Di ning) true>
<goal : (visible-center Living fromDining) true>

As with the sequential-with-lookahead control structure, TAC determines that both goals are
unsatisfied and proposes satisfying the first goal by removing or puncturing the fireplace in order
to increase the visual openness value:

(or (renove Fireplacel>)
(puncture Fireplacel))

TAC creates a new design for each of these suggestions. Tomek#1 has the fireplace removed;
Tomek#2 has the fireplace punctured at a default location. Both designs satisfy the vi sual | y-
open goal, so TAC proceeds with each of these designs, checking whether the next unsatisfied
goa, namely the vi si bl e-center goal, is satisfied. Removing the fireplace has satisfied this
goal, so Tomek#1 is a solution. Puncturing the fireplace may or may not have caused this goal to
be satisfied, depending on the default puncture location. If the puncture location happens to coin-
cide with the line of sight between territory centers, the Living territory center will be visible from
the Dining territory center, and Tomek#2 will be a solution. TAC will stop at this point returning
Tomek#1 and Tomek#2 as solutions. If the puncture location does not coincide with the line of
sight, then TAC will attempt to repair Tomek#2. It will propose removing the fireplace or punctur-
ing the fireplace aong the line of sight. If the fireplace is removed, the resulting design is the same
as Tomek#1, so TAC discards the newly created design. If the fireplace is punctured (e.g. by
widening the first puncture, or puncturing the fireplace in a second place), then TAC returns the
new design as a solution.

Thus, in this example, the sequential control structure produces the same two designs as
sequential-with-lookahead, possibly also producing a third design with a wider puncture or two
punctures in the fireplace.

Example 3:
Returning to the Horner house, let’s again specify two goals: afireplace on an interior edge of
the Living territory, and the Living territory visually open from the Dining territory.

<goal : (fireplace-on-interior-edge of Living) true>
<goal : (visually-open Living from Di ning) true>

123

As before, TAC proposes suggestions for the unsatisfied firepl ace-on-interi or - edge
goal. It checks its knowledge base for ways to satisfy the goal, finds that it can move the existing
fireplace to an interior edge or add a new fireplace. It then checks the design, finding five candi-
date interior edges and proposes:

(or (nove Fireplacel to <edge: 18.75...>)
(nmove Fireplacel to <edge: 15.75...>)
(move Fireplacel to <edge: 29.06...>)
(rmove Fireplacel to <edge: 31.69...>)
(rmove Fireplacel to <edge: 15.75...>)
(add fireplace to Living such that on-interior-edge))

TAC creates new designs for these suggestions, producing the same six designs as the sequen-
tial-with-lookahead control structure. As before, the second and third designs are solutions, the
fourth and fifth are discarded because the intended goal is not satisfied, and the first and last
designs are saved for repair because the vi sual | y- open goa has become unsatisfied. These
designsto be repaired are shown in Figure 7.20.

= R

- -

!

HORHER#1 HORHERZG
HOVE-TO-EDGE ADD-ELTS 1
Fireplacel FIREPLACE_TO-EDGE
(18,8 52.7)(27.6 52.7) (18,8 52.7)(27.6 52.7)

Figure 7.20: Designsto berepaired so that vi sual | y- open goa is satisfied.

To repair Horner#1, TAC proposes to increase the visual openness by:

(or (renove Fireplacel)
(renmove Bookcasel)
(renove Stair)
(puncture Firepl acel)
(puncture Stair)
(and (renove Fireplacel) (renove Stair))
(and (puncture Fireplacel) (puncture Stair)))

124

TAC creates five new designs, one for each of the first five suggestions. (As before, the last
two compound suggestions do not produce unigque designs because the first modification satisfies
the intended vi sual | y- open goal and produces the same designs as the first and fourth sugges-
tions.) All but the first design, in which the fireplace has been removed, are solutions. The first
design, Horner#1#1, is saved for repair. The sequential-with-lookahead control structure did not
generate this design because it was able to detect that removing the fireplace would conflict with
keeping afireplace on an interior edge.

To repair Horner#1#1, TAC proposes adding a fireplace to an interior edge. The resulting
design is the same as one of the designs created by moving the origina fireplace to an interior
edge, so TAC ends the repair cycle for Horner#1#1.

At this point, TAC hasfinished its repair of Horner#1 and has found four solutions.

TAC now focuses its repair efforts on Horner#6. Repair of Horner#6 proceeds as in the
sequential-with-lookahead control structure. TAC proposes the same suggestions:
(or (renove Firepl ace2)
(renove Bookcasel)
(remove Stair)
(puncture Firepl ace2)
(puncture Stair)

(and (renove Fireplace2) (renove Stair))
(and (puncture Fireplace2) (puncture Stair)))

As in the sequential-with-lookahead control structure, the first suggestion yields the original
design, the second through fourth suggestions yield solutions, and the last two suggestions do not
yield unique designs.

In this example, TAC produced the same solutions as the sequential-with-lookahead control
structure, but created two extra designs that were ultimately discarded.

Example 4:

Returning to a design discussed in the previous example, Horner#1, we specify goals for one
fireplace, a fireplace on an exterior edge, and the Living territory visually open from the Dining
territory:

<goal : (fireplace-count in Living) 1>
<goal : (fireplace-on-exterior-edge of Living) true>
<goal : (visually-open Living from D ning>) true>

As before, TAC finds that the last two goals are unsatisfied and proposes suggestions for the
first unsatisfied goal, having afireplace on an exterior edge: move the fireplace to an exterior edge
or add afireplace to an exterior edge.

125

(or (nove Fireplacel to <edge: (15.75...>)
(move Fireplacel to <edge: (31.69...>)
(add fireplace to Living such that on-exterior-edge))

Carrying out these suggestions, TAC creates three new designs (Horner#l, Horner#2,
Horner#3), one more than the sequential-with-lookahead control structure, which pruned the add

suggestion. The first two designs are solutions. The third design, shown below, is saved for repair

because it now has more than one fireplace. 13

Fireplacel

Fireplace?2

Figure 7.21: Design to be repaired to have one fireplace.

To repair the above design, TAC proposes removing either of the two fireplaces. Neither of the
resulting designs are unique: removing Fireplacel produces a design equivalent to Horner#2;
removing Fireplace2 produces a design equivalent to the original design.

Thus, in this example, TAC produced the same solutions as with sequential-with-lookahead,
but created three extra designs that did not lead to solutions.

13. Recall that the current version of the add routine produces one design, rather than all possible designs.

126

Benefits and Costs

In the examples above, the sequential control structure generated more designs than the
sequential-with-lookahead control structure. As with sequential-with-lookahead, designs are
generated breadth-first, with a branching factor of the number of suggestions and a depth of the
number of unsatisfied goals. Without lookahead, however, the branching factor is not decreased.
In addition, the number of unsatisfied goals is not deliberately decreased, though it may be
decreased due to TAC's “getting lucky” with discovered synergies. Detecting these synergies is
dependent on goal order (discussed in Section 7.4). As shown in Example 1, whether synergies
exist or not can depend on the design modification routines; thisis true for al the control struc-
tures tested. (Recall that if the default location for adding a fireplace happened to be an exterior
edge, the visual openness goal was also satisfied when a fireplace was added to satisfy the fire-
place count goal.)

Asdiscussed in more detail in Section 7.4, the sequential control structure can exhibit looping
behavior, as one goal’s modification undoes the effect of another goal’s modification. The sequen-
tial-with-lookahead control structure can exhibit this behavior aso, but does so |ess often because
its lookahead routine is able to detect and prune conflicting suggestions.

Not performing lookahead has a benefit, however: Because the sequential control structure
generates more new designs, it can sometimes find more sol utions than the sequential-with-looka-
head control structure. Aswe saw in the Example 2, most of the additional solutions did not differ
significantly from other solutions. one had a wider puncture through the fireplace, one an extra
puncture through the fireplace. Once presented with a solution that contained a punctured fire-
place, the designer could easily vary the characteristics of the puncture.

The solutions that differed from those found with sequential-with-lookahead had afireplacein
anew location. They resulted from TAC's removing the fireplace and adding a new one at a differ-
ent location, as discussed in Example 1. Because TAC does no lookahead with the sequential
control structure, it is allowed to violate a goal, that of having one fireplace, in order to satisfy
another goal, making the Living visually open from the Dining. In this example, the combination
of remove and add operators produces the result of athird operation, namely a move, which satis-
fies both goals. As illustrated here, operators may combine in unexpected ways to produce solu-
tions. The sequential-with-lookahead control structure has fewer opportunities for unexpected
operator combinations because it prunes more suggestions.

127

7.3.3 Concurrent

The concurrent control structure proposes suggestions for all goals at the same time in the
context of the original design. The suggestions are compound suggestions, each of which repre-
sents a plan for producing a design intended to satisfy all unsatisfied goals. Each such design is
created by carrying out a compound suggestion’s proposed modifications sequentially on a copy
of the origina design. If a new design satisfies some of the goals, but not all of them, TAC
attempts to repair the design. Figures 7.22 and 7.23 summarize the concurrent control structure.

128

Givendesign Dy, goalsG=GUUGS = {g"; gY, gY; ... } U{gS; g5, g5;... }.

S
13535

@ Starting with D, propose compound

Do

S2

D1 Dy % Dis D17 Dp+z

discard
Sy S7 Sg Sg Sg
D2 Ds Dis Dig [Pn+2
solution
Sg S10 S11
Y
solution save for repair
Y
S12 Sn

discard

Dn

save for repair

suggestionsfor G. Create new designs
by sequentially carrying out simple
suggestions s; in each compound
suggestion Cj. After each s;j, check design
for uniqueness, satisfied intended goal
gY;, satisfied GY, satisfied G. If unique
and satisfies G, save as solution; if
unique and satisfies G4, save for repair.

After first sjineach G, if design does

not satisfy gui, discard. After all ot her
sj, if design does not satisfy gUi, skip
sj. After last s;j, if design is unique and

not a solution, save for repair; if not
unique, discard.

Afternewdesignshave beencreated forlast compound suggestion and checked
as above, repair designs that were saved for repair.

@ After all designs have been repaired, return solutions.

Figure 7.22: Concurrent control structure

129

Given design D, and goalsG=GY UGS ={gY; g¥,gY; ..} U{gS; g5, g5;... }:

D, G
1. Propose value suggestions for all goals:

. for g5, in GS propose keep-value suggestions vS,

.for gU; in G propose value suggestions VY,
g~ prop a9 i,n gUl g oS, gu3

VRS

\Vj u \yé
1,1 eV 211 VS]_']_ VU3,1 ,p
2. Check value suggestions for synergy and conflict, X 7
pruning as necessary: -

3. Propose design element suggestions s;

Vul,l Vu2’l Vu311
i u. . <
for each value suggestion v7; ,; check \
each s; o for conflict with any value N

. s s s Sq 9
suggestion v¥| . 11512 - S21 S% 3,2
S1,1 S1,2 ... S2,1 .. 3,2 |
4. Put suggestions s;j o in DNF, proposing
compound suggestions {C; C, C3 ...} \1/

S2.1 S3 2 - S1,2 ... S1.3 S2 1

5. Checkeach compound suggestion Cj for
synergy and conflict within Cj:

. S1,1% S2.1: synergy, C1 &)
Sp 1 pruned S1.1
2 ...

S
- S1,3 +$2.1: conflict, Bd sz | [PL
C3 pruned

6. Resultis set of compound design element suggestions for all goals in GY: {C1, C2, ..}

Figure 7.23: Concurrent-lookahead

130

As with the other two control structures, TAC starts with a design and a set of goas and
proposes repair suggestions for unsatisfied goals. The concurrent control structure, however,
proposes suggestions for all goals, conjoining the suggestions to produce compound suggestions.
Using a mechanism similar to the lookahead mechanism described earlier, TAC checks for inter-
action between the simple suggestions within each compound suggestion, pruning as necessary
when it detects conflict or synergy. The resulting compound suggestions are intended to satisfy all
unsatisfied goals.

As shown in Figure 7.23, TAC begins its suggestion proposal by creating value suggestions
for each goal. (Recall that keep-value suggestions are proposed for satisfied goals; increase-,
decrease-, or set-value suggestions for unsatisfied goals.) It conjoins the value suggestions and
checks them for conflict and synergy, pruning conflicting suggestions and combining synergistic
ones. TAC proposes design suggestions, then design element suggestions, and checks for interac-
tion. It compares each suggestion with the keep-val ue suggestions proposed in the previous step,
pruning when it detects conflict. It then looks for conflict or synergy among the remaining sugges-
tions: It puts the suggestions in digunctive normal form, which results in a set of compound sug-
gestions, each of which contains one simple suggestion for each unsatisfied goal. It checks for
synergy or conflict among the simple suggestions, combining simple suggestions that exhibit syn-
ergy and pruning compound suggestions that contain conflicts.

For each surviving design element suggestion TAC creates a new design. As with the other
two control structures, TAC checks the design to see if the design is a solution or if it's been seen
before. If neither of these situations is found, TAC checks intended goals, either discarding the
design or saving it for repair.

As shown in Figure 7.22, creating a new design and checking intended goals for a compound
suggestion are a bit different than for a single smple suggestion. A compound suggestion can be
thought of as aplan for creating a solution; each simple suggestion in the compound suggestion is
a step in the plan. With a compound suggestion, TAC starts with a copy of the origina design,
then sequentially carries out each of its simple suggestions. Each simple suggestion results in a
new design which is checked as in the previous control structures, to seeif it should be saved asa
solution, saved for repair, or discarded. If al goals are satisfied, any subsequent proposed modifi-
cations are unnecessary; synergy has been discovered. If the design has not been seen before, it is
saved as a solution. In Figure 7.22, D5 isasolution created from compound suggestion (and s; s,

S); D5 i a solution created from compound suggestion (and s, sg). 1* If all unsatisfied goals
are satisfied, and the design has not been seen before, it is saved for repair (because some of the
formerly satisfied goals are now unsatisfied). D, IS such an example; it was created from

14. The original compound suggestions may have contained more simple suggestions following g and sq, but they were
unnecessary so were not carried out and are not shown in the figure.

131

compound suggestion (and s; s5 s11). The design is discarded if the first smple suggestion’s
intended goals are not satisfied, as with D;5. The design is not discarded if later ssmple sugges-
tions don't satisfy intended goals: These suggestions, though relevant to the original design (the
context in which the suggestion was proposed), may not be relevant to the current design. If they
do not satisfy their intended goals, TAC assumes they are not relevant and skips them, then

continues with subsequent simple suggestions. After the last simple suggestion, if the design is

not a solution and has not been seen before, it is saved for repair; e.g. D,, in Figure 7.22.1°

A final note about creating designs from compound suggestions. Recall that carrying out a
simple suggestion results in a new design, and the suggestion that follows in the compound
suggestion operates on that design rather than the original design. Because each simple suggestion
is originally proposed in the context of the original design, it must be mapped to the appropriate
new design context before being carried out. This mapping may or may not be possible, depend-
ing on how different the new design is from the original. This issue is discussed in Example 2
bel ow.

The following examples, shown previoudly, illustrate the concurrent control structure. In each
example, we point out how the concurrent control structure’s solutions differ from those found by
the other two control structures.

Example 1: Predictable conflict

Let’s again say that we want the Living territory in the Tomek house to be visually open from
the Dining territory, and we want one fireplace in the Living territory. We specify the two goals:

<goal : (visually-open Living from Di ning) true>
<goal : (fireplace-count in Living) 1>

TAC proposes value suggestions for each goal, conjoining them into a compound suggestion
that specifiesincreasing visua openness and keeping the number of fireplaces at one:

(and (increase-value of (visual-openness of Living from Dining)
until visual -openness greater than 0.6)
(keep-value of (fireplace-count in Living) 1))

It checks for interaction between the suggestions, but finds none, so it proceeds with propos-
ing suggestions for the unsatisfied vi sual | y- open goa:

(or (renove bl ocki ng-el ements-btw Living and Di ni ng)
(puncture bl ocki ng-el ements-btw Living and Di ni ng))

15. Onefurther note: If agoal expression is a conjunction, then suggestion proposal proceeds as described here. A goa
with the expression (and (visual | y-open Living from Dining) (visible-center Living from Din-
i ng)) resultsin the same suggestions as with two separate goals. (See Example 2 that follows.) Fewer solutions may be
found, however: the clauses are not reasoned about separately, as goals are, so no intermediate designs are generated that
may satisfy one of the clauses but not the other.

132

It determines that the fireplace blocks the view, so it proposes removing or puncturing it:

(or (renove Fireplacel)
(puncture Fireplacel))

As with the sequential-with-lookahead control structure, TAC checks each of these sugges-
tions for interaction with the keep-value suggestion for the fi r epl ace- count goal. It finds that
removing the fireplace conflicts with keeping the number of fireplaces at one, so it prunes that
suggestion and only creates a new design with the fireplace punctured. It finds that the new design
satisfies the vi sual | y- open goa and returnsit as a solution. TAC has no designs to repair, so it
stops.

In this example, TAC found the same solution as with the sequential-with-lookahead control
structure, and its behavior was quite similar.

Example 2: Predictable synergy

Again let’s say that we want the Living territory to be visually open from the Dining territory
in the Tomek house, and we want the center of the Living territory to be visible from the center of
the Dining territory. We specify the two goals:
<goal : (visually-open Living from Di ning) true>
<goal : (visible-center Living fromDining) true>

TAC proposes value suggestions for the goals, conjoining them into a compound suggestion
that specifies increasing visual openness and making the center of Living visible from the center
of Dining:

(and (increase-value of (visual-openness of Living from D ning)
until visual -openness greater than 0.6)
(set-value of (visible-from (center of Living) (center of Dining))
to true))

It finds no interaction between the suggestions, so it proposes more specific suggestions,
conjoining suggestions for each of the goals:

(and
(or (renove Fireplacel)
(puncture Fireplacel))

(or (renove Fireplacel)
(puncture Fireplacel at <edge: 111.06...>)))

TAC checks each of these suggestions for interactions with the value suggestions above and
finds none. It then puts the suggestions into disunctive normal form to check for conflict and
synergy among the suggestions themselves.

133

In digunctive normal form, the suggestions are:
(or
(and (renove Firepl acel)
(renmove Firepl acel))
(and (remove Firepl acel)
(puncture Fireplacel at <edge: 111.06...>))
(and (puncture Fireplacel)
(remove Firepl acel))
(and (puncture Firepl acel)
(puncture Fireplacel at <edge: 111.06...>)))

Checking these compound suggestions, TAC notices that the first compound suggestion
contains the same simple suggestions, so it prunes one of them. It notices that the second
compound suggestion cannot be completely carried out: afireplace that has been removed cannot
then be punctured, so the second clause in the compound suggestion is pruned. (Rather than say
that the puncture suggestion conflicts, we say that it isinapplicable.) The third suggestion doesn’'t
contain aconflict (because it’s not clear that removing the fireplace will undo the puncture modifi-
cation’s intended goal), but it does contain a wasted operation: If the fireplace is to be removed,
then puncturing it first isn't necessary; a remove operation subsumes all others. TAC avoids such
wasted operations in a compound suggestion by pruning al simple suggestions involving the
design element that appears in a remove suggestion. In this example, TAC prunes the puncture
suggestion. Finally, TAC notices a synergy: the last suggestion contains two very similar smple
suggestions, with one more specific than the other. It keeps the more specific suggestion, pruning

the less specific one which is subsumed. The pruning is summarized in Figure 7.24.

134

(or
(and (remove Fireplacel)
(remove Fireplacel))
(and (remove Fireplacel)
(puncture Fireplacel at <edge: 111.06...>))
(and (puncture Fireplacel)
(remove Fireplacel))
(and (puncture Fireplacel)
(puncture Fireplacel at <edge: 111.06...>)))

(or \L

(and (remove Fireplacel)

{remeve—Fireplaced))

(and (remove Fireplacel)

{punctoreFireptacet—at<edge—t1+66——>))
(and—puneture—Fireptacety

(remove Fireplacel))

(and—ptneture—Fireptacety
(puncture Fireplacel at <edge: 111.06...>)))

(or \L

(remove Fireplacel)

—removerFireplacel)-
—removeFireplaced)-
(puncture Fireplacel at <edge: 111.06...>))

|

(or (remove Fireplacel)
(puncture Fireplacel at <edge: 111.06...>))

Figure 7.24: Pruning of suggestionsfor vi sual | y- open and vi si bl e- cent er goals.

TAC is now left with the same suggestions it proposed using the sequential-with-lookahead
control structure:

(or (renove Fireplacel>)
(puncture Fireplacel at <edge 111.06...>))

The suggestions each have two intended goals, making the Living territory visually open from
the Dining territory and making its center visible from the Dining territory’s center. TAC finds
both goals satisfied and returns Tomek#1 and Tomek#2 as solutions, as it did with the sequential-
with-lookahead control structure. The concurrent control structure, however, proposed sugges-

135

tions that had to be pruned because they contained inapplicable simple suggestions, i.e. sugges-
tions that could not be carried out because a previous suggestion modified the design in such a
way as to make them inappropriate or impossible. In the above example, the suggestion to punc-
ture the fireplace after removing it was impossible to carry out. The knowledge necessary for
pruning this suggestion must be represented explicitly, or TAC must know to skip modifications it
cannot perform. Both the sequential and sequential-with-lookahead control structures avoid
inapplicable suggestions because they propose suggestions in the context of a new design rather
than in the context of the original design. With anew design, only suggestions appropriate for that
particular design are proposed. The sequential and sequential-with-lookahead control structure,
however, do perform wasted operations that the concurrent control structure can avoid. They, for
example, will puncture the fireplace to satisfy the vi sual | y- open goal, then subsequently pro-
pose removing it to satisfy thevi si bl e- cent er goal. Since the concurrent control structure must
represent extra knowledge in order to avoid inapplicable suggestions, it can also use that knowl-
edge to avoid wasted operations. This benefit, however, is outweighed by the cost of having to
explicitly represent the knowledge it requires.

Example 3: Unpredictable conflict

Returning to the Horner house, consider the two goals: a fireplace on an interior edge of the
Living territory, and the Living territory visually open from the Dining territory.

<goal : (fireplace-on-interior-edge of Living) true>
<goal : (visually-open Living from D ning) true>

Since this example has only one unsatisfied goal and no interactions between suggestions, the
concurrent control structure generates the same designs and solutions as the sequential-with-look-
ahead control structure.

Example 4: Unpredictable synergy

For the Horner#l design, shown in Figure 7.25, we specify goals for one fireplace in the
Living territory, a fireplace on an exterior edge of the Living territory, and the Living territory
visually open from the Dining territory:

<goal : (fireplace-count in Living) 1>
<goal : (fireplace-on-exterior-edge of Living) true>
<goal : (visually-open Living fromD ning>) true>

136

Dining

Bookcasel F-t -a| r
g B |
e .
Fireplacel
Living

Figure 7.25: Territory model for Horner#1.

As before, TAC finds that the last two goals are unsatisfied. It proposes suggestions, conjoin-
ing them into a compound suggestion to keep the value of the fireplace count at one, make the
design have afireplace on an exterior edge, and increase the visual openness value:

(and
(keep-val ue of (fireplace-count in Living) 1)

(set-val ue of (on-exterior-edge Fireplacel)
to true)
(increase-val ue of (fireplace-count in Living)
to 2 such that on-exterior-edge is true))
(i ncrease-val ue of (visual-openness of Living from Dining)
until visual -openness greater than 0.6))

(or

It checks for interaction, noticing that increasing the number of fireplaces to satisfy the
firepl ace-on-exterior-edge goa conflicts with the keeping the number of fireplaces at one.

S0 it prunes that suggestion:

(and
(keep-val ue of (fireplace-count in Living) 1)

(set-val ue of (on-exterior-edge Fireplacel)
to true)
. ; . -
E E I ot . %) .)
(i ncrease-val ue of (visual-openness of Living from Dining)
until visual -openness greater than 0.6))

(or

137

After pruning:

(and (keep-value of (fireplace-count in Living) 1)

(set-val ue of (on-exterior-edge Fireplacel)

to true)

(increase-val ue of (visual-openness of Living from Dining)

until visual -openness greater than 0.6))

TAC then proposes more specific suggestions for the last two of the suggestions above:

(and

(rmove Fireplacel to any exterior-edges-for Fireplacel)

(or

It checks the design, substitutes exterior edges and blocking design elements into the above

(renove bl ocki ng-el enents-btw Living and Di ni ng)
(puncture bl ocki ng-el ements-btw Living and Dining)))

suggestions, and proposes.

(and
(or

(or

(rmove Fireplacel to <edge 15.75...>)

(rmove Fireplacel to <edge 31.69...>))

(remove Firepl acel)

(renove Bookcasel)

(remove Stair)

(puncture Firepl acel)

(puncture Stair)

(and (renove Fireplacel) (renove Stair))

(and (puncture Fireplacel) (puncture Stair))))

TAC checks each of these suggestions for interaction with the value suggestions, and finds
that removing the fireplace conflicts with keeping the number of fireplaces at one. So it prunes
that suggestion:

(and
(or

(or

(rmove Fireplacel to <edge 15.75...>)
(nmove Fireplacel to <edge 31.69...>))
{remve Fireplacel)

(remove Bookcasel)

(renove Stair)

(puncture Firepl acel)

(puncture Stair)

(and (puncture Fireplacel) (puncture Stair))))

138

It puts the suggestions into disjunctive normal form:

(or (and (nove Fireplacel to <edge 15.75...>)

(remove Stair))

(and (nove Fireplacel to <edge 31.69...>)
(remove Stair))

(and (nmove Fireplacel to <edge 15.75...>)
(remove Bookcasel))

(and (rmove Fireplacel to <edge 31.69...>)
(renove Bookcasel))

(and (nove Fireplacel to <edge 15.75...>)
(puncture Firepl acel))

(and (nmove Fireplacel to <edge 31.69...>)
(puncture Firepl acel))

(and (rmove Fireplacel to <edge 15.75...>)
(puncture Stair))

(and (nove Fireplacel to <edge 31.69...>)
(puncture Stair))

(and (nmove Fireplacel to <edge 15.75...>)
(puncture Firepl acel)
(puncture Stair))

(and (nmove Fireplacel to <edge 31.69...>)
(puncture Fireplacel)
(puncture Stair)))

TAC then checks for interactions within each compound suggestion and finding none, creates
ten designs, one for each compound suggestion. Only two of the designs are unique, however. In
each compound suggestion, the first ssmple suggestion (to move the fireplace) satisfies both goals,
so the second simple suggestion is not carried out. The first and second compound suggestions
generate two new designs which are solutions. The designs created by the remaining compound
suggestions are the same as one of these two designs and are discarded.

As noted above, TAC found no interactions within the compound suggestions. A stricter
definition of conflict might have disallowed compound suggestions that proposed moving the
fireplace, then puncturing it, or puncturing a fireplace, then moving it. Recall that TAC prunes
compound suggestions which contain conflicting simple suggestions, i.e. suggestions that clobber
one another’s intended goals. Chances are that in a compound suggestion proposing both punctur-
ing and moving a design element, the move will keep the puncture from accomplishing its
intended goal, e.g. of making a territory center visible. Rather than assume these modifications
will conflict, TAC takes a conservative approach: It only prunes compound suggestions containing
predictable conflicts (e.g. adding a fireplace while attempting to keep the number of fireplaces
constant), opting to repair the resulting new design if necessary. After repair of a design whose
fireplace has been punctured then moved, however, the fireplace will contain a puncture that may
or may not be relevant to any eventual solutions.

139

Note that if the puncture suggestion contains a specific location, rather than simply specifying
adefault, a potential conflict with a move suggestion would be more easily predicted (because the
puncture location would no longer intersect the fireplace in its new location). TAC, however,
would have to check the design to detect this conflict, so the suggestion still could not be pruned
ahead of time.

In this example, the concurrent control structure found the same two solutions as the sequen-
tial-with-lookahead control structure, but it generated eight designs that were discarded. The extra
designs were the result of TAC's proposing suggestions for al goals in the context of the original
design: the modifications for the first goal (moving the fireplace) changed the design in such a
way that suggestions for other goals were no longer relevant. Note that different orderings of
simple suggestions in the compound suggestions would not have produced this result. Simple
suggestion order reflects goal order, an issue that is discussed in the next section.

Benefits and Costs

As shown in the examples above, the concurrent control structure proposes suggestions once
for al goalsin the context of the original design, rather than proposing suggestions multiple times
as the sequential-with-lookahead and sequential control structures do. Prior to creating designs, it
checks those suggestions for interactions, producing a set of compound suggestions, each of
which represents a plan for producing a design intended to satisfy all unsatisfied goals. Checking
the suggestions for interactions, i.e. conflict and synergy opportunities, reduces the number of
designs generated with this control structure.

These two benefits, however, are offset by the costs of the concurrent control structure. Even
though the concurrent control structure can limit search by detecting conflicts and synergies, it
often generates more intermediate designs than the sequential-with-lookahead control structure.
Viewing design generation as search, the compound suggestions represent paths through the
search tree to designs at |eaf nodes. The tree is searched depth-first, one compound suggestion at a
time, with intermediate designs created after each simple suggestion in a compound suggestion.
The extra intermediate designs are due to a large branching factor at the root of the design tree.
The worst case branching factor is the maximum number of compound suggestions, s, where s is
the number of suggestions per goal, and u is the number of unsatisfied goals. (Recall that the
branching factor for the sequential-with-lookahead and sequential control structures iss.) The
branching factor after the first tree level is one, since compound suggestions are carried out a sin-
gle simple suggestion at atime. The maximum depth of the search tree is u, as with the other two
control structures. In the worst case then, the tree size is s¥ x u. with only one unsatisfied goal, as
in Example 3, the number of designs generated is the same as with the other two control struc-
tures,ors' x 1 = s.

140

The size of the design tree is usually not the worst case size. The concurrent control structure
decreases the branching factor by using a mechanism similar to lookahead, and decreases the tree
depth by checking each new design to see if it should be discarded or saved as a solution. Never-
theless, when there is more than one unsatisfied goal, the concurrent control structure often gener-
ates more intermediate designs than the sequential-with-lookahead control structure, and many of
those designs are discarded as duplicates. As shown in Example 4, eight designs out of ten were
discarded as duplicates because the first proposed modification in each compound suggestion
satisfied both goals, rendering subsequent modifications unnecessary. The concurrent control
structure usually generates fewer designs than the sequential control structure without lookahead,
however, since its lookahead-like suggestion proposal decreases the likelihood of looping with
repair cycles. Design generation for each control structure is discussed further in Section 7.6.

Additional costs result from proposing compound suggestions in the context of the original
design. Beginning with a copy of the original design, the first simple suggestion is carried out,
producing a new intermediate design; the next simple suggestion is carried out on that design,
producing another new intermediate design; and so on. The simple suggestions must be mapped
to the new design contexts before they are carried out. A small cost is associated with performing
this mapping. A larger cost isincurred when the mapping is not possible and suggestions are inap-
plicable, i.e. irrelevant or impossible to carry out in the new design context. Inapplicability arises
because with each modification the new design differs more from the origina design, and as a
result, suggestions that were appropriate for the original design may no longer be applicable to the
new design. When this situation arises, TAC skips the suggestions, which usually results in
designs that must be either discarded as duplicates or saved for repair.

Some inapplicable suggestions can be avoided if operator interactions are known ahead of
time. The remove operator, for example, renders impossible subsequent operators that attempt to
act on the removed object. TAC was able to prune a puncture fireplace suggestion in Example 2,
for instance, because that suggestion followed a remove fireplace suggestion. The knowledge
needed to prune inapplicable suggestions is not necessary with the sequential and sequential-with-
lookahead control structures because these control structures do not propose inapplicable sugges-
tions. Having to represent extra knowledge does have one benefit, however: the knowledge also
can be used to avoid wasted operations. If the remove operator, for example, is represented as
subsuming all other operators, rendering them impossible if they follow or moot if they precede,
TAC can avoid modifying a design element, then removing that design element. The concurrent
control structureis ableto do this, as shown in Example 2; the other two control structures are not.
Having to represent extra knowledge incurs a cost, however: as more interactions are explicitly
represented, the knowledge base becomes large and difficult to maintain.

Finally, asmall cost isincurred by the concurrent control structure’'s search strategy. Since the

141

design space is searched depth-first, identical designs generated later in the search may be reached
viafewer modifications from the original design than designs generated earlier. Since TAC prefers
solutions that are minimal, it substitutes the later designs for earlier ones in repair and solution
sets. Substitution of this sort is unnecessary with sequential design generation because designs are
generated breath-first.

142

7.4 Goal Order

Goal order affects the efficiency of search through the design space and the number and quality of
solutions found. We measure adesign’s quality by the number of modification steps from the orig-
inal design, and by how many of those steps were actually necessary for satisfying the specified
goals.

All three control structures are sensitive to goal order, which determines the order in which
suggestions are proposed, and therefore, the order in which modification operators are carried out.
Different operator orders can produce different designs because: (1) synergies may be evident in
some goal orders, but not others, and (2) operators in this domain are not necessarily commuta-
tive. The ability to detect some synergies ahead of time, as in the sequential-with-lookahead and
concurrent control structures, decreases goal order sensitivity. Example 1 illustrates goal order
influence on the sequential-with-lookahead control structure and discusses optimal and nonopti-
mal goal orders; the other control structures behave similarly. Example 2 discusses goal ordersfor
the set of goals used in the experiments described at the end of this chapter.

Example 1

Returning to the Horner#1 design, which is shown below, let’s again say that we want the
center of the Living territory to be visible from the center of the Dining territory, and we want the
Living territory to be visually open from the Dining territory:

<goal : (visible-center Living fromDining) true>
<goal : (visually-open Living fromDi ning) true>

Bookcasel

Fireplacel

Living

Figure 7.26: Territory model for Horner#1.

143

Given the two goals above, TAC proposes suggestions for the first goal, the vi si bl e- cent er
goal:

(or (renove Fireplacel>)
(puncture Fireplacel at <edge: 111.06...>))

It performs lookahead, notes no interactions that change the suggestions, then creates one
design for each suggestion. It makes sure that the vi si bl e- cent er goal is satisfied, then finds
that the new designs also satisfy the vi sual | y- open goal. It proposes no further suggestions and
returns the two designs as solutions.

With the goals in reverse order, TAC first proposes suggestions for the vi sual | y- open goal:

(or (renove Fireplacel)
(renove Bookcasel)
(remove Stair)
(puncture Firepl acel)
(puncture Stair)
(and (renmpve Fireplacel) (renove Stair))
(and (puncture Fireplacel) (puncture Stair)))

Performing lookahead, TAC proposes for thevi si bl e- cent er goal:

(or (renove Fireplacel)
(puncture Fireplacel at <edge: 111.06...>))

It notes a synergy between the puncture fireplace suggestions, and refines its suggestions for
thevi sual | y- open goal:

(or (renove Fireplacel)
(remove Bookcasel)
(remove Stair)
(puncture Fireplacel at <edge: 111.06...>)
(puncture Stair)
(and (renove Fireplacel) (renove Stair))
(and (puncture Fireplacel at <edge: 111.06...>) (puncture Stair)))

It creates seven designs, one for each suggestion. As in previous examples, the last two
compound suggestions produce duplicates. The new designs, which include two solutions, are:

Horner#1#1 with fireplace removed; solution

Horner#1#2 with bookcase removed

Horner#1#3 with stair removed

Horner#1#4 with fireplace punctured along line of sight between territory centers; solution
Horner#1#5 with stair punctured

Horner#1#6 with fireplace removed; duplicate of Horner#1#1, discarded

Horner#1#7 with fireplace punctured along sight line; duplicate of Horner#1#4, discarded

144

TAC then proposes suggestions for the vi si bl e-center goa for each of the three designs
that are not solutions or duplicates (Horner#1#2, Horner#1#3, Horner#1#5):

(or (renove Fireplacel>)
(puncture Fireplacel at <edge: 111.06...>))

It carries out these suggestions and creates six more designs, two of which are solutions:
Horner#1#2#1 with fireplace removed; duplicate of Horner#1#1, discarded
Horner#1#2#2 with fireplace punctured along line of sight; solution
Horner#1#3#1 with fireplace removed; duplicate of Horner#1#1, discarded
Horner#1#3#2 with fireplace punctured along line of sight; solution
Horner#1#5#1 with fireplace removed; duplicate of Horner#1#1, discarded
Horner#1#5#2 with fireplace punctured along line of sight; solution

TAC returns five designs as solutions, having generated a total of 13 designs. Since TAC
prefers minimal solutions, i.e. those that are a minimum number of modification steps from the
origina design, Horner#1#1 and Horner#1#4 are considered the best solutions. The other solu-
tions contain extra modifications that we know from the existence of the two minimal solutions
are not necessary for satisfying both goals.

Not coincidentaly, the two minimal solutions are identical to the solutions found with the
goals in the reverse order. This order—vi si bl e-center goal, followed by vi sual | y- open
goal—is an optimal goa order because the goal with synergistic operators, i.e. that will satisfy
more than one goal, precedes the goal with which its operatorsinteract.

TAC's behavior would be less sensitive to goal order in this example if its lookahead mecha-
nism pruned all thevi sual | y- open suggestions except for the two Synergistic ones, removing the
fireplace and puncturing it aong the line of sight. The possibility of unpredictable synergies,
however, means that TAC's behavior still can depend on goal order.

Example 2
For the Horner design, let’s say that we'd like the center of Living territory visible from the center
of the Dining territory, the Living territory visually open from the Dining territory, afireplace on
an interior edge of the Living territory, one fireplace in the Living territory, and one fireplace in
the entire design:
(<goal : (visible-center Living Dining) true>
<goal : (visually-open Living Dining) true>
<goal : (fireplace-on-interior-edge of Living) true>

<goal : (fireplace-count in Living) 1>
<goal : (fireplace-count in Horner) 1)

145

The above goals are in an optimal order because goals with synergistic operators precede
goals with which they interact. Puncturing the fireplace to satisfy the vi si bl e- cent er goal also
may satisfy thevi sual | y- open goal. If the design has no fireplace, TAC will satisfy thefirst fire-
place goal by adding afireplace to an interior edge of the Living territory; all three fireplace goals
will be satisfied then. With or without lookahead, one modification can satisfy the three fireplace
goals.

The following goal order is nonoptimal because goals with synergistic operators follow goals
with which they interact:

(<goal : (visually-open Living Dining) true>
<goal : (visible-center Living Dining) true>
<goal : (fireplace-count in Horner) 1>
<goal : (fireplace-count in Living) 1>
<goal : (fireplace-on-interior-edge in Living) true>)

With this goal order, TAC will satisfy the vi sual | y- open goal first, generating some designs
that also satisfy the vi si bl e- cent er goal and some that do not. The designs that don’t satisfy
both goals, e.g. with the bookcase removed, are then modified to satisfy the vi si bl e- cent er
goal. If the previous modifications for the vi sual | y- open goal were not necessary for satisfying
both goals, the resulting designs contain unnecessary modifications and, therefore, are not mini-
mal solutions. Puncturing the fireplace, for example, satisfied both goals so removing the book-
case was unnecessary. Also with this goal order, if the design has no fireplace, TAC will attempt to
satisfy thefirst fireplace goal of having one fireplace in the entire design. If TAC performs looka-
head, it figures out that all three fireplace goals can be satisfied by adding a fireplace to an interior
edge of the Living territory. Without lookahead, TAC will add a fireplace to arandom location in
the design. It then will add afireplace to the Living territory to satisfy the second fireplace godl,
then move the fireplace to an interior edge of the Living territory to satisfy the third fireplace goal,
then remove the first fireplace to resatisfy the first fireplace goal—four modifications instead of
one.

As both these examples have illustrated, there is an optimal goal order for producing minimal
solutions. This order, however, is difficult to determine apriori because, as noted previously, the
effects of operators in this domain are very difficult to predict. The issue of goa ordering is
discussed further in Chapter 10.

146

7.4 Termination

As discussed earlier, TAC stops iteration with a particular design when the design is a solution or
when the intended goal for the design has not been satisfied. TAC also stops iteration when it
encounters adesign it has seen before or when it reaches an iteration limit.

7.4.1 |dentifying Equivalent Designs

It's important when searching a design space, or any space for that matter, to be able to recog-
nize when the search has returned to a place it's already been. In TAC, not recognizing when a
design has been seen before can lead to looping as the system continues attempting to repair the
design.

The system can encounter the same design because there may be many pathsto it, i.e. differ-
ent combinations of operators may have the same effects. When operators commute, for example,
the same design may be reached via the same operatorsin different orders. Alternatively, different
operators may result in the same changes to a design object. Shortening awall, for example, may
have the same effect as widening an adjacent doorway. The two designs below, generated in
experiments on the Horner house, show a more complex example of TAC's reaching the same
design via different modification steps.

HORHER#1SK4R2 HORHERg21gSE2R2
HOVE-TO-EDGE ADD-ELTS 1
Fireplacel FIREPLACE_TO-EDGE
13,8 52.7)(27.6 52.7) 15,8 52.7)(27.6 52.7)
UNCTURE UNCTURE
Stair atr
PUNCTURE PUNCTURE
Fireplacel Fireplace2 AT

AT
23.7 59.4)(23.7 34.3 23,7 59.45(23.7 34.3
§ 2 : EEHOUE-ELT>(¢
Fireplacel

Figure 7.27: Same designs generated via different modification steps.

1. Inthe experiments described in this chapter, the stair scr eeni f y operator has been replaced by punct ur e.

147

Recognizing that two designs are the same is difficult because designs that differ very slightly
are often still considered the “same”, even though they are not strictly identical. Slight differences

can arise when design objects have real-valued attributes.? The designs shown below, for example,
differ only in that the stairs are punctured in slightly different locations.

= =
1 t_ ;i h
— L. .
CIT CT
HORHERF2984¥2 HORNERZS4R4¥ 1R 1R 1R2H2
HOVE- TO EDGE HOVE- TO EDGE
F1reg 52 ?)(2? 6 S52.7) F1reg 52 ?)(29 152.7
SUHC EUN
PUNCTURE REHOUE ELT
Fireplacel ar Féﬁe cagei
(23,7 59.4)(23.7 34.3) FIREFLACE
ADD-ELTS 1

FIREPLRCE TO-EDG
1 ?)(2? 6 52.7)

E 8

UNC

F1re lacee AT
EEH 4)(23 7 34.3)
Fire placel

Figure 7.28: Comparison of solutions with stair punctured in slightly different locations.

To consider these two designs the same, we must define equivalence relations. Two designs
might be the same, for example, if their edges are the same; two edges might be the same if their
endpoints are within a specified ¢ of each other. Defining these equivalence relations is a nontriv-
ial knowledge engineering problem, though even simple relations will improve program perfor-
mance.

Given how difficult it is to recognize equivalent designs, it is tempting to look for equivalent
suggestions instead: If a suggestion is proposed that is the same as one in a design’s derivation

history, assume the design is equivalent to a predecessor and prune the suggesti on.® We tried this
simple lookbehind mechanism and found that it did cut down on extraneous nonminimal
solutions. In general, however, such alookbehind mechanism is not a good idea because (1) defin-
ing equivalence for suggestions is just as difficult as for designs, and (2) the design context in

2. By “attribute” we mean a physical characteristic of a design element, e.g. size, location, materials.
3. A design’sderivation history isalist of the repairs carried out to generate the design from the original design.

148

which the second suggestion is proposed may be genuinely different, and pruning the suggestion
may cause a solution to be missed. (See experiment 5 in Section 7.6 for lookbehind results.)

7.4.2 Limiting Iteration

Being able to recognize when search has returned to a previously generated design is suffi-
cient to guarantee termination if the design space is finite. With real-valued attributes, however,
the design space is infinite. Two methods ensure that a system such as TAC terminates its search
of such a space: discretizing and bounding the space, or employing an iteration limit.

The space of designs can be discretized at design equivalence-testing time, for example, by
defining equivalence relations, as suggested earlier, for real-valued design object attributes. The
space also can be discretized at design generation time by discretizing the design operators. A
design element to be added at a particular location can be centered on the nearest point in a
predefined grid, for example.

The space of designs can be bounded by placing bounds on design object attributes and by
insisting that operators keep attribute values within those bounds. The square footage for adesign
could be bounded, for example, by specifying that it not change by more than a given amount.

Discretizing and bounding a space of designs will ensure termination. In lieu of both of these,
however, nontermination may be a problem. In the current version of TAC, the design space is
bounded, but not discretized. TAC's set of operators bound the space by never changing the foot-
print of adesign, but do not discretize the space. They position design elements on currently exist-
ing edges in the design. If intervening operators do not change the edges in a design, subsequent
positioning or repositioning of design elements will occur at the same locations. Under these cir-
cumstances the space appears discretized, but intervening operators can change the edges in a
design. TAC's equivalence testing also does not discretize the space: two designs are the same if
their edges are identical and if their design elements have identical types, sizes, and locations.
Because TAC's search is bounded but not discretized, it relies on an iteration limit to guarantee
termination.*

Two examples below show designs that had to rely on an iteration limit because the combina-
tions of add, remove, move, and puncture operators modified edges in such away that the designs
varied slightly from previously generated designs. As a result, TAC did not recognize the designs
as duplicates and continued with its repair cycles.

4. Aniteration limit also may be pragmatic when searching afinite, but very large space.

149

HORNERKSHOR 1R7R IRORORSH IR

HOVE-TO- EDGE
Fireplace
ﬁlS 52 ?%EQ? 6 52.7)
OVE-TO-E
Fireplace

15, a4 ?6 2)(15 § 55.3)

HORHERH#SHOR IR7R IRORSR 1R 1K1

HOVE-TO- EDGE
Fireplace

13, 52 ?%Ee? 6 52.7)
OVE-TO-E
Fireplace

15, 2 ?6 2)(15 8§ 55.3)

FIREPLRCE ! o-E06E FIREPLRCE EDGE
(158 £2.73(27.5 52.7) 5 ?)(e? 6 52,79
Lo o
:'??"W?'EL% ???23%5%5

replace
HOUE=T OEEDGE HOVE-T0-EDGE
FlEeR1a5%d, oa. 1 s2. 7 FleRlases P¢20.152.7)
ﬁoué-ro én%é ﬁsnous ~ELT
Fireplacel Bookcasel
(15.5 66,2315, .8 55.3) REHOVE-ELT
RODE-T0-ED Fireplacet

replace
ais.g §2,73(15.8 52,7 FIREPLACE
EHOVE-ELT ADD-ELT
stair FIRERLACE T0-EDGE
REHOVE-ELT (26,1 52,7)(26.2 52.7)
Fireplacel

Figure 7.29: Two designs stopped at iteration limit with sequential control structure.

L ong modification sequences proved more of an issue for the sequential control structure than
for the other two control structures. This situation arises because, without pruning of conflicting
suggestions, more modifications are carried out and those modifications change the size and loca-
tion of a design’s edges. As mentioned above, without equivalence relations that discretize edge
sizes and locations, very similar designs will not be regarded as the same, and TAC will continue
repairing each of them. When the sequential control structure can take advantage of synergiesin
an optimal goal order, long modification sequences and possible nontermination are not issues
because the edge-changing modifications are not carried out.

150

7.5 Summary

Sequential-with-lookahead combines the benefits of the concurrent and sequentia control struc-
tures: It can spot conflict and synergy opportunities, as in the concurrent control structure, and it
proposes context appropriate suggestions for each new design, as in the sequential control struc-
ture. Its lookahead mechanism decreases potentia looping behavior and sensitivity to goal order.
The sequential-with-lookahead control structure, thus, is the most efficient of the three in search-
ing the suggestion and design spaces. It does not, however, necessarily find the most complete
solution set: Because the sequential control structure is allowed to temporarily violate goals while
searching, it may find additional solutions. For this reason, the best control structure for generat-
ing solutions when goals interact is the sequential-with-lookahead control structure with an option
for relaxing lookahead when desired. If nonminimal solutions are a priority, relaxing lookahead
should be accompanied by ordering goals to take advantage of operator synergies when possible.

The table below summarizes the features of the control structures.

Sequential-
with- Sequential | Concurrent

lookahead
detects synergy & conflict O O 0
proposes suggestions once per goal O O 0
proposes only applicable suggestions O | [l
has small branch factor at root O O U
finds minimal solutions without sub- O U O
stitution (breadth- vs depth-first)
finds extra solutions (not necessarily [l O]
minimal)

Table 7.1: Comparing control structure features.

151

152

7.6 Experiments

Since control structure behavior was not analytically determinable, we ran a series of experiments
for each of the three control structures: sequential-with-lookahead, sequential, and concurrent. We
chose a set of interacting goals, then varied goal order and sets of design modification operators.
For each control structure, goal order, and operator set, we compared efficiency and solution sets.
We compared efficiency with a measure of relative efficiency uniform across al the control
structures. how many suggestions were proposed and how many were pruned, and how many
designs were generated. We compared solution sets by looking at number, identity, and quality of

solutions generated.® Finally, as mentioned in Section 7.4.1, we tested each control structure with
a simple lookbehind mechanism. Below isa summary of the experiments.

Design
We used the Horner design.

Dining
.:]l: d]__
Bookcasel | : [S-t-aur
| | | e
1

Fireplacel
Living <

Figure 7.30: Territory model for Horner.

1. Recall that we measure the quality of a design by how many modification steps it is from the origina design; the
fewer the steps, the better the design.

153

Goals
We chose a set of interacting goals:
(<goal : (visible-center Living D ning) true>
<goal : (visually-open Living Dining) true>
<goal : (fireplace-on-interior-edge of Living) true>
<goal : (fireplace-count in Living) 1>
<goal : (fireplace-count in Horner) 1)

Four of the six kinds of interaction occur in this goal set. There are predictable synergies
between puncture operators for the vi si bl e- cent er and vi sual | y- open goals; predictable con-
flicts between removing afireplace for thevi sual | y- open and vi si bl e- cent er goals and keep-
ing fireplace count at one; unpredictable conflict between the vi sual | y- open goal and having a
fireplace on an interior edge. There also is interaction between the goals that deal with the fire-
place: predictable conflict between adding afireplace to an interior edge and maintaining one fire-
place in the Living territory and in the entire design; obvious synergy between having one
fireplace in the Living territory and one in the entire design.

Asdiscussed in Section 7.4, the above goals are in an optimal order because goals with syner-
gistic operators, i.e. that will satisfy more than one goal, precede goals with which they interact.

Also as discussed in Section 7.4, the following goal order is nonoptimal because goals with
synergistic operators follow goals with which they interact:

(<goal : (visually-open Living Dining) true>

<goal : (visible-center Living Dining) true>
<goal : (fireplace-count in Horner) 1>

<goal : (fireplace-count in Living) 1>
<goal : (fireplace-on-interior-edge in Living) true>)

Operators

We specified three modification operators for increasing visual openness between two things:
puncture blocking elements, remove blocking elements, or move blocking elements to exterior
edges of their territories. To simplify initial experiments 1 and 2, TAC employed only thefirst two
of these operators. The operator that moves a design element to an exterior edge introduces an
unpredictable synergy (between satisfying vi si bl e-cent er and vi sual | y- open goals) and an
unpredictable conflict (between vi sual | y-open and firepl ace-on-interior-edge goals).
This conflict could be predictable if the relationship between interior and exterior edges were rep-
resented in the knowledge base. In experiments 3 and 4, we studied the affect of introducing this
operator.

154

We defined the fireplace addition operator as follows: afireplace is added to aterritory on one
of the territory’s interior edges; a fireplace is added to a design without a specified location (i.e.
the fireplace is added to the design’s set of design elements, but not given alocation).

Below is a summary of the parameters for each experiment, followed by summaries of each
experiment.

Experiment control structure goal order | visual-openness operators

la sequential+look optimal puncture, remove

1b sequential optimal puncture, remove

1c concurrent optimal puncture, remove

2a sequential+look nonoptimal puncture, remove

2b sequential nonoptimal puncture, remove

2c concurrent nonoptimal puncture, remove

3a sequential +look optimal puncture, remove, move

3b concurrent optimal puncture, remove, move

3c sequential optimal puncture, remove, move

4da sequential+look nonoptimal | puncture, remove, move

4ab concurrent nonoptimal | puncture, remove, move

4c sequential nonoptimal | puncture, remove, move

5a sequential+look nonoptimal | puncture, remove, move
+ lookbehind

5b sequential nonoptimal | puncture, remove, move
+ lookbehind

5¢c concurrent nonoptimal | puncture, remove, move
+ lookbehind

Table 7.2: Summary of experiment parameters.

155

Experiment 1

We ran each control structure with the optimal goal order and the puncture and remove opera-
torsfor increasing visual openness.

Experiment 1 a b . ¢
sequential+look | sequential concurrent
solutions 4 4 4
designs 8 16 14
duplicate designs 0 5 6
suggestions (+ lookahead) 11 (+ 22) 16 27
suggestions pruned 3 0 10
% suggestions pruned 27.3 0 37.0
repair cycles 3 5 3

Table 7.3: Results of experiments with optimal goal order.

The concurrent control structure generated extra designs due to its large branching factor at
the start of the search, i.e. extra compound suggestions. See Section 7.3.3 for a discussion of this
issue. The sequential control structure generated extra designs because it violated goals, then
repaired the resulting designs. See Section 7.3.2.

Below are the four solutions found by each control structure.

156

y
iy
4
oy
= &

13
[T
=

HORNER®Z HORNERRS
HOVE-T 0 EDGE HOVE-T0~EDGE
Fireplace F1YED]8C
1578355 (18,5 2.7 (29,1 52,7)(31.7 52.7)

= R i = R

HORHER#1#1 HORHERZGER1
HOVE- TO EDGE HOVE-TO- EDGE
Firepla Fireplace
13 52 ?)(2? 6 52.7) 52? 52 ?)(29 152.7)
F1re lace F1re lace
(23,7 59, 4)(23 7 34.3 (23,7 59, 4)(23 7 34.3

Figure 7.31: Four solutions for the control structures with optimal goal order.

157

Experiment 2

We ran each control structure with the nonoptimal goal order and the puncture and remove
operators for increasing visual openness.

Experiment 2 a b . ¢
sequential+look | sequential concurrent
solutions 9 19 9
designs 21 128 21
duplicate designs 2 47 2
suggestions (+ lookahead) 31 (+32) 128 27
suggestions pruned 10 0 10
% suggestions pruned 32.3 0 37.0
repair cycles 3 23 3

Table 7.4: Results of experiments with nonoptimal goal order.

The sequential-with-lookahead and concurrent control structures produced the same four
solutions as with the optimal goal order, plus five extra solutions which are shown below. As
discussed in Section 7.4, these extra solutions are not minimal solutions.

158

HORNER#13#1¥1
HOVE-TO- EDGE
Fireplace

15,8 52, ? 27.6 52.7
aEHOUE o)

S5ta

PUNCTURE

F1replace1

(23,7 59, 4)(23 7 34.3)

HORNER#13#2#1

HOVE-TO- EDGE
Fireplace

EHOVE-EL

BOOkC&SQl
CTURE

Flrenla cel

(23,7 59, 4)(23 7 34.3)

8.8 52, ?)(2? 6 52.7)

HORNERF13#3¥1

HOVE-TO- EDGE
Fireplace

SUHC

PUNCTURE
Flreplacei

(23.7 59, 4)(23 7 34.3)

52 ?)(2? 6 52.7)

i =
|.-| : ljl- t-
! ' - r .
H - rpl
HORNER# 15141 HORNERZ 158381
HOVE-TO- EDGE HOVE-TO- EDGE
Fiyeplaces Des. 1 527 e T
aEHOUE > ? SUNCTUR
Statr Stair
PUNCT pUNCTURE
Fireplace Flreplacei
FareRtase b a7 sem (257 55,46 23.7 34,3

Figure 7.32: Five extra solutions found for sequential-with-lookahead and concurrent control
structures with nonoptimal goal order.

159

The sequential control structure produced virtually the same nine solutions as the other two
control structures (one has a fireplace moved and punctured in two places rather than one). It also
produced ten extra solutions. Four of those are genuinely new designs, similar to two other solu-
tions, but with extra (unnecessary) modifications carried out first. See Figures 7.33 and 7.34. The
six additional solutions are not significantly different from other solutions: they have dlightly
different fireplace locations, dightly different stair puncture locations, slightly different edge
extensions, slightly different new territory boundaries. These solutions result from the difficulty of
spotting the “same” designs when using real-valued positions for operators. Two such solutions
were shown in Figure 7.28. See Section 7.4.1 for discussion of design equivalence.

= R i FI_']:'
3L -2

HORNERZSH HORHERZ3SH2R 12

HOVE-TO-EDGE ADD-ELTS 1

Fireplacel FIREPLACE_TO-EDGE

(15,38 52.7)(18.8 52.7) 518 R 52 (27,6 52.7)
Statr
REHOUE—ELT
Fireplace2
HOVE- TO-EDGE
Flregl
(15,8 52, ?)(18 § 52.7)

Figure 7.33: Comparison of two solutions for sequential control structure:

one on left was also found by other two control structures;
one on right has extra unnecessary modifications.

160

A

-4

)
= S

HORNER#SSH2H1K2 HORNER#SSH2H 145
ADD-ELTS 1 ADD-ELTS 1
FigspLRCE7§?2§°s 52.7) FIREPLRCE?;?egngES2 n
EUNCTU SUN
Statr
REMOVE-ELT REHOUE ELT
Fireplace2 Fireplacez2
HOUE-TO-EDGE HOVE- 10 EDGE
F1regl Firepl
(15, 52.?)(13.8 s52.7) (38, 52 ?)(31 7527

-
'

HORNERESSH7R1IRS HORNERESSE7R1R2
ADD-ELTS 1 ADD-ELTS 1
FIREPLACE_TO-EDGE FIREPLRCE TO-E
a18.8 52, 7(27.6 52.7) a .?)(2? 52.?)

EHOVE-ELT EHO

Statr Statr

REMOVE-ELT REHOUE ELT

Fireplace2 Fireplace2
HOUE-TO-EDGE OUE TO EOGE
Fireplace Fi reg

(29.1 52.?)(31.? 52.7) 15 52.?)(18.8 52.7)

Figure 7.34: Extranew solutions for sequential control structure with nonoptimal goal order.

161

Experiment 3

We introduced an operator that causes both unpredictable synergy and unpredictable conflict:
move a design element to an exterior edge as a method for increasing visual openness. The table
below summarizes the results of running each control structure with the additional move operator
and an optimal goal order.

Experiment 3 a b . ¢
sequential+look | sequential concurrent
solutions 4 4 4
designs 8 16 18
duplicate designs 0 5 10
suggestions (+ lookahead) 11 (+ 26) 0 31
suggestions pruned 3 0 10
% suggestions pruned 27.3 5 32.3
repair cycles 3 3

Table 7.5: Results of adding move to exterior edge as means of increasing visual openness,
optimal goal order.

The results are the same for the sequential-with-lookahead and sequential control structures
running without the move operator: With an optimal goa order, the vi sual | y- open god is
always satisfied by the vi si bl e- cent er operators, so no suggestions are proposed for it. The
concurrent control structure generated more designsin the presence of the move operator because
it proposed compound suggestions that included moving the fireplace to an exterior edge after
modifying the design to satisfy the vi si bl e- cent er goal. The resulting designs were duplicates
because the first modification satisfied both goals, rendering the move modification unnecessary.

162

Experiment 4

We included the move operator and ran the control structures with the nonoptimal goal order.
Extra solutions and designs are due to looping between moving the fireplace to an interior edge
and moving the fireplace to an exterior edge to satisfy the vi sual | y- open goal. See Section 7.4
for adiscussion of looping and termination issues.

Experiment 4 a b . c
sequential+look | sequential concurrent
solutions 11 37 22
designs 47 339 96
duplicate designs 10 122 22
suggestions (+ |ookahead) 62 (+ 148) 339 92
suggestions pruned 15 0 33
% suggestions pruned 24.2 0 35.9
repair cycles 5 48 11

Table 7.6: Results of adding move to exterior edge as means of increasing visual openness,
nonoptimal goal order.

R

- 51::1'[-

HORHERKS1¥SK12# 181 HORNERZS1RSH12#2K1
HOVE-TO- EDGE HOVE-TO- EDGE
Flge]gQ 73(27.6 52.7) Fige]gg 73¢27.6 52.7
RovE"13-Edoe a0k 18-ednt ’
F1Le 126 23(15.8 55.3) Flgeg]66 23¢15.8 55.3
ﬁOUE- %E ﬁOUE-T %é)
FlSeEIgQ ?)(18 852,70 FlgeEIEQ ?)(18 g 52,7
é%gOUE- aEHEUE
PUNCTURE gﬂﬁt%ﬁéel
Fireplace Fireplacel
(23.7 59 4)(23 7 34,35 (23,7 59, 4)(23 7 34.3)

Figure 7.35: Two extra solutions for control structures with move operator;
nonoptimal goal order.
163

An additional eleven solutions for the concurrent control structure resulted from a large
branching factor at the beginning of the search, combined with the difficulty of identifying
designs that are the “same”. The additional solutions, two of which are shown below, were all
nonminimal solutions very similar to other solutions.

SEERES

Ho L

[=

HORHERZ72HIROR 1XSR11
HOVE-TO- EDGE

gire]gg ?%EQ? 6 52.7)
OVE-

1ace

5.5 66 2&&15 5 55.3)
5%.?)(18.3 52.7)
B85 (05,7 34.5)
Ceoee o

§e3)(15.5 5.3
i S

N O O N
=]

el
2.7(18. 4 52.7)

164

S

[

HORHERK72RSKOR IROR4H L

HOVE-TO- EDGE
Fireplace

13, 52 ? 27.6 52.7)
A
a&%“wwﬁw
Fireplace
Sﬁﬁt?uge ?)(13 g 52.7)
Fireplace
(Eer B g7 o0
E%;eg]ggeIEESI 7 62.3)
e 16 2
(Eelule- <21 2.7
F1reglace1 AT
(23,7 59.4)(23.7 34.3)

Figure 7.36: Examples of extra solutions for concurrent with move operator.

Finally, the additional solutions found by the sequential model differed only dlightly from
those found by the two other control structures. They had many extramodifications, however. Two
are shown below in Figure 7.37. In addition, ten repair cycles were terminated when an iteration
limit was reached without a solution or duplicate design. See Section 7.4.2 for a discussion of
termination issues.

SRS
Ho L

HORNERKSHOR 1R7R IRORTRER2 HORHER#SHOR IR7R IROROR 1S

HOVE-TO- EDGE
F1re lace
52 ?%EQ? 6 52.7)

Fire lac
15, 6% %)(15 8 55.3)

e

eé%éQB 152.7)
6éléé31.? 62.3)
g??)(29.1 52.7)

acei AT
59.4)(23.7 34.3)

165

HOVE-TO- EDGE
F1re lace
52 ?%EE? 6 52.7)

Fire la
15, 66 2)(15 8§ 55.3)
D-ELTS 1

D
IREPLRCE TO-EDGE
?)(2? 6 52.7)

8.8

N

atr
HOVE-ELT
re

VE-

¥

3.

epla
gggﬁgie?%é26 152.7)
S.g 66.2%&15 .8 55.3)
Veplacel

S.g 52.7(18.4 52.7)

AN TMNIMDN T T

1
U
t
E
1
0
1
i
0
1
i
0
1
1

Figure 7.37: Examples of extra solutions for sequential with move operator.

Experiment 5

We added a simple lookbehind mechanism to each of the control structures. Proposed sugges-
tions were pruned if they were identical to suggestions in the design’s modification history, i.e. if
theidentical suggestion had been carried out already. By “identical” we mean that the suggestions
proposed the same modification to the same design object.

Experiment 5 a b . ¢
sequential+look | sequential concurrent
solutions 11 29 16
designs 21 253 59
duplicate designs 8 67 10
suggestions (+ |ookahead) 62 (+134) 276 66
suggestions pruned 17 23 23
% suggestions pruned 274 8.3 34.8
repair cycles 5 40 8

Table 7.7: Results of experiments with lookbehind and nonoptimal goal order.

Adding lookbehind did not change the set of solutions for the sequential-with-lookahead
control structure. It did reduce the number of designs and the number of duplicates. With the
sequential and concurrent control structures, it reduced the number of nonminimal solutions, the
number of designs, and the number of duplicates.

One of the nonminimal solutions generated by the sequential control structure but avoided
when lookbehind was employed is shown in Figure 7.38. See discussion in Section 7.4 about why
lookbehind is not a good technique for limiting search of a design space.

166

HORNERKSROR IR7R INCRORSHIRE
HOVE-TO-EDGE
Fireplacel

—> [Fireplacel

FIREPLACE_TO-EDGE
518.8 52.7(27.6 52.7)
UNCTURE

same Statr
REMOVE-ELT
Fireplace2
HOVE-TO-EDGE
Fireplacel

e;]acel
14 53.7)(18.8 52.7)
E-ELT

URE
eplacel AT
7 59.4(23.7 34.3)

Figure 7.38: Nonminimal solution avoided by sequential with lookbehind.
Identical suggestions are boxed; lookbehind pruned second suggestion.

167

168

Chapter 8

Exercisesin Architecture

8.1 Design: Chatham House

Let’s return to the Chatham house introduced in Section 5.4 and shown bel ow.

Figure 8.1: The Chatham house.

TAC was given amodel of this house and a set of design goals defined by the owners and their
architects, and in response proposed new designs. The designs, along with TAC's reasoning, are
presented here to show that TAC finds plausible solutions to a real architectural design problem,
and that it does so with breadth and generality. At the end of this section, several of TAC's
solutions are compared to those proposed by the architects.

169

 E— E—

Kitchen Bath Playroom ‘

.1 side door —

, Living] Dining Porch 7

, _ 1 i
/ [front door |

- A -

Figure 8.2: The Chatham house first floor and approach paths to exterior doors.
The usual approach point ismarked by O.

Four problems were identified:

* Site: visitors approaching the house are not sure which door to use

* entry: the living room is not very private with respect to the front door
* territories: the rooms feel very isolated from one another

» use: the kitchen istoo far from the dining room

Rephrasing the problemsin terms of goals for physical access and visual openness:

* site: have one perceived main entry

* entry: have the living room visually semi-open and physically semi-accessible from the
perceived main entry (i.e. have the living room only partially visible and reached viaa
somewhat crooked path)

* territories: have the rooms (main living spaces in particular) visually open from one another
» use: have the kitchen next to the dining room

Photographs included here illustrate the above problems. The two possible entries to the
Chatham house are visible in the photograph shown in Figure 8.1. The photograph in Figure 8.3
shows the lack of privacy of the living room from the front door: avisitor at the front door seesthe
entire living room and walks directly into it. The photograph in Figure 8.4 illustrates the lack of
visua openness between the living and dining rooms: the stair blocks most of the view between
the rooms. The floorplan in Figure 8.2 shows that the kitchen is not next to the dining room.

170

Figure 8.3: View from front door into living room.

Figure 8.4: View from living room to dining room.

171

Defining Design Problems

We gave TAC a design problem for the Chatham house which consisted of seven goals repre-
senting the above problems. TAC produced solutions using the sequential-with-lookahead control
structure described in Section 7.3.1. We present some of those solutions here, and for purposes of
exposition, we discuss the solutions and TAC's reasoning by grouping the design goals into four
separate design problems—one for each problem mentioned above. At the end of this section we
describe TAC's behavior with the seven goals and discuss the trade-offs between running a single
design problem versus separate design problems.

Problem 1: One perceived main entry

We want the design to have one perceived main entry, so we specify the goal as in Section
5.4:

<goal : (one-perceived-main-entry Chatham true>

Problem 2: Living visually semi-open, physicaly semi-accessible from perceived main entry

We want the Living territory to be visually semi-open, i.e. we want to see part but not all of it,
from the perceived main entry. In particular, let’ s say that we' d like to see more than 30% but less
than 80% of the Living territory. We represent this visual openness range by specifying these two

goas:!

<goal : (gt (visual -openness Living from (perceived-nai n-entry Chathan) 0.3)
true>

<goal : (It (visual -openness Living from (perceived-main-entry Chatham O0.8)
true>

We also want the Living territory to be physically semi-accessible from the perceived main
entry, by which we'll mean that we'd like the path from the entry to the Living territory to be
“somewhat crooked”. We'll say that a path is “somewhat crooked” if it is neither straight nor
circuitous, and we represent these concepts in terms of the change in direction between two
things, a design characteristic introduced in Section 3.2.1. A path is considered straight if its
changeindirectionislessthan 10 degrees, circuitousif greater than 120 degrees. For Chatham we

1. A single goal could be defined whose expression is a conjunction specifying the desired visua openness range. As
noted in Section 7.3.3, however, if agoal expression is aconjunction, fewer solutions may be found: the clauses are not
reasoned about separately, so no intermediate designs are created that may satisfy one of the clauses but not the other. As
we'll seein this example, a solution would be missed. Finally, since the design characteristic vi sual - openness isinvert-
ible (see discussion in Section 5.2.2), the operators that increase or decrease it cannot guarantee a resulting value within
aspecified range. Representing upper and lower bounds separately allows the possibility of asolution found in two steps
rather than one (i.e. a design satisfies one of the bounds, then is repaired to satisfy the other also).

172

specify the goals:?

<goal : (gt (change-in-direction-btw Living and (perceived-nai n-entry Chat hanm
10) true>

<goal : (It (change-in-direction-btw Living and (perceived-nmai n-entry Chat hanm
120) true>

Problem 3: Dining territory visually open from Living territory

We want the Dining territory to be visually open from the Living territory. We specify a goal

using the design characteristic vi sual | y- open introduced in Section 3213

<goal : (visually-open Dining fromLiving) true>

Problem 4: Kitchen adjacent to Dining

We introduce the design characteristic, use-adj acent. Recall from Section 3.1 that TAC
represents territories and their functional uses separately. A territory named “Kitchen” does not
carry along information about activities that take place in a Kitchen; instead the information is
represented by a use space model which pairs territories and activities. The design characteristic
use- adj acent takestwo activities and checks a use space model for adjacency of territories with
those activities. By saying that we want Kitchen adjacent to the Dining, we' re actually saying that
we want kitchen activities adjacent to dining activities, so we define this goal for Chatham:

<goal : (use-adjacent kitchen dining) true>

We gave TAC the above goals in the order presented here, which is an order proposed by the
architects: They thought about the larger issue of site entry, then house entry, then territory bound-
aries, ending with assigning uses to territories. Though they did not work on these problems
linearly throughout the design process, initially ordering the problemsin thisway alowed them to
narrow their search for solutions by fixing early in the process those aspects they deemed most
important. For example, choosing a particular perceived main entry prior to considering the
Living territory’s visual openness from the entry meant that they could consider fewer aternative
designs for the visual openness issue.

2. Therangeisrepresented with two goals rather than one for the same reasons as discussed for avisual openness range.
3. Recall that aterritory isvisually open from another territory if more than 60% of it isvisible. In the same way that the
design characteristic vi sual | y- open abstracts this visual openness threshold, a sophisticated user could define design
characteristics for other thresholds. The goals in the second design problem above then could be specified in terms of
such abstractions, e.g. vi sual | y-cl osed (defined as a visual openness value of less than 0.3) and vi sual I y- very- open
(defined as a visual openness value of greater than 0.8).

173

Evaluating Design Goals, Proposing and Perfor ming Repair Suggestions

TAC’ s reasoning and selected solutions for each of the above design problems are presented
here. Figure 8.5 shows the territory model TAC is given for the first problem. Also shown are the
paths from the usual approach point to the front door and side door. TAC found the paths by
searching the design’s circulation model.

=
| Kitchen Bath Playroom
Slde-pcl)rch side door
| A EENE KR ,
{_,C N _J Deck |
Side-st eps L I
e Stair f——.
E)/ Living [Dining Porch | |Ba(.:k-steps
[/ [
: ! front d . N : F=
'Driveway ronloohl ' =i
V! : [),\Front -porch
l/ ' I
4 ' Garden g
' -
ARSI S J__|Front steps

Figure 8.5: Territory model and approach paths for Chatham.

We begin by describing the design problem of having one perceived main entry, then proceed
to subsequent design problems, using solutions to this first design problem as starting designs.

Problem 1: One perceived main entry

<goal : (one-perceived-nai n-entry Chathan) true>

TAC finds that the one- per cei ved- mai n-entry goal is not satisfied: neither the front door
nor the side door has a percei ved- mai n-entryness value that dominates. As discussed in
Section 5.4, TAC suggests making the front door the perceived main entry by moving it closer to
the usua approach point and making the path to it straighter, replacing the side door with a
window or awall, removing the path to the side door, or making the side door not visible from the

usual approach point. Several of these new designs are shown in Figure 8.6 TAC aso suggests
making the side door the perceived main entry by moving it further from the usual approach point

4. Designswill be shown without the porch, deck, or back stepsin order to simplify the figures.

174

and making the path to it less straight, replacing the front door with a window or wall, removing
the path to the front door, or making the front door not visible from the usual approach point. Sev-
era of these designs are shown in Figure 8.7. All the designs are shown in Appendix G.

r--
. - fm e
]]
]]
]]
] -] -
] 1]]]]
: ' - il , . T T
:_’_'_'_,_,-L—"_'_Fl ' | dl ' :_ |
] ' -F=-
A S S P acl |
L e rr e e e e -——--- - b e e e e e - -
CHATHAMZ1 CHATHANgE2
noue REPLACE
Front-doo S1de-door MITH HINDOM
HHVBE EOUE EXTERIOR-TERRITORIES REMOVE-EXTERIOR~TERRITORIES-AND-PATHS
DECREASE-CHANGE-IN-DIRECT ION 19G7000K
Front-door USURL-APPROACH
HAYBE-MOVE-EXTERIOR-ACCESS
Front-door
| |
I |
I I
I 1 | I
I U I s U
L. -
= ——— r-
: voh
])
' - ' =9
] ' 1 '] 1
] T T ' | |
; ' Lol i : |]Tl
)] “r= ' =
O::\:\‘:n_ ! [-l ::.:\5\— . N -l
b e e e - o g g -
CHATHANE4 CHATHAMRE
REMOVE-EXTERIOR-PATHS FILL-EDGE
S1de-door (6.8 22,9)(18,1 22,9

Figure 8.6: Designs TAC proposes with front door as perceived main entry.
Path is from usual approach point (o) to front door; arrow in #6 shows new wall.

175

CHATHAHES CHATHANKR 18

REPLACE REPLACE

Front-door WITH WINDOMW Front-door HWITH WALL
REHMOVE-EXTERIOR-TERRITORIES-AND-PATHS REHOVE-EXTERIOR- TERRITORIES AND-PATHS
Front-door Front-door

CHATHAH#11 CHATHAHK# 12
REMOVE-EXTERIOR-PATHS FILL-EDGE
Front-door (18,1 368,9)(18.1 37.6)

Figure 8.7: Designs TAC proposes with side door as perceived main entry.
Path is from usual approach point (o) to side door; arrow in #12 shows new wall.

Problem 2: Living visually semi-open, physicaly semi-accessible from perceived main entry

<goal : (gt (visual -openness Living from (perceived-main-entry Chat han) 0.3)

true>
<goal : (It (visual -openness Living from (perceived-main-entry Chatham O0.8)
true>
<goal : (gt (change-in-direction-btw Living and (perceived-main-entry Chat ham
10) true>
<goal : (It (change-in-direction-btw Living and (perceived-main-entry Chat ham
120) true>

We illustrate TAC's reasoning on this design problem by showing its behavior on two very
different solutions for the previous design problem. Chatham#2 has the front door as the
perceived main entry; the side door has been replaced with a window. Chatham#10 has the side
door as the perceived main entry; the front door has been replaced with awall section.

176

L
e N CHATHAMR 16
CHATHAME2 REPLACE
REPLACE Front=door HWITH HALL
h REMOVE-EXTERIOR-TERRITORIES-AND-PATHS
S1de-door MITH WINDOMW R E et
REMOVE-EXTERIOR-TERRITORIES-AND-PATHS
side-door

Figure 8.8: Two designs: perceived main entry is front door (left) or side door (right).

TAC evaluates the visual openness and change in direction goals for the Living territory with
respect to the perceived main entry in each design, then proposes repair suggestions and creates
new designs for the suggestions. It then repairs any designs that do not satisfy all goals.

Chatham#?2
Step 1: Evaluating goals
TAC finds that two of the goals are not satisfied for Chatham#2: the Living territory is too
visualy open from the front door (value is 1.0), and the path to it from the front door is too
straight (change in direction is O degrees).
ui

\In—'l:
| |
f===1

L---J

CHATHAHE2

Figure 8.9: Chatham#2 visual openness and accessibility of Living from front door:®
Shaded areaisvisible; * isaviewpoint; path isfrom front door to center of Living.

5. Designs will be shown without the driveway and front walk.

177

Step 2: Proposing and carrying out suggestions for visual openness to be less than 0.8
Since the visual openness of the Living territory istoo high, TAC proposes decreasing it:

(decrease-val ue of (visual-openness of Living from Front-door)
until visual -openness | ess than 0.8)

Seeking a way to accomplish this suggestion, TAC follows influence links which lead it to
suggest increasing the opacity of any design elements between the Living territory and front door:

(i ncrease-val ue of (opacity-of-elenents-btw Living and Front-door)
until visual -openness | ess than 0.8)

By checking its knowledge base, TAC finds that it can increase design element opacity by fill-
ing in any open edges with walls or screens:

(or (fill any open-edges-btw Living and Front-door)
(screeni fy any open-edges-btw Living and Front-door))

It identifies four open edges between the Living territory and front door and proposes adding
walls (filling) and screens (screenifying) at those locations:

(or (fill <edge: 26.44...>)
(fill <edge: 23.56...>)
(fill <edge: 23.56...>)
(fill <edge: 23.56...>)
(screeni fy <edge: 26.44...>)
(screenify <edge: 23.56...>)
(screeni fy <edge: 23.56...>)
(screenify <edge: 23.56...>))

TAC has thus translated a goal stated in terms of the experiential quality visual openness into
design modifications stated in terms of specific locations in the design.

TAC creates eight new designs, one for each suggestion above, adding walls and screens for
the four open edges between the Living territory and the front door.

178

- | 7
I | 1
I L1
r-=- r---
[R—— —
CHATHAMF2#1 CHATHANF2H2
FILL FILL
(26,4 28,8)(23.6 25,8) (23,6 28.8)(23.6 30,9

.—.—u'— I—'_‘-"_
e --]_ - --]—
¢ -
—— - - -
' ' ' ' ' '
| I I 1
| | | |
- -
[L
CHATHAHE2RS CHATHAHZ2R4
FILL FILL
(23.6 25.8)(18.1 25.8) (23,6 19,9)(23.6 25.8)

Figure 8.10: Decreasing visual openness by replacing open edges with walls.
Arrows show locations of new walls.

179

1 1 1 ——>i ' Ll
I I I I
| | | |
r--- [=--
- - I.---l
CHATHAHE2RS CHATHAHR2KE
SCREENIFY SCREENIFY
(23.8 25.8)(23.6 25.8) (23.6 38,7)(23.6 38,9

I e et I
L -]

aatend | -==
A o
CHATHAHE2RT CHATHAHR2KS
SCREENIFY SCREENIFY
(18,3 25.8)(18.1 23.8) (23.6 27.63(23.6 28.8)

Figure 8.11: Decreasing visual openness by replacing open edges with screens.
Arrows show locations of new screens.

Checking the visual openness values for the new designs, TAC finds that modifications yield-
ing designs #4, #5, and #8 did not have the intended effect: the designs do not have visual open-
ness values less than 0.8, so they are discarded.

Step 3: Proposing and carrying out suggestions for path change in direction to be greater than
10 degrees
Having created new designs for the first unsatisfied goal, TAC now proposes suggestions for
the second unsatisfied goal: having the path from the front door to the Living territory not straight
(i.e. with achangein direction of greater than 10 degrees). At this point, TAC is working with the
five designs shown in Figure 8.12.

180

r"'l

|

CHATHAHE2#1
FILL
(26.4 25,8)(23.6 25.8)

v

SN B

[---

[I

CHATHAHR2K2

FILL
(23.6 28.8)(23.6 38,9

.

o o= -

I I
| |
r---

pR— |

CHATHAHE2KS
FILL
(23.6 25.8)(16.1 28.8)

L

v

| |
r"'l

pR— |

CHATHAHE2K?
SCREENIFY
(18,3 25.8)(16.1 28.8)

CHATHAHE2RG

SCREENIFY
(23,6 368,7)(23.6 36,9

Figure 8.12: Designs with visual openness repaired to be less than 0.8.
Arrows show locations of new walls or screens.

TAC checks the straightness of the path from front door to Living territory in these designs
and finds the path now crooked enough in four of them (#2, #3, #6, #7). TAC has encountered a
synergy: each modification to increase visual openness also has increased the path change in
direction. In design #1, however, the path is unchanged; its change in direction is not large
enough. TAC checksits knowledge base and finds that it knows how to increase a path’s changein

direction.® It suggests this change, then creates the design shown in Figure 8.13. This new design
isthe same as a previous design (Chatham#2#2), so it is discarded.

CHATHAMR2R 181

FILL

(26,4 25,83(23.6 28.8)
INCREASE-CHANGE-IN-DIRECTION
Living Front-door

Figure 8.13: Design derived from #1, path change in direction has been repaired.
Arrow shows movement of previously added wall to new location.

Four of the designs shown in Figure 8.12—Chatham#2#2, Chatham#2#3, Chatham#2#6,
Chatham#2#7—satisfy the two previously unsatisfied goals.

Step 4: Evaluating all goals

TAC has now created designs that it expects will satisfy all goals, but has to make sure that its
modifications did not cause the previously satisfied goals to become unsatisfied. For each of the
current four designs, TAC checks that the visual openness of Living from the front door is greater
0.3 and less than 0.8, and that the change in direction from front door to Living is greater than 10
degrees and less than 120 degrees.

Chatham#2#2: visual openness value (0.23) islessthan 0.8, but not greater than 0.3; its pathis
ok (changein direction is 68.7 degrees); it saves this design for repair.

6. The change in direction modifier takes a path and sequentially moves path nodes, which correspond to open edges, to
other edges in the same territory as the node. When the change in direction is as desired, it switches the original edge and the new
open edge, as in this example. If the desired change in direction cannot be achieved, it returns the starting design. This modifier
operates a bit differently from other TAC modifiers: it does not operate on asingle design element but rather on a set of design ele-
ments which it computes from paths between two design objects. Because of the complexity of this operator, we chose to make it
opaque. This opacity, however, means that TAC is not able to reason about conflict or synergy between this modifier and others.

182

Chatham#2#3: visual openness value (0.12) islessthan 0.8, but not greater than 0.3; its pathis
ok (changein direction is 68.7 degrees); it saves this design for repair.

Chatham#2#6: all goals are ok; this design is a solution.
Chatham#2#7: all goals are ok; this design is a solution.

TAC thus finds that adding screens at the specified locations has produced solutions. Adding
walls has decreased the visual openness too much so it will attempt repair.

Step 6: Repairing designs
TAC has two designs to repair. For the first one, Chatham#2#2, TAC checks its knowledge
base for ways to increase visual openness and proposes.

(or (renove bl ocking-el enents-btw Living and Front-door)
(puncture bl ocki ng-el enments-btw Living and Front-door)
(screenify bl ocki ng-el enents-btw Living and Front-door)
(rotate bl ocking-el ements-btw Living and Front-door

through angl es-that-mni m ze-projection-btw)
(move bl ocki ng- el ement s-btw Li ving and Front-door
to any exterior-edges-for each el enent))

Examining Chatham#2#2, TAC locates the wall it added in the previous step to block the view
to the Living territory from the front door. Applying the above suggestionsto the wall, it proposes.

(or (renove Vall-17200)
(puncture Wall-17200)
(screenify Wall-17200))

Notice that it did not propose rotating the wall or moving it to an exterior edge; it knows that
those modifications are not appropriate for walls.

Now examining each suggestion before carrying it out, TAC recognizes that removing the wall

conflicts with having just added it in the previous step, so it prunes that suggestion.” It then
creates new designs for the remaining two suggestions. (See Figure 8.14.)

7. A simple lookbehind mechanism checked for a suggestion in conflict with an immediately preceding suggestion.

183

I-)]
— 1 ' —_ j
I | 1 I
1 I I I
- -——1
o ro
CHATHAHK2#2#1 CHATHANF2§242
FILL FILL
23.6 28,8)(23.6 36,9 53353"28 8)(23.6 38,9
ugq'%”f?gee Hal1-17268

Figure 8.14: New designs for Chatham#2#2 after repairing for visual openness> 0.3.

TAC now checks whether the modifications had the intended effect, i.e. checks that the visual
openness of Living from front door is greater than 0.3. It finds that puncturing the wall (adding a
floor-to-ceiling opening 1.5 feet wide) has increased the visual openness sufficiently; the valueis
now 0.69. Replacing the wall with a screen yields a duplicate of a previous design (Chatham#2#6)
so this new design is discarded.

Continuing with its repair step, TAC now focuses on the second design in need of repair,
Chatham#2#3. It again checks its knowledge base, proposing the same initial five suggestions
stated in terms of blocking elements, then identifies the blocking element as the wall it has added
to decrease visual openness. It prunes irrelevant suggestions to rotate the wall or move it to an
exterior edge, and proposes removing, puncturing, or screenifying the wall:

(or (renove Wall-17201)
(puncture Wall-17201)
(screenify Wall-17201))

Again, TAC notices a conflict with removing the wall it has just added, so it prunes the first
suggestion, then creates the two new designs shown in Figure 8.15.

184

F ' il

I'"" =
R | P
CHRTHRH#Q#G#l CHATHAHE2R3R2
FILL
23 6 28 8y(16.1 23.90 23.6 28 8)(18.1 28.8
5 o ; CREENIF 25 ¢
Hall 1?281 Hall- 1?261

Figure 8.15: New designs for Chatham#2#3 after repairing for visual openness > 0.3.

Checking the effectiveness of the modifications, TAC finds that puncturing the wall does not
increase the visual openness enough, so it discards this design. (The value is 0.19). Replacing the
wall with a screen results in a duplicate of Chatham#2#7, so this design is discarded.

At this point TAC has completed its repair step, which produced one potential solution and
three designs that were discarded—one whose intended goal was not met and two that were dupli-
cates of previous designs.

Step7: Evaluating al goals

TAC finds that all goals are satisfied for the potential solution, Chatham#2#2#1 which has a
punctured wall between the front door and the Living territory.

TAC returns the three solutions shown in Figure 8.16. The visual openness values for the three
designs—Chatham#2#6, Chatham#2#7, and Chatham#2#2#1—are 0.76, 0.51, and 0.63, respec-
tively. The path change in direction is 68.7 degrees for each design.

185

b -

T T T
| | | |
f===1 f===1
Lew-Jd Lew-Jd

CHATHANKE2 CHATHAMK2KE

SCREENIFY
(23,6 368,7)(23.6 38,9

L |

—
l_-—--q - - - -
_' " P]
I I | I
| | | |
f=~~1 =i
L-o--Jd Lo--Jd
CHATHAMK2R? CHATHAMK2R2H1
sggsgn55ve Fé%LG 25.,8)(23.6 38,9
(14, B)(18.1 25.8) SUNtTURE' . '
Wall1-17288

Figure 8.16: Starting design (#2), solutions for Living visual openness and path from front door:
0.3 < visual openness < 0.8, and 10 degrees < path direction change < 120 degrees.

Shaded areas are visible; * isviewpoint; path is from front door to center of Living.

Notice that two of TAC's solutions seem better than the third: adding a screen the full width of
the Living territory (in Chatham#2#7), thereby making the Living territory smaller, is probably
not something an architect would propose. In order for TAC to judge the quality of solutions, it
must have defined goodness criteria, e.g. leave the territories as large as possible.

A final note: Had we specified a single goal for the desired visual openness range, rather than
two goals, the solution Chatham#2#2#1 would have been missed. The first modification step for
this design, namely filling an open edge with awall, resulted in a visual openness value lower than
desired, and the design (Chatham#2#2) would have been discarded. With upper and lower bounds

186

for visual openness specified separately, the design satisfied the upper bound requirement and was
not discarded. A subsequent modification (a puncture) repaired it to also satisfy the lower bound.2

Chatham#10

We now describe TAC's behavior with the same design problem—visual openness and physi-
cal accessihility of the Living territory—when given a very different solution to the first design
problem. Chatham#10 has the side door as the perceived main entry; the front door has been
replaced by awall section, and the front porch, steps, and paths have been removed.

I_—

|
|
|
|
r-

R S I

CHATHAHKZ 18

REPLACE
Front-door HWITH WALL

REMOVE-EXTERIOR-TERRITORIES-AND-PATHS
Front-door

Figure 8.17: Starting design with side door as perceived main entry.
Path is from usua approach (o) to side door.

Step 1: Evaluating goals
Recall that we'd like the following goal s to be satisfied:

<goal : (gt (visual - openness Living from (perceived-main-entry Chatham 0. 3)
true>

<goal : (It (visual -openness Living from (perceived-main-entry Chathan) O0.8)
true>
<goal : (gt (change-in-direction-btw Living and (perceived-min-entry Chathan)
10) true>
<goal : (It (change-in-direction-btw Living and (perceived-nai n-entry Chat hanm
120) true>

TAC finds that two of the goals are not satisfied for Chatham#10. As shown in Figure 8.18, the
visual openness of the Living territory from the side door is not greater than 0.3, and the path
change in direction is not less than 120 degrees.

8. Had the knowledge base included an additional means for decreasing visual openness, namely an operator that was a
composite of filling awall and puncturing it, the solution would have been found in a single modification step. We chose
to keep the operator set small and rely on the repair mechanism.

187

CHATHAHZ 18

Figure 8.18: Chatham#10 visual openness and accessibility of Living from side door:
Shaded areaisvisible; * isaviewpoint; path is from side door to center of Living.

Visual openness value is 0.08; path change in direction is 126.8 degrees.

Step 2: Proposing and performing suggestions for visual openness greater than 0.3

TAC checks its knowledge base for ways to increase visual openness, and, as in previous
examples, finds that it should decrease the opacity of design elements that block the view. It
knows to decrease opacity by removing elements, puncturing them, replacing them with screens,
rotating them, or moving them to exterior edges.

Examining the design, TAC finds that three wall sections block the view between the Living
territory and the side door. Again noticing that it does not rotate walls or move them to exterior

edges, TAC proposes removing, puncturing, or screenifying each of the walls:®

(or (renove Wall-Ikl)
(remove Val | -1k2)
(renmove WAl -1k3)
(puncture Wall-1k1)
(puncture Wall-1k2)
(puncture Wall-1k3)
(screenify Wall-1k1)
(screenify Vall-1k2)
(screenify Wall-1k3))

TAC then creates the nine new designs shown in Figures 8.19 and 8.20.

9. Three walls are represented rather than one because of the presence of a chimney that vents a basement furnace to the
outside through the roof. It is represented by the middle wall section.

188

P—————

CHATHANMg 1881

REMOVE-ELT
Hall-1k1

CHATHAHZ 1883

REHOVE-ELT
Hal1-1K3

CHATHAHR 1845

PUNCTURE
Hall-1k2

|
|

CHATHANR 1647

SCREENIFY
Hall-1k1

Figure 8.19: New designs with visual openness increased between Living and side door.

189

CHATHAHR 1882

REMOVE-ELT
Hall-1k2

CHATHAHZ 1884

PUNCTURE
Hall-1k1

==

- --

CHATHAHR 1886

PUNCTURE
Hal1-1k3

CHATHAHZ 1843

SCREENIFY
Hall-1k2

R B

[II—TLF

CHATHAHR 1849

SCREENIFY
Hal1-1k3

Figure 8.20: Another design with visual openness increased between Living and side door.

Checking the effectiveness of the modifications, TAC finds that designs #3, #4, #5, #6, and #9
do not increase the visual openness enough as intended, so it discards those designs. It then is left
with the four designs shown below.

f::}'—"l" T T T

CHATHAHZ 1881 CHATHAHZ 1882
REMOVE-ELT REHOVE-ELT
Hall-1k1 Hall-1k2

CHATHAHE 1647 CHATHAHZ 18§35
SCREENIFY SCREENIFY
Hall-1k1 Hall-1k2

Figure 8.21: New designs |eft after pruning those whose intended goal was not met.

190

Step 3: Proposing and carrying out suggestions for path change in direction to be less than 120
degrees

TAC proposes suggestions for each of its current designs for the second unsatisfied goal,
namely having aless crooked path between the Living territory and side door (changein direction
of less than 120 degrees). It finds that designs #1 and #2 are ok: removing wall sections has
increased visual openness and decreased the path change in direction as well—visitors can now
look through and walk through the new opening to the Living territory. TAC finds that designs #7
and #8 are not ok; the path from the side door to the Living territory has remained unchanged and
its change in direction is still too large. For each of these designs, it proposes to decrease the
changein direction and creates the new designs shown below.

CHATHAME 164781 CHATHAMR 19431
SCREENIFY SCREENIFY
B lRERSE ggééEA%E CHANGE-IN-DIRECTION
REASE-CHANGE-IN-DIRECTION - =IN-
L1000 Sidensor T DIRECTIO Liuing 51de-door

Figure 8.22: Decreasing change in direction between Living territory and side door.
Arrows show newly opened wall sections.

Checking the intended goal, TAC finds that the change in direction from side door to Living
has been sufficiently decreased in both new designs.

Step 4: Evaluating all goals

TAC finds all goals satisfied for each if its current designs:

Chatham#10#1.: visual openness (0.60) is ok; path is ok (direction changeis 25.1 degrees).
Chatham#10#2: visual openness (0.47) is ok; path is ok (direction change is 40.5 degrees).
Chatham#10#7#1: visual openness (0.44) is ok; path is ok (direction change is 98.6 degrees).
Chatham#10#8#1.: visual openness (0.38) is ok; path is ok (direction change is 98.6 degrees).

TAC returns these four solutions, which are shown in Figure 8.23.

191

[l R 2]
1 1
1 1
1 1
//
1
-
1
1
.-—l .
L}
| I
e,
1 1
1 1
1 1
1
-
' ‘
1}
| I—

CHATHAME 16¢1 CHATHAME 1642
REMOVE-ELT REMOVE-ELT
Hall-1k1 Hall-1k2

r= =
| |
| 3 | 3
| | —
Ir---‘ ':' J lr___—-—-'- --IL-
[R— ‘ [Ap—

' l

CHATHAMZ 1887#1 CHATHAHE 165K 1
SCREENIFY SCREENIFY

Hall-1ka
DECREASE-CHANGE-IN-DIRECTION
Living S1de-door

Hall-1k1
DECRERSE-CHANGE- IN DIRECTION
Living S1de-doo

Figure 8.23: Starting design (top), solutions for Living visua openness and path from side door:
0.3 < visual openness < 0.8, and 10 degrees < path direction change < 120 degrees.

Shaded areas are visible; * is viewpoint; path is from side door to center of Living.

192

Problem 3: Dining territory visually open from Living territory

<goal : (visually-open Dining fromLiving) true>.

Continuing with the Chatham design example, we now use a solution from the previous
design problem, Chatham#10#1, to illustrate TAC's reasoning about the Dining territory’s visual
openness from the Living territory.

Step 1: Evaluating goals

TAC finds that the Dining territory is not visually open from the Living territory; its visua
openness value is not greater than 0.6.

A

CHATHAHZ18¥1

Figure 8.24: Visual openness of Dining territory from Living territory; valueis 0.42.
Shaded areaisvisible; * represents aviewpoint.

Step 2: Proposing and carrying out suggestions for visually open Dining

Aswe've seen in previous examples, TAC proposes increasing the value of visual openness by
decreasing the opacity of intervening design elements. Checking its knowledge base, it proposes
to accomplish this decrease in opacity by:

(or (renove bl ocki ng-el ements-btw Di ni ng and Li vi ng)
(puncture bl ocki ng-el ements-btw Di ni ng and Li vi ng)
(screenify bl ocking-el enents-btw Di ni ng and Livi ng)
(rotate bl ocking-el enents-btw Di ning and Living

t hrough angl es-that-nmini nm ze-projection-btw)
(rmove bl ocki ng-el enents-btw Di ni ng and Living
to any exterior-edges-for each el enent))

TAC determines that the stair in this design blocks the view between Dining and Living. It
finds that each of the above suggestions, except puncturing, isrelevant for the stair, so it proposes.

(or (renove Stair)
(screenify Stair)
(rotate Stair 90)
(rotate Stair 270)
(move Stair to <edge: 42.11...>)
(nove Stair to <edge: 18.22...>)
(move Stair to <edge: 10.11...>))

A note about rotating the stair: TAC computes the orientations for the stair that would mini-
mize the projection of the stair in the direction of the sight line between territory centers. In these
orientations, the stair would “cast the smallest possible shadow” so more of the Dining territory
would be visible from the Living territory.

For the above suggestions, TAC creates the new designs shown in Figures 8.25 and 8.26. In
each design, the Dining territory is visually open from the Living territory.

—

te- - - ce-
1)
1)
1)
[' =
1))]
CHATHAHZ 1681481 CHATHANg 168142
REMOVE-ELT SCREENIFY
Statr Statr
1~ 7 R
| |
| |
| e | — o
]) -
— el
: : " ‘
]]) '
CHATHANF 108145 CHATHAME 164 184
ROTATE-ELT ROTATE-ELT
Stair 98.8 Statr 278.9

Figure 8.25: Designs that increase visual openness of Dining from Living.

194

[- -

panm] E———
CHATHAHZ 16§ 185 CHATHANZ 168 186
HOVE-TO-EDGE HOVE-TO-EDGE
Statr Statr
(42,1 36,9)(34.8 36,9 (15,2 368,9)(18.1 38,9

L

|r_____ MU | _—

jin

CHATHAHE 168 187
HOVE-TO-EDGE

Staitr
(18,1 38,9)(18.1 22.9)

Figure 8.26: More designs that increase visual openness of Dining from Living.

Note that when moving the stair in this example, TAC has not taken into consideration other
stair-related goals. In particular, we did not tell it that the design was to have a stair, so it proposed
removing the stair. We discuss in Chapter 10 how TAC might specify (with the designer’s
approval) “common” goals related to a particular building type. In this way, TAC could decrease
the number of goals a designer must explicitly specify.

TAC returns al seven new designs as solutions. TAC's solution Chatham#10#1#2, which
corresponds to the solution chosen by the owners, is shown in the photograph in Figure 8.27.

195

Figure 8.27: Screenifying the stair: awall has been replaced with a screen in the Chatham house.

Problem 4: Kitchen adjacent to Dining

<goal : (use-adjacent kitchen dining) true>

This design problem is akin to a simple architectural space-planning problem: labels on terri-
tories change, but the physical form does not. We illustrate this design problem by describing how
TAC accomplishes the goal above for a solution to the previous design problem,

Chatham#10#4#1. TAC works with the use space model for this design.

bath
pctivity|

1+ access

—

access |

play
activity

dining
activity

porch
activity

r—-
! kitchen
: activity
|
| L -
r---
[I—
living

activity

CHATHAHE 168 184

Figure 8.28: Use space model for Chatham#10#1#4: territories carry indication of intended use.

196

Step 1: Evaluating goals
Examining the use space model shown above, TAC finds that the kitchen activity is not adja-
cent to the dining activity.

Step 2: Proposing and carrying out suggestions for kitchen adjacent to dining
TAC checks its knowledge base and finds that it knows how to set the value of the design char-
acterigtic in the goal expression to true so it suggests:

(set-val ue of use-adjacent for kitchen and dining to true)

TAC then proposes moving the kitchen activity to another use space:

(exchange-use kitchen with any use-spaces-adjacent-to dining)

It then proposes moving the kitchen activity to particular use spaces:

(or (exchange-use kitchen with play)
(exchange-use kitchen with porch))

Note that TAC does not propose moving the kitchen activity to either of the use spaces labeled
“access’ in Figure 8.28; the territories associated with these use spaces were deemed too small. It
also does not propose building a new territory for the kitchen activity, even though this might
satisfy the goal, because TAC's current operators do not change a design’s footprint.

Carrying out its suggestions, TAC exchanges the kitchen activity with the play and porch
activities and creates the following two designs, both of which are returned as solutions.

-
: play ‘ bath | kitchen
|
R bomm e
i S]
living _.....4' dining porch |
CHATHAMZ 16 18481
-
: porch bath play
|
R bomm e
i S
living |——=asssd dining kitchen |
CHATHAMZ 16K 1R4R2

Figure 8.29: New designs with kitchen activity adjacent to dining activity.
Activity labels are abbreviated, e.g. play = play activity.

197

The designs shown in Figure 8.29 are solutions to all goals in the four design problems: they
have one perceived main entry; the Living territory (which we'll assume coincides with the terri-
tory labeled with the living activity) is visually semi-open and physically semi-accessible from
the perceived main entry, as defined by our visual openness and path change in direction goals;
the Dining territory is visually open from the Living territory; and the kitchen activity is adjacent
to the dining activity.

TheArchitects Designs

Severa of TAC's solutions are very similar to the architects’ two designs. Given that one of the
architects contributed to TAC's knowledge of architecture, the similarities are not that surprising.
The similarities do show, however, that TAC knows something of architecture, namely, how to
modify a design so that it exhibits particular experiential qualities. As shown in the figures at the
end of this section, TAC's designs have features in common with the architects' designs. TAC
created one perceived main entry by removing the front porch, steps and walk, turning the current
side door into a new front door. It increased visual openness between the Living territory and the
new front door by removing a section of wall, a modification that it finds also makes the Living
territory more easily accessible. It turned the stair to increase visual openness between the Dining
and Living territories. It exchanged the playroom and kitchen activities so that the kitchen activity
would be adjacent to the dining activity.

The similar designs show some differences, however. Many of the differences result from the
architects’ working with alarger goal set than TAC. These goals were not given to TAC because
some of them would not have illustrated new TAC behavior, e.g. making the Kitchen territory
more visually open from the Dining territory. Other goals were outside the scope of TAC's current
operators, which do not change a design’s footprint, e.g. enlarging the entry porch. Other differ-
ences between TAC's designs and the architects are due to both unspecified goals and lack of
information in TAC's knowledge base. When the Dining territory became smaller as a result of
turning the stair, for example, TAC did not enlarge the territory at the expense of the Porch as the
architects did. (See Figure 8.30.) Desired sizes for the territories were not specified, but there was
an implicit assumption made by the architects and the clients that the Dining territory would not
be smaller. Even if the sizes had been specified, however, TAC currently does not know that a
territory can be made larger by making a neighboring territory smaller.

TAC came up with designs that differed significantly from the architects’ designs. Most of
these designs again resulted from the architects working with more goals, both implicit and
explicit. TAC's Chatham#2#7 design with the screen the full width of the Living territory, for
example, satisfied the specified goals, but violated an implicit goal of creating only useful-sized

198

territories. TAC also was not told, for example, that the clients preferred that the stair remainin a
central location, so it suggested moving the stair to exterior walls, creating plausible designs but
not what the client had in mind. TAC was not told that the architects and clients desired that the
house be connected to a neighborhood nor given information about the neighborhood. As aresuilt,
TAC did not know that the side door makes a better perceived main entry because the street on
that side of the house is less busy and the houses closer together. As aresult, it did not prune its
designs with the front door as perceived main entry.

Not al of TAC s different designs were due to shortcomings, however. Some of its designs are
quite plausible and result from its ability as a computational tool to easily and quickly carry out
transformations:. it produces many variations on a theme, a task an architect would find very
tedious. In order to increase visual openness between the Living territory and the new front door,
for example, TAC created nine designs by performing each of three operations (remove, puncture,
replace with screen) on each of three wall sections. In some cases, TAC's designs may be redun-
dant or even bad (e.g. Chatham#2#7), but they can be easily set aside by the designer as he
focuses on the designs that meet specified and unspecified criteria. In either situation, TAC has
utility as a brainstorming tool. In addition, TAC can help a designer and his client elucidate goals
by calling attention to desired or undesired features. Creating a design with a Living territory that
istoo small, for example, may serve as areminder to aclient that he wants a particular size for the
Living territory.

The following two figures show the architects’ designs and similar designs that TAC created
given the seven design goals discussed in this section.

In Figure 8.30, the designs share these features:

« front door, front porch, and front walk have been removed to turn the former side door
into the new front door (i.e. perceived main entry)

* the wall between territories labeled “play” (formerly kitchen) and “living” has been
opened up: the architects have removed two wall sections; TAC has removed a wall
section in the middle design, and replaced a wall section with a screen and removed a
second wall section in the bottom design.

* the stair has been turned
» the kitchen and playroom have been exchanged in the original design

In Figure 8.31, the designs share all of the above features except the turned stair.

199

_
|
|
|

play

living I porch
CHATHAM# 1041 {442

play

living - porch
CHATHARM# 164 7H#1#442

Figure 8.30: Architects’ design (top) and two of TAC’'s designs.
Theterritory labels represent activities.

=
)
]
=,
—
(@)
=yl ™
D
=)
-I-d
iy IEEEN

[——-
I
: play bath kit chen
I
1T !l e——_———— | hmamaamacacaa——-
I ; 1 1
|

living dining porch |

|
CHATHRM#16# 14242
[——-
|
: play bath kitchen
I
| e e T i ——
I ; 1 1
|
porch

living I ‘ dining

CHRATHRAM# 1O THIH2H2

Figure 8.31: Architects alternate design (top) and two of TAC's designs.
Theterritory labels represent activities.

201

(R |

[|

Epilogue

For the Chatham house exercise, we gave TAC a design problem containing the seven goals
presented in this section. In discussing TAC's behavior, we grouped the goals in the following

way':

1. The design has one perceived main entry.

<goal : (one-perceived-min-entry Chatham true>

2. The Living territory is visually semi-open and physically semi-accessible from the perceived
main entry (i.e. partially visible and reached via a somewhat crooked path).

<goal : (gt (vi sual -openness Living from (perceived-nmai n-entry Chathan) 0.3)
true>
<goal : (I't (visual -openness Living from (perceived-nmai n-entry Chathan) O0.8)
true>
<goal : (gt (change-in-direction-btw Living and (perceived-nmai n-entry Chat han
10) true>
<goal : (It (change-in-direction-btw Living and (perceived-nmai n-entry Chat hanm
120) true>
3. The Dining territory is visually open from the Living territory.

<goal : (visually-open Dining fromLiving) true>

4. The kitchen activity is adjacent to the dining activity.

<goal : (use-adjacent kitchen dining) true>.

When given all seven goals, TAC created 816 designs, 288 of which satisfied al the goals. The
large number of solutions brings to light an important issue: How can TAC display 288 solutions
without overwhelming the user? Developing techniques and strategies for presenting large
volumes of data to a user is an active area of research (e.g. Shneiderman, 1998). A key question
for TAC: How can it group the solutions into manageable subsets using meaningful abstractions?
The difficult issue here is how to define “meaningful”.

Alternatively, what was useful expositionally may be useful computationally as well as away
of not overwhelming the user: group goals into separate design problems and let TAC work on the
problems sequentially, creating designs for a problem and selecting a subset of those solutions as
starting points for the next problem. This technique works well when the design problems are
independent, as with Chatham, but it may be difficult to know ahead of time whether problems are
independent. In addition, it introduces the question of how to select the subsets of designs for
subsequent design problems. In particular: How is a subset selected to make sure it contains
“interesting” designs, by which we might mean designs that meet many criteria and show wide
variation?

202

As an experiment, we grouped the goals into the four design problems described earlier (and
listed above). We gave TAC the design problems and had it work on them sequentialy. It chose
the four “best” designs for a problem as starting points for the next problem. To determine “best”,
it employed a simple ranking scheme for the design characteristics in the goals, using atotal order
when possible, otherwise a partial order. With this scheme, the number of designs was reduced
significantly, mainly because only four of the first design problem’s fourteen solutions were
passed along to the second design problem. TAC created 224 designs, 128 of which were solu-
tions. Starting with a single design for the second design problem, rather than four, reduced the
number of designsto 56, 32 of which were solutions.

The four designs that TAC chose as starting designs for each design problem, however, were
not always the designs that a user would have chosen. Designs are often judged using multiple
criteria, only some of which may have been used when creating the design. TAC’'s moving the
stair to an exterior edge, for example, has an adverse effect on circulation patterns: access paths to
the stair cross through the middle of the Living and Dining territories, thereby compromising the
usefulness and privacy of the territories. One solution would be to explicitly state all evaluation
criteria, but given the opportunistic nature of design and the ever-changing nature of design goals,
it would be very difficult to explicitly state all evaluation criteria. What's more, the evaluation
criteria are incommensurate, and it is not obvious how to define a single, unambiguous evaluation
function based on them.

It seems best, then, to either let TAC create a large number of solutions and deal with how to
present them to the user (e.g. by means of a“design solution navigator” of some sort), or have it
create designs sequentially for separate problems and let the user select designs of interest for
subsequent problems.

203

8.2 Analysis. Prairie Houses

Thus far TAC has been discussed as a design tool: it evaluates a design with respect to design
goals, suggests repairs, and creates new designs. It also can be an analysis tool: its evaluation
component can be used without invoking the repair suggestion or design creation mechanisms.

Frank Lloyd Wright's Prairie houses were the subject of an experiment designed to investigate
TAC's utility in analyzing designs and definitions of architectural type. TAC was given 21 charac-
teristics of Prairie houses and 15 houses—six Prairie, six non-Prairie, and three Frank Lloyd
Wright houses considered transitions between pre-Prairie and Prairie periods—and asked to eval-

uate the “Prairieness’ of each of the houses by determining which of the characteristics were

present.10

Experiment

Frank Lloyd Wright was chosen for our experiment because he was prolific, has been well-stud-
ied, and is regarded as a master at manifesting experiential qualitiesin his buildings. His Prairie
houses were chosen because they share many common features while also being quite varied, and
because they have been extensively studied by architectural critics and historians (e.g. Manson,
1958; Brooks, 1972; Twombly, 1979; Hildebrand, 1991), and by researchers interested in compu-
tational systems for design (e.g. Koning and Eizenberg, 1981; Chan, 1992). Six representative
Prairie houses were chosen, one from each of six Prairie house categories (Pinnell, 1990). The
non-Prairie examples were chosen in order to minimize the differences that might be attributed to
issues not germane to the experiment. The examples were limited to single-family stand-alone
houses, to minimize differences due to building type; to approximately the same time period, to
minimize differences due to societal changes, e.g. addition of a garage; to those about the same
size, to minimize differences due to mismatch in number or sizes of spaces; to American designs,
to minimize cultural influences. Examples also were chosen that were considered transitions
between Wright's Prairie and pre-Prairie periods in order to see whether the transition nature of
the designs would be reflected in the evaluation.

We specified fifteen characteristics representing details of physical form and six characteris-
tics representing experiential qualities. The characteristics are stated in terms of the living spaces
and main living space of a design.*! By “living spaces’ we mean the semi-private spaces in a
house—spaces to which guests might be invited, but not casual visitors, e.g. living room, dining

room, library.1? By “main living space” we mean the space corresponding to what would typically

10. Thisexperiment is arepeat of one run with arule-based precursor to TAC. That system and experiment, aswell asa
discussion of the shortcomings of representing TAC's knowledge using rules, are described in (Koile, 1997).

11. Theterms*“space” and “use space” will be used interchangeably. Recall that a use space is aterritory paired with its
intended use, e.g. the main living space is represented as a particular territory and a“main-living” activity label.

12. We do not include the kitchen as a living space because at the time the Prairie houses were built in the early 20th
century, the kitchen typically was considered awork space only.

204

be called aliving room.

Below are the two lists of characteristics we gave TAC.3 The experiential qualities are mani-
fested by the details of physical form whose indexes into the second list are shown to the right.
(See Appendix G for representation details.)

Experiential qualities:
a. The design exhibits Wrightian group togetherness. (and 1 2 3)

b. The design exhibits home/hearth symbolism. (or46)

c. The main living space s private. (and 7 (or 89 10 11))
d. The main living space is a place of refuge. (or891011)

e. Themain living space is a place of prospect. (or 12 13)

f. An exterior space contiguous with the main living space is private. (and 14 15)

Details of physical form:
1. The design has amain living space that is the largest living space.

2. The design has amain living space containing aregion from which all other living spaces
arevisible.

3. The design hasa main living space connected to all other living spaces. (Two spaces are
connected if they are no more than one space apart or if they have axially aligned door-

ways.)
4. The design has one fireplace location.
5. The design has afireplace on an interior wall.
6. The design has a fireplace in the main living space.
7.

The path from the front door to the private area does not pass within five feet of the center
of the main living space.

8. The front door does not open into the main living space.
9. The front door and the main living space are on different levels.

10. The path from the front door to the main living space contains at least two changesin direc-
tion of greater than 15 degrees.

11. The path from the usual approach point to the main living space contains at least two
changes in direction of greater than 15 degrees.

12. The main living space is elevated above the terrain.

13. An exterior living space at least 40% of the size of the main living space is contiguous with
the main living space.

14. The front door does not open into the exterior space contiguous with the main living space.

15. The path from the usual approach point to the front door does not cross the exterior space
contiguous with the main living space.

13. The characteristics, shown in English to improve readability, are derived in part from (Hildebrand, 1991). Hildebrand
explains prospect and refuge as Appleton (1975) defined them: “By prospect Appleton means a condition in which one
can see over a considerable distance, and by refuge he means a place where one can hide; in combination they reinforce
one another, creating the ability to see without being seen.” Hildebrand argues convincingly that the juxtaposition of pros-
pect and refuge conditionsin Wright's houses contribute to their “ uniquely widespread devotion” especially in light of the
houses' sometimes prominent faults (e.g. leaking roofs). He notes in his conclusions that “Wright had an intuitive but
uniquely firm grasp of the shaping of habitation as an interweaving of these characteristics....”

205

Finally, we gave TAC models for the floorplans show in Figures 8.32 and 8.33 and asked it
which of the above 21 characteristics were present in each floorplan.

Prairie Houses: Cheney, Gale, Horner, Tomek, Willits, Roberts (Storrer, 1993)

Tomek: 6, 15

i

L1

Willits: 5,12 Roberts: 6, 15

Transition Houses. Emmond, Furbeck, Wright (Storrer, 1993)

———————————————

Emmond: 5, 13 Furbeck: 4, 7 Wright: 4, 7

Figure 8.32: Prairie and Transition House data sets; * indicates main living space.
First number following house name is count of experiential qualities exhibited
(out of 6); second is count of physical form details exhibited (out of 15).

206

Non-Prairie Houses: Colvin, by George Maher (1916); Jones 5A24 (Jones, 1987);
Lawson, by Bernard Maybeck (McCoy, 1975); Mallory, by Arthur Rich (Scully, 1971);
Stickley 91 (Stickley, 1982); Winslow, by Frank LIoyd Wright, (Storrer, 1993)

- — “_g
Ty ,
|

,

=

1
H
e |
;* | | —
] | 1

=

Colvin: 5,9 JonesbA24: 5,9 Lawson: 3,5

Mallory: 5,9 Stickley: 5,9 Winslow: 3,5

Figure 8.33: Non-Prairie House data set; * indicates main living space.
First number following house name is count of experiential qualities exhibited
(out of 6); second is count of physical form details exhibited (out of 15).

Results

The results for the Prairie houses were as expected: all but one exhibited all six experientia char-
acteristics; half exhibited all fifteen physical form characteristics, with the rest exhibiting at least
twelve.1* The transition houses were not distinguishable from either the Prairie examples or the
non-Prairie examples; their differences were not captured by the characteristics used in the exper-
iment. The results for the non-Prairie houses were as expected for the physical form details: only
one exhibited ten of the fifteen; the rest exhibited nine or fewer. The non-Prairie houses and tran-
sition houses, however, exhibited many of the experiential characteristics. Thisresult is unsurpris-

14. SeeAppendix G for detailed results.

207

ing: Focusing on physical form characteristics yields a better measure of Prairieness, or perhaps
any building type, since experiential characteristics may be manifested using a variety of
methods, with particular methods favored by individual designers. In other words, different archi-
tects and their clients may want many of the same experiential qualitiesin their designs, but may
prefer different methods for achieving those qualities. (See Hildebrand (1991) for an interesting
discussion of thisissue.)

The following charts summarize the experimental results.

EPrairies
[CONon-Prairies

[transitions

Number of Designs
w

1 2 3 4 5 6

Number of Designs
w
|

L] I
0 —t—————=—
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Physical Form Characteristics Present

Figure 8.34: Experimental results for Prairie, Non-Prairie, and Transition houses.

208

Conclusions

This exercise illustrates TAC's use in defining and analyzing characteristics of a particular build-
ing type, and in particular, one rich in experiential qualities. We lay no claim to a complete repre-
sentation of the qualities in Wright’'s work, nor to a complete representation of his methods for
manifesting those qualities. We do claim, however, that those qualities and methods can be repre-
sented and reasoned about in TAC. In the hands of an architect or architectural historian, TAC
could be used to measure qualities such as visual openness, physical accessibility, privacy, even
prospect and refuge, in very precise ways.

An interesting issue illustrated by this experiment is that buildings and building types can be
represented by both experiential characteristics and physical form characteristics. The more usual
comparison of buildings is via physical form. Houses are often thought to look Wrightian, for
example, if they have hipped roofs and wide overhanging eaves. Interestingly, however, buildings
may be more alike than initially thought when experientia characteristics are considered. Hilde-
brand (1991) presents the Scofield house by architect Wendell Lovett which looks nothing like a
Wright house on the exterior, but which uses many of the same techniques as Wright to juxtapose
prospect and refuge, or “cave and meadow” in Lovett’s parlance. With a system such as TAC, the
similarities between buildings such as Lovett’s Scofield house and Wright's Prairie houses could
be discovered easily.

209

210

Chapter 9

Related Wor k

This chapter focuses on two categories of work: systems that employ similar reasoning techniques
and those that reason with similar experiential knowledge.

9.1 Reasoning M ethodologies

We discuss several methodologies that share features with TAC's dependency-based redesign
strategy: planning, case adaptation, and performance-based refinement.

9.1.1 Planning

Classical Planning

TAC is not a planning system, but it borrows ideas from classical Al planning (Wilkins, 1988;
McDermott, 1995). The goal of a planning system is to find a sequence of actions that will get
from a specified initial state to a specified goal state. States are generally represented as sets of
propositional statements, operators map one state into another. A sequence of operatorsis a plan.

The sequence of repairs that gets TAC from an initial design to a solution can be thought of as
aplan of sorts. TAC borrows the idea of limiting search for a solution by searching in plan space,
repair suggestion space in TAC's case, rather than searching world states for the goal state. TAC
first searchesfor likely repair operators, then searches for designs by applying those operators.

TAC aso borrows the divide-and-conquer approach taken by planners. It reduces search by
assuming that some goals can be solved independently: it satisfies one goal, then checks for global
effects of the operator (Korf, 1987).

TAC differs from planning systems in significant ways, however. Its solution is a set of states,
i.e. designs, not a plan, so it doesn’'t reason about the order of operators. Its divide-and-conguer
strategy does not attempt to satisfy goals separately and merge partial solutions. Such a merge is
far too difficult because it involves combining complex geometric arrangements of design
elements. TAC's operators are not represented as preconditions and effects because operator
effects cannot be enumerated. TAC uses the term “ effect” in a more general sense to represent an
intended goal rather than an immediate change to the world that results when an operator is
carried out. If awall is shortened, for example, the intended effect is increased visual openness,

211

not just ashorter wall. Planning systems in the domain of architecture have represented designs as
sets of propositional statements and represented design modification operators as preconditions
and effects (e.g. Coyne and Gero, 1995). Their authors suggest, as we do, that these representa-
tions are not powerful enough to capture the complexities of architectural design.

Most importantly, TAC differs from planning systems in that it is not given a goal state; it
must search for it. TAC is given an initial design and a set of desired characteristics for that
design. In some sense, that set of characteristics is a goa state, but not in a planner’s sense. A
planner’s goal stateis represented in the same way asitsinitial state, so a planner is able to reason
directly frominitial state to goal state via operators that transform one state into another, e.g. viaa
chain of one-step inferences. TAC's operators transform one design into another, but its specified
goal state isin “desired characteristics’ space. This mismatch between operators and goal state
means that TAC must use avariation of test and generate to search for its solutions.

While design is not atraditional planning task, construction is: given aninitial state (an empty
lot or abuilding to be remodeled) determine a sequence of stepsto transform initial state into goal
state (the building that is the design solution). It's a complicated planning problem (Kartam, et.

al., 1991), but sinceits goal state is known, it is a planning problem not a design problem.!

Real-world Planning

TAC aso borrows from “rea-world” planning. Real-world planning systems extend classical
planning to work in worlds with unexpected operator effects. These systems generate a plan,
execute (or analyze) the plan, then either repair the plan or replan from the current state if neces-
sary. Plan repair systems are generally concerned with a correct plan (e.g. Hammond, 1990; Kam-
bhampati and Hendler, 1992; Beetz and McDermott, 1994). Replanning systems are generaly
concerned with arriving at a goal state (e.g. Ambros-Ingerson, 1988; Knoblock, 1995; Wilkins,
1988, 1990). TAC borrows ideas from both plan repair and replanning. Like plan repair systems, it
uses an explanation of failure to guide repair in a manner inspired by dependency-directed search
(Stallman and Sussman, 1977). Like replanning systems, it attempts to reach a goal state by start-
ing from the current state rather than focusing on the sequence of steps from theinitial state.

TAC differs from real-world planning systems in many of the same ways that it differs from
classical systems, e.g. it does not reason directly from initial state to goa state. It differs from
systems that do plan repair in another significant way: TAC only has one kind of operator, namely
operators that transform a design into a new design. Systems that repair plans have two kinds of
operators. those that transform one state into another (e.g. move a block to a new location) and
those that repair a plan (e.g. add a step to a plan, or reorder steps). Because TAC is not concerned

1. Contingencies may require interleaving of planning and redesign of certain aspects of a building.

212

with the sequence of steps needed to arrive at a solution, it has no need of operators that repair the
sequence.

Related Planning Systems

Interesting comparisons can be made to two planning systems. One was devel oped to explore
Al issues (Simmons, 1988), and one was developed to explore computer-aided architectural
design issues (Colgjanni, 1991).

Gordius

Gordius (Simmons, 1988) is a planning system that employs a paradigm its author calls gener-
ate-test-debug (GTD). It works on both planning and interpretation problems in the domain of

geology.? An example of the latter: Given a goal state representing a vertical cross-section of a
geologic region, find a set of ordered events that would explain the region’s formation. Gordius
generates a hypothesis (plan), evaluates the hypothesis via simulation, then repairsit if necessary.

TAC differs from Gordius in the same way that it differs from other planning systems. TAC
does not generate a sequence of steps that will take it from a specified initial state to a specified
goa state. It issimilar to Gordius, however, in several interesting ways.

Because both architecture and geology exhibit complex operator interactions, both systems
employ a version of generate-and-test. Assuming that some goals will be independent, they
produce a solution, then repair the solution if necessary. Both domains necessitate more sophisti-
cated representations than planning’s typical propositional representation of world states. In addi-
tion to operator interactions, both domains have to deal with creation and destruction of objects,
and with spatial effects. Gordius represents states propositionally, but its goal state is represented
as atwo-dimensional diagram, and it evaluates states using diagrammatic simulation.

Gordius repairs a plan using a dependency structure that identifies the source of fail ure.3 This
strategy is similar to TAC's dependency-directed redesign. Gordius' repair strategies for modify-
ing faulty parameter valuesin its plan steps are domain independent and akin to TAC'sfixers. The
actual repair step is different, however. If Gordius determines that wrong parameter values are the
source of the problem, it fixes the problem by setting the values correctly in the corresponding
plan steps. If TAC determines that the source of a problem is an undesired characteristic value, it
determines the correct value or direction of change. If the characteristic is noninvertible, however,
TAC cannot set the value directly in the design; it must figure out how to modify the design in
order to realize the value.

2. It alsowasrun on traditional Al problems, e.g. blocks.

3. Gordius has two kinds of dependency structures. One structure explains the desired parameter value; this structure
has no analog since TAC's desired values are user-specified rather than inferred from a causal model. Another structure
explains Gordius' simulated value; this structure is akin to TAC's explanation for a goal expression.

213

Gordius combines plan steps using a unification scheme similar in spirit to that used by TAC's
lookahead mechanism. It also prunes conflicting plan steps, as TAC prunes conflicting repair
suggestions. Finally, Gordius controls looping during search by employing a lookbehind mecha-
nism that checks for plan equivalence. This step is akin to TAC's checking whether a newly
created design is equivalent to one that has been seen before.

The Ancona System

An architectural design planning system built at University of Ancona (Colaganni, 1991)
appears to be similar to TAC in a number of respects. It employs multiple representations for
designs. ageometric model that is similar to TAC's edge model, a topological model representing
connectivity of spaces, and a set of assertions about qualitative geometric relationships between
design elements. Given a starting design and a goal, it evaluates the design and creates new
designs that satisfy the goal. Designs are created by generating a plan that maps abstract terms,
such as “symmetric” into design modification operators, then carrying out the operators. If the
designs do not satisfy the goal, the system repairs the designs. (The paper givesinsufficient details
about how the repair step works. In particular, it is not clear whether the design or the plan is

repaired, nor whether an evaluation and repair cycle ensues.?)

The system differs from TAC in severa significant ways. In the referenced paper, all goals are
geometric. Operators are represented via preconditions and effects, and are chosen by matching
their effects with a goal expression. Effects represent direct changes to a design (e.g. added
space), rather than intended goals as in TAC. Simple expression matching for satisfying a goal
works for the topologica problemsillustrated in the paper, but would not work for more complex
concepts such as visual openness. Such concepts necessitate representations for design elements,
not just spaces, as well as representations for relationships between concepts, operators, design
elements, and territories induced by design elements.

9.1.2 Case Adaptation

Case-based reasoning is concerned with retrieving cases from memory as a starting point for
problem solving (Kolodner, 1993; Leake, 1996). An important step in this methodology is adapt-
ing the retrieved case (or cases) to a current context. Case adaptation is similar in spirit to TAC's
repair: Given a case (design), modify it to meet specified requirements (design goals). With case-
based reasoning systems, the starting design is retrieved from a database of cases (a case base).
With TAC, we have assumed that the starting design would be sketched by a designer, but

4. Effortsto contact the authors have been unsuccessful.

214

conceivably it could come from a case base.

Much of the work on case-based reasoning in architecture has concentrated on case indexing
and retrieval (e.g. Domeshek and Kolodner, 1992; Oxman, 1996); there has been some work on
case adaptation. Adaptation is especially challenging when cases have strong geometrical compo-
nents, as with architectural designs. Various techniques have been used for adapting designs. We
mention several here and give examples of systems that employ them. (See Voss and Oxman
(1996) for asurvey.)

Constraint satisfaction techniques have been used to adapt cases (e.g. Maher and Zhang,
1993). Some of these systems first adapt a case’s topology using graph algorithms, then adapt
geometry using constraint satisfaction techniques (e.g. Smith, et. a., 1996; Hua, et. a., 1996).
Design knowledge may be represented implicitly in the systems' parameters and constraints (e.g.
Smith, et. al., 1996), or explicitly using techniques such as hierarchies of object types (e.g. Giretti
and Spalazzi, 1997). Constraint satisfaction techniques are not appropriate for TAC's repair prob-
lem because TAC's goals are not stated in terms of topologies or particular geometric arrange-
ments. They are stated in terms of abstract design characteristics that are then mapped into
operators that modify design elements, e.g. by changing their geometric arrangements. Because of
the noninvertibility of characteristics and the complex interactions between operators, these
geometric arrangements are not known apriori. As a result, it is not possible to specify a set of
equations representing constraints between design elements.

M odel-based reasoning techniques have been used to adapt cases, though typically for engi-
neering fields in which qualitative models of device behavior can be built (e.g. Faltings and Sun,
1994). Even though not in the domain of architecture, the systems described in Goel (1991) and
Prabhakar and Goel (1998) are worthy of mention as examples of using explanation of failure
(case mismatch) to guide iterative repair. The systems evaluate a retrieved case of a mechanical
device via simulation using a causal model of the device's behavior. They then propose modifica-
tions by identifying the source of the device failure and selecting repair strategies such as replac-
ing particular device components. This sort of model-based reasoning is not possible for TAC's
task because of the complex and unpredictable interactions between design modification operators
in architecture; a causal model analogous to device behavior cannot be built. Instead, TAC evalu-
ates a geometric model of a design and uses the resulting explanation, along with mappings
between design characteristics and physical form, to repair the design.

215

9.1.3 Perfor mance-based Refinement

The term “performance-based refinement” has been used in the computer-aided architectural
design community to mean using desired values of design characteristics (also called performance
variables) to guide design refinement—just what TAC does. Most design tools only evaluate
design characteristics and do not do repair; they require that the designer “guess’ at likely design
modifications for affecting desired values. The systems then evaluate the resulting design to see if
the modification worked as intended. (See Flemming and Madhavi (1993) for discussion and
examples of this sort of design tool.)

TAC is one of the few tools that supports design refinement using explicit knowledge of
preferred design characteristic values and methods for achieving those values. The work of
Madhavi (1997, 1998), discussed below, falls into this category. The system being built by Kalay
(1999) seems headed in asimilar direction, but proposes only giving a designer advice about how
to achieve desired values.

GESTALT

Madhavi has built two similar systems: GESTALT isalighting ssmulation tool for early stages
of design (Madhavi 1997); SEMPER is atool that simulates thermal properties (Madhavi 1998).
We discuss GESTALT, which refines a design with respect to stated lighting performance criteria.

GESTALT issimilar to TAC in that its goal isto provide atool for exploring design space, not
optimizing a design solution. It assists a designer in finding solutions and in better understanding
complex relationships between design parameters. It supports investigations about how changes
in performance variables change a design. Its performance variables are similar to TAC's design
characteristics, and both systems reason from desired values of characteristics to particular
arrangements of design elements. GESTALT, like TAC, adopts a view of the design process as
iterative refinement and employs “intelligent” test-and-generate, using knowledge of the relation-
ships between characteristics and physical form to iteratively modify a design. Some of its knowl-
edge is similar to TAC's: it relates experiential characteristics (e.g. lighting quality/comfort) to
characteristics of physical form (e.g. window size). It also maps experiential qualities to methods
for changing them, just as TAC does. It knows to increase lighting quality, for example, by
increasing window area or increasing visible transmittance of window glazing.

GESTALT differs from TAC, however, in that each experiential characteristic is quantitative-
valued, and the dependencies between its value and the values of quantitative design attributes can
be mathematically modelled or formalized through regression anaysis. In addition, functional
relationships (e.g. Gaussian, monotonically increasing) can be defined between quantitative
design attributes and preference scales (e.g. a five point scale of lighting quality/comfort). The

216

preference values are used to weight contributions of design attribute values to a performance
variable. The end result is that optimization techniques can be used to select particular design
attribute values for desired performance values. The user specifies that a particular performance
variable be increased, and the system iteratively optimizes design attribute values to produce new
designs.

TAC’s power would be enhanced by employing this technique with quantitative characteristics
for which knowledge of relevant functional relationships exists. It then could relate characteristics
to physical form via particular performance functionsin lieu of always assuming monotonic rela-
tionships. Many of TAC's characteristics are not quantitative, however, and/or correlation data
relating characteristic values to physical form attributes does not exist. TAC's reasoning with
influences, therefore, cannot be completely replaced. In addition, overall scoring of a design is
less meaningful under such circumstances because weighting strategies for various incommensu-
rate criteria are not deducible from correlation statistics. Instead, the weighting is ad hoc.

Finally, many of TAC's characteristics are for a design as a whole, rather than for a single
room, and are therefore very dependent on particular arrangements of many design elements.
Such global characteristics are not subject to mathematical modeling or statistical analysis tech-
niques because there are too many possible arrangements of design elementsin an entire design.

9.2 Experiential Knowledge

A few systems have evaluated designs with respect to experientia qualities, but have not
represented or reasoned about physical form, relying instead, for example, on human evaluators
and statistical scoring techniques (e.g. Mortola and Giangrande, 1991). One such system (Cao
and Protzen, 1994) goes a step further and explicitly represents mappings between experiential
gualities and physically measurable properties, but relies on previously collected data rather than
measuring properties dynamically from arepresentation of adesign. Several case-based reasoning
systems have represented experiential qualities, often derived from post occupancy evaluations, as
annotations, but have not related them to physical form or evaluation per se (e.g. Domeshek and
Kolodner, 1992). A topological evaluation technique that relates spatial organization to social
behavior has been successfully paired with a geometric analysis of visibility (Hanson, 1994).
Finally, arecent paper (van der Voordt, et al., 1997) suggests relating physical form to experien-
tial qualities, asisdonein TAC.

Several systems are close in spirit to TAC's evaluation component. McLaughlin's system
(McLaughlin, 1991) focuses on evaluation of a design with respect to experiential qualities repre-
sented as design goals such as open, sunny, and private. The system, which is rule-based, takes as
input a design and outpuits lists of satisfied and unsatisfied goals. The major difference between

217

this system and TAC's evaluation component is that McLaughlin's system does not represent or
reason about physical form. The system instead represents a design as a topological arrangement
of design elements—walls, windows, doors, openings, spaces—and reasons about the design
using afact base of assertions. Addition of ageometric representation for a design would simplify
some computational tasks (e.g. computation of circulation paths), enable others (e.g. computation
of visual barriers), and facilitate interaction with a designer (e.g. by enabling integration with a
sketching system).

Two other systems are similar to TAC in their attempts to represent and reason about experien-
tial qualities and physical form. They differ from the current work in ways that result from
adopting different views of the design process.

Galles system (Galle, 1994) ams to be a design support tool, facilitating development of
evolving designs. The design knowledge in Galle's system is that embodied in Alexander's pattern
language (Alexander, et a., 1977), which represents general design principles as prototypical
arrangements (patterns) of physical design elements. Some of the patterns describe methods for
achieving experiential qualities. One pattern, for example, suggests achieving an intimacy gradi-
ent by creating a sequence of spaces arranged according to degrees of privacy, with least private
near an entrance, followed by slightly more private spaces, |eading eventually to the most private.
Creating a design in Galle's system amounts to instantiating a pattern. Each resulting design
element is associated with a pattern, and no design element can be introduced that is not associ-

ated with a pattern.® TAC takes a different view of design: It aims eventually to support sketch-
ing, parsing of the sketch into design elements, followed by design refinement. Design elements
are not associated with a particular design goal. They are implicitly related to adesign goal if they
contribute to satisfaction of that goal, but this relationship is not of importance in TAC. Further,
the design goals may be stated in terms of either experiential qualities, which correspond to
Galle's (and Alexander's) patterns, or in terms of physical form characteristics that such as lengths
of walls. Physical form characteristics have no user-accessible counterpart in Gall€'s system.
Gullichsen and Chang (Gullichsen and Chang, 1985) built a design generation system based
on Alexander's pattern language. It is a rule-based system that generates designs in a top-down
fashion, progressing from general patterns to more specific patterns that implement the general
ones. The user initiates the generation by specifying the list of patterns to be satisfied. Their
system's view of design as a top-down process differs from TAC's view of design as an iterative
process of evaluation and repair that is initiated by a user-supplied starting design. Finaly, their
system's geometric representation of a design may be similar to TAC's, since mention is made of
"lower-level procedures [that] typically employ geometric methods.” An example is given of

5. Galle suggestsin afootnote that later versions of his system will relax this restriction.

218

computing positive space between buildings by calculating the "sum of areas enclosed by walls of
buildings or segments which constitute the convex polygona hull of the building's wings,
weighted by theratio of its enclosing perimeter of the hull," but no mention is made of the under-
lying representation.

219

220

Chapter 10

Conclusion

The Architect’s Collaborator is a step toward an intelligent assistant for early stages of architec-
tural design. This chapter discusses waysin which it could be extended and summarizes its contri-
butions.

10.1 Future Work

The Architect’s Collaborator is a prototype design support system. Additional work in several
areas would transform TAC into a more valuable design partner.

We chose a two-dimensional representation for designs, simplifying TAC's computational
geometry routines so that we could focus on reasoning about experiential qualities and physical
form. Extending the representation to three dimensions would be relatively straightforward: the
underlying design representation and computational geometry routines could be changed without
disrupting the knowledge base or the overall control structure.

TAC’s knowledge base contains arich set of concepts, both architectural and domain-indepen-
dent. We'd like to extend it to include knowledge of materials and light. The choice of materials
contributes to how we experience a space. Contrast the walls of wood and glass in the living room
in Figure 1.4, for example, with the plaster wallsin Figure 1.3. The use of light a so influences our
experience of a space. Compare, for example, the fluorescent light in the classroom in Figure 1.1
with the natural light in the studio in Figure 1.2. We'd aso like to add knowledge of sociological
influences on physical form (e.g. Wright, 1981; Hillier and Hanson, 1984). Changing attitudes
about domestic life, for example, transformed the front and back parlors of Victorian times into
the modern-day living room.

TAC's languages and representations form a good foundation for addition of knowledge such
asthat described above. Aswith all systems that rely on knowledge bases, however, acquiring the
knowledge is nontrivial. Machine learning techniques may help with this task. A designer could
give the system a set of designs that contain territories he considers visualy open, for example,
and the system could determine a threshold for the visual openness measurement. Machine learn-
ing techniques also might be useful in adding knowledge of discovered synergies and conflicts to
TAC's knowledge base. As noted in Section 7.3.1, for example, TAC discovered that moving a
design element to an exterior edge could increase visual openness. This move method could be

221

added as an increaser on the design characteristic vi sual - openness.

TAC's knowledge base could be extended to include knowledge associated with building
codes, costs, and remodeling. The system then could propose new designs based on awider vari-
ety of design goals. In the Chatham house design example discussed in Chapter 8, for example,
turning the stair in an existing house isfar different from turning the stair “on paper” . With remod-
eling knowledge, the system could rank new designs based on criteria such as construction cost
and disruption.

TAC's set of design modification operators could be extended to include additional geometric
concepts such as aignment and overlap. A designer might want to align two doorways, for exam-
ple, or overlap two territories. We'd also like to remove the restriction on TAC's current operators
that they cannot change a design’s footprint, adding operators, for example, that displace exterior
edges of adesign or add new ones.

TAC would benefit from integration with a sketching tool. The importance of sketching in
architectural design is well documented (e.g.Goldschmidt, 1991; Robbins, 1994; Fraser and
Henmi, 1994), and we envision, as described in the opening scenario, a designer moving effort-
lessly between sketching and TAC's evaluation and repair steps. Sketch programs exist that trans-
late a designer’s sketch into amodel that is equivalent to TAC's design element model (e.g. Gross,
1996). Adding such a program as a front-end to TAC would be straightforward and would alevi-
ate the current need to enter starting designs by hand using a graphics editor. More difficult, but
still possible, would be integrating the two systems in such a way that a designer could modify
one of TAC's newly generated designs via sketching, then ask TAC to continue its evaluation and
repair.

In addition to a sketching interface for TAC, we envision a “knob” interface—attaching
“knobs’ to design characteristics so that a user could increase or decrease values and observe the
resulting changes in physical form. A similar ideais proposed by Flemming and Madhavi (1993)
for quantitative characteristics. We'd like to extend the idea to include non-quantitative character-
isticsaswell.

As previously noted, TAC produces many solutions to a design problem and needs to be able
to display those solutions without overwhelming the user. Adding the capability to display subsets
of designs would be straightforward. The difficult task is identifying meaningful subsets and
supporting navigation through those subsets.

TAC’s control structure could be extended to support goal refinement, so that a designer could
interrupt TAC's evaluation and repair cycle at any point, redefine goals, then have TAC continue.
It also could be extended to allow the user to prune designs from a newly generated set before
TAC proceeds with its repair steps. Both of these extensions would be straightforward.

222

TAC's control structure and knowledge base could be extended to assist a designer in specify-
ing goals by suggesting some goals automatically. If a design has a second floor, for example,
TAC could specify that the design needs a stair. The issue is whether a designer must specify all
goals, or whether some could be considered part of general architectural knowledge. Defining
what constitutes general architectural knowledge is a difficult and open-ended problem, but even
augmenting the knowledge base with a small set of simple general design goals would decrease
the amount of work a designer must do, while increasing the relevancy of proposed design solu-
tions.

The efficiency of TAC's search capabilities could be improved as discussed in Section 7.4 by
defining equival ence classes and by ordering goals. Goal order could be determined by specificity
of goals and operators, by using domain knowledge (e.g. deal with circulation issues first), or by
grouping goals into subsets, perhaps based on goal similarity metrics of some sort. TAC's search
capabilities also could be extended to resolve goa conflicts when no solutions are found, e.g. by
relaxing goals or looking for compromises.

10.2 Summary

The Architect’s Collaborator contributes to artificial intelligence answers to these two questions:

* How are experientia qualities transglated into physical form?

TAC's languages and representations formalize abstract concepts such as openness and
privacy, and relate those concepts to arrangements of physical form.

* How might atool assist designers with this process?

TAC enables designers to specify design goals and efficiently explore the space of possible
designs satisfying those goals. By means of its dependency-directed redesign strategy, TAC isable
to deal with issues of avery large search space, noninvertible evaluation functions, complex inter-
actions between design modification operators, and multiple conflicting goals.

The Architect’s Collaborator aso contributes to architecture: the clarification of terms used in
architectural discourse, a system that functions as both a design brainstorming tool and an analy-
sis tool, a repository for reusable design knowledge, and an example of how to distribute tasks
between a designer and a computer assistant.

By virtue of these contributionsto both artificial intelligence and architecture, The Architect’s
Collaborator is a step toward an intelligent tool for conceptual architectural design.

223

224

References

R.1 Bibliography

(1916) Architectural Record, vol. 39, 175.
Akin, O. (1986) Psychology of Architectural Design, Pion, London.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobsen, M., Fiksdahl-King, I., and Angel, S. (1977)
A Pattern Language, Oxford University Press, New York.

Ambros-Ingerson, J. A. and Steel, S. (1988) “Integrating planning, execution, and monitoring,” in
Proceedings AAAI -88, 83-88.

Appleton, J. (1975) The Experience of Landscape, John Wiley & Sons, London.

Beetz, M. and McDermott, D. (1994) “Improving robot plans during their execution,” in Proceed-
ings of the Second International Conference on Al Planning Systems, AAAI Press, Boston, 3-
12.

Broadbent, G. (1973) Design in Architecture: Architecture and the Human Sciences, John Wiley
& Sons, New York.

Broadbent, G. (1980) “A semiotic programme for architectural psychology,” in Meaning and
Behaviour in the Built Environment, G. Broadbent, R. Bunt, and T. Llorens, eds., John Wiley &
Sons, New York, 313-359.

Broadbent, G., Bunt, R., and Llorens, T., eds. (1980) Meaning and Behaviour in the Built Envi-
ronment, John Wiley & Sons, New York.

Brooks, H. A. (1972) The Prairie School, Norton, New York.

Cao, Q. and Protzen, J.-P. (1994) “Deliberation and aggregation in computer-aided performance
evaluation,” in Automation Based Creative Design, A. Tzonis and |. White, eds., Elsevier, New
York, 251-264.

Chan, C.-S. (1992) “Exploring individual style through Wright's designs,” Journal of Architec-
tural Planning and Research, vol. 9, 207-238.

Colgjinni, B., De Grassi, M., di Manzo, M., and Naticchia, B. (1991) “Can planning be aresearch
paradigm in architectural design?” in Artificial Intelligence in Design '91, Proceedings of the
Second International Conference on Artificia Intelligence in Design, J. S. Gero, ed., Butter-
worth-Heinemann, Oxford, 23-48.

Coyne, R. D. and Gero, J. S. (1985) “Design knowledge and sequential plans,” Environment and
Planning B, vol. 12, 401-418.

Cross, N., Dorst, K., and Roosenburg, N., eds. (1991) Research in Design Thinking, Delft Univer-
sity Press, Delft.

Davies, S. P. and Simplicio-Filho, F. (1992) “Opportunistic and goal-oriented behaviour in soft-
ware design,” in Artificial Intelligence in Design '92, Proceedings of the Second International
Conference on Artificial Intelligence in Design, J. S. Gero, ed., Kluwer, Norwell, MA, 839-
860.

225

Domeshek, E. A. and Kolodner, J. L. (1992) “A case-based design aid for architecture,” in Artifi-
cial Intelligence in Design '92, Proceedings of the Second International Conference on Artifi-
cia Intelligencein Design, J. S. Gero, ed., Kluwer, Norwell, MA, 497-516.

Eastman, C. M. (1969) “ Cognitive processes and ill-defined problems: a case study from design,”
in Proceedings 1 JCAI-69, 669-691.

Eastman, C. M. (1970) “On the analysis of intuitive design processes,” in Emerging Methods in
Environmental Design and Planning, G. T. Moore, ed., MIT Press, Cambridge, 21-37.

Faltings, B. and Sun, K. (1996) “FAMING: Supporting innovative mechanism shape design,”
Computer-Aided Design, vol. 28, 207-216.

Flemming, U. (1994) “Artificial intelligence and design: amid-term review,” in Knowledge-Based
Computer-Aided Architectural Design, G. Carraraand Y. E. Kalay, eds., Elsevier, New York, 1-
24.

Flemming, U. and Mahdavi, A. (1993) “ Simultaneous form generation and performance evalua-
tion: a ‘two-way' inference approach,” in CAAD Futures '93, Proceedings of the Fifth Interna-
tional Conference on Computer-Aided Architectural Design Futures, U. Flemming and S. Van
WYk, eds., North-Holland, New York, 161-174.

Foz, A. (1973) “Observations on designer behavior in the parti,” in The Design Activity Interna-
tional Conference, Volume 1, University of Strathclyde, Glasgow, 19.1-19.4. See also "Some
observations on designer behavior in the parti”, Master of Architecture and Master of City
Planning Thesis, Massachusetts I nstitute of Technology, June, 1972.

Fraser, |. and Henmi, R. (1994) Envisioning Architecture: An Analysis of Drawing, Van Nostrand
Reinhold, New York.

Galle, P. (1994) “Computer support of architectural sketch design: a matter of simplicity?,” Envi-
ronment and Planning B, vol. 21, 353-372.

Giretti, A. and Spalazzi, L. (1997) “ASA: a conceptua design-support system,” Engineering
Applications of Artificial Intelligence, vol. 10, 99-111.

Godl, A. K. (1991) “A model-based approach to case adaptation,” in Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society, Lawrence Erlbaum, Chicago, 143-148.

Goldschmidt, G. (1991) “The dialectics of sketching,” Creativity Research Journal, vol. 4, 123-
143.

Gross, M. D. (1996) “ The Electronic Cocktail Napkin—a computational environment for working
with design diagrams,” Design Sudies, vol. 17, 53-69.

Gullichsen, E. and Chang, E. (1985) “ Generative design architecture using an expert system,” The
Visual Computer, vol. 1, 161-168.

Hammond, K. J. (1990) “Explaining and repairing plans that fail,” Artificial Intelligence, vol. 45,
173-228.

Hanson, J. (1994) “'Deconstructing architects houses,” Environmental and Planning B, vol. 21,
675-704.

Heath, T. (1984) Method in Architecture, John Wiley & Sons, New York.

226

Hertzberger, H. (1993) Lessons for Sudents in Architecture, 2nd ed, Uitgeverij 010 Publishers,
Rotterdam.

Hildebrand, G. (1991) The Wright Space: Pattern and Meaning in Frank Lloyd Wright's Houses,
University of Washington Press, Sesttle.

Hillier, B. and Hanson, J. (1984) The Social Logic of Space, Cambridge University Press,
Cambridge.

Hua, K., Faltings, B., and Smith, I. (1996) “CADRE: case-based geometric design,” Artificial
Intelligence in Engineering, vol. 10, 171-183.

Jones, J. C. (1970) Design Methods, John Wiley & Sons, New York.

Jones, R. T. (1987) Authentic Small Homes of the Twenties: Illustrations and Floorplans of 254
Characteristic Homes, Dover Publications, New York.

Kaay, Y. E. (1999) “Performance-based design,” Automation in Construction, vol. 8, 395-409.

Kambhampati, S. and Hendler, J. A. (1992) “A validation-struture-based theory of plan modifica-
tion and reuse,” Artificial Intelligence, vol. 55, 193-258.

Kartam, N. A., Levitt, R. E., and Wilkins, D. E. (1991) “Extending artificia intelligence tech-
niques for hierarchical planning,” Journal of Computing in Civil Engineering, vol. 5, 464-477.

Kincaid, D. S. (1996) Conversation with the author, 11/16/96.

Kincaid, D. S. (1997) "An arithmetical model of spatial definition,” Master of Architecture
Thesis, Department of Architecture, Massachusetts Institute of Technology.

Knoblock, C. A. (1995) “Planning, executing, sensing, and replanning for information gathering,”
in Proceedings of 1JCAI-95, 1686-1693.

Koile, K. (1997) “Design conversations with your computer: evaluating experiential qualities of
physical form,” in CAAD Futures '97, Proceedings of the Seventh International Conference on
Computer-Aided Architectural Design Futures, R. Junge, ed., 203-218.

Kolodner, J. (1993) Case-Based Reasoning, Morgan-Kaufmann, San Mateo.

Koning, H. and Eizenberg, J. (1981) “The language of the prairie: Frank Lloyd Wright's prairie
houses,” Environment and Planning B, vol. 8, 295-323.

Korf, R. E. (1987) “Planning as search: a quantitative approach,” Artificial Intelligence, vol. 33,
65-88.

Krauss, R. I. (2000) Conversation with the author, 3/15/00.

Krauss, R. I. and Myer, J. R. (1970) “Design: a case history,” in Emerging Methods in Environ-
mental Design and Planning, G. T. Moore, ed., MIT Press, Cambridge, 11-20.

Lawson, B. (1990) How Designers Think, 2nd ed, Butterworth Architecture, Boston.

Lawson, B. (1994) Design in Mind: The Design Process Demystified, Butterworth Architecture,
Boston.

Leake, D. B., ed. (1996) Case-Based Reasoning: Experiences, Lessons, and Future Directions,
AAAI PresssMIT Press, Menlo Park/Cambridge.

Lind, C. (1994a) Frank LIoyd Wright's Life and Homes, Pomegranate Artbooks, San Francisco.

227

Lind, C. (1994b) Frank LIoyd Wright's Usonian Houses, Pomegranate Artbooks, San Francisco.

Mahdavi, A. and Suter, G. (1997) “On implementing a computational facade design support tool,”
Environment and Planning B, vol. 24, 493-508.

Mahdavi, A. and Suter, G. (1998) “On the implications of design process views for the develop-
ment of computational design support tools,” Automation in Construction, vol. 7, 189-204.

Maher, M. L. and Zhang, D. M. (1993) “CADSY N: A case-based design process model,” Artifi-
cial Intelligence in Engineering Design, Analysis and Manufacturing, vol. 7, 97-110.

Manson, G. C. (1958) Frank Lloyd Wright to 1910: The First Golden Age, Van Nostrand Rein-
hold, New York.

McCoy, E. (1975) Five California Architects, Praeger, New York.

McDermott, D. and Hendler, J. (1995) “Planning: What it is, What it could be, An introduction to
the Special Issue on Planning and Scheduling,” Artificial Intelligence, vol. 76, 1-16.

McLaughlin, S. (1991) “Reading architectural plans. acomputable model,” in CAAD Futures'91,
Proceedings of the Fourth International Conference on Computer-Aided Architectural Design
Futures, G. N. Schmitt, ed., Vieweg, Wiesbaden, 347-364.

Moore, C., Allen, G., and Lyndon, D. (1974) The place of houses, Holt, Rinehart and Winston,
New York.

Mortola, E. and Giangrande, A. (1991) “An evaluation module for 'An Interface for Designing'
(AID): a procedure based on trichotomic segmentation,” in CAAD Futures '91, Proceedings of
the Fourth International Conference on Computer-Aided Architectural Design Futures, G. N.
Schmitt, ed., Vieweg, Wiesbaden, 139-154.

Oxman, R. (1996) “Case-based design support: supporting architectural composition through
precedent libraries,” Journal of Architectural and Planning Research, vol. 13, 242-255.

Petit, J. L. (1854) Architectural Studies in France, London. Referenced in Etlin, R. A. (1994)
Frank Lloyd Wright and LeCorbusier, Manchester University Press, New York.

Pinnell, P. (1990) “Academic tradition and the individual talent: similarity and difference in the
formation of Frank Lloyd Wright,” in Frank LIoyd Wright: A Primer on Architectural Princi-
ples, R. McCarter, ed., Princeton Architectural Press, New York, 19-58.

Prabhakar, S. and Goel, A. K. (1998) “Functional modeling for enabling adaptive design of
devices for new environments,” Artificial Intelligence in Engineering, vol. 12, 417-444,

Rapoport, A. (1969) House Form and Culture, Prentice-Hall, Englewood Cliffs, NJ.
Rapoport, A. (1977) Human Aspects of Urban Form, Pergamon Press, New York.
Rasmussen, S. E. (1962) Experiencing Architecture, MIT Press, Cambridge, MA.
Robbins, E. (1994) Why Architects Draw, MIT Press, Cambridge, MA.

Rowe, P. G. (1987) Design Thinking, MIT Press, Cambridge, MA.

Schon, D. (1983) The Reflective Practioner: How Professionals Think in Action, Basic Books,
New York.

Scully, V., Jr. (1971) The Shingle Style and Stick Style: Architectural Theory and Design from
Richardson to the Beginnings of Wright, Yale University Press, New Haven, CT.

228

Shneiderman, B. (1998) Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Addison Wesley, Reading, MA.

Simmons, R. G. (1992) “The roles of associational and causal reasoning in problem solving,”
Artificial Intelligence, vol. 53, 159-208.

Simon, H. (1969) Sciences of the Artificial, 2nd ed, MIT Press, Cambridge, MA.

Simon, H. (1973) “The structure of ill-structured problems,” Artificial Intelligence, vol. 4, 181-
201.

Simon, H. (1975) “Style in Design,” in Spatial Synthesis in Computer-Aided Building Design, C.
M. Eastman, ed., Applied Science, London, 287-309.

Smith, I., Stalker, R., and Lottaz, C. (1996) “Creating design objects from cases for interactive
gpatial composition,” in Artificial Intelligence in Design '96, Proceedings of the Fourth Interna-

tional Conference on Artificial Intelligence in Design, J. S. Gero, ed., Kluwer, Norwell, MA,
97-116.

Smithers, T. (1996) “On knowledge level theories of design process,” in Artificial Intelligencein
Design '96, Proceedings of the Fourth International Conference on Artificial Intelligence in
Design, J. S. Gero, ed., Kluwer, Norwell, MA, 561-579.

Stallman, R. and Sussman, G. (1977) “Forward reasoning and dependency-directed backtracking
in asystem for computer-aided circuit analysis,” Artificial Intelligence, vol. 9, 135-196.

Stickley, G. (1982) More Craftsman Homes: Floor Plans and Illustrations for 78 Mission Style
Dwellings, Dover Publications, New York.

Storrer, W. A. (1993) The Frank Lloyd Wright Companion, University of Chicago Press, Chicago.
Also available as The Frank Lloyd Wright Companion CD-ROM, Prairie Multimedia, Inc.,
West Chicago.

Twombly, R. C. (1979) Frank Lloyd Wright: His Life and His Architecture, John Wiley & Sons,
New York.

van der Voordt, T. J. M., Vrielink, D., and van Wegen, H. B. R. (1997) “Comparative floorplan-
analysisin programming and architectural design,” Design Studies, vol. 18, 67-88.

Voss, A. and Oxman, R. (1996) “A study of case adaptation systems,” in Artificial Intelligencein
Design '96, Proceedings of the Fourth International Conference on Artificial Intelligence in
Design, J. S. Gero, ed., Kluwer, Norwell, MA, 173-189.

Wade, J. W. (1977) Architecture, Problems, and Purposes: Architectural Design as a Basic Prob-
lem-Solving Process, John Wiley & Sons, New York.

Wilkins, D. E. (1988) Practical Planning, Morgan Kaufmann, San Mateo.

Wilkins, D. E. (1990) “Can Al planners solve practical problems?” Computational Intelligence,
vol. 6, 232-246.

Wright, F. L. (1954) The Natural House, Horizon Press, New York.

Wright, G. (1981) Building the Dream: A Social History of Housing in America, MIT Press,
Cambridge, MA.

Zeisel, J. and Welch, P. (1981) Housing Designed for Families: A Summary of Research, Joint
Center for Urban Studies of MIT and Harvard University, Cambridge, MA.

229

R.2 Illustration Credits

Chapter 1
Figure 1.2, 1.4: Lind (19944, 1994b)

Figure 1.5: Duncan Kincaid and Daniel Gorini

Chapter 3
Figure 3.2: Storrer (1993)

Chapter 4
Figures 4.1, 4.3, 4.4: Storrer (1993)

Chapter 5
Figures 5.2, 5.5: Storrer (1993)

Chapter 7
Figure 7.7: Storrer (1993)

Chapter 8
Figures 8.1, 8.3, 8.4: Daniel Gorini
Figures 8.27: Kimberle Koile
Figures 8.32, 8.33: asindicated in figures

230

Appendix A Diagram Conventions

Below are conventions used throughout this document for diagrams that represent floorplans.

'
T A8

F k)
b
i
1 e grn
! LR
- pre—
| -
i
rL-rrﬂ
[

Sorage Privacy
—| — Access

e T gt i i - el

FigureA.1: Floorplan drawing.

Figure A.1 shows a floorplan drawing and the key for shaded areas. Storage includes closets,
bookcases, etc. Privacy refers to private areas, which include bathrooms and bedrooms. Access
refers to well-traveled regions, which include but are not limited to hallways. Unshaded areas

represent public regions.

231

-------- projected

b . —— -

————— — — — -

I

wall

screen

_____ half-wall

e e door

FigureA.2: Model for floorplan shown in Figure A.1.

edge

The model shown in Figure A.2 is an example of TAC's representation for floorplans. (See
Section 3.1 for adescription of the models TAC uses to represent designs.) The line types used to
depict the model are shown in the key above. As described in Section 3.1, edges correspond to
design elements (e.g. walls, doors) or projections from design elements. Windows and exterior
steps currently are not included in the models. For visibility measurements, projected edges are
open (i.e., they would be invisible in the building corresponding to the design). Edges represent-
ing walls are opaque. Screens (e.g. stair railings) and half-walls are considered semi-open. Edges
representing interior doors are considered open; edges representing exterior doors are considered
opaque. A stair is depicted as a closed polygon with one open edge representing the bottom of the

Stair.

232

Appendix B Knowledge Base

Below are lists of the design element types, TAC-functions, design characteristics, and design
modifiersin TAC's knowledge base.

B.1 Design Element Types

bookcase
door
door way
fireplace
hal f - wal
screen
st eps

st aircase
wal |
wi ndow

B.2 TAC-functions

Arithmetic Relations

gt
cfixer gt-fixer
:eval -fcn-nane greater-than

|t
cfixer |t-fixer
:eval -fcn-nane | ess-than

gte

:fixer gte-fixer

.eval -fcn-nane greater-than-or-equal -to
Ite

cfixer lte-fixer
:eval -fcn-name | ess-than-or-equal -to

eq
.fixer eq-fixer
:eval -fcn-name equal -to

233

not - eq

:fixer not-eqg-fixer

:eval -fcn-name not-equal -to
nor e- of

:fixer nore-of-fixer
:eval -f cn- nane nor e- of

| ess- of
:fixer |ess-of-fixer
:eval -fcn-nane | ess- of

Logical Relations

or
.fixer or-fixer
:eval -fcn-nanme ny-or

and
:fixer and-fixer
:eval - fcn-name ny-and

not
:fixer not-fixer
:eval -fcn-nanme |isp:: not

Computational Constructs

i f
cfixer if-fixer
ceval -fcn-nanme lisp::if

i f-nc
cfixer if-nc-fixer
:eval -fcn-nane if-nc

i s-a-val ue
:fixer value-fixer
:eval -fcn-body (not-eq x :no-val ue)

make- vect or
:fixer vector-fixer
ceval -fcn-name lisp::list

t op- of
:fixer partial-order-fixer
:eval - fcn-nane top- of

234

t ops- of
:eval -fcn-nane tops-of

typep
. fixer bool ean-general -fi xer
‘t-setters ((replace-elt x vy))
'nil-setters ((replace-elt x :any (transf-types-for y)))
;eval -fcn-nane typep

Set Concepts

nunber - of
:fixer nunber-of-fixer
:eval -fcn-nane | ength

sone
:fixer some-fixer
seval -fcn-nanme |isp::sone

Geometric Concepts

center
:eval -fcn-nanme physical -cent er - poi nt

segnent - bt w
:eval - fcn-name segnent - bet ween

open- edges- bt w
:eval - fcn- name open-edges- bt w

di stance-btw
:setters ((nove x) (nmove y))
:eval -fcn-nane di st ance- bet ween

change-in-direction-btw
sincreasers ((increase-change-in-direction-btw x y))
:decreasers ((decrease-change-in-direction-btw x y))
. eval -fcn-nanme change-in-direction-btw
angl es-t hat - m ni m ze-proj ecti on-btw
:eval -fcn-nane angl es-that-m ni m ze-proj ecti on-btw
X-in-y
;eval -fcn-nanme x-in-y
relative-size
:eval -fcn-nanme conpare-rel ative-size

235

| ar gest
;eval -fcn-nane | argest

smal | est
:eval -fcn-nane snmal | est

B.3 Design Characteristics
See also Appendix G for design characteristics related to the Prairie house experiment described
in Section 8.2.

Architectural Concepts

bl ocki ng- el emrent s- bt w
:eval -fcn- nanme bl ocki ng- el enent s- bt w

bl ocki ng- el ement s+edges- btw
:eval -fcn-nanme bl ocki ng- el ement s+edges- bt w

vi si bl e-from
:eval -fcn-nanme visible-from
:fixer bool ean-fi xer
:t-setters ((renove (bl ocking-elenents-btw x y) :to-avoid (segnent-btw x y))
(puncture (bl ocking-el enents+edges-btw x y) :at (segnent-btw x y))
(screenify (bl ocking-elenents-btw x y) :at (segnent-btw x y)))
cnil-setters ((fill * :any (open-edges-btw x y) :along (segnent-btw x y))))

vi si bl e-center
seval -fcn-body (visible-from (center x) (center y))

opaci ty-of - el enents-btw
:decreasers ((renove (bl ocking-elements-btw x y))
(puncture (bl ocking-elenents-btw x y))
(screenify (bl ocking-elenments-btw x y))
(rotate (bl ocking-elements-btw x y) :through * :any
(angl es-that-mnim ze-projection-btw x y))
(rmove (bl ocki ng-el enments-btw x y) :to-edge :any
(exterior-edges-for-elt *)))
sincreasers ((fill * :any (open-edges-btw x y))
(screenify * :any (open-edges-btw x y)))

vi sual - openness
:mn-value 0.0
:max-value 1.0

236

:eval -fcn-nane vi s- openness
cinfluences ((- (opacity-of-elenments-btw x y)))

vi sual | y- open
;eval -fcn-body (gt (visual-openness x y) .6)

vi sual | y-very-open
:eval -fcn-body (gt (visual-openness x y) .8)

vi sual | y-cl osed
reval -fcn-body (It (visual-openness x y) .3)

physi cal -accessibility
cinfluences ((- (distance-btw x y))
(- (change-in-direction-btw x y)))

built-exterior-path-p
:fixer bool ean-fi xer
:t-setters ((build-exterior-path to fronj)
:nil-setters ((renove-exterior-path to fronj)
ceval -fcn-nanme built-exterior-path-p

built-exterior-paths
:fixer sequence-fixer
:non-nil-setters ((build-exterior-path to from)
:nil-setters ((renove-exterior-paths to from)
ceval -fcn-name built-exterior-paths

exteriorp
:eval -fcn-nanme exteriorp

solidity
:nmin-value 0.0
:max-value 1.0
:setters ((change-elt-solidity x))
. eval -fcn-nanme surface-opacity

degr ee- of - hi nge
. order ed-range-val ues (folding sliding hinged)
:setters ((change-door-hinge-type x))
:eval -fcn-nanme door-type

formality-of-entry
sinfluences ((+ (solidity x))
(+ (degree-of-hinge x))) ; hinged > sliding > fol ding > no-door
ordered-elts
:eval -fcn-nanme find-ordered-el enents

237

order ed- percei ved-mai n-entries
.eval -fcn-body (ordered-elts x 'perceived-nai n-entryness ' nore-of)

percei ved- mai n-entry
;eval -fcn-body (top-of (ordered-perceived-nain-entries x))

per cei ved-mai n-entries
:eval -fcn-body (tops-of (ordered-perceived-main-entries x))

one- percei ved- nai n-entry
:eval -fcn-body (if (is-a-value (perceived-main-entry x) true fal se)

per cei ved- mai n-entryness
:necessary-conditions ((typep x 'exterior-door)
(built-exterior-paths x 'usual -approach)
(visible-fromx 'usual -approach))
sinfluences ((+ (physical-accessibility x 'usual -approach))
(+ (formality-of-entry x)))

privacy
sinfluences ((- (visual-openness x y))
(- (physical-accessibility x y)))

el t-type-count
:eval -fcn-body (nunber-of (elts-of-type type dnodel-or-terr))
sincreasers ((add-sone-elts-of-type type :to dnodel-or-terr))
:decreasers ((renove-sone-elts-of-type type :fromdnodel-or-terr))

elts-of -type
ceval -fcn-nanme elts-of-type
:fixer sequence-fixer
:non-nil-setters ((add-sone-elts-of-type type :to dnodel -or-terr :nunber 1))
'nil-setters ((renove-sone-elts-of-type type :fromdnodel -or-terr :nunber

-all))

elt-on-interior-edge-p
:eval -fcn-nanme elt-on-interior-edge-p
:fixer bool ean-fi xer
:t-setters ((nove elt :to-edge :any (interior-edges-for-elt elt)))
'nil-setters ((nmove elt :to-edge :any (exterior-edges-for-elt elt)))

elt-type-on-interior-edge-p
ceval -fcn-body (some 'elt-on-interior-edge-p
(elts-of -type elt-type dnodel -or-terr)))

238

el t-on-exterior-edge-p
;eval -fcn-nane elt-on-exterior-edge-p
:fixer bool ean-fi xer
:t-setters ((nove elt :to-edge :any (exterior-edges-for-elt elt)))
'nil-setters ((nmove elt :to-edge :any (interior-edges-for-elt elt)))

elt-type-on-exterior-edge-p
.eval -fcn-body (sone 'elt-on-exterior-edge-p
(elts-of-type elt-type dnodel -or-terr)))

elt-type-in-territory-p
.eval -fcn-nane elt-type-in-territory-p
:fixer bool ean-fi xer
:t-setters ((add-sone-elt-of-type type :to territory :nunber 1))
:nil-setters ((renove-sone-elts-of-type type :fromterritory :nunber :all))

adj acent
:eval -fcn-body adj acent

use- adj acent
:eval -fcn-body (adjacent (use-space-territory x) (use-space-territory y))
:fixer bool ean-fi xer
:t-setters ((exchange-use x :any (use-spaces-adjacent-to y)))
:nil-setters ((exchange-use x :any (use-spaces-not-adjacent-to y)))

use- spaces-adjacent-to
:eval -fcn- nane get - use-spaces-adj acent-to

use- spaces-not - adj acent-to
:eval -fcn- nanme get - use- spaces-not - adj acent-to

use-space-territory
:eval -fcn-nanme territory-for

pat h-from x-to-y
.eval -fcn-nane shortest-path-fromx-to-y

pat hs-from x-to-y
.eval -fcn-nane all-paths-fromx-to-y

pat h- crosses
:eval -fcn-nanme path-crosses-territory

on-di fferent-I|evels
eval -fcn-nane on-different-1evels

opens-into
:eval -fcn-nanme door-opens-into-territory

239

B.4 Design M odifiers

nove
punct ure

fill

screenify

unscreenify

renove

rotate

add-elt-of -type
renove-el ts-of -type

add- sone-el ts-of -type

renove- some-el ts-of -type

add- bl ocki ng-el t - btw

repl ace-elt

change-elt-solidity
change- door - hi nge-type

bui | d-exterior-path

renove- exteri or-pat hs
renove-exterior-territories-and-paths
i ncrease-change-in-direction-btw
decr ease-change-in-direction-btw
maybe- nove-exterior-territories
maybe- nove- ext eri or - access
exchange- use

240

Appendix C Language Terms

Below are lists of terms used in TAC's languages.

Design Characteristic Definition Language

names of design characteristics
names of TAC-functions
names of design element types
symbols: usual-approach, street
variable names

Goal Specification Language

above termsin Design Characteristic Definition Language
design objects

Repair Suggestion L anquage

above termsin Design Characteristic Definition Language

names of design modifiers

value suggestion terms: increase-value, decrease-value, set-value, keep-value

keywords: at, along, to-edge, to-avoid, to-block, through, to, from, number, any, al, until
variable placeholder for iteration construct: *

Constraint Specification L anguage

same as Goal Specification Language

241

242

Appendix D Alternate Territory Models

As mentioned in Section 3.1, a design may be represented by several territory models. Below are
two territory models for the Tomek house. Figure D.1 shows aterritory model in which the Living
territory extends the full width of the design. In the territory model shown in Figure D.2, the Liv-
ing territory is smaller, and two new territories have been added, called Access-1 and Access-2.
The new territories are formed by extensions of the walls of the fireplace, alcove, and doorsto the
terrace. As shown in Figure 4.3, they may also be formed by furniture. Which model is of interest
isthe designer’s decision. We have chosen in this document to use the model shownin Figure D.1.

L_Riceptio nl w
}

Kitchen , {
— Hall]
— T J‘_
| Fireplacel Alcove
Nook . i o '
. Dining :Stalr Living ' Terrace
— I +—

Figure D.1: Territory model for Tomek house first floor.

L_Rjeceptio nl w
|

Kitchen , {
— Hall | !
' ' Access-1
b — - - T - = m e mmmmE ... l—
| Fireplacel Alcove
Nook . i L '
; Dining :Stalr Living - Terrace
: e [+—
| ' ' Access-2

Figure D.2: Alternate territory model for Tomek house first floor.

243

244

Appendix E Explanation Examples

E.1 Building Explanations

Explanations are partialy built at compile-time, then completed at run-time. At compile-time,
explanation templates, which contain placeholders for run-time values, are built for each design
characteristic. Building the explanation tree structure once at compile-time is more efficient than
building the structure repeatedly at run-time. At run-time the explanation templates are copied and
values arefilled in. This scheme is possible because the relationship between design characteris-
tics does not change at run-time. Whenever a design characteristic is defined, or redefined, a new
explanation template is built.

The design characteristic vi sual - openness is defined as:

(defi ne-desi gn-char visual - openness
.eval -fcn-lanbda-1ist (a b)

:eval -fcn-name cal cul at e-vi sual - openness)

Using the name, lambda list, and evaluation function name in the above definition, the expla-

nation template for this design characteristic looks like:

<expl: (visual -openness a b)>
I nstance slots:

val ue: : unbound

expr: (vi sual -openness a b)
expr-types: (:fcn :arg :arg)

expr-vi a: ni

next - expl : cal cul at e- vi sual - openness
expl ai ns: nil

The unbound and ni | -valued slotswill befilled in at run-time. The expression in theexpr slot
is constructed from the name of the design characteristic and the lambda list stored in the design
characteristic. The expr -t ypes slot value, which is computed by parsing the expression, identi-
fies the type of each element in the expression. Since the evaluation function for the design char-
acterigtic vi sual - openness is an existing function, the name of that function is used as the
explanation in the next - expl dlot.

The next example illustrates how an explanation template is constructed when an evaluation
function body is supplied instead of an evaluation function name. As shown in Figure E.1 and
described below, the explanation template for vi sual | y- open isabit more complicated and must
contain the tree structure expected at run-time. A run-time explanation for vi sual | y- open is
shown in Figure 4.6.

245

(vi sual -openness a b) (gt nl n2)
val ue: :unbound val ue: :unbound

(visually-open x vy)
val ue: :unbound

\L :substitute-eval-fcn visually-open

(gt (visual -openness x y) 0.6)
val ue: :unbound

: reduce-expr visual - openness

. prev-subst visual | y-open
| >
I

(gt #:98592 0.6)

val ue: :unbound

(vi sual - openness x y)
val ue: :unbound

Figure E.1: Three explanation templates.
Thevi sual | y- open template is built using thevi sual - openness and gt templates.

The design characteristic vi sual | y- open isdefined as.

(define-desi gn-char visually-open
ceval -fcn-1anbda-list (x vy)

:eval -fcn-body (gt (visual-openness x y) 0.6))

Using the name, lambdallist, and function body information, the explanation template for vi su-
al | y- open contains aroot node that looks like this:

<expl: (visually-open x y)>
I nst ance sl ots:

val ue: : unbound

expr: (visual ly-open x vy)

expr-types: (:fcn :arg :arg)

expr-vi a: ni

next - expl : <expl: (gt (visual-openness x y) 0.6)>
expl ai ns: ni

246

Again, the expression is constructed from the design characteristic's name and lambda list,
and the expr - t ypes isconstructed from the expression. The next - expl slot contains an explana-
tion template that represents the next step in the evaluation trace, namely, the substitution of the
evaluation function body for vi sual | y- open.

Thisnext - expl explanation node template |ooks like:

<expl: (gt (visual-openness x y) 0.6)>
I nstance slots:

val ue: : unbound

expr: (gt (visual -openness x y) 0.6)

expr-types: (:fcn :expr :const)

expr-vi a: ((:substitute-eval -fcn . <design-char: visually-open>))
next - expl : <expl: (gt #: 98592 0.6)>

expl ai ns: nil

The expression in the expr dlot is the evaluation function body for vi sual | y-open. The
expr-types is constructed by parsing the expression. An explanation template will be con-
structed for each embedded expression.

The term #: g8592 shown above is a placeholder for the a run-time value. The explanation
template in which it appears |ooks like:

<expl: (gt #:98592 0.6)>
I nst ance sl ots:

val ue: : unbound

expr: (gt #:98592 0.6)

expr-types: (:fcn <expl: (visual -openness x y)> :const)
expr-vi a: ((:reduce-expr . <design-char: visual-openness>))
next - expl : greater-than

expl ai ns: nil

This explanation template was copied from the template for gt , shown below, and its expres-
sion was constructed by substituting the current context's arguments, #: g8592 and 0.6, into the
expression for gt . Theexpr -t ypes sot contains an explanation node template for the embedded
expression, (vi sual -openness x y). This explanation node template was copied from the
vi sual - openness template shown as the first example above. Corresponding argumentsx and y
in the embedded expression were substituted into the expression (vi sual - openness a b) inthe
copied template.

247

<expl: (gt nl n2)>
I nst ance sl ots:

val ue: : unbound

expr: (gt nl1 n2)
expr-types: (:fcn rarg :arg)
expr-vi a: nil

next - expl : greater-than

expl ai ns: nil

After corresponding argument substitutions, all explanation node templates in the tree contain
expressions written in terms of a consistent set of variable names.

E.2 Example

Below isthe explanation for the example presented in Section 4.2. The goal expression for the
Tomek houseis (vi sual | y-open Living Dining). Theterritory objects Living and Dining are
shown hereas<territory: Living>and<territory: Dining>, respectively.

If we examine the root explanation node in the explanation shown in Figure 4.6, we find that it

looks like:

<expl: (visually-open <territory: Living> <territory: D ning>)>
I nst ance slots:

val ue: ni |
expr: (visual ly-open <territory: Living> <territory: D ning>)
expr-types: (:fcn rarg :arg)
expr-vi a: ((:user-supplied))
expl ai ns: <goal : (visually-open <territory: Living>
<territory: Dining>) t>
next - expl : <expl: (gt (visual-openness <territory: Living>

<territory: Dining>) 0.6)>

Theval ue and expr dots are the expression's value and expression, respectively. The expr -
t ypes sot gives the types for the terms in the expression: a function name and two arguments.
The expr - vi a dot documents how the expression came about: it was supplied by the user, in this
case as an expression in agoal. Theexpl ai ns dlot points back to the goal whose expression is
explained by this explanation node. Finally, the next - expl slot holds the next explanation node
in the trace.

248

Examining the next - expl explanation node above, we find that it looks like:

<expl: (gt (visual-openness <territory: Living> <territory: Dining>) 0.6)>
I nstance sl ots:

val ue: ni
expr: (gt (visual -openness <territory: Living> <territory: D ning>)
0. 6)
expr-types: (:fcn :expr :const)
expr-vi a: ((:substitute-eval-fcn . <design-char: visually-open>))
expl ai ns: <expl: (visually-open <territory: Living>
<territory: Dining>)>
next - expl : <expl: (gt 0.44 0.6)>

Theexpr -t ypes slot looks abit different now: it documents that the expression in this expla-
nation node consists of afunction name, an embedded expression, and a constant. The embedded
expression, the second term in the expression, came into being as a result of substituting the body
of the vi sual | y- open evaluation function into the original goal expression. This substitution
information is conveyed viathe expr-vi a dlot. Theexpl ai ns ot points back to the previous
explanation node.

Examining the next - expl explanation node above, we find that it looks like:

<expl: (gt 0.44 0.6)>
| nstance sl ots:

val ue: nil
expr: (gt 0.44 0.6)
expr-types: (:fcn

<expl: (visual -openness <territory: Living>
<territory: Dining>)>

: const)
expr-vi a: ((:reduce-expr . <design-char: visual-openness>))
expl ai ns: <expl: (gt (visual-openness <territory: Living>
<territory: Dining>) O0.6)>
next - expl : greater-than

The expr-types dot again looks a bit different: it documents that the expression in this
explanation node consists of a function name, a value which has an explanation, and a constant.
The second term in the expr -t ypes dot is the explanation node whose value is the 0.44 in the
expression. The expr - vi a lot documents that the value was the result of reducing an expression
containing the design characteristic vi sual - openness. The expression that was reduced, namely
(vi sual - openness <territory: Living> <territory: Dining>),canbefoundintheexpla
nation node stored in the expl ai ns slot . The next - expl dot indicates that the value of this
explanation node was the result of evaluating the function gr eat er - t han, the evaluation function

249

for the TAC-function gt , with the supplied arguments.

Finally, examining the explanation node in the expr - t ypes slot, which explains the derivation
of the value 0.44, we find that it looks like:

<expl : (visual -openness <territory: Living> <territory: Dining>)>
I nstance sl ots:

val ue: 0. 44

expr: (vi sual -openness <territory: Living> <territory: Dining>)
expr-types: (:fcn rarg :arg)

expr-vi a: ((:prev-subst <design-char: visually-open>))

expl ai ns: <expl: (gt 0.44 0.6)>

next - expl : cal cul at e- vi sual - openness

The expr - t ypes slot documents that the expression is a function name and two arguments,
and the expr - vi a lot documents that the expression was supplied in a previous evaluation func-
tion substitution step. The next - expl dlot indicates that the value 0.44 was the result of evaluat-
ing the function cal cul at e- vi sual - openness, the evaluation function for vi sual - openness,
with the supplied arguments.

250

Appendix F Modifying Edge and Territory Models

The following figures show the steps in rotating the stair in the example presented in Chapter 6.

St air
Living Dining

Figure F.1: Portion of territory model for Chatham.
Territory model contains territories and edges that bound territories.

Figure F.2: Portion of edge model for Chatham.
Edge model contains al edges.

Modification to be carried out: rotate stair to increase visua openness of Living from Dining.

Figure F.3: Remove stair’s projected edges.
Note that some of removed edges were also derived from walls to left and right of stair.

251

Figure F.4: Carry out modification: rotate stair.

T rrrr s

s

Stair .

Living 5 Dining i
: A :

Figure F.6: Identify new territories by finding closed polygonsin edge model
and mapping them to territoriesin original design:

Stair territory edges have not changed identity, just their locations.
Living and Dining are now bounded by stair edges in new locations.
Territory A is again bounded by stair projected edges, but islarger.
Territory B isanew territory.

252

Appendix G Details of Architecture Exercises

G.1 Design: Chatham

Shown below are TAC's solutions to the first design problem described in Section 8.1, the
problem of having one perceived main entry for the Chatham house.

TAC proposes these suggestions:

(or ;; increase Front-door pne until nore than Side-door’s
(and nove Front-door unti
maybe nove exterior territories for Front-door
decrease change in direction between Front-door and usual - approach
unti |
maybe nove exterior access territories for Front-door)
;; set Side-door pne to no-val ue
(and repl ace Side-door with wi ndow
renove exterior territories and paths for Side-door)
(and repl ace Side-door with wal
renove exterior territories and paths for Side-door)
renove exterior paths between Side-door and usual approach
fill <edge: 6.00 20.44...> along <edge: 10.11...>
fill <edge: 6.00 22.89...> along <edge: 10.11...>
;; decrease Side-door pne until |ess than Front-door’s
(and nove Side-door unti
maybe nove exterior territories for Side-door
i ncrease change in direction between Side-door and usual - approach
unti |
maybe nove exterior access territories for Side-door)
;; increase Side-door pne until nore than Front-door’s
increase solidity of Side-door to 1.0
;; set Front-door pme to no-val ue
(and repl ace Front-door with w ndow
renove exterior territories and paths for Front-door)
(and repl ace Front-door with wall
renove exterior territories and paths for Front-door)
renmove exterior paths between Front-door and usual - approach
fill <edge: 10.11 30.89...> along <edge: 25.00...>
fill <edge: 22.33 30.89...> along <edge: 25.00...>
;; decrease Front-door pne until |less than Side-door’s
decrease solidity of front door to 0.5)

It then creates one design per suggestion; the designs are shown in Figures G.1, G.2, and G.3.

253

fimie
.
]
]
]
] 1]
- : '_;/*;
] L} L}
OL_—~—’E"'F#:——“'.
REEEEE L ELLELEEY|
R —— |
CHATHAME1L
FOUEt
HAYBE- HOUE EXTERIOR-TERRITORIES
Front-do

DECRERSE CHRNGE IN-DIRECTION
Front-dootr USUAL-APPROACH
HAYBE-HOVE-EXTERIOR-ACCESS
Front-door

I 1

' L]

d ' Bl

i, aal |

Lecccccccccccccccn= .
CHATHAMRS
REPLACE

S1de-door HITH WALL
g?ggUE EXTERIOR-TERRITORIES-AND-PATHS

CHATHAHES

FILL EDGE
(6.8 28,4)(18.1 28.4)

CHATHAHKE2

REPLACE
S1de-door WITH WINDOMW

REHOVE-EXTERIOR-TERRITORIES-AND-PATHS

S1de-door
-
I
I
| —
I N B
e
'
'
! -
'
' ']
' T T
: ; L[
T o
L rrrcc e e e e ————-- .
CHATHAME4
REMOVE-EXTERIOR-PATHS
S1de-door
-
|
|
| I
| e B
|
:
]
' -
] 1)
]
]
]

CHATHAHKE

FILL EDGE
(6.8 22,9)(16,1 22,9

Figure G.1: Designs TAC proposes with front door as perceived main entry.

254

e S S Sy J
CHATHANHE?
gOgE oo CHATHAHRS
CHANGE-S0LIDITY
HREBEOHOUE EXTERIOR-TERRITORIES Side-door 10 1.8

31
INCREASE-CHANGE-IN-DIRECTION
S1de-door USUAL-APPROACH
g?gggdHOUE EXTERIOR-RACCESS

CHATHAHKS CHATHAHK 16
REPLACE REPLACE
Front-door WITH WINDOW Front-door MWITH WALL
REMOVE-EXTERIOR-TERRITORIES-AND-PATHS REMOVE-EXTERIOR-TERRITORIES-AND-PATHS
Front=door Front-door

CHATHAHZ11 CHRIHRH#IQ
REHOVE-EXTERIOR-PATHS FILL-EDGE
Front-door (18.1 36,9)(16.1 37.6)

Figure G.2: Designs TAC proposes with front door or side door as perceived main entry.

255

CHATHAHZ13 CHATHAHE 14

FILL-EDGE CHANGE-S0LIDITY
(22,4 368,9)(22.4 35.8) Front-door TO 8.5

Figure G.3: Designs with side door as perceived main entry, cont’d.

256

G.2Analysis: Prairie Houses

We include here the counts of experiential and physical form characteristics for the designsin the
Prairie house experiment. We also show how each experiential characteristic was defined using
TAC'’s design characteristic definition language which was introduced in Section 3.2.

G.2.1 Experimental Results

Shown below, and in Section 8.2, are the experiential and physical form characteristics used in
Prairie house experiment. (Numbers to the right of each experiential quality are indexes for phys-
ical form characteristics that manifest the quality.)

Experiential qualities:
a. The design exhibits Wrightian group togetherness. (and 1 2 3)

b. The design exhibits home/hearth symbolism. (or46)

c. Themain living space is private. (and 7 (or 89 10 11))
d. The main living space is a place of refuge. (or891011)

e. Themain living space is a place of prospect. (or 12 13)

f. An exterior space contiguous with the main living space is private. (and 14 15)

Details of physical form:
1. The design has amain living space that is the largest living space.

2. The design has amain living space containing aregion from which all other living spaces
arevisible.

3. Thedesign hasa main living space connected to all other living spaces. (Two spaces are
connected if they are no more than one space apart or if they have axialy aligned door-

ways.)
4. The design has one fireplace location.
5. The design has afireplace on an interior wall.
6. The design has afireplace in the main living space.
7.

The path from the front door to the private area does not pass within five feet of the center
of the main living space.

8. The front door does not open into the main living space.
9. The front door and the main living space are on different levels.

10. The path from the front door to the main living space contains at least two changesin
direction of greater than 15 degrees.

11. The path from the usual approach point to the main living space contains at |east two
changesin direction of greater than 15 degrees.

12. The main living space is elevated above the terrain.

13. An exterior living space at least 40% of the size of the main living space is contiguous
with the main living space.

14. The front door does not open into the exterior space contiguous with the main living space.

15. The path from the usual approach point to the front door does not cross the exterior space
contiguous with the main living space.

257

Characteristics present in the houses (indexes into the above lists shown):

Prairie houses
Cheney af; 1-8, 11-15
Gale af: 1-15

Horner af; 1-4,6-15
Roberts af; 1-15

Tomek af; 1-15

Willits b-f; 1, 4-8, 10-15

These Prairie houses were used when testing characteristics (not in the experiment):
Hickox af; 1-8, 11-15
Hunt af; 1-9, 11-15
Robie af; 1-15
Thomas b-f; 1, 4-8, 10-15
Wal ser b-f; 1-4, 6-8, 10-15

Transition houses
Emmond b-f; 1-8, 11-15
Furbeck b-e 1,4,5,7,8, 11, 12
Wright b-e1,3,4,57,8, 12

Non-Prairie houses
Colvin a, b-e 1-3, 6-8, 10-12
JonesA b-f; 1, 3-8,12,15
Lawson b-d; 1, 4, 6-8
Mallory ad; 1-3,5-8, 11, 12
Stickley af; 1-4, 6-8, 12-15
Winsdow b-e1,4,5,7,8, 12

258

G.2.2 Design Char acteristic Definitions

Shown below are TAC's definitions for the Prairie house experiential characteristics. Each
characteristic has an evaluation function written in terms of physical form characteristics or other
characteristics derived from physical form characteristics. (See Section 3.1 for description of
defining evaluation functions for design characteristics.)

The Prairie house characteristics are represented by what we call design statements, which
have the same components as design goals—an expression and a value—but which do not imply
design intent. TAC evaluates design statements but does not suggest design modifications if the
statements are not true. As with design goals, expressions in design statements are written in
terms of TAC’s goal specification language (see Section 3.2).

For each experiential characteristic below we show a design statement expression and the
evaluation function body for the characteristic. We use“d” asavariable namefor adesign, “s” for
a space (i.e. use space), “x” and “y” for any kind of design objects. We use “=>" to show replace-
ment of a design characteristic name with its evaluation function body.

a. The design exhibits Wrightian group togetherness.

(shows-fl 1w group-togetherness d) =>
(is-fllwsocial-center (main-living-space d))

(mai n-1iving-space d) =>
(space-with-activity d :min-Iliving)

(is-fllwsocial-center s) =>
(and (largest s (other-Iliving-spaces s))
(physical l y-connected s (other-1living-spaces s))
(visually-connected s (other-Iliving-spaces s)))

b. The design exhibits home/hearth symbolism.
(shows- home- heart h-synbol i smd) =>
(or (has-one-fireplace-location d)
(x-in-y * rany (elts-of-type ‘fireplace d) (nmain-living-space d)))

(has-one-fireplace-location d) =>
(equal (location * any (elts-of-type ‘fireplace d)))

259

c. Themain living space s private.

(has-private-nain-living-space d) =>
(and (is-private-interior-space (main-living-space d) d)
(i s-hidden-place (main-living-space d) d) [see is-hidden-place bel ow

(is-private-interior-space s d) =>
(private-wt-path-btw s (main-entry d) (private-area-entry d)))

(private-wt-path-btws x y) =>
(gt (distance-btw (center s) (path-btw x y)) 5))
Note: main-entry is front door; private-area-entry is entrance to bedroom w ng.

d. The main living space is a place of refuge.

(mai n-1iving-space-is-refuge-place d) =>
(i s-hidden-place (main-Iliving-space d) d)

(i s-hidden-place s d) =>
(or (on-different-levels s (main-entry d))
(not (opens-into (main-entry d) s))
(not (visible-froms (main-entry d) s))
(circuitous-path-btw s (nmain-entry d))
(circuitous-path-btw s ‘usual -approach)))

(circuitous-path-btw x y) =>
(gte (nunber-of -x-degree-turns-btw x y 15) 2)

e. Themain living space is a place of prospect.

(mai n-1iving-space-is-prospect-place d) =>
(i s-prospect-place (main-living-space d) d)

(i s-prospect-place s d) =>
(or (on-different-levels s ‘ground-I|evel)
(sonme ‘(and (relative-size * s .40)
(adj acent * s))
(exterior-spaces d)))

f. An exterior space contiguous with the main living space is private.
(has-private-exterior-space-adjacent-to-nmain-living d)
(has-private-exterior-space-adjacent-to-nain-living s d) =>
(some ‘(and (is-private-exterior-space * d)
(adj acent * (main-living-space d)))
(exterior-spaces d)))
(is-private-exterior-space s d) =>

(and (not (opens-into (main-entry d) s))
(not (path-crosses s (path-btw (main-entry d) ‘usual -approach))))

260

