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Abstract

Control algorithms that exploit chaotic behavior and its precursors can vastly
improve the performance of many practical and useful systems. Phase-locked loops,
for example, are normally designed using linearization. This approximation hides
the global dynamics that lead to lock and capture range limits. Design techniques
that are equipped to exploit the real nonlinear and chaotic nature of the device
can loosen these limitations. The program Perfect Moment is built around a col-
lection of such techniques. Given a di�erential equation, a control parameter, and
two state-space points, the program explores the system's behavior, automatically
choosing interesting and useful parameter values and constructing state-space por-
traits at each one. It then chooses a set of trajectory segments from those portraits,
uses them to construct a composite path between the objectives, and �nally causes
the system to follow that path by switching the parameter value at the segment
junctions. Rules embodying theorems and de�nitions from nonlinear dynamics are
used to limit computational complexity by identifying areas of interest and direct-
ing and focusing the mapping and search on these areas. Even so, these processes
are computationally intensive. However, the sensitivity of a chaotic system's state-
space topology to the parameters of its equations and the sensitivity of the paths
of its trajectories to state perturbations make this approach rewarding in spite of
its computational demands.

Reference trajectories found by this design tool exhibit a variety of interesting
and useful properties. Perfect Moment balances an inverted pendulum by \pump-
ing" the device up, over half a dozen cycles, using roughly one-sixth the torque
that a traditional linear controller would exert in this task. In another example,
the program uses a detour through a chaotic zone to stabilize a system about 300
times faster than would happen by waiting long enough for the system to reach a
regime where traditional control methods obtain. Chaotic zones can also be used
to steer trajectories across boundaries of basins of attraction, e�ectively altering
the geometry and the convergence properties of the system's stability regions. An
externally-induced chaotic attractor that overlaps the phase-locked loop's original
lock range is demonstrated here; the controller designed by the program uses this
feature to extend the capture range out to the original lock range limits, allow-
ing the circuit to acquire lock over a wider range of input frequencies than would
otherwise be possible.

Thesis Supervisors: Harold Abelson
Professor of Computer Science and Engineering

Gerald Jay Sussman
Matsushita Professor of Electrical Engineering
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Chapter 1

Introduction

This thesis presents a control system design methodology that actively exploits
chaotic behavior. This tack not only broadens the �eld of nonlinear control to
include the class of systems brought into vogue | and focus | by the last few
decades of interest in chaos, but also opens a new angle on many old problems
in the �eld. Many of these problems, new and old, are interesting and useful
applications; all exhibit intricate and powerful behavior that can be harnessed by
suitably-intelligent computer programs.

The algorithms presented here intentionally route systems through chaotic re-
gions, using extensive simulation, qualitative and quantitative reasoning about
state-space features and heuristics drawn from nonlinear dynamics theory to nav-
igate through the state space. This mode of approach is a sharp contrast to tradi-
tional methods of control theory, most of which avoid chaotic behavior at all costs.
As these regions often comprise a large and rich part of a chaotic system's state
space, avoiding them constrains a system to a possibly small and comparatively
boring part of its range of operation.

The program that embodies these algorithms constructs reference trajectories
in advance, using a model of the target system. The controller thus designed is
then used for on-line, real-time control of the system. During the generation of
the reference trajectory, segments are selected from a collection of automatically-
constructed state-space portraits and spliced together into a path that meets the
speci�ed control objectives. The on-line controller causes the system to follow
this segmented path by monitoring the system state and switching the parameter
value at the segment junctions. The e�ects are similar to those of gain scheduling,
but the reasoning behind the \scheduling" is very di�erent. Successful synthesis
of such a trajectory is, of course, subject to dynamics-imposed limitations. A
repellor1 that persists for all allowable control parameter values cannot be made

1globally asymptotically stable in reverse time
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reachable by this control technique.

In constructing and examining the state-space portraits, these algorithms use
domain knowledge | rules that capture theorems and de�nitions from nonlinear
dynamics | to choose the trajectory distribution on each portrait and the param-
eter spacing between portraits so as to make both the parts and the whole are
representative of the system's dynamics: locally and globally, on both state-space
and parameter-space axes. This synthesis is similar to the process that occurs
when a nonlinear dynamicist selects and constructs overheads for a presentation
or �gures for a journal paper. Space and time are limited and the chosen informa-
tion must be correct in amount, content and level in order to transmit the essential
concepts without inundating the recipient.

This computer program, with very little human guidance or intervention, chooses
a representative set of portraits by applying a multiple-scales dynamics classi�ca-
tion method and then using the results of the analysis to adaptively determine the
inter-portrait parameter spacing. This scheme allows the program to autonomously
recognize and zero in on parameter ranges that encompass bifurcations2 or other
interesting behavior (i.e., an attractor expanding to cover the control objective.)
The distribution of the trajectories on the individual portraits is guided by the
system's sensitivity to parameter and state variations in each area of the space;
the boundaries of the search region are adapted according to intermediate results
of the search.

Nonlinearity can provide signi�cant leverage to a control algorithm that is de-
signed to exploit it. Since nonlinear systems are often exquisitely sensitive to their
control parameters, a small range of parameter variation can give a program a
large range of behaviors from which to choose. The distance between neighboring
state-space trajectories can grow exponentially with time, so small trajectory per-
turbations can have serious global repercussions. The end results of this sensitivity
resemble the paradigms of Maxwell's Demon and Simon's Ant, wherein environ-
mentally-available energy is exploited via small, well-chosen control actions. The
Voyager missions used Jupiter as a slingshot for just these reasons. Near the point
of closest approach, a small change in angle, via a short, low-energy rocket burn,
drastically changed the spacecraft's overall path in a fashion simply unobtainable
in a linear system; kinetic energy was also imparted by the planet to the probe over
the course of the interaction. Small errors in that course correction can, however,
have equally dramatic e�ects. This leverage is the power of and, paradoxically, the
di�culty with nonlinearity.

Chaos adds some advantages to this list. For example, the density with which
chaotic trajectories cover a section of state space | the so-called strange attractor
| has obvious implications for reachability. The now-classic \sensitive dependence
on initial conditions" of trajectories on such attractors endows small control actions

2
topological changes in an attractor
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with large e�ects; at the same time, the structural stability of these structures
in the presence of state noise endows the system with a measure of robustness.
Furthermore, strange attractors contain an in�nite number of unstable periodic
orbits that can be located and stabilized.

The goal of this thesis is to identify and characterize some of these useful
properties, to work out some computer control algorithms that take advantage of
them, and to demonstrate their e�ectiveness on some practical examples.

The task is the classic control problem: to cause a system to travel from one
speci�ed state-space point to another in some optimalway, where optimal is de�ned
by the user and the application.

The agent that performs this task is a Scheme[64] program called Perfect Mo-

ment that runs on HP series-300 and series-700 workstations. It should be viewed
as a design assistant or apprentice: it can �nd reasonable solutions to most prob-
lems on its own and vastly accelerate design tasks for an expert control engineer.

The domain of application is the set of dissipative chaotic systems that have a
single control parameter, are observable, and operate under well-speci�ed design
constraints. These algorithms can be applied to any system, but are designed to
exploit speci�c properties of nonlinearity and chaos, so their specialized machinery
is more or less wasted on linear problems. The practical examples demonstrated
here are drawn from mechanical and electrical engineering, but chaos appears in
virtually every branch of modern science and engineering, so potential applications
are by no means sparse.

Striking results have been achieved with these techniques[15, 16, 17]: a very
small control action, delivered precisely at the right time and place, can accurately
direct the system to a distant point on the state space | hence the program's
name. An equally-small change can be used to move from the basin of attraction
of one distant �xed point to the basin of another. Control actions can briey push
a system directly away from the goal state in order to reach a globally-superior
path to that point; \strange attractor bridges" can open conduits to previously-
unreachable regions. All of these e�ects | leverage, movement between basins,
counterintuitive moves, and bridges | are demonstrated in the Lorenz system, the
�rst in-depth example in this thesis and one of the classic problems in the �eld of
chaos. A trajectory that includes a section of a strange attractor steers the system
through its chaotic region and stabilizes it about 300 times faster than would
happen by waiting long enough for the system to reach a regime where traditional
linear control methods obtain. The second example is the classic driven pendulum,
balanced inverted; this example is given as a comparison point with traditional
nonlinear control. For this speci�c example | one choice of system coe�cients
and run-time parameters | Perfect Moment's trajectory balances the pendulum
using roughly one-sixth the torque that would be required from a traditional linear
controller.

3



The �nal example is drawn from another �eld that is rich in chaotic problems:
nonlinear circuits. Perfect Moment is used in a point-to-region steering mode to
�nd a single trajectory on a strange attractor that alters a particular type of phase-
locked loop's global reachability properties and broadens its capture range out to
the original lock range limits (a factor of 1.n to 1.m, depending on the target
circuit's design.)

This work draws broadly on several �elds for its techniques and examples:
computer science, electrical engineering, mathematics, physics and control. None
of the constituent pieces are considered leading-edge technology in the �eld in
which they originated, but the cross-disciplinary hybridization of the methods is
uniquely powerful. Perfect Moment uses AI techniques | multiple scales recogni-
tion, search, etc, | but it works on far more than toy problems. Domain knowl-
edge from nonlinear dynamics and scienti�c computation techniques like mixed
symbolic/numeric and algebraic/geometric computing broaden its range of appli-
cations and cut down on computational complexity. Powerful, special-purpose
computers are used to further speed the process. The program's knowledge of |
and lack of prejudice against | chaos extends its domain beyond that of classical
nonlinear control techniques. For example, traditional linear control is used here
where it is appropriate and useful; when it fails, global, more expensive computa-
tions are invoked. The higher-level reasoning made possible by the AI/nonlinear
dynamics mixture lets the switch between the two modes be performed automat-
ically. Where speci�c properties of chaos can be used, they are sought out and
exploited by the same AI/nonlinear dynamics mixture. Of course, many combina-
tions | pairs and threes | of these pieces have been used in the past, but never
to the extent of the project described here.

This thesis reports on the design decisions that guided the development of the
program, the structure and function that result, and the performance, extensions
and drawbacks thereof. Chapter 2 begins with a high-level outline of how Perfect

Moment works, which is followed by a scenario of how a design engineer might
interact with the program in the course of solving a real problem. Chapters 4, 5,
and 6 expand the brief outline in the �rst part of chapter 2, covering each stage
of the analysis, synthesis and control processes in detail. Background material
in mathematics and control theory appears in chapter 3, together with a review
of current research in those �elds and in computer science. Three examples are
presented in chapter 7. Chapter 8 discusses caveats, derives limitations to the
\domain of application" item in the list on page 3, suggests possible modi�cations
that would loosen these limitations, and proposes future extensions of this thread
of research. The conclusion is followed by a user's manual (appendix A) and
schematics, drawings and tables that relate to the examples (appendix B.)

I have made no attempt to prove mathematically-rigorous results about many
of the design choices and approximations discussed in this document. As a result, I
have little evidence as to the range of applicability of this program. PerfectMoment

4



is a prototype of a working engineer's design tool. It uses heuristics extensively and
chooses roughly-optimumsolutions by balancing several simultaneous tradeo�s and
diminishing-return situations. It does not hold out for truly optimal solutions, but
rather concocts a \good enough" one as quickly as possible. As a result, proving
controllability, for instance, is much more subtle than simply establishing that the
appropriate matrix is of full rank. The results are highly dependent on the inputs;
this variability is deemed acceptable because those properties are assumed to be
�xed in the design environment under investigation.

The driving concept behind this approach to control of nonlinear and chaotic
systems is to combine fast computers with deep knowledge of nonlinear dynamics
to improve performance in a class of systems whose performance is rich but whose
analysis is mathematically and computationally demanding.

5



Chapter 2

Overview

2.1 The Problem

Perfect Moment is presented with a nonlinear ODE, some control objectives (an
origin, a destination, a tolerance and a speci�cation of optimality cost,) a con-
trol parameter range, and a few other less-important inputs that allow the user
to manage the program's execution time and to plug in real-world design and
implementation constraints.

The program autonomously explores the system's behavior, manipulating the
control parameter and the search region during its explorations, identifying and ex-
ploiting nonlinear and chaotic features and properties in the course of the process.
Using the results of this exploration, it attempts to �nd a controlled trajectory

between the origin and the destination. Finally, its real-time section executes the
control actions that cause the target system to follow that trajectory.

Facilities for gathering data directly from an experimental system, rather than
a possibly-inaccurate ODE model thereof, are under development and have been
planned into this design.

2.2 The Idea

Envision a collection of state-space portraits, each constructed at a di�erent control
parameter value and plotted on a sheet of transparency �lm. If the system is richly
nonlinear, portraits at slightly di�erent parameter values may be very di�erent; see
the discussion in chapter 3 for more detail. Parts (a), (b), and (c) of �gure 2.1 show
state-space portraits of some two-dimensional nonlinear system at three di�erent
control parameter values. Trajectories are plotted in solid, dashed and dotted lines

6
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Figure 2.1: Schematic of path �nding process. (a), (b), (c): state-space portraits
of a nonlinear system at three di�erent control parameter values (d) portraits
superimposed for selection of path segments between A and B.

for the values k1, k2 and k3, respectively.

If one were to stack these sheets on top of one another, as in part (d) of
the �gure, and look down through the stack, one could choose a set of trajectory
segments that together form a path betweenA and B. See �gure 2.2 for a simpli�ed
and expanded view of one possible path.

Note the switchpoint from k1 to k3 (solid to dotted) at the center right of
�gure 2.2 and refer again to parts (c) and (d) of �gure 2.1. Because of the non-
linearity, nearby trajectories diverge and, if the timing of this switch is slightly
o�, the system will not approach point B at all. Small parameter changes can
have equally profound e�ects on the overall trajectory if they take place in regions
where the variational system grows rapidly with time, such as Voyager's periapse.
These e�ects are unique to nonlinear systems; chaotic systems have several addi-

7



k3

BA

k1
k2

Figure 2.2: Segmented path between A and B, consisting of �ve segments selected
from previous �gure

tional useful properties that will be discussed in later chapters. Besides providing
control leverage, this sensitivity | the source of Perfect Moment's name | can
also cause errors to blow up exponentially. Much of the intellectual e�ort involved
in this thesis is devoted to walking the line between this leverage and the exponen-
tial error growth that it can engender, using nonlinear dynamics, control theory,
scienti�c computation, AI, and many hours of CPU time to exploit the former and
avoid the latter. This nonlinear ampli�cation can also exacerbate the e�ects of the
various di�cult and fundamental problems that arise in real-world applications
of these techniques: parameter and state measurement, system identi�cation and
modeling, etc.

The mapping and path �nding tasks illustrated in �gures 2.1 and 2.2 are rel-
atively easy for a person and very di�cult for a machine. Humans are good at
reasoning from partial information and know when they reach the information
overload threshold, so selecting a \representative" set of trajectories | one that is
exactly enough to characterize the dynamics | is a natural task. Human vision is
good at pattern recognition and at processing coincident information on di�erent
scales, so classi�cation of portraits as \signi�cantly di�erent" is also intuitively
easy. Coupled with nonlinear dynamics knowledge that permits interpretation,
inference, and prediction of the e�ects of parameter and state changes, these infor-
mation acquisition and processing skills cause the selection of a set of maps that
are \representative" of the system's dynamics to be a straightforward task for a
human expert. Finally, vision's multiple-scale image processing lets one quickly
scan the maps for a \good" set of path segments that meet the control objectives

8



on both local and global scales.

The quotes in the last paragraph highlight the concepts that are di�cult to
mechanize. The next section gives a brief description of how Perfect Moment

solves these problems; chapters 4-6 discuss each step in detail. The �nal section of
this overview chapter illustrates the program's use with a (somewhat-optimistic)
scenario.

2.3 How It Works

Perfect Moment's �rst action is to synthesize a reference trajectory. This task is
performed by the algorithms lumped into the left-hand block in the diagram of
�gure 2.3. The information that describes this reference trajectory | the \recipe"
| is then used by an on-line controller (the right-hand block in the �gure) to cause
the system to follow that path.

The double dashed line between the two blocks separates tasks that are per-
formed o� line and those that occur in real time: note that information only ows
from left to right across this boundary. Improvements in computer technology
(speed and accuracy) will allow this boundary to be moved to the right. Ulti-
mately, the on-line controller will pass information back to the reference trajectory
generator in real time, allowing the controller to adapt to poor models or systems
where a parameter varies over time.

The functions involved in the generation of the reference trajectory are broken
down further in �gure 2.4. The box marked A transforms the user's inputs into
the form required by the internal components and performs some initial setup
computations. The mapper (B) constructs state-space portraits. The path �nder

(C) searches these portraits for useful path segments. On the �rst pass, the inputs
to the mapper are derived from the user's speci�cations. On successive passes,
this information is based on what the path �nder determines about the evolving
partial paths.

Perfect Moment's mapping module takes an ordinary di�erential equation, a
control origin and destination and several other inputs that specify the control
parameter range, the geometry of the region to be explored, and the length and
resolution for generation of individual trajectories. It maps the system's state
space within that range and region, with particular attention to chaotic and other
features that the path �nding module is designed to exploit. The latter then
synthesizes a segmented path between the origin and the destination, applying the
speci�ed optimality criteria to these portraits to select the component segments
of the controlled trajectory. The program iteratively improves the trajectory's
accuracy: it �rst �nds a gross path between the regions surrounding the origin
and destination, then re�nes this path until it meets the control tolerance. During
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in real time

system

in advance

parameter

control state

optimality criteria
runtime parameters

generation

trajectory
controller
on-line

information
region and parameter

recipe

control objectives
system model (ODE)

tolerance

Figure 2.3: Top-level block diagram of Perfect Moment: reference trajectory gen-
eration is performed in advance and then executed by an on-line controller
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[origin destination] pair

(synthesis)(analysis)

stack of state-space portraits

tolerance

first pass
only

dynamics

classifier

tolerance

checker

MAPPER PATH FINDER

model

region information (R, m)

parameter information (range, step)

control objectives (A, B)

iteration depthparameter info
optimality procedures

model

FIRST
PASS
SETUP

A

B C

trajectory length and step
region corners and grid spacing

Figure 2.4: Block diagram of the reference trajectory generation process: the
mapper produces a stack of state-space portraits and the path �nder searches
them for \good" path segments, according to the speci�ed optimization criteria
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Figure 2.5: A state-space portrait of the damped pendulum with a 3�3 grid. The
horizontal axis is the angular position � and the vertical axis is the angular velocity
!. Perfect Moment generates one trajectory from each cell, discretizes them into
lists of cells touched, and synthesizes a rough dynamics classi�cation for each

this re�nement, the mapping and path �nding processes are interleaved: based
on information gathered in the latter, the former is repeated on a �ner grain in
regions of particular interest. This interrelationship gives rise to the cyclical loop
between the boxes labeled B and C in the �gure.

The state space is partitioned on a grid and trajectories are represented as lists
of the cells that they touch, together with time of entry to and exit from each
cell | a scheme derived from cell-to-cell mapping[41] and reminiscent of symbolic
dynamics. Cells are represented as n-vectors: for three-space, #(x y z) in Scheme
notation. A state-space portrait for a particular control parameter value, region of
interest, and discretization contains one trajectory from each grid square, generated
by numerical integration from the cell's centerpoint | or from the control origin
and destination, in the grid squares that contain those points. See �gure 2.5 for a
portrait of a damped pendulum:

d2�

dt2
+ 2

�

�critical

d�

dt
+ sin � = 0 (2.1)

with � = 3� �critical.

After being discretized into lists of cells and times of entry, these trajectories are
automatically classi�ed according to their dynamics (the dashed box inside block
B in �gure 2.4.) For example, the trajectory starting at the \x" on �gure 2.5
would be represented as the list

(((#(1 0) .002) (#(1 1) .100)

(#(1 2) .284) (#(1 1) .424))

(relaxing to the fixed cell #(1 1)))

The third line of this list is the classi�cation of the dynamics. This particular
trajectory is relaxing to a �xed cell, the discrete analog of a �xed point. The clas-
si�cation entry in each trajectory's data structure describes the type and location
of the attractor to which it is relaxing. Identi�cation of di�erent attractor types
is based on patterns in the sequences of cells in which the trajectories' points fall.
A long terminal span in one cell identi�es it as a �xed cell, a repeating, periodic
sequence of cells is a limit cycle, and a nonrepeating, aperiodic, yet bounded set
of cells is a chaotic attractor. These choices and de�nitions are discussed in much
greater detail in section 4.3. This judgement is based only on information at and

above the scale of the current cell size, and its results depend on that size. Because
the path �nder only recognizes and uses features on that scale, any �ner-scale ex-
ploration would be moot. Moreover, this rough-cut method will work on exactly
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the sort of noisy, experimental data that historically has posed severe problems for
formal mathematical methods for dynamics classi�cation (e.g., [1, 84].)

Perfect Moment is given an initial parameter range and step by the user; this
step size is reduced automatically by the mapping module if successive portraits
are signi�cantly di�erent | for example, if an attractor mutates (or bifurcates;

see section 3.1) into a di�erent type or approaches one of the control objectives.
The dynamics-classi�cation scheme described in the previous paragraph is used to
determine when such an event occurs. A user-speci�ed iteration depth limits the
extent of this magni�cation.

The search region is �rst determined (block A in �gure 2.4) by expanding the
bounding box of the origin and destination by a heuristic overrange parameter that
is initially speci�ed by the user and then revised dynamically by the program over
the course of its run. For example, one of the revision rules expands the region
if no path is found and all trajectories exit the search region. The mapper (B)
is then invoked, producing one portrait (like �gure 2.5) for each automatically-
chosen parameter value. The path �nder (C) searches the discretized trajectories
in the returned stack of portraits for the trajectory containing the best segment
between the cell containing the origin and the cell containing the destination.
Optimization criteria used to select this segment (the inputs at the bottom right
of the �gure) consist of user-speci�ed Scheme procedures that operate upon time
and state variables. The appropriate chunk of this trajectory is then extracted and
used as the core of the ultimate segmented path.

The grid and the rules that manipulate it solve a variety of the \hard to mech-
anize" problems outlined in the previous section. To select a representative set of
trajectories from among the uncountably-in�nite number of candidates, the cell
size is chosen small enough so that each region is explored and yet large enough
to restrict the amount of information to the minimum necessary to capture the
dynamics. Perfect Moment uses rules that stem from nonlinear dynamics theory
in this choice; a very simple instance is the rule that forces coarser discretization
in regions where nearby trajectories remain close to one another. The combination
of multiple-scales dynamics classi�cation and variable-step parameter exploration,
both of which also depend intimately on the grid, serves as a reasonable �rst cut at
obtaining a good sampling of the system's dynamics | in both state and parame-
ter space. The grid is also used to control the ow of the interleavedmapping/path
�nding process. By �rst identifying a gross path and then re�ning it on �ner scales
| all the while only mapping and searching the regions that are necessary to do
so, at the maximumpossible granularity, as determined from the local dynamics |
the program's e�ort is focused where it can be best used. Finally, in tandem with
the overrange parameter, the grid allows Perfect Moment to �nd globally-good
paths that have locally-bad segments (e.g., driving east to an airport to catch a
westward ight) | the sort of path that purely-local control schemes miss. At any
level of the search, moves within the current grid square that look locally bad will
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Figure 2.6: Finding the controlled trajectory's core segment in a collection of
state-space portraits of the damped pendulum; same system and axes as on the
previous �gure. Parts (a), (b) and (c) show portraits produced by the mapper
for three di�erent damping coe�cients: (a) �crit (b) 3 �crit (c) 5 �crit. The best
trajectory segment from each portrait is extracted; all three are shown together
on part (d). The best of the three (indicated with an arrow) is then selected and
returned. A 4�4 grid division and a factor of three overrange factor were speci�ed
by the user for the region of interest; the parameter range and step were [1, 5] and
2, respectively. o = origin; d = destination.

be evaluated and then executed if they are judged useful.

Figure 2.6 illustrates one pass of the mapping/path �nding process. These
pictures were all produced by Perfect Moment during the course of a normal run;
the system under investigation is the same pendulum model as in �gure 2.5, but
with variable damping. This simple system is not chaotic. It has stable �xed
points at [�; !] = [2n�; 0] and unstable �xed points at [�; !] = [(2n � 1)n�; 0] for
all strictly-positive damping values. All trajectories on this �gure are classi�ed by
the program as transients relaxing to one of the former: depending on the region of
the initial state, one of the three cells #(0 3), #(1 3), or #(3 3). Since the �xed
points do not move or mutate over the parameter range, the mapper never explores
the parameter axis more carefully, regardless of the speci�ed iteration depth.

The \best" trajectory segments | for the purposes of this example and for the
bulk of this thesis, those with the shortest euclidean state-space pathlength1 |
from the portraits of parts (a), (b) and (c) are isolated in part (d.) The metric
used here to evaluate and extract segments actually uses both pathlength and

distance between segment endpoints and control objectives; this combination and
its implications are discussed in chapter 5. The same optimality cost functions are
then used to select the best of these three segments | the one from the � = �crit
portrait that is identi�ed by an arrow in the �gure.

� � �

After a core segment between the origin and destination cells is found, the
entire mapping/path �nding process is repeated within those cells | highlighted
in �gure 2.6(d) | to �nd two path segments, one on each end, that connect the
ends of the core segment to o and d, shown schematically in �gure 2.7. Four more
shorter segments would be found on the next pass; in general, 2n new ones are
found at the nth pass. The program continues repeating the process in the gaps
between segments until the speci�ed control tolerance is met. At every level, the

1
This distance \metric" is, of course, a�ected by the various scaling factors that are involved

in the normalization and the region scaling

14



o

second pass

first pass

d

Figure 2.7: Schematic of a partial path after two passes: the core segment | found
on the �rst pass { bridges most of the gap between the state-space points that are
to be connected. Successive passes search for shorter segments that span the gaps
in the path

mapping and search resemble that in the discussion of �gure 2.6: Perfect Moment

is always trying to connect pairs of state-space points.

The search region and the cell size are revised heuristically between passes. This
focuses the exploration on �ner scales in smaller regions, as dictated by the control
requirements (e.g., tolerance, proximity to evolving partial paths) and guided by
the local dynamics. The next-pass search region is simply the cell that surrounded
the gap in the path, but shifted so as to be centered around the two points that
de�ne the gap that is to be traversed. See �gure 2.8(b). Within that region, a new,
smaller grid division is used. Factors that inuence the cell-size reduction between
passes include the fractal dimensions and Lyapunov exponents of chaotic attrac-
tors, integrations of the variational system from each segment's starting point, etc.
For example, if the vector �eld at the top of �gure 2.8 were much more turbu-
lent than at the bottom, the lower dashed square would be subdivided on a much
coarser grain than the top one.

If the search fails, it is repeated with increased accuracy and loosened bounds:
�ner discretization and larger overrange factor. Should this continue to fail, the
program will blindly continue revising accuracy and bounds and repeating the
search; at this point, the user should intervene to alter the parameter range and
possibly the iteration depth. If all else fails, she should perhaps then change the
physical system (di�erent input, parameter, etc) and repeat the entire run.

After all segments are found, the program generates a script or recipe, which
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Figure 2.8: The core segment is extracted (a) from the best trajectory on the set
of portraits; smaller search regions (b) are then computed and used on the next
pass to �nd the shorter segments that connect this segment and the objectives

consists of the parameter values, starting and ending points of each segment, and
the eigenvalues/vectors and sensitivity derivatives at each junction. This recipe
is then passed to the on-line controller | the right hand block on �gure 2.3 |
which monitors the state and routes the system along the reference trajectory by
appropriate switches of the parameter value at the segment junctions. Note that
the segments are not followed in the order in which the program �nds them.

Figure 2.7 is more typical2 of normal paths constructed by the program than
�gure 2.2. It also conveys a better feel for the way the controller works as the path
is being executed. One segment is used to do most of the work; shorter segments
are used to connect to it. This process is reminiscent of inter-city route planning
using a highway map: one chooses a segment of interstate and then connects to it
on smaller roads, backtracking if appropriate. Once a path is found, the program
spends most of the time monitoring the state and allowing the system to ride along
on its own dynamics. It only intervenes occasionally, at the segment junctions, to
change those dynamics.

The mapping and path �nding algorithms described up to this point are sum-
marized in �gure 2.9. The next two paragraphs and chapter 6 discuss on-line
control.

It is vital that the inter-segment parameter switches take place much faster
than the target system's time scales, at exactly the right times, and with extreme
accuracy. Speed is a formidable limit here, since control actions moderated by
computer I/O must occur at least ten times3 faster than the natural frequencies of

2The latter is possible, but only for a somewhat-pathological combination of inputs.
3The factor of ten is a rough rule of thumb for general low-Q feedback circuits[65], but may
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1. Inputs:

� System: ODE f : <n ! <n

� Control objectives: origin A, destination B, tolerance T , fA, B, Tg 2 <n;
optimization criteria g : Zn ! cost and h : <n ! cost.

� Control parameter information: initial range (�k) and interval [klow; khigh]

� Region information: overrange factor R0 and number of intervals m0.

� Implementation-related parameters: iteration depth Di

2. Expand the bounding box of A and B by R0 to obtain search region.

3. Construct state-space portraits in this region at each klow+n�k for (klow+n�k) 2
[klow; khigh], using m0 cells on a side.

� Generate a trajectory from the center of each cell and from A.

� Generate a trajectory in backwards time from B.

� Discretize trajectories into lists of cells.

� Classify the dynamics.

4. If the maps for ki and ki+1 exhibit signi�cant di�erences (e.g., attractors entering

the destination cell, bifurcations, etc,) construct a portrait at
ki+ki+1

2
.

5. Repeat step 4 until neighboring maps are similar, up to Di � 1 times.

6. Applying the optimization criteria to these maps, choose and extract the best
trajectory segment between the cells containing the origin and the destination.
This segment is designated S0, starts at S0

init�<
n and ends at S0

final�<
n with

k = k0.

7. If no such segment exists, revise R and/or m and repeat from step 2.

8. Revise the cell size and the search region and repeat steps 3-6 for the pairs of points
[A, S0

init] and [S0
final, B] to �nd the segments S1 and S2 that cross those gaps.

Iterate this step on successively smaller scales between the segments' endpoints
until the tolerance is met or the cell size falls below the machine epsilon.

Figure 2.9: Reference trajectory generation algorithm: synopsis
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A B

Figure 2.10: Segmented path with linearization recovery ranges: the on-line con-
troller can recover from errors made at the segment junctions, but only within the
regions where its linearization holds

the system under control. Quantization error, inescapable because of the discrete
nature of computer arithmetic in a continuous world, coupled with the exponen-
tial rate of error growth, puts an upper bound on the attainable accuracy; some
related issues are discussed in [24]. Modeling error is a more profound problem,
as chaotic dynamics depend sensitively on parameter as well as on state. Small
control tolerances over long paths are fundamentally unachievable in the face of
large positive Lyapunov exponents, inaccurate computer arithmetic, slow I/O or
bad models. These issues are the core of chapter 8.

Since Perfect Moment's ultimate goal is the control of real physical systems,
it uses an additional, autonomous control device in an attempt to correct for
such errors | a simple local-linear controller programmed with the linearization
and sensitivity derivative at each segment junction. The rationale here is that
these points are the most likely locations for errors because the actuators switch
there. The shape and size of the region within which this autonomous controller
can perform error recovery is determined by the eigenvectors and eigenvalues of
the system's Jacobians at those points. See �gure 2.10. Once the destination
is reached, stabilization is e�ected by local linear control, under the aegis of the
same backdoor controller. With enough computational e�ort and a fast local-linear
controller, this scheme could be extended across the entire length of each segment
instead of just at the junctions. This extension is discussed in chapter 6.

Perfect Moment can produce a running commentary, complete with graphics,
on its status, actions and choices. This feature is not simply a development aid. An
experienced control engineer or nonlinear dynamicist can monitor this report and

be inadequate in general.
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intervene to accelerate the process or push on some particular part of the design
that might be fuzzy, ill-posed or otherwise hard to formalize or specify. Equally
important, a less-experienced user4 can learn about nonlinear dynamics, control,
search, etc, from observing the program's actions.

Perfect Moment currently handles systems that have a single control parameter.
Its domain could easily be broadened by extending the algorithms described here
to a higher-dimensional parameter search space, but the run time of the mapping
and search processes is exponential in the number of parameters, so this angle is
not pursued in this thesis. Though the ideas and methods driven by the investiga-
tion of single-parameter variations are probably representative of those required in
higher-dimensional spaces, some of the math may be di�erent; see chapter 8. The
search does not always succeed: though the control parameter adds a dimension
to the space that can open conduits between previously-unreachable regions, some
destinations may still be unreachable. Finally, since Perfect Moment currently
depends on presimulation and accurate observations of the system state, it cannot
be applied to systems where the state is neither directly nor indirectly observable,
nor can it adapt to bad models or react to time-varying systems. None of the
algorithms detailed in this thesis run in real time: many hours of CPU time are
required for the integrations and searches. The intended use of this design tool is
to �nd paths that will be followed many times or that are particularly important.

2.4 A Scenario

This section presents a scenario of an interaction between Perfect Moment and a
engineer who is designing a controller for a system modeled by the equations:

F

2
64
x

y
z

3
75 =

2
64

�y � x

x+ ay
b+ z(x� c)

3
75

These equations were constructed by Otto R�ossler[66] in an attempt to �nd the
simplest vector �eld that recreates the chaos-inducing state-space folding action
of the Lorenz equations([52] and section 7.1 of chapter 7.) This development is
purely illustrative and is not meant to suggest that the R�ossler equations are a
practical model for any engineering system.

In the presentation that follows, the user's responses to the program's queries
are prefaced by the symbol \==>;" clarifying comments are in plain text and
computer interactions are in typewriter font.

4and occasionally even the program's author
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Enter the vector of state variable names in the form
#(t name1 name2 ...):
==> #(t x y z)

Enter the name of the Scheme function that performs the system
derivative, using *parameter* to denote the control parameter:
==> rossler

which is de�ned elsewhere as:

(define (rossler state t)
(let ((x (first state))

(y (second state))
(z (third state)))

(list (- (+ y z))
(+ x (* *parameter* y))
(+ *rossler-b* (* z (- x *rossler-c*))))))

with:

(define *rossler-b* 2)
(define *rossler-c* 4)

Of the three variable coe�cients, b and c are held constant and a is used as a
control parameter.

Enter the control origin:
==> #(-1 -2 -1)

Enter the control destination:
==> #(2 -4 0.7)

Enter the desired optimization function:
==> shortest-path-between-two-cells

Enter the desired tiebreaker function:
==> minimum-sum-distance-tiebreaker

Enter the control tolerance at the destination
(vector of percentage allowable error on each axis):
==> #(1 1 1)

Enter the initial overrange parameter (default = 2):
==> 7

Enter the initial grid division (default = 5 cells/side):
==> 2
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Enter the parameter range in the form '(low high):
==> '(0.3 0.41)

Enter the parameter step:
==> .025

Enter the iteration depth for the mapping process (default = 5):
==> 2

The control origin and destination are randomly-chosen points. The toler-
ance is �[1 1 1]% of the destination three-vector, so any value between #(-1.98

3.96 -.693) and #(2.02 -4.04 .707) is su�cient5. The given optimization and
tiebreaker functions together minimize euclidean path length; the reasons behind
the division of the cost computation into two separate functions are discussed in
chapter 5. An overrange factor of seven happens to expand the search region to
include the entire chaotic attractor; this value makes the pictures interesting and
visually appealing | and causes this scenario to demonstrate the program's iden-
ti�cation of and response to bifurcations | but it is certainly not necessary for
the run. A two-cell-per-side division is a much coarser division than one would
normally use, but the graphics are hard to understand if it is any higher. This
coarseness has some interesting e�ects on the dynamics classi�cation, which will
be discussed a few pages hence. A parameter range of [0.3, 0.41] might be selected
to reect a particular actuator's limits; a parameter step of 0.025 and an iteration
depth of two require an actuator resolution of 0.0125 normalized units.

Do you wish to monitor the run? (g[raphics]/d[escriptive]/n[o]):
==> g

What two state variables shall I use as axes for display
purposes? (e.g. '(name1 name4)):
==> '(x y)

(finding core segment...)

(beginning mapping process)
(mapping region from #(0 -10. 4. -6.1) to #(0 11. -10. 5.8)

with 2 cells on a side)
(map: parameter = .3)
(map: parameter = .325)
(map: parameter = .35)
(map: parameter = .375)
(map: parameter = .4)

(zeroing in because of bifurcation between

5Units in DEQ models in the nonlinear dynamics literature are typically normalized beyond

all recognition even if they do have physical signi�cance, so one must be careful about what these

numbers mean.
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(limit cycle at param = .375) to
(chaotic attractor at param = .4))

(map: parameter = .3875)

(zeroing in because of bifurcation between
(limit cycle at param = .375) to
(chaotic attractor at param = .3875))

(iteration depth reached!)

Perfect Moment detects the mutation from limit cycle to strange attractor |
a bifurcation | and automatically halves the inter-portrait parameter step in the
range between them, up to iteration-depth times. The algorithm that classi�es
attractor types | the dashed box inside the mapper in �gure 2.4 | relies on
patterns in the cell sequences in the discretized trajectories and in described in
detail in section 4.3.

The coarse state-space division causes the mapper to overlook a bifurcation.
The system actually has a period-one limit cycle for a = 0.3 and a = 0.325, a
period-two limit cycle for a = 0.35 and a = 0.375, and a chaotic attractor for
a = 0.4. However, the grid cells are so large that the period-one and period-two
limit cycles are e�ectively indistinguishable. With a �ner grid, this error would
not occur6.

The path �nder now examines the trajectories on the �rst portrait:

(filtering discretized maps for best segment)

(searching parameter = .3 map)
(full trajectory set plotted in "white" on graphics window)
(origin and destination cells highlighted in magenta)
(metric of best segment from parameter = .3 portrait

is .6987631193213509)
(best trajectory from this portrait shown in green - hit space to proceed)

The shortest trajectory | the one spiraling out from o | is highlighted in
green on the graphics window. Several of the trajectories relax to the period-one
limit cycle at the center of the picture and the others exit the search region, some
quite quickly and all but two through the faces of the cube that are projected
down onto the page. This picture is somewhat hard to understand because it is
a 2D projection of a complicated 3D system. This complexity is at its worst at
the stage when the best segments from all portraits are displayed. For brevity
and clarity, this scenario will now switch to a terser report, as if \d" were selected
instead of \g," but it will occasionally switch back to illustrate a point. In reality,
such switches cannot happen midstream.

6Incidentally, these bifurcation points are slightly di�erent from the (analytically-computed)

ones in [78, �g12.4], perhaps because of numerical damping and other di�erences in integrator-

induced dynamics (see section 3.1.)
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Figure 2.11: The revised search region for the second pass: x is the destination; o
is the endpoint of the core segment.

The search continues:

(metric of best segment from parameter = .325 portrait
is .37690004259127996)

(metric of best segment from parameter = .35 portrait
is .57024201718115)

(metric of best segment from parameter = .375 portrait
is .9428828034128187)

(metric of best segment from parameter = .4 portrait
is 1.3182527185509918)

(metric of best segment from parameter = .3875 portrait
is 1.1290250050193757)

(segment found:
(#(-.8839252429162614 -2.06407393764175 -.7480393971015914)
#(1.9364798919639825 -3.9401437064785974 .6703285610222558)
.325
(#(-10. 4. -6.1) #(11. -10. 5.8)))
#[compound-procedure 23]
#[compound-procedure 24])

This text describes the core segment: the coordinates of the starting and ending
points, the parameter value from the portrait on which it was found, the corners
that were used in the search, and the local derivatives with respect to state and
parameter. The corners are necessary for the grid-size management; this require-
ment is explained in section 5.3. These derivatives are evaluated at the segment's
parameter value and endpoints during the tolerance computations. See chapter 5
for examples of their construction and use.

The program checks the path | which consists at this point of a single segment
| against the tolerance and determines that the segment's endpoint

#(1.9364798919639825 -3.9401437064785974 .6703285610222558)

does not lie within the speci�ed bounds. However, no additional work is required to
\connect" this segment to the origin, as that is the initial condition from which it
emanated7. Perfect Moment repeats the mapping and path �nding in the cell #(1
1 1), which contains the destination and the upper right end of the core segment,
�rst shifting the region originally enclosed by that cell to be centered around the
two points, as shown in �gure 2.11. Note that the picture on �gure 2.11 is not

normally a part of the program's report.

7
The segment starting point #(-.8839 ...) reects a single integration step forwards.
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(refining segmented path: pass 1)

(beginning mapping process)
(mapping region from

#(0 -3.281760054018009 -.4700718532392987 -2.2898357194888717) to
#(0 7.218239945981991 -7.470071853239299 3.6601642805111276) with
3 cells on a side)

(map: parameter = .3)
(map: parameter = .325)
(map: parameter = .35)
(map: parameter = .375)
(map: parameter = .4)

The choice of 3 cells per side for the second pass depends on the turbulence of
the vector �eld in the new search region; discussion of this issue is deferred until
the background material is given in chapter 4.

The new search region cuts through the limit cycle, truncating its constituent
trajectories, destroying the periodicity and making it no longer recognizable to the
classi�cation algorithms as a limit cycle. See the portrait below. The same thing
happens to the chaotic attractor at a = .4. In fact, all trajectories on all portraits
simply go to the sink cell, so none of the system's bifurcations are identi�ed and
Perfect Moment never reduces the �k. Again, the coarseness and the limited
region a�ect the program's perception of the dynamics, but not to the point of
interfering with the search.

(filtering discretized portraits for best segment)
(metric of best segment from parameter = .3 map

is .09287347615094517)

Note that the points to be connected are so close that most of the trajectories
on the �gure above are not useful and all are unnecessarily long. The automatic
choices for these starting points and lengths, which follow a global paradigm whose
intent is to sample the dynamics and locate and identify attractors, constitute extra
work in this case; only the �rst few points of a few of the trajectories are actually
evaluated by the path �nder. A solution to this is given in section 4.2.1.

(metric of best segment from parameter = .325 map
is .09137466656489988)

(metric of best segment from parameter = .35 map
is .08989234841513333)

(metric of best segment from parameter = .375 map
is .08842693792615496)

(metric of best segment from parameter = .4 map
is .08645249030362429)
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Figure 2.12: Perfect Moment's simulation of the controlled trajectory found for
the R�ossler example: the left-hand plot is an x� y projection and the right-hand
plot is an x� z projection

Figure 2.13: A magni�ed view of the small rectangles in �gure 2.12. A smaller
timestep is used after the segment junction to make the switch visible.

(segment found:
(#(1.9338060838277273 -4.007308541357479 .6882206397421609)
#(1.9834875951711908 -4.001956758114882 .6970138534356772)
.4
#(-3.281760054018009 -.4700718532392987 -2.2898357194888717)
#(7.218239945981991 -7.470071853239299 3.6601642805111276)
#[compound-procedure 25]
#[compound-procedure 26]))

(tolerance met! the total path is

((#(-1 -2 -1)
#(1.9364798919639825 -3.9401437064785974 .6703285610222558)
.325
#[compound-procedure 23]
#[compound-procedure 24])

(#(1.9338060838277273 -4.007308541357479 .6882206397421609)
#(2 -4 .7)
.4
#[compound-procedure 25]
#[compound-procedure 26])))

do you want to test this controlled trajectory
(h[ardware]/s[imulation]/q[uit])?
==> s

See �gure 2.12 for the graphics plot that Perfect Moment produces. The pro-
gram would normally only display the left-hand plot in �gure 2.12 | the x � y
projection that the user selected in the �nal instructions given to the program on
page 21. The segment breaks are not visible on these plots because of the scale.
The areas in the small rectangles are magni�ed on �gure 2.13 | with a smaller
timestep after the segment junction to make the breaks obvious. Note that the
endpoint of the core segment was very close to but not quite within the tolerance
region, so the second segment is far smaller. Also note the slight steering change,
visible on the right-hand plot, that is due to the parameter switch from 0.325 to
0.4.

do you want to test this controlled trajectory
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(h[ardware]/s[imulation]/q[uit])?
==> q

This example is somewhat contrived and very simple. The tolerance was loose
and Perfect Momentwas able to construct an adequate path after two passes, so the
controlled trajectory has two segments and only requires the controller to perform
a single parameter switch. The grid was so coarse that no trajectories besides those
emanating from the origin and destination were ever used; thus, the path includes
no counterintuitive moves and the entire gridding/overrange machinery is virtually
moot. The program never fails to �nd a path and hence never adjusts the overrange
or intervals. Incidentally, if the destination were outside the cells touched by the
system's limit set for the parameter range [0.3, 0.41], no path segment could have
been found to bridge the gap: the vector �eld simply doesn't go that way for any
parameter value inside the range. The examples in chapter 7 put Perfect Moment

through much more di�cult tests.
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Chapter 3

Basic Tools and Previous

Research

This chapter reviews areas of dynamics, control theory, and computer science that
are pertinent to this thesis. The �rst two sections discuss general and chaotic
dynamics. Section 3.3 covers classical control theory and includes a worked-out
example; section 3.4 ties together control and chaos. The chapter concludes with
a very brief review of the corpus of computational methods upon which this work
draws.

Much of this material is basic textbook knowledge. The rest is in the current
literature, but spread across several research areas and communities. This chapter
should be skimmed �rst and referred to (if necessary) later on. The primary intent
of its inclusion here is to clarify notation, de�nitions, and derivations for readers
who may be unfamiliar with or rusty on one or two of the areas involved. A
secondary goal is to allow readers to understand, by way of comparison, how this
research relates to their own �elds of technical expertise.

3.1 Dynamic Systems Theory

By the implicit function theorem, the equations for an n-dimensional1 dynamic
system can locally be written

d~x

dt
= ~F (~x; k1; : : : ; kp; t) (3.1)

where ~x is an n-vector of system state variables and ~F is a possibly-nonlinear
function of the state ~x, the parameters ki and the time t. The set of points

1n=2 \degrees of freedom," to stretch the Hamiltonian use of the term somewhat.
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f�t(~x0) : �1 < t <1g is called the trajectory through ~x0. If ~F does not depend
on t, the system is said to be autonomous; a nonautonomous system of dimension
n whose drive is periodic in T can be converted to an autonomous system of
dimension n+ 1 by the addition of the equation

d�

dt
= 2�=T

to the system above. Drive \frequencies" in the resulting equations are dimen-
sionless ratios of true drive frequencies to natural frequencies. All nonautonomous
systems treated in this thesis have sinusoidal drives.

Dynamic systems are often described or classi�ed according to their steady-
state behavior: the !-limit set (or attractor) covered by their trajectories as t!1,
omitting the transient sections at the beginning of each. In a dissipative system, all
trajectories in an open set | the basin of attraction | surrounding an attracting

!-limit set ultimately evolve to and then remain upon that attractor.

If ~F is linear and nonsingular, the system (3.1) has a single �xed point ~xeq such

that ~F (~xeq) = ~0. This point is either globally asymptotically stable, in which case
its basin is all ~x 2 <n, or it is unstable. In either case, the steady-state behavior of
such a system is identical throughout <n and the parameters ki only a�ect speci�c
attributes of the behavior: the position of the �xed point, the sign and magnitude
of the eigenvalues and the directions of the eigenvectors.

If ~F is nonlinear, the situation is potentially much richer. The system (3.1) can
have any number of !-limit sets of several di�erent types:

� �xed points

� periodic orbits

� quasiperiodic orbits

� chaotic attractors

Their basins of attraction partition <n and are often intricately interwoven; the
system's \steady-state behavior" is unique only within a particular basin.

Fixed points in a nonlinear system have a wider variety of stability classes:

� globally asymptotically stable

� unstable

� asymptotically stable

� stable (in the sense of Lyapunov)
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� metastable

Entries one and three di�er only in the size of their basins (all of <n in the latter.)
An unstable �xed point has n positive eigenvalues and is asymptotically stable
in negative time2; a metastable one has at least one negative eigenvalue and is
unstable in negative time. Limit cycles or periodic orbits repeat after k cycles.
Quasiperiodic orbits contain a countable number of periodic functions; the simplest
is where two incommensurate frequencies cover a torus: one governs oscillation
around the axis of the ring (major orbit) and one parametrizes the winding through

the center hole (minor orbit3). If n > 3 and ~F is nonintegrable, the system can
exhibit chaotic behavior and so-called strange attractors| the topics of section 3.2.

The direction and magnitude of the vector �eld described by the system (3.1)
depend strongly on the equations' parameters. In this thesis, only a single param-
eter is allowed to vary, so equation (3.1) becomes

d~x

dt
= ~F (~x; k; t) (3.2)

The sensitivity derivative that measures the e�ects of small parameter variations
on the vector �eld near a particular state-space point ~x0 for the parameter value
k0 is

@ ~F (~x; k; t)
@k

���
~x0; k0; t0

= lim
t!0

~� (3.3)

where ~� = �t(~x0; k0 + �k)� �t(~x0; k0):

~x0

�t(~x0; k0)

�t(~x0; k0 + �k)

�

Parameter changes a�ect both local and global features of the state-space plot,
causing basins to move and change shape and attractors to mutate from one type
to another. Fixed points split and merge, forming new �xed points, limit cycles
or chaotic attractors, the latter when a new coe�cient value causes the system to
become nonintegrable. These topological changes are known as bifurcations. Even
between bifurcations, small parameter variations can have dramatic e�ects on the
position, shape and size of existing attractors.

Because most nonlinear equations do not admit closed-form solutions, numer-
ical integrators are typically used to generate system trajectories. The Runge-
Kutta algorithm used in this thesis is fairly unsophisticated compared to oth-
ers in the literature, which range from the simple forward Euler method to the

2it is said to be part of the system's �-limit set
3These terms are not standard terminology.
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Bulirsch-Stoer[76] algorithm, which uses Richardson extrapolation, to symplectic
methods[83], wherein each iteration is given by a canonical transformation of the
state space. See, e.g., [63, chapter 15] or [79] for other examples.

Since a numerical integrator is itself a dynamic system, it can mask or alter
a system's true dynamics. A simple instance of integrator-induced dynamics is a
forward Euler integration of the simple harmonic oscillator:

_x = y (3.4)

_y = �x

The derivative extrapolation adds numerical negative damping and the simulated
state-space trajectory spirals outwards instead of remaining on the unit circle.
This e�ect worsens as the time step grows; it is also found to a lesser extent in
virtually all other algorithms, including Runge-Kutta. The general situation is
more complex | and daunting, from the point of view of an engineer | because
the integrator-induced changes are virtually indistinguishable from the dynamics
of the system itself. This complexity is not surprising; two coupled equations, at
least one of which is nonlinear, are operating upon inexact state and approximate
coe�cients. As a result, one cannot blindly attribute a particular path, basin,
bifurcation, etc, to the target system. It may well be a result of the timestep, the
order, the family of the method, or some combination thereof. The uncertainty
arises primarily because most numerical integrators do not preserve all of the in-
tegrals of the motion. An important exception is symplectic integration, which
preserves, among other things, the energy integral. Bulirsch-Stoer methods treat
the dependence on the step size analytically in order to mitigate its e�ects. One
important implication of this inaccuracy is that simulations should be viewed with
suspicion until other time step values and integration methods have been used
to double check the conclusions. In the limit as �t ! 0, of course, all numeri-
cal integrators work perfectly | and take in�nitely long to run. The nonlinear
dynamics of mechanical integrators and numerically-induced chaos have become
popular research topics in the last few years[6, 39, 56].

Because of the complexity inherent to nonlinear and chaotic behavior and the
high number of dimensions that are often involved, techniques that condense infor-
mation are common in analysis and presentation. The most popular method is the
Poincar�e section, which reduces a system's dimension by sampling in time or space.
In a nonautonomous system, the trajectory is sampled once per drive period T .
In an autonomous system, the trajectory is sampled where it pierces some n � 1-
dimensional transverse hyperplane � in a de�ned direction. On a Poincar�e section,
a period-k limit cycle appears as a repeating sequence of k points, a quasiperiodic
orbit as a �lled curve, and a chaotic attractor as a dust of points sprinkled over
some portion of the space. Other common information manipulation techniques,
not used here, include bifurcation diagrams, correlation graphs, delay coordinate
embedding, etc. See [14] for a review.
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More details about the concepts in this section may be found in, e.g., [40].

3.2 Chaotic Dynamics

Chaos is complicated, unpredictable and seemingly random behavior in a deter-
ministic physical system. A system need not be complex, noisy or subject to
experimental error to exhibit chaotic behavior: it need only be nonlinear, and, if it
is continuous-time, have three independent state space dimensions. This de�nition
is at odds with the classic conception of determinism, as expressed by Laplace:
\given the exact position and velocity of every particle in the universe, [I can]
predict the future for the rest of time"[22]. The strict truth of this statement rests
upon a tight interpretation of the word \exact." Although only deterministic forces
are present, a chaotic system regime is random | in the sense that the distant
future cannot be predicted without an in�nite-precision knowledge of the present.

Every nonlinear dynamicist has his or her own favorite de�nition of chaos;
di�erences between them are subjects of spirited debate. Two are examined at
length here and a number of others are summarized.

One of the most widely-accepted de�nitions is that of Guckenheimer and Holmes
[34], which states that a chaotic system has:

� A countable set of periodic orbits of arbitrarily long periods

� An uncountable set of bounded nonperiodic motions

� Local merging and separating constraints that \mix" trajectories

The state space of a chaotic system is �lled with a dense web of stable and unstable
manifolds; where these intersect transversally, they form heteroclinic and homo-
clinic orbits or points4. One such orbit | a �xed point on a section | implies the
existence of an in�nite number of others of the same type[5, 34]. These unstable
periodic or �xed points, together with a limited number[49] of tamer stable ones,
�ll the �rst category of the de�nition above. The \bounded periodic motions" �ll
a region of the system's state space, eventually passing arbitrarily close to every
point. Trajectories travel around in chaotic zones, being pulled in along the stable
manifolds and pushed out along the unstable ones. These pushes and pulls form
the layers and folds of the chaotic (or strange) attractors typical of such systems
and give rise to the symptomatic sensitive dependence upon initial conditions that

4In the state space, a homoclinic orbit starts at a saddle point and wraps back around to

itself. A heteroclinic orbit connects two saddles. These two species are comparatively rare and

very interesting; most trajectories simply start from a repellor and end on an attractor. See [5,

Part 3].
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is expressed in the third item of the de�nition. The denseness of trajectories also
gives rise to the property elucidated in the Shadowing lemma, informally stated
thus: \With high probability, the sample paths of the problem with external noise
follow some orbit of the deterministic system closely"[29]5.

Devaney's de�nition of chaos[26] requires the chaotic region of the system's
state space to exhibit:

� Sensitive dependence upon initial conditions

� Topological transitivity

� Dense periodic points in the Poincar�e section

Topological transitivity means that chaotic regions are connected: chaotic trajec-
tories are con�ned to one region unless perturbed. On a surface of section through
the attractor, the unstable periodic orbits appear as �xed points at the intersec-
tions of the stable and unstable manifolds of the system. The apparently-orderly
phenomenon of embedded periodic orbits seems out of place within the chaos, let
alone as part of its de�nition; these orbits, however, exert little inuence on real
trajectories because of their instability. External control has been used to stabilize
systems at some of these periodic points[59], as discussed further in section 3.4.

An unscienti�cally-chosen sampling of other de�nitions from current texts, pop-
ular non�ction and picture books (in alphabetical order by �rst author) appears
below:

� \A dynamical system ... is chaotic if (i) it is transitive (ii) it is sensitive to
initial conditions (iii) the set of periodic orbits ... is dense..."[10]

� \The irregular and unpredictable time evolution of many nonlinear systems
has been dubbed `chaos."'[9]

� \The motion on strange attractors is chaotic" \...on which nearby orbits,
though bounded, diverge exponentially."[51]

� \...a chaotic system is a deterministic system that exhibits random behavior"[60]

� \...the sequence is determined by its initial value | and yet, it cannot be

predicted other than by letting it run."[62]

� \...recurrent behavior that is not an equilibrium, a cycle or even quasiperiodic
motion...arises from sensitive dependence on imperfectly known initial con-
ditions, resulting for example in broadband noise..."[78]

5A more formal statement may be found in [34, page 251].
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Chaos theory is powerful, fascinating, and broadly applicable across science and
engineering, but it has a variety of drawbacks and inconsistencies. Nonlinearity is
a necessary condition, but su�cient conditions, at least for real physical systems,
are not as clear: \the justi�cation for classifying much irregular behavior as chaos
depends on the accumulation of numerical evidence and on experience with a few
idealized mathematical systems known to [have positive Lyapunov exponents]"[22].
Proving nonintegrability is di�cult, even if modeling is not an issue. Conicts be-
tween chaos and thermodynamics also arise. Cream stirred into a cup of co�ee is
a good example of this | the equations governing interaction of the spoon and
the small volume elements of uid are deterministic and yet the mixing sends the
system down the (unclimbable, by the second law of thermodynamics) entropy hill.
It is also di�cult to reconcile chaos and quantum mechanics; this recently-debated
topic[31] is part of the bigger problem that the latter has with the world as it is
described by classical mechanics. Schr�odinger's equation is linear. Because it de-
scribes the fundamental constituents of matter, one should theoretically be able to
use quantum mechanics to describe anything at all, but the linearity theoretically
precludes any chaotic behavior. For these reasons, and others, many theorists are
uncomfortable with the �eld and its level of mathematical rigor.

3.2.1 Properties of Chaotic Attractors

Many chaotic systems exhibit fractal structure in their state-space portraits; some
authors even use that as part of the de�nition. A fractal[54] is a self-similar
structure with non-integer Hausdor� dimension.

Figure 3.1 shows iterations of the system of nonlinear di�erence equations:

xn+1 = �� x2n + �yn
yn+1 = xn

with � = 1:24 and � = 0:4. The behavior is chaotic and the attractor | the
H�enon attractor | is fractal.

The Hausdor� or fractal dimension of a set A is strictly less than the topological
dimension of the manifold on which it lives; it is de�ned as

Dh = lim
�!0

n
log(N(A;�))

log(1=�)

o
(3.5)

where N(A; �) is the smallest number of closed balls of radius � > 0 needed to cover
A. For a Cantor set | a line segment with the middle third removed, ad in�nitum

|Dh = 0:63. For a Cantor set with the middle �fth removed, dh = 0:76. A chaotic
attractor is the cartesian product of a Cantor-like set and a smooth manifold.

The denseness that gives rise to the Shadowing lemmamakes a chaotic attractor
robust with respect to noise. Variations in state6 simply disturb a trajectory

6Limited, of course, by the distance to the closest basin boundary.
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Figure 3.1: A series of expansions of the fractal H�enon attractor, exhibiting self-
similar structure. Each plot is a magni�cation of the small rectangle on the plot
to its left.

such that its new path eventually relaxes to an attractor thread that it would
ultimately have reached in any event. However, the time taken to reach that point
is unpredictable. This robustness does not extend to parameter variations, nor is
it a universal panacea for control errors. These issues arise at several points in the
body of this document.

Lyapunov exponents, which parametrize the growth of perturbations in chaotic
systems, are de�ned as:

� = lim
t!1

1

t
ln jmi(t)j (3.6)

where the mi(t) are the eigenvalues of the variational system | the matrix-valued
linear di�erential equation that governs the growth of a small variation in the initial
condition, and whose derivation is covered in section 5.3.2. An n-dimensional
system has n �s, each measuring the expansion rate, along one basis vector, of the
distance between two neighboring trajectories. The largest positive � dominates
the behavior as t!1; if all are less than zero, the one with the largest magnitude
dominates the state-space contraction. In the linear case, the Lyapunov exponents
are equivalent to the real parts of the eigenvalues.

Positive �s play a role in chaos and are sometimes used in its de�nition. In
a three-dimensional system with three positive �s, no attractor exists because all
directions are expanding and all trajectories diverge. If all three are negative,
trajectories relax to a �xed point. If there is one positive and one negative �,
the system is chaotic7. Locally and in cross-section, a three-dimensional chaotic

7�1 > �2 = 0 > �3.
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attractor has one positive and one negative � (= eigenvalue); if both were positive,
the point would not be on an attractor.

Large positive �s present some numerical and computational di�culties | be-
cause of the computer's oating point limit, the possible sti�ness of the system and
the near-zero pivots in the matrices. One approach is to integrate the variational
system forwards for T seconds, �nd its eigenvalues, and let T ! 1. However, if
any � is positive, this method fails after Tblowup =

k ln 2
�

seconds in a computer with
k-bit arithmetic. The encounter between the largest � and the oating-point limit
is not the only problem; the disparity between �s can cause basis vectors along
shrinking or slowly-growing directions to get lost in the signal-to-noise ratio of the
pivoting. A better approach is to integrate forwards for T < Tblowup, renormalize

the evolved variational vector to ~u(1) =
~�x(1)

jj
~�x(1)jj

, and repeat the operation K times,

keeping track of the renormalization factors. Then the largest positive Lyapunov
exponent is

�1 =
1

KT

KX
k=1

ln jj ~�x(k)jj

3.3 Classical Control Theory

A control system imposes a �xed relationship between a system's8 outputs and its
inputs. Closed-loop control systems \feed back" a measurement of the state or the
output to accomplish this goal. State-variable feedback hooks into the equations
more directly, but is not possible in systems that are not observable. Output feed-
back is easier to implement because outputs are, by de�nition, accessible. However,
the output may not be an adequate measure of the system's state. A yellow tra�c
light in some European countries, for example, may be about to turn red or green.
Even if the state variables are accessible, a single zone of controllability may not
encompass both the starting point and the goal, in which case no time-invariant
controller can move the operating point from one to the other9. Controllability
and observability have grave implications for limits on both linear and nonlinear
techniques; the mathematics involved is much more di�cult in the latter case.
Feedback control has a variety of useful attributes; in electronic circuits, for exam-
ple, a closed-loop ampli�er can be less sensitive to variations in component values
and to particular kinds of noise, or have better input and output impedance, etc.

Analysis and synthesis techniques in feedback control are comparatively easy
| and extremely well-studied; see [13], for example| for linear systems, but much
more ad hoc and complicated in the nonlinear branch of the �eld. This relative
lack of coherency can be traced back to a variety of causes; several of the main

8
In the control literature, the target system is termed the \plant."

9
i.e., the goal is not reachable from the origin.
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culprits are summarized below:

� Very few nonlinear systems admit closed-form solutions

� Many of the classical tools like Laplace transforms and the Nyquist criterion
depend critically upon superposition, and hence linearity

� Nonlinear systems can have many complicated, interwoven basins of attrac-
tion; the behavior in each can be very di�erent and both the topology of
the boundaries and the texture of the behavior can be highly sensitive to
parameter and state changes

The �nal item on this list is perhaps the most crucial. It has far-reaching impli-
cations for both analysis and synthesis: local and global decomposition, stability,
controllability, etc.

Despite these di�culties, nonlinear control theory has been developing steadily
over the past three decades, driven by the fact that the world | and hence most of
the systems that one would want to control | is basically nonlinear. Computers are
playing a growing role in this development, not only as glori�ed calculators that
allow their users to quickly simulate system trajectories, but also as competent
assistants that automate signi�cant chunks of the design process[45] and even
possibly as tools that bring some of those chunks into the on-line phase of the
design. This expansion of computers' roles in the design process is occurring in
other realms of science and engineering as well[3]; some broader implications of
this are discussed in section 3.5.

Reference texts for the remainder of this section are: Friedland[32] for gen-
eral control theory with a particular emphasis on state-space methods, Slotine and
Li[73] for general nonlinear control, �Astr�om[7] for adaptive control, and Roberge[65]
for electronic applications. Omission of a citation for an individual concept or
method means that it is cited in most or all of these texts. This list is only a very
small (and personally-biased) sampling of the hundreds of texts available on these
topics.

Possibly the simplest and most obvious way to sidestep the mathematical prob-
lems posed by nonlinearity in a system is to linearize the equations around an
operating point and construct a linear controller, based on that approximation,
that is valid in a small state-space patch surrounding that point. A worked-out
example of this is given in section 3.3.1. The size and shape of the region where
the linearized controller works are dictated by the abruptness of the nonlinearity:
a linearization of a slowly-varying system works over a broader range than a lin-
earization of a quickly-varying one. Furthermore, the inherent approximation can
hide critical or interesting features like separatrices, fractal basin boundaries, or
observations that are essential to proofs about global structural stability. Singu-
larities near an operating point present serious problems for linearization and are
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quite common in engineering systems (e.g., an operational ampli�er in saturation
or backlash in a gear.) Feedback control mitigates these e�ects by mu�ing the
sharp edges; the high loop gain softens the nonlinearity, narrows its range and thus
partially insulates it from the system's terminals (and vice versa.) For example,
the width of the crossover distortion region in a complementary emitter-follower
output stage can be reduced by the gain of the loop.

Despite its drawbacks, linear control is useful and ubiquitous. Its theory and
practice have been case-hardened by years of research and design experience and so
are well-thought-out and powerful. In this thesis, for instance, local linear control
is used | e�ectively | once the global-view, nonlinear controller has brought
the trajectory into range. It is also used to recover from small errors in well-
characterized locations along the large-scale path.

A classic electrical engineering application of linear control is the standard
method for operational ampli�er design. This recipe, targeting a particular rise
time/overshoot or gain/bandwidth combination, speci�es construction of Bode,
Nyquist and root-locus plots and suggests ways to adjust the values (R, C, etc) of
the components that a�ect the loop compensation such that the speci�cations are
satis�ed. An example of a design rule that is used in this process is that a pole
close to the imaginary axis causes a lower rise time and a higher overshoot. If these
cookbook adjustments are unsuccessful, the circuit's topology can changed via the
addition of one of a variety of well-known hacks | like a lead or lag compensation
network | and the adjustment can be repeated[65]. One can attempt to cancel
out an o�ending pole by superimposing a zero upon it, at the same time adding
another pole in the desired location. This type of cancellation is dangerous in
some systems; in the inverted pendulum, for example, it can make the device
uncontrollable[32].

Linearization makes the mathematics of global/local composition/decomposi-
tion very di�cult. Local properties of �xed points and �rst-order bounds on a
variety of properties can be established with the linear theory, but generalization
is very di�cult. One classic scheme solves this by piecing together a collection
of local-linear controllers into a global control system: essentially a patchwork
of locally-applicable feifdoms. This approach has a long and rich tradition; it
was pioneered by Kalman[48] in the 1950s and, recently, has even seen some AI
applications[67].

Simple adaptive control strategies[7] also piece together appropriate linear al-
gorithms in di�erent regimes of a piecewise-linear problem, but the regimes are not
necessarily de�ned as state-space regions. Adaptive control systems have two char-
acteristic time scales | one for the feedback loop and a slower one for the changes
in the feedback loop. In gain scheduling, the loop gain is adjusted according to
a predetermined table or schedule. Model reference control is yet another avor,
wherein the di�erences between the real system's output and the output of an ideal
model are used to modify the real system's inputs so as to drive the di�erence to
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zero. Many other adaptive control algorithms exist as well. The dimension that
adaptive control adds to the space | the feedback gain | can make previously
unconnected regions reachable.

Many variations and improvements on the linearization theme has evolved over
the past 50 years. Some of these are mathematically more intelligent about how
the linearization itself is accomplished. For example, better approximations than a
straight Taylor series/Jacobian derivative approach exist; Killing systems (of which
bilinear functions are an instance) are one example[20]. Other methods extend
the idea of \linearization" into the frequency domain. Describing functions[65,
73], a nonlinear analog to the sinusoidal steady state response, can be used to
compute steady-state behavior (�xed points, limit cycles, etc)| but not transients.
Describing functions, like all other approximations, have a limited domain: they
only work when the nonlinearity (1) is odd (2) can be lumped into one component
(3) contributes only small harmonics and subharmonics and (4) is time-invariant.

Members of another broad class of nonlinear analysis and synthesis methods
reverse-engineer the precise form of the target system's nonlinearity and use that
information to transform the closed-loop system so that linear techniques can be
applied. Many of these methods factor the system's physics into the controller.
The resulting designs are conceptually clean, in direct contrast to the ad hoc

approaches described in the previous paragraphs, but they are very hard to im-
plement. For example, stability can be established by examining the appropriate
Lyapunov function[40, 73] for the system. Little mathematical guidance in �nding
such a function is available, outside of the requirement that it be positive de�nite,
but they often \look like" energies. In feedback linearization[46], the original state
variables are transformed (\nonlinear feedback") so as to make the closed-loop
system linear. This technique is obviously powerful, but �nding a good transfor-
mation, like �nding the right Lyapunov function, can be very di�cult. A change
of coordinates can have the same e�ect, as can the determination of an immersion
of a nonlinear system into a linear one10[21]. Injecting physics into control de-
sign is a potentially rewarding but di�cult task[72]; it creates highly-specialized,
hand-crafted designs that demand knowledge, design time, and time-invariant ap-
plications, but that work very well when all of those conditions are met. Highly-
specialized, hand-crafted control laws can break down in the face of modeling
inaccuracy; robust control techniques, such as sliding mode control[73], combine
the \nominal" control with secondary techniques that are specialized to deal with
these uncertainties.

This section gives only a brief and incomplete summary of the broad literature
on nonlinear control and the even-vaster linear control literature; see [25] or the
texts listed on page 36 for a more comprehensive review. The common thread
uniting almost all nonlinear control techniques is to use ingenious ways to \get
around" the nonlinearity so that the highly developed linear theory can be brought

10Feedback linearization is actually a special case of an immersion.
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to bear. The detour can be accomplished either by the controller or by the observer
that measures the system state.

3.3.1 Traditional Linear Control: An Example

This section, a worked-out example of traditional linearized control, can be omitted
without loss of continuity, but is useful background for section 7.2. Theory and
references for this development are given in section 3.3.

The two-dimensional nonlinear system:

~F (~x) =

"
_�
_!

#
=

"
!

2� � �! + �u

#
(3.7)

is a normalized model for a simple, damped (�) pendulum, driven (�u) by a motor
attached to its pivot. With �u = 0, this system has metastable equilibrium points
at � = 0� 2n� and stable equilibrium points at � = � � 2n�.

The Jacobian @f i

@xj
(or Dx

~F ) of this vector-valued ordinary di�erential equation

is: "
0 1

2 ��

#
(3.8)

This matrix is computed by the jacobian function discussed in section 5.3.2. The
entries in (3.8) happen in this case to be independent of state and time; this does
not hold in general. The characteristic polynomial is

jDx
~F � s~Ij = s2 + �s � 
2

and the eigenvalues are

��
2
�
r
(
�

2
)2 + 
2

On a pole-zero plot with � > 0, these look like:




�
2

� �

The 
 points are 
 = 0 poles and the � poles reect some nonzero natural
frequency. The latter | the true physical situation | is clearly unstable. The
� < 0 plot is the mirror image of this one about the y-axis.

A traditional linear controller stabilizes a system

_x = Ax+Bu (3.9)
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Figure 3.2: Linear feedback control of an inverted pendulum: A traditional linear
controller stabilizes a system by wrapping it in a feedback loop and �nding values
for the feedback gains g1 and g2 that place the poles of the closed-loop system in
the left-half plane.

by wrapping it in a feedback loop (see �gure 3.2) and �nding the gain matrix
G of the feedback element | g1 and g2 in the �gure | such that the poles of
the closed-loop system are in the desired location, presumably somewhere in the
left-half plane. A system is controllable if and only if the rank of the matrix

Q = [BAB : : : Am�iB]

is equal to m, the order of the system.

If the control objective is to balance the simple pendulum at the inverted
(� = 0) point and the available torque is unrestricted, A is the Jacobian (3.8), the
poles are as shown on the previous page, and (compare (3.9) and (3.7))

B =

"
0

�

#

The matrix

Q =

"
0 �
� ���

#
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is of full rank, so the system is controllable.

In general, the gain matrix G required to site the closed-loop system's poles so
as to make the characteristic polynomial be

s2 + a1s+ a2 (3.10)

is
G = [(QW )]�1(â� a) (3.11)

where

W =

2
6664

1 a1 : : : ak�1
0 1 : : : ak�2
: : : : : : : : : : : :

0 0 : : : 1

3
7775

and (â� a) is the di�erence vector between the desired and actual coe�cients of
the characteristic polynomial.

For the pendulum,

W =

"
1 a1
0 1

#
(â� a) =

"
a1 � �

a2 � (�
2)

#

and

G =

"
0 1=�
1=� 0

# "
a1 � �

a2 � (�
2)

#
=

"
(a2 + 
2)=�
(a1 � �)=�

#

The roots of the closed-loop polynomial (3.10) are:

�a1
2
�
r
(
a1

2
)2 � a2

The e�ects of a2 on the pole positions | assuming a �xed, positive a1
11 | is

shown graphically in part (a) of �gure 3.3. The magnitude of a1 determines the
damping constant of the critically-damped case where the two poles meet. The
system is marginally stable for a2 = 0 and unstable for a2 < 0. The precise
pole placement depends on the speci�cation and the design process resembles the
mentioned in conjunction with operational ampli�er design recipe on page 37. If
the speci�cations can tolerate some oscillation | part (c) of the �gure | one
would choose a2 > (a

2
)2 to obtain a faster closed-loop response. If overshoot is

undesirable, one chooses (a
2
)2 � a2 > 0 to place the poles on the negative real axis

between the two 
 points on part (a), and lives with the slower transient response
shown in state-space form in part (b). The two values a1 and a2 can be used to
obtain a precise value for the eigenvalues and eigenvectors that guide the trajectory

11If a1 were chosen negative, no a2 value could make the system stable.
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Figure 3.3: Pole selection for linear feedback control: (a) root-locus plot as a
function of a2 (b) overdamped behavior (c) underdamped behavior.
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in to the newly-stabilized �xed point. They can also be used to balance the rise
time/overshoot tradeo� by moving the complex poles nearer the imaginary axis.

For example, say the pole positions (�1�4j) were chosen, yielding a closed-loop
polynomial of s2 + 2s + 17 and a local transient (step) response Ae�t cos(4t+  ).
Recall that the gains are tailored to a particular value of the Jacobian matrix A
and drive B; if those matrices change, the closed-loop poles move. If they move
into the right-half plane, the system becomes unstable. In this particular case,
A; B and (â� a) | and hence G | do not depend upon the state, so deviations
do not a�ect the poles or the stability. This lack of dependence on state implies a
range that covers the � � ! plane, but requires high amplitudes and speeds from
the drive, so practical limitations restrict the range below that ideal. In general,
A and possibly B are highly position-sensitive, so linearized control is even more
tightly restricted around the operating point. The shape of this region can be
determined by making variations along each of the basis vectors and identifying
the values that cause the poles to cross the axis (or exceed some other design limit
like bandwidth.) These limits are, of course, functions of the initial pole placement
as well; poles that are deep in the left-half plane are in some sense \safer" because
they are further from the j! axis.

3.4 Controlling Chaos

Chaos in engineering systems was considered complete anathema until very re-
cently. Observation and analysis of the phenomenon over the last few decades has
evolved into synthesis and active use in the last few years.

Chaotic behavior in adaptive control systems has been documented by several
groups. Both the system under control and the adaptive algorithm may contribute
to the prerequisite nonlinearity; external disturbances can also play a role. In [55],
the target system has a singularity at the desired operating point, so linearization
is impossible. The parameter being varied is the accuracy of the controller's model
of the plant. The feedback gain shows classical chaos: for some parameter values
(good plant models) it is periodic when the plant is stabilized. For others (bad
models), the gain behaves chaotically but nonetheless regulates the output. This
observation causes the authors to hint in the direction of controlling chaos, but
they fall short of active pursuit of the idea, admitting only that \chaotic parameter
estimates are not necessarily a bad thing to have"[55]. Sudden perturbations in
plant parameters can set o� chaotic bursts on adaptive control system outputs; for
a large class of systems, it has been conjectured[42] that there is a quanti�able12

tradeo� between the maximum perturbation amplitude from which a system can
recover monotonically and the time it takes to do so. Note that this statement is

12inversely proportional to a linear power of the control sti�ness
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stronger than the usual linearized/local/Lyapunov stability analyses, in which the
perturbations are in�nitesimal. These kinds of bursts | unprovoked or in response
to perturbations | turn up in many natural and man-made systems. Virtually
any of the �gures in [53], for example, as well as many of the papers cited here in
other contexts (e.g., [12, 42, 55, 59],) show or remark upon these bursts.

The �rst, most rudimentary use of chaos in the design process was a simplemat-
ter of recognition and avoidance: using knowledge of chaotic zones' boundaries to
site an operating point as close to the middle of a non-chaotic basin as possible[12],
or knowledge of the parameter ranges where it occurs to avoid it altogether[71].

Many of the current and recent papers that have some permutation of the
words \control" and \chaos" in their title | like [71] | simply suppress chaos.
However, its unique properties make possible a new spectrum of design techniques
which derive their power from not treating a chaotic system as a linearized and
tamed cousin to its true nature. Members of the �rst generation of these schemes
have exploited the denseness of strange attractors and of unstable periodic orbits
(UPOs.) The most well-known of these [59, 69], discussed and illustrated with
a worked-out example in section 6.2, stabilizes the UPOs embedded in a chaotic
attractor with a local-linear scheme and relies on the attractor's denseness to cause
the trajectory to enter the controller's domain. Many other tacks are also possible,
like statistical forecasting[58, 47]; several new ones are developed in this thesis.

Even if a periodic orbit does not always meet the speci�ed control objectives,
chaos can still be useful. In general, to make a point reachable, one need only
identify parameter values that give rise to �xed points near the destination or
a chaotic attractor that covers it; the high parameter sensitivity can reduce the
size of the control action necessary to create these features. State-space regions
where the system is sensitively dependent on initial conditions, once identi�ed
and characterized, can be used to magnify the e�ects of small control actions.
The statistical properties of chaotic attractors determine the robustness of control
schemes that use them.

3.5 Computational Methods

Much recent work has been devoted to developing programs that automate chunks
of the scienti�c process. Dialogs with such programs are remarkably high-level,
resembling the interaction between a professor and a graduate student. This
has caused a proliferation of names of the form \The [professional title]'s assis-
tant/apprentice13."

Many of these tools achieve their success by mixing metaphors[3]. For instance,

13
some of which exhibit behavior more akin to that of the Sorceror's apprentice.
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a program can use an ODE to generate numerical results, or it can reason with the
equation directly in symbolic form to establish more general results (e.g., which sets
of reactants can reach equilibria in a chemical reaction.) An algebraic representa-
tion of a transfer function and a geometric description of the changing positions
of its poles | a root-locus plot | are each valuable (and non-interchangeable)
at di�erent points in a design. The combination of these algebraic/geometric and
numeric/symbolic computing techniques, together with traditional AI techniques
like search, rules and frames14, multilevel descriptions, encoded domain knowl-
edge, etc[82] and with more recently-developed areas like qualitative physics[80]
| and even more traditional areas like dynamic programming[11] | has created
a powerful paradigm for scienti�c computation.

Using this arsenal of techniques, intelligent design assistant programs can pre-
pare experiments, monitor and interpret their results, and present them to the
user formulated in easy-to-understand, qualitative terms[1, 30, 84, 86]. Others can
streamline and accelerate computation by automatically designing, optimizing and
using special-purpose numerical engines for speci�c problems[2, 77].

14Expert systems, incidentally, have been used in automatic control for at least two decades[33]

| part of the general area of intelligent control[44, 68], a uni�cation of control theory and AI.
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Chapter 4

State-Space Mapping

Perfect Moment's mapper autonomously explores the state-space behavior of a
nonlinear system. Its inputs are an ODE, a pair of origin and destination points,
a speci�cation of optimality cost, de�nitions of the corners of a state-space region
and an iteration depth. Over the course of its run, it manipulates the control
parameter and identi�es relevant state-space features. The end result is a set
of state-space portraits, spaced so as to sample the system's di�erent behavior
patterns, each comprising just enough trajectories to characterize the dynamics at
each step.

A owchart of the mapper's actions appears in �gure 4.1. Following some
background material (section 4.1,) trajectory generation and discretization are
covered in section 4.2. Section 4.3 describes the dynamics classi�cation scheme
and section 4.4 discusses the use of its results | the other two boxes and three
diamonds in �gure 4.1 | to select representative control parameter values.

4.1 Cell-to-Cell Mapping

The cell-to-cell mapping formalism of Hsu[41], used extensively here in a slightly-
modi�ed form, is briey reviewed in this section.

The region of interest is partitioned on a grid. Each of the n state variables
xi; i = 1 : : : n is divided into m equal intervals hi, so the space containsM =

Q
imi

cells. At each pass of the search, mi and hi may be di�erent. Each parallelepiped
in this grid is identi�ed by an n-vector of coordinates zi 2 Zn, called a cell vector
and denoted ~z, whose ith coordinate gives the grid height in the ith dimension.
Perfect Moment represents the cell vectors z with Scheme vectors #(x1 x2 x3

... xn). A state-space trajectory �t is a series of n-vectors of real numbers.
The discretized version �t is the list of the cells touched by �t | identi�ed by
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n-vectors of integers between 0 and m � 1, inclusive |and the time of entry to
each cell. A description of the ow can be given as a set of M mappings, each of
which describes the travels of a trajectory that starts at the center of a cell. A
trajectory exiting the grid altogether is said to have entered the sink cell.

4.2 Trajectory Generation and Discretization

4.2.1 Timestep Selection and Trajectory Length

A fourth-order Runge-Kutta numerical integration algorithm, which locally ap-
proximates the system's state-space movement with the �rst four terms of its
Taylor series, is used to generate trajectories �t(~x0) from initial conditions x0
(or �t(x0; t0) from (x0; t0), for nonautonomous systems.) The Scheme function
runge-kutta4 operates upon a system derivative like the following, which models
a simple pendulum:

(lambda (*state* t)

(let ((theta (first *state*))

(omega (second *state*)))

(list omega

(+ (* (square natfreq) theta)

(* -1 alpha omega)))))

An adaptive runge-kutta4, which dynamically �ts the timestep to the system's
natural frequencies, is applied �rst | to a trajectory emanating from the origin for
each klow+n�k in the range | with a local truncation error speci�cation that can
be met by using roughly 100 timesteps per orbit. The smallest timestep �tb that
the integrator is forced to use is chosen as the baseline for the entire procedure.
This technique is an odd but not unnatural use of an integration method: to
\measure" a system's highest natural frequency. The discussion below clari�es
the need for the seemingly-excessive caution | the universal use of the smallest
timestep | on Perfect Moment's part.

Several factors a�ect the timestep choice: the system's dynamics and the \dy-
namics" introduced by the mapping and search algorithms. All of these are inu-
enced by the optimization criteria. Issues concerning the former are discussed at
length in section 3.1. The next four paragraphs address the latter.

The grid places an upper bound on the timestep. If �t is too large, adjacent
points in a trajectory will not fall in adjacent cells, which causes di�culties both
in computation of optimality cost (i.e., unconnected paths) and in dynamics clas-
si�cation. Perfect Moment reduces the timestep automatically if the discretized
trajectory is not connected, as shown in the following transcript:
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(generating trajectory set with timestep = .04 and *parameter* = 0)

(reducing timestep...)

(generating trajectory set with timestep = .02 and *parameter* = 0)

(generating trajectory set with timestep = .02 and *parameter* = 5)

Note also that, once the timestep has been reduced, all further portraits at
that grid spacing will start from the reduced value: the �rst attempt to construct
the parameter = 5 map is made with �t = 0.02, not �t = 0.04. This caution is
excessive if the system is slower at the parameter values that occur later in the
process. Incidentally, no timestep reduction took place in the scenario of section 2.4
because the grid was very coarse.

The timestep is also reduced automatically | by the path �nder | when the
cell size changes between successive passes of the search. If this reduction were not
performed explicitly, the mapper's reduction algorithm, described in the previous
paragraph, would accomplish the same thing, driven by the smaller cell size, but
at the cost of log2

hi+1
hi

extra integrations on the �rst portrait constructed at the hi
grid spacing. This automatic reduction keeps the exploration scales constant and
roughly equalizes the amount of time spent in each pass of the mapping process,
modulo bifurcations in system- and search-induced dynamics.

After the baseline timestep is determined, only �xed-step integration is used.
An adaptive integrator's automatic, dynamics-driven timestep modi�cations will
interfere with the grid-driven rules described above (and others discussed in later
chapters,) causing unpredictable behavior.

Trajectory length is equally critical. The dynamics classi�cation scheme of
section 4.3 relies heavily on the identi�cation of di�erent types of attractors, so
trajectories must be long enough (1) to reach their !�limit sets ($ attractors)
and (2) for Perfect Moment to recognize that they have done so. From a control
standpoint, longer trajectories have the added advantage of improving reachabil-
ity. The drawback is, again, CPU time, which grows linearly with the number of
integration steps.

As in the choice of the timestep, a conservative baseline trajectory length is
established at the beginning of the run and then modi�ed later on. Perfect Moment

integrates all trajectories for 1000 timesteps or until they exit the grid. This
attempt to capture ten orbits also ties into the classi�cation algorithm. Though it
works reasonably well, this choice is somewhat arbitrary, particularly if the system
is sti� and the 100-steps-per-orbit error only plays a limiting role in a small part
of each trajectory. A better approach would be to lengthen the trajectories |
and perhaps the region of interest, as discussed further in the next chapter |
until the destinations of some large fraction1 of the trajectories were recognizable
to the dynamics classi�er. It would make sense to limit this trajectory expansion

1the arbitrary choice then becomes the de�nition of \large"
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Figure 4.2: Using shorter trajectories for local tasks: if the control objectives are
only separated by a short state-space distance, generating long trajectories, like
those shown on page 24, is wasteful

with a user-speci�ed parameter, similar to the iteration depth Di, to keep the
program from performing endless expansions and integrations in a vain attempt
to �nd a nonexistent attractor. Alternatively, one could perform some sort of
formal mathematical analysis with, e.g., Newton-Raphson, to establish what kinds
of attractors exist. However, this technique could not be applied to experimental
data | one of the ultimate goals of this project and the original driving force
behind the multiple-scales method.

When the distance between the origin and destination is small compared to the
grid spacing, as in the second stage of the R�ossler example in section 2.4, only the
�rst few points of the trajectories are actually evaluated by the path �nder and
the work devoted to the generation and analysis of the rest of their length is in
some sense wasted; when the task at hand is to move a small amount up and to
the right, the ultimate destination of the trajectory used to do so is almost always
immaterial. When this occurs, it might be sensible to bypass Perfect Moment's
dynamics classi�cation machinery and run a �rst pass with shorter integrations
(trajectory lengths on the order of the distance between points to be connected
and no attempt made to identify attractor types or re�ne the parameter step),
then proceed with the full-length, exhaustively-classi�ed search only if the shorter
method failed. Such a scheme would make the �gure on page 24 of the scenario
look more like �gure 4.2.

For obvious reasons, whenever the timestep reduction rules �re, the program
automatically increases the number of steps so as to keep the trajectory length
constant.

4.2.2 Selection of Starting Points

The distribution of the initial conditions f~x0g determines how well a portrait sam-
ples the true dynamics. The intent of the algorithms described in this section is
to use the cell size to �nd a good balance between selecting enough trajectories to
be representative and causing the execution time to escalate too far. The choices
here are more critical than the linear-time tradeo�s in the previous section, as the
run time is roughly O(mn) in the number of dimensions n and the number of cells
per axis m.

The mapper divides the speci�ed n-space region into rectangular parallelepipeds;
notation and de�nitions for this process are given in section 4.1. A trajectory is
generated from each cell center, except in the cells containing the control origin o
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and destination d. In the former, o itself is used as the initial condition to gener-
ate the origin trajectory �t(o). In the latter, d is used as the initial condition and
integrated backwards in time, producing the destination trajectory ��t(d).

The initial choice h0 for the cell size is made by the user and heuristically revised
downwards by the path �nder over the course of the run, governed by intermediate
results: the dynamics observed on the portraits and the locations and properties
of any partial paths. Though this choice is indirectly a�ected by the mapper's
actions, the cell size is not revised during a particular mapping pass. Most of the
intelligence involved is exercised by the path �nder and discussed in section 5.3.

The backwards-time integration of ��t(d) applies only when the system under
control is a autonomous, non-singular ODE or a reversible physical system. For
example, it would make little sense to explore a wealth of di�erent starting con-
ditions for trajectories of a driven-vertex pendulum when the drive arm starts at
rest at � = �:6�. This restriction is a symptom of a deeper issue, one related
to the disclaimers in the R�ossler and Lorenz examples in this thesis: control pa-
rameters aren't simply sterile mathematical coe�cients and must be considered
in light of the system's physics. Dissipative parameters, like resistance, are easy
to change. However, when energy storage is involved (e.g., charge on a nonlinear
capacitor, aileron position on an airplane, etc.) or quick changes are di�cult (e.g.,
the Rayleigh number of a uid,) one cannot blithely vary parameters to meet con-
trol objectives. The ability to access parameters and change them quickly enough
are two of the most serious issues stemming from this work; questions arise on these
topics at almost every presentation and both are pursued further in section 7.4.

The problem introduced in the previous paragraph severely limits the number
of trajectories that Perfect Moment has the freedom to explore and use, and this
necessitates an adaptation in the prescription for generating starting conditions. If
backwards-time evolution from the control destination makes no sense, only trajec-
tories that emanate from the point de�ned by the residual system and controller

state are permitted. The only possible variation is the control parameter. The
program follows an entirely di�erent mode of operation in this case: rather than
generating trajectories sprinkled across a region, it evaluates a fan of trajectories
from a single point, much like standard shooting algorithms[76] and other tradi-
tional planning/control methods. Two of the examples in this thesis, the driven
pendulum of section 7.2 and the phase-locked loop of section 7.3, are subject to
these constraints.

4.2.3 Discretization

Discretized trajectories �t(z0) are constructed from the state-space trajectories
�t(x0) generated by runge-kutta4 using the region boundaries and cell divisions
hi. On �gure 4.3, where the corners are (-�=2, -25), (�=2, 25), the trajectory
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Figure 4.3: Discretizing a trajectory: this ten-point state-space trajectory �t(t)

starts at the point (-.785 -4.167), the center of the grid cell #(1 2). The discretized

version of this trajectory, �(z), is ((#(1 2) .01) (#(1 3) .09)). Region corners

are (-�=2, -25), (�=2, 25) and m = 6.

�t(�:785 � 4:167) emanating from the centerpoint of the cell #(1 2) looks like:

(#(.01 -.8243301481988154 -3.69606170664237)

#(.02 -.8588665426793466 -3.2087127367357464)

#(.03 -.8884587196329566 -2.7076548013206416)

#(.04 -.9129824248098427 -2.1954285322680795)

#(.05 -.9323380339115039 -1.6744214660178298)

#(.06 -.946449102403905 -1.1468856530999094)

#(.07 -.9552611320528511 -.6149630837455898)

#(.08 -.9587406229724326 -.08071704932096757)

#(.09 -.9568744610672818 .4538324556428124)

#(.10 -.9496696718366109 .986671176123371))

and �t(#(1 2)) looks like:

((#(1 2) .01) (#(1 3) .09))

Each element of �t contains a cell vector and the time of entry. In the �rst
element, the time of entry reects a single timestep (0.01.) The timestep that was
used to generate a trajectory can be determined in this way and thus need not be
explicitly carried through the run. If it is negative, the trajectory is running in
backwards time. The state-space point ~x0 that was used as a trajectory's initial
condition can be determined from the cell vector ~z0, given (1) the boundaries
and division of the region and (2) the origin and destination points. The reverse
engineering of the timestep and the starting-point are combined in the function
find-starting-info. The time spent in a particular cell is the di�erence between
its timestamp and that of the next cell; e.g., for cell #(1 2), :09 � :01 = :08 time
units.

4.3 Dynamics Classi�cation

Perfect Moment classi�es discretized trajectories in terms of the !-limit sets to
which they relax. Only dissipative systems are treated in this thesis; extensions to
conservative systems | which do not have attractors, as their equations preserve
state-space volumes | would require adapting the classi�cation scheme described
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Figure 4.4: Examples of trajectories that are misclassi�ed as \enroute to a �xed
cell" because the grid is too coarse

below to recognize island chains, KAM torii and other features of Hamiltonian
chaos2.

Four types of attractors exist in dissipative chaotic systems: �xed points, limit
cycles, quasiperiodic orbits, and chaotic attractors. The �nite extent and dis-
cretization of the region under investigation alter their apparent properties and
also add two possibilities to the list of possible !�limit sets from which the pro-
gram chooses the classi�cation of an individual trajectory:

� �xed cell

� period-n limit cycle

� chaotic attractor

� sink cell

� unknown

Unstable or metastable �xed points and limit cycles are omitted from this list
because of the low probability that a cell-center initial condition will land in such
a measure-zero set; even if this were to occur, the integrator's local truncation
error would rapidly move the trajectory away. Quasiperiodic orbits were omitted
by mistake; the implications of this oversight are discussed later in this section.

A trajectory that relaxes to and remains within a single cell is de�ned as a
�xed point, regardless of what it is doing inside that cell. See �gure 4.4. Perfect

Moment de�nes �xed cells rather than �xed points to emphasize the distinction.
This resolution-induced myopia has a variety of interesting implications that are
explored later in this section. The Scheme classification data structure for a
trajectory whose !�limit set is a �xed cell looks like:

(relaxing to the fixed cell #(2 46 13))

In a linear system, Perfect Moment would classify all trajectories as relaxing to
the single globally-asymptotic �xed point | or to the sink cell, if that �xed point
is out of range or unstable.

Limit cycles appear in discretized trajectories as �nite repeating sequences of
cells. A trajectory relaxing to the period-one limit cycle in �gure 4.5 would be
classi�ed as:

2This type of analysis is performed by Ken Yip's KAM program[84].
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(0 0) (3 0)

(3 3)

Figure 4.5: A period-one limit cycle

(relaxing to the period-1 limit cycle

((#(1 1) 0.00) (#(2 1) 0.65) (#(3 1) 1.25)

(#(3 2) 1.67) (#(3 3) 2.29) (#(2 3) 2.84)

(#(1 3) 3.45) (#(0 3) 4.09) (#(0 2) 4.29)

(#(0 1) 4.88) (#(1 1) 5.03))

The classification of this structure contains only a description of a single
orbit; its initial time is arti�cially o�set to zero in order to facilitate periodicity
computations. Note that the elapsed time in cell #(0 3) | 4.29 minus 4.09 or
0.20 | reects how much less of the trajectory passes through that cell. Like �xed
cells, limit cycles can be misclassi�ed if the cell size is large.

Chaotic attractors are nonrepeating sequences of cells:

(relaxing to the chaotic attractor that touches the cells

(#(1 1) #(1 2) #(1 3) ... ))

The set of cells touched is important in the determination of when an attractor
approaches a control destination. If the grid is coarse, several orbits may be re-
quired to see the chaotic trajectory deviate from apparent periodicity, particularly
if it wanders near an unstable periodic orbit (UPO) and stays near it for a few
cycles3.

A trajectory that exits the grid is de�ned as follows:

3This type of event is actually not as rare as it might seem; see section 6.2.
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(relaxing to the sink cell)

The \unknown" classi�cation (unknown) takes care of the Ross Perot problem4.
The most common cause of such a classi�cation | transients that have not died
out | could be avoided by lengthening the integration or expanding the region as
described in section 4.2.1.

In order to extract and characterize a trajectory's !-limit set, the transient
section must be stripped o� and the balance examined for the symptomatic cell-
sequence patterns. A synopsis of the algorithm that performs this classi�cation
is given below. It handles transients by working backwards from the end of the
trajectory.

1. Find last cell ~zl and time of entry tl of the trajectory �t

2. If ~zl = #(sink-cell), the destination is the sink cell

3. If tl < 0:5� (total trajectory time), the destination is the �xed cell ~zl

4. Look back through �t for the next occurrence of ~zl, recording the sequence
of cells touched

5. Repeat step 4 four more times (or to the beginning of the trajectory)

6. If the pattern is constant, ~zl is on a limit cycle; extract the core sequence
and period

7. If the pattern is not constant, but the set of cells touched is, the destination
is a strange attractor

8. Otherwise, the destination is unknown

The trajectory length choice | 1000 steps or ten orbits | and the factor
of 0.5 in step 3 above address the sequence recognition and transient elimination
issues. The implicit assumptions here are (1) that trajectories will equilibrate after
less than �ve \natural frequency" periods and (2) any periodic behavior can be
recognized after �ve repetitions.

Of course, these assumptions may be completely invalid. They depend on the
success of the length and �t choices and on the system: its underlying form and
the values of its parameters. In a sti� system with poles separated by d decades,
there will be 100=d timesteps in the slowest orbit; if d > 5, the !�limit sets of all
trajectories will automatically be either fixed cell or sink cell. Even in non-
sti� systems, coe�cient changes can cause problems: damping coe�cients have
the obvious e�ects on whether a �ve-orbit period is adequate to attain | and

4a mixture of \none of the above" and \who knows what it's doing anyway."
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recognize | equilibrium. This, again, may cause misclassi�cation, typically in the
form of limit cycles that are mistaken for strange attractors and �xed points or
quasiperiodic orbits that are mistaken for unknown attractors. Finally, the choice
of �ve orbits makes Perfect Moment unable to recognize a period-n limit cycle for
n > 5.

Solving all of these problemswould simply require more integration. It is impos-
sible to determine, without actually performing the run5, what length will su�ce,
but a better measure of the convergence rates could be obtained by computing the
largest negative Lyapunov exponent6. Other logical approaches would be (1) to
increase the number of steps until the classi�cation reaches a steady state or (2) to
multiply the trajectory length by some �xed factor if no trajectory exits the grid
but all attractors remain unknown.

A second problem is the degradation of resolution and accuracy with increasing
cell size. In the R�ossler scenario, for example, the mapper was unable to distinguish
between the period-one and the period-two limit cycles because of the coarseness
of the discretization. Strange attractors and limit cycles can be mistaken for one
another; �xed cells can be confused with almost any other member of the list. In
the limiting case of m = 1, in fact, all trajectories are destined either for the �xed
cell #(0 0 0 ... ) | the only cell in the grid | or for the sink cell.

One possible solution to this problem would entail repeating the run with
smaller and smaller cells until the classi�cation results themselves reach a steady
state. This solution would be extremely expensive, as run time is exponential in
the number of cells on each grid axis. Alternatively, if one is attempting to dis-
tinguish between a limit cycle and a strange attractor, one could forego analysis
of the discretized trajectories and compute Lyapunov exponents directly from the
raw state-space trajectories �t. This scheme would also allow quasiperiodic or-
bits to be distinguished from strange attractors, which is how they are currently
(mis)classi�ed if they require more than �ve minor orbits per major orbit.

The �nal problem is the region's limited extent. Perfect Moment blindly gen-
erates mn #(sink-cell) trajectories from every cell in the basin if any part of an
attractor falls outside the grid, even though a human expert could easily extrapo-
late from the partial data on the visible region. As a �rst cut at solving this, one
could allow trajectories to extend beyond the region boundaries; the return of any
trajectory that exits the grid would be a clear indication that the region under
consideration was chosen too small. Another solution is proposed in section 4.4.

The apparently-arbitrary design choices (transients limited to less than �ve
orbits, etc) are trial-and-error, seat-of-the-pants compromises, based on intuition,
observations of the systems, and patience level: they are su�cient to cause Perfect
Moment to �nd reasonable solutions in less than the time it took for its author

5Note the common thread in the chaos de�nitions on page 33
6�1 of the negative-time evolution; see section 3.2.1.
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to get frustrated. They are inputs to and coe�cients in Scheme procedures and
are easy to change. Many of the heroic measures that a user should attempt if a
search fails involve these coe�cients; see Appendix A for more details.

In summary, this classi�cation scheme is not precise, nor is it intended to be.
There are several reasons for this. First, the algorithm that uses the mapper's
output examines it only on the scale of the current cell size. Second, an exact
method will not work on noisy, experimental data. Finally, an engineering system
| with real sensors, actuators, �nite-precision arithmetic, etc | operates in a
hard-to-measure and uncertain world, so high precisions are moot.

4.4 Parameter Spacing Between Portraits

The algorithms in this section | the collection of operations in the large dotted
grouping in �gure 4.1 | use the results of the classi�cation scheme in the previous
section to select parameter values at which to construct portraits so as to sample
all of the interesting and useful dynamics within the speci�ed parameter range.
This necessarily involves some assumptions about what constitutes \interesting
and useful."

Portraits are constructed and analyzed at each klow + n�k for (klow + n�k) 2
[klow khigh], using the machinery described in the two previous sections. If two suc-
cessive portraits, at ki and ki+1, are signi�cantly di�erent, a portrait is constructed
at ki+ki+1

2
. Perfect Moment bases this decision on changes in the dynamics classi-

�cation, de�ning the following as \signi�cant:"

� bifurcations

� movement of an attractor into or out of the cell that contains the destination

The �rst criterion is both interesting to nonlinear dynamicists and useful from a
control standpoint. The path �nder ought to be very interested in �xed points
near the destination; it can also exploit certain properties of strange attractors,
but only if it knows that they exist. On the other hand, as discussed in conjunction
with �gure 4.2, it is sometimes wasteful to bother classifying the dynamics. The
second criterion is purely control-oriented. Recall that the destination mentioned
in the second item can be the control objective or another segment's endpoint,
depending on the stage of the process. It might be interesting to try turning o�
the �rst criterion for searches whose control objectives do not dictate the use of a
particular type of attractor. A variety of other useful additions to this list | that
have powerful and far-reaching implications | are discussed in chapter 8.

A bifurcation is signaled by:
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� a change in attractor category (the list on page 53)

� a change in a limit cycle's period

A variety of spurious bifurcations are detected when the classi�cation scheme
makes mistakes. In the R�ossler example in chapter 2, for example, a limit cycle
was reclassi�ed as \unknown" after it grew to touch the sides of the region and
was truncated:

(zeroing in because of bifurcation between

(limit cycle at param = .35) to

(sink-cell at param = .375))

(map: parameter = .3625)

(zeroing in because of bifurcation between

(limit cycle at param = .35) to

(sink-cell at param = .3625))

(iteration depth reached!)

This limit cycle, by the way, is the same one whose bifurcation from period one to
period two was overlooked; all of these problems stem from the large cell size that
was used in that scenario.

To account for cases where transient length or encounters with the region
boundaries may pose problems for some trajectories in the basins and not others,
the unknown classi�cation received special treatment. If some of the trajectories
mutate into unknowns but the others remain on the same attractor, Perfect Mo-

ment infers that the attractor still exists. One case where this inference solves an
existing problem is when an attractor's damping moves through the range where
detection after �ve cycles is problematic. To solve some of the cuto� problems, this
scheme could also be extended to sink-cell trajectories, perhaps incorporating
some stored information about what face of the search region the attractor was
expanding towards,

The zeroing-in process is repeated up to Di � 1 times, where Di is the user-
speci�ed iteration depth. This parameter has several purposes. It limits how
carefully Perfect Moment re�nes its perception of the positions of the boundaries
between perceived bifurcations. This limited depth has clear practical implications
if the resolution of the actuators and sensors is known. If, for example, full scale
for the actuator is 0 to 12 units and it is transmitted to the system through a
8-bit DAC, choosing an initial �k of 3 volts dictates a maximum iteration depth
of seven7. Di could be used to bypass some or all of the dynamics classi�cation:
the mapper will not zero in after the Dth

i pass, so classi�cation on that pass is
moot. Di also lets the user limit accuracy for, e.g., a �rst cut at a design.

7 �k

2
Di�1

� 12

28
.
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With the values in the previous paragraph, if the mapper recognizes a single,
easy-to-classify bifurcation at k = 1.6, portraits would be constructed at the fol-
lowing k values: [0; 1:5; 1:6875; 1:875; 2:25; 3; 6; 9; 12]. Figure 4.6 gives a more
graphic view of a slightly more complex scenario where n = 3, �k = 1

4
(khigh�klow)

and Di = 4. Perfect Moment zeroes in twice on the �gure; once because a limit
cycle bifurcates into a strange attractor and once because that strange attractor
enters the destination cell. The tickmarks on the parameter axis indicate the it-
eration depth at which each portrait was constructed: heavy, normal, dashed and
dotted for passes 1, 2, 3, and 4.

Some interesting pathological situations are created by the discrete sampling
of the dynamics. For example, the initial parameter range and step might cause
successive portraits to land on period-three limit cycles on either side of a chaos
band. This coincidence is unlikely | though not impossible | and there is no
easy way to avoid the resulting lack of distinction8. A similar but more tractable
problem would arise if successive portraits showed period-two and period-three
limit cycles, implying the existence of an interstitial chaos band. Inference rules
that use this kind of nonlinear dynamics knowledge, much like those used by the
KAM program[84], would not only speed the portrait-spacing process, but also
make it far more intelligent and interesting.

The machinery described in this chapter produces a set of portraits, like those
in �gure 4.6, at parameter values spaced so as to be representative of the system's
behavior. To accomplish this, the distribution and characteristics of the trajecto-
ries on each member of the set are automatically chosen so that individual portrait
is representative of the dynamics and recognizable to the program. Nonlinear dy-
namics knowledge is used to guide the process so as to meet these requirements
without excessive computational complexity.

8It turns out that the intervening topology changes often leave recognizable signatures in the

dynamics; see section 7.2.
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Figure 4.6: A stack of state-space portraits produced by the mapper: the initial
parameter step was one-fourth the parameter range (the vertical line) and the
iteration depth was 4. The mapper reduced the parameter step in two ranges, once
because of a bifurcation and once because an attractor entered the destination (d)
endpoint cell
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Chapter 5

Segment Selection and Path

Synthesis

The path �nder searches the state-space portraits that are constructed by the
mapper for a set of trajectory segments that meets the control objectives. Useful
segments may be drawn from any region on any portrait | they may be sections
of attractors or of transient trajectories that have not yet reached an attractor.

Figure 5.1 shows a owchart of the path �nder's operations; section 5.1 de-
scribes the ow of control between the di�erent components of this �gure. Sec-
tion 5.2 covers segment selection, section 5.3 the work that is necessary to coordi-
nate region and cell-size information between successive passes, and section 5.4 the
programs that account for and are a�ected by gaps in the path (tolerance checking,
computing the control recipe, etc.)

5.1 Structure of the Search

Each path �nder invocation is an attempt to connect two state-space points. A
gross path between the endpoint cells containing the origin and the destination is
found �rst; see �gure 5.2. The path �nder then recursively calls itself to connect
the endpoints of this core segment to the control objectives. Thus, at the nth level,
Perfect Moment has up to 2n�1 instantiations of the path �nder on the recursion
stack and up to 2n leaf-node processes working to connect pairs of points. On
any branch, the paths found at the (n + 1)st level are usually smaller than those
found at the nth. See �gure 5.3. The tree will be narrower by one branch for each
segment endpoint that lands close enough to an objective to meet the tolerance,
e.g., if the path �nder chooses �t(o) or ��t(d.) In that case, it only needs to work
on the other end. If the core segment on part (a) of �gure 5.3 emanated from the
control origin a instead of the point c, the branches enclosed by the dotted line on
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Figure 5.1: The path �nder's owchart: dotted boundaries group the topics ac-
cording to the section where they are discussed
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a

b

Figure 5.2: A rough-scale path between two state-space points. Perfect Moment

looks for a trajectory segment connecting the cell that contains the origin (a) and

the cell that contains the destination (b)

(a)

[h, b][d, g][f, c][a, e]

[d, b][a, c]

[a, b]

(b)

= path finder invocation

a

b

c

d

e

f

g

h

Figure 5.3: A segmented path (a) and the path �nder calls that created it (b). [x,
y] denote pairs of points to be connected at each pass; later calls are lower down
in the tree and connect closer pairs
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part (b) would not exist.

The optimization criteria used to evaluate the segments consist of user-spec-
ified Scheme procedures that operate upon time and state variables. Euclidean
length, relative to the speci�ed axes, is minimized in most of the examples in this
thesis. Changes to and generalizations of this choice are obvious and easy; some
interesting ones are suggested in section 5.2 and the code for several is given in
appendix A.

The interleaved mapping and search processes, repeated on �ner and �ner
scales, �ll the gaps in the evolving partial path until the resulting ensemble of
segments meets the speci�ed tolerance. Tolerance checking is not simply a matter
of halting when the endpoint of the last segment found falls within a speci�ed dis-
tance of the control destination. The errors introduced by residual gaps throughout
the path must be evolved forwards and factored in, as must the inuence of the
linear controller that aids in recovery from errors made at the segment junctions.
This computation is fairly involved and is addressed in section 5.4. The implemen-
tation of the junction controller itself is discussed in chapter 6.

Because each path �nder call is similar, the terms \origin" and \destination"
can be confusing. On the �rst pass and on the outside leaves of the 2n calls at the
nth pass, the actual top-level control objectives | a and b on �gures 5.2 and 5.3 |
are involved, but on all others, the origins and destinations are endpoints of partial
paths. In both this chapter and the previous one, the distinction is often immate-
rial because the discussion concerns the unvarying function of program modules.
Where it is important, as in the tolerance computations and in section 5.3.1, the
terms control origin or control destination (sometimes ultimate as well) are used.

The search process could be (and has been) likened to dynamic programming.
Another question that commonly arises at this point is \This looks like standard
AI search | how does it use chaos?" The answer to both concerns is that Perfect
Moment uses nonlinear dynamics and properties of chaotic systems to make the
estimates and choices that minimize computational complexity and enhance its
ability to attain control objectives. It is in some sense a dynamic programming
approach: one wherein nonlinear and chaotic dynamics are used to prune choices
o� the search tree. Domain knowledge is \used" as a human engineer would:
heuristics about the desirability of certain kinds of things (i.e., �xed points at
the control destination) and about how these things arise and mutate are used to
search out and exploit those features.

5.1.1 Data Structures

The search process uses a data structure called an evaluation that contains infor-
mation about the optimality weight of a particular trajectory, discretized or not.
Evaluations look like:
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(metric intermediate-value trajectory)

and are manipulated in the obvious way[4] by the selectors and constructor:

� get-metric

� get-intermediate-value

� get-trajectory

� make-evaluation

The trajectory slot holds an entire trajectory. The metric is computed from
that trajectory by the user-speci�ed optimality functions discussed in the next
section. The intermediate-value slot is used, for example, to hold an interim
partial path while comparisons are made down the rest of a trajectory's length.

Partial paths are represented as lists of segments, which look like:

(initial-point final-point

parameter

corners

variational-derivative

sensitivity-derivative)

parameter is a real number, the derivatives are procedures, and the other
entries are n-vectors. These structures are manipulated with similar constructors
and selectors. In addition to the endpoints, the variational and sensitivity deriva-
tives and the parameter value of the map from which the segment was selected,
grid management requires information about the corners of the region to be carried
along through the search. The linearized information about responses to state and
parameter changes at the endpoints is also used by the tolerance computation and
the junction controller.

5.2 Finding the Best Segment in a Stack of Por-

traits

Segment selection from a portrait | a list ofmn discretized trajectories| proceeds
in two stages. First, the trajectories that are clearly inadequate are eliminated.
For those that pass this �lter, full state-space versions are then reconstructed and
tested, narrowing the �eld to a single result.
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5.2.1 Rough-Scale Filter

An optimization function takes a discretized trajectory �t(~z0) and computes an
evaluation that represents a rough estimate of its optimality weight. Optimiza-
tion functions typically minimize or maximize some function of some subset of the
state variables, according to the requirements of the application and the design.
For example, a function that �nds the minimum pathlength along a trajectory be-
tween two given cells would simply count the number of cells between all in-order
occurrences of those cells, then return an evaluation containing the minimum of
that count, the trajectory segment that starts at the appropriate point, and the
full trajectory itself, the latter for purposes of reconstruction and tiebreaking:

(pp traj)

==> ((#(1 2) .01) (#(1 3) .07) (#(2 3) .19)

(#(3 3) .27) (#(4 3) .35))

((shortest-path-between-two-cells '(#(1 3) #(3 3))) traj))

==>(1

((#(1 3) .07) (#(2 3) .19) (#(3 3) .27) (#(4 3) .35))

((#(1 2) .01) (#(1 3) .07) (#(2 3) .19) (#(3 3) .27)

(#(4 3) .35)))

In this example, a single cell separates the occurrences of the cells #(1 3) and
#(3 3); get-metric applied to the evaluation returned by the optimization func-
tion ((shortest-path-between-two-cells ... traj)) would return 1. If sev-
eral paths exist in traj between the speci�ed cells, those that share the lowest
metric value are returned in reverse order of encounter. The intermediate value
slot contains the segment whose head is the shortest sequence of cells in traj that
starts with #(1 3) and ends with #(3 3).

Metrics to �t almost any speci�cation can be constructed using appropriate
manipulations of the cell vector and/or the time of entry. Distance can be measured
along any subset of the coordinates using one of a variety of di�erent norms.
Functions of the coordinates (e.g., �v2 for friction) may be useful quantities to
minimize or maximize. In applications that dictate state-space regions to be sought
out or avoided, functions can assign relative weights to individual grid cells in
many di�erent ways. For example, �ijk can distinguish cell #(ijk); some smoother
discontinuity or perhaps even a fuzzy weighting function1 can be used to weight
groups of cells. One could minimize or maximize trajectory speed | or aim for a
particular time of arrival | simply by using the di�erence between the timestamps.
Examples of some of these are in appendix A.

The function find-best-trajectory selects the best trajectory from a por-
trait, applying an optimization function and keeping track of the running total of

1This approach was suggested to me by Benoit Cellier.
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dest

orig

Figure 5.4: A case where the path �nder fails to �nd the best trajectory because
it considers only those that enter the endpoint cell

the cost. It turns out to be more e�cient2 to �rst �lter out any discretized tra-
jectories that completely miss the speci�ed cells before applying the optimization
function:

(find-best-trajectory

'minimize

(ones-that-touch-in-order portrait orig-and-dest-cells)

(shortest-path-between-two-cells orig-and-dest-cells))

The minimize token tells find-best-trajectory how to optimize the results
of applying the function

(shortest-path-between-two-cells orig-and-dest-cells)

to the pre�ltered trajectory

(ones-that-touch-in-order portrait orig-and-dest-cells)

Trajectories that do not enter both endpoint cells (the cells that contain the
two points to be connected) are not considered. Thus, Perfect Moment will make
a less-than-optimal choice in a situation like the one depicted in �gure 5.4, where
the right-hand trajectory is clearly better but misses the origin cell. This type of
problem is inherent to the gridded search; it could be �xed using more-intelligent
region-selection heuristics and is discussed further in section 5.3.2.

2e.g., one-third faster for a representative case of a 64-trajectory driven pendulum portrait

where three trajectories touched the speci�ed cells in order and all three had the same metric
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Time step Time

magni�cation without plotting with plotting

1 0.185 sec 0.340 sec

2 0.215 sec 0.416 sec
5 0.311 sec 0.561 sec
10 0.475 sec 0.773 sec

Table 5.1: E�ects of time step magni�cation on Perfect Moment's run time. This
table is based on a single map/search pass (four portraits constructed on a 4 � 4
grid) of the driven pendulum ODE on a Hewlett-Packard 9000/720 workstation.
The graphics add signi�cant overhead | constant and multiplicative | because
all mn trajectories are reconstructed before being plotted

5.2.2 Fine-Scale Reconstruction

A tiebreaker function takes a discretized trajectory �t(~z0), reconstructs the state-
space version �t(~x0), and returns an evaluation reecting its optimality weight.
The �t and the initial condition are reverse-engineered from the �rst trajectory
element of �t(~z0) by the function find-starting-info of section 4.2.3. �t(~x0)
is reconstituted from this information using a time step that is smaller than the
initial one by a factor �. Currently, � = 2, which is a tradeo� between improved
integrator accuracy and increasing run time. See table 5.1. On all four portraits
involved, the optimization function �ltered out all but two of the 16 trajectories;
the time taken to do so is roughly constant for a given grid, as every discretized
trajectory must be checked. The growth is roughly O(�0:35) if the trajectory set
is plotted on the graphics screen and O(�0:4) if not. In general, these numbers
depend on the percentage of trajectories that have to be reconstructed. If the
problem and objectives are such that the ratio eliminated by the �rst pass is lower
or higher than 14:16, the growth would be faster or slower, respectively, than in
the two right hand columns of the table.

Reconstruction and in-line optimality assessment are together only negligibly
slower than carrying around the entire pointset in memory, mapping down the list
and computing the optimality cost. In reality, the heap is �nite and clogging it up
with trajectories a�ects the run time of the rest of the program, so reconstruction
clearly wins.

The �ner-scale look at the actual state-space points lets the tiebreaker function
compute a better measure of the metric. Just as important, the smaller step size
gives a better measurement of the dynamics. Very rarely, an interesting quandary
arises: the better simulation causes the trajectory to move so much that it is no
longer the best or even misses the cell. This e�ect can cause Perfect Moment to
choose suboptimal paths.
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(3 3)

(0, 3)

(3 0)

Figure 5.5: Two-pass algorithm for segment selection: the �rst pass selects the
two thick trajectories, as they both touch �ve cells between origin and destination.
The second pass chooses the lower of the two, as its endpoints fall closer to the
objectives

Because of this �ner resolution | and depending upon the form of the prob-
lem and the initial parameters of the run, as demonstrated above | tiebreaker
functions are at least an order of magnitude slower than optimization functions.
However, because the latter are used �rst to weed out clearly-useless trajectories,
the tiebreaker functions are typically applied to at least an order of magnitude
fewer trajectories.

The tiebreaker function used in the bulk of this thesis, minimum-sum-dis-
tance-tiebreaker, computes the sum of the euclidean distances between the ob-
jectives and the segment's points of closest approach to them. Note that this
function is not just the <n analog of shortest-path-between-two-cells. The
use of dissimilar optimization and tiebreaker functions is an e�ective way to syn-
thesize two control aims. This hybrid approach combines global and local design
goals: it relies on the cell size being small enough so that all of the candidates found
by the optimization function are close to the same length, then uses a di�erently-
focused tiebreaker function to favor trajectories that closely approach the control
objectives.

The �rst pass of find-best-segment, which combines everything discussed in
this section, applied to the portrait shown in �gure 5.5, would select the two thicker
trajectories, as they both touch �ve cells on their travels between the cells #(3 0)

and #(0 3), while the other trajectory touches six.

The second pass of find-best-segment would determine the initial conditions
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xx x

Figure 5.6: Extracting a segment from a trajectory: (a) ending the segment at the
point of closest approach (b) a case where the vector �eld makes that problematic
(c) a more-intelligent approach, where a range of endpoints are evaluated

and time steps for both trajectories, divide the time steps by � = 2, repeat the
integration, apply the tiebreaker function and select the lower one, as the sum of
the distances between it and the control objectives is lower than the corresponding
sum for the higher trajectory.

Finally, the program extracts a segment of the \best" trajectory on the portrait.
Perfect Moment takes the easy way out and ends the segment at the points of
closest approach to the objectives, as in �gure 5.6(a). However, this extraction
algorithm may cause problems on the next pass. For example, the vector �eld may
only cross that gap obliquely for the allowed parameter values, as in part (b) of the
�gure. Worse yet, the ow may be completely opposite to the desired direction of
travel. A more intelligent approach that solves this problem would be to search for
connections between the objective and a range of points on the trajectory, as in part
(c). However, such a scheme would increase the dimension of the target manifold
and cause a one-step growth in the dimension of the search with each pass. A �rst
approximation to this that does not increase the search space would be a tiebreaker
function that chooses segments and endpoints by evaluating distances to objectives
and directions of vector �elds. For example, the backwards-time trajectories from
the destination with k = kl and k = kh could be intersected with the trajectory to
�nd the range of preferred values for the segment endpoint, or used to determine
a range of vector directions to favor in the choice. Such a scheme would produce
paths with local overshoots at switchpoints and control destinations, made in order
to get to regions where the vector �eld goes the right way.

After a segment is chosen, it is compared to the best segments from the other
portraits in the set. Finally, the variations and sensitivity derivatives are computed
at the endpoints of the overall winner3 and the entire structure is spliced into the

3In a real system, this \computation" would entail moving the system to the state-space

point where the junction falls, making small parameter and state changes, and recording the

local e�ects; this is how the derivatives are computed in [59]. Physically getting the system to an

arbitrary state-space point to even perform this exploration may present serious problems; this

is discussed at greater length in section 7.4.
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Figure 5.7: Initial search region and discretization with R = 2 and m = 5. The
bounding box of the origin (o) and the destination (d) is expanded by a factor of
two along all state-space axes and each axis is divided into �ve intervals

controlled trajectory and checked against the speci�ed tolerance. If it fails the
test, the path �nder proceeds to synthesize the information required to dispatch
the two recursive calls that bridge the gaps between the segment that was just
found and the two points that it was intended to connect.

5.3 Search Region Selection and Re�nement

Perfect Moment's manipulations of the size and shape of the search region and of
the resolution with which it is mapped are driven both by the control requirements
and by the dynamics of the system itself. The grid and the rules that manipulate it
guide the program's attention and e�ort to the regions where it is most required:
because of interesting, complicated or useful dynamics or because of proximity
to control objectives or to partial paths. This adaptive parameter spacing is spa-
tially analogous to adaptive time step integration; where events occur rapidly, they
should be examined more closely. A second, equally-important goal of this ma-
chinery is to allow counterintuitive moves | ones that send the system away from
the apparently \correct" direction in order to reach a faster path. Extending the
highway route-planning analogy, one would certainly choose to backtrack slightly
if that detour led more quickly to an interstate4.

Initial choices for both the discretization m and the overrange R, designated
R0 and m0 and discussed in section 5.3.1, are made by the user, though Perfect

Moment does provide some defaults. An R0 value of 1.1 implies that the search
region is formed by expanding the bounding box de�ned by the control origin and
destination points by 10% in all directions. Choosing m0 = 3 causes each edge of
this region to be divided into three equal intervals, �xing the cell aspect ratio for
the duration of the run. Figure 5.7 shows the situation with R0 and m0 set to the
default values two and �ve.

These initial choices are revised dynamically by the program as the run |
and the information about the system and the partial path | unfolds. Rules
that use the variational system and the sensitivity derivative, evaluated at the
points to be connected, are used to revise the grid spacing; the region boundaries
are determined by the intermediate results of the search and the output of the
dynamics classi�er. Details of both revision algorithms are in section 5.3.2.

4
Though the mechanism and the scale are somewhat di�erent, the results are similar to

the local-scale counterintuitive moves that would be produced by the suggested trajectory-

intersection modi�cation at the end of section 5.2.2.
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Figure 5.8: Variable-resolution grid: the local resolution is automatically adapted
to the dynamics and control requirements in each region

An example of the grid spacing that this dynamic revision can produce is shown
in �gure 5.8. This particular grid pattern is an artifact of six segment searches:
one with m = 3 in the entire region to �nd a core segment, three recursive searches
with m = 2; 4; and then 2 to complete the lower left corner of the segmented
path, and two recursive searches (with m = 4 and then 6) to complete the top
right section. The spacing reects local di�erences in either trajectory spreading
or sensitivity; the top right is either more turbulent or more responsive to the
control parameter than the bottom left. The only way to determine which of
these two factors triggered the cell size step is to examine the transcript of the
run. Similar pictures arise | for similar reasons but via di�erent patterns and
reasoning | in [57], wherein the area surrounding every point in the trajectory is
expanded at each level and points are added in the interstices based on the results
of the exploration. The basic di�erence between this scheme and Perfect Moment's
approach lies in the planning algorithms: the latter attempts to perform most of
the control task with a single trajectory, then appends small actions to the ends;
the former divides the task into more uniform subtasks and re�nes the subtask
size downwards across the entire trajectory. Relative success of these two methods
depends on the topology of the problem and the control requirements.

Whenever the search region is reduced, Perfect Moment can lose track of attrac-
tors because of truncation e�ects; see section 4.4 and page 24. At the same time,
the enhanced resolution due to the �ner grid used in that smaller region can bring
smaller-scale attractors, like those hidden from the mapper's view in �gure 4.4,
into focus. At some point between the former | a portrait full of (relaxing to

the fixed cell #( ... )), frustrating a user who knows that the system is
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Figure 5.9: The initial operations required to set up the core segment search

richly chaotic | and the latter, where all trajectories go to the sink cell, exists
an exploration scale on the order of each of the system's \natural" scales5 within
[kl kh]. Unless the user-supplied [R m] or [�k Di] combinations dictate otherwise,
Perfect Moment's revision rules cause it to automatically �nd those scales and
explore the dynamics accordingly.

5.3.1 On The First Pass

The �rst pass requires some setup computations (the box marked A in �gure 2.4;)
these are depicted in more detail in �gure 5.9. The determination of timestep and
trajectory length is discussed in section 4.2.1; the region computations in the box
labeled B are the topics of the remainder of this section.

5attractor size � cell size
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Figure 5.10: A possibly-problematic cell shape, dictated by the shape of the bound-
ing box of the control objectives. If this shape di�ers greatly from the aspect ratios
of the existing attractors, the short edge of this cell will drive the search region
expansion to needless levels

If Perfect Moment restricted its attention to trajectories within the bounding
box of the control objectives, counterintuitive moves would be impossible at the
�rst level, where the scale is largest and they can exert the most leverage. The
program uses R0 = 2 as a default, but the user is free to specify another value (as
long as R0 > 1) or even a vector of values that de�nes a region of a completely
di�erent shape. The implicit assumption behind the factor of two is that recouping
the optimality cost of a detour larger than the size of the distance to be covered is
unlikely. This assumption is dead wrong if the vector �eld ows from the destina-
tion to the origin for all allowed parameter values. In this case, to travel from the
latter to the former, one would have to �nd a way to use the larger-scale dynamics
to get upstream from the destination, then ride the local dynamics back down.
The only serious drawback to a larger R is that m must be higher to attain a
given accuracy. If the user knows that the natural scale of the system's dynamics
is much larger than the distance to be spanned, or that the local vector �eld goes
exactly the wrong way for kl � k � kh, choosing a larger R is a good idea. Situa-
tions where one would wish to explicitly specify a di�erent-shape region typically
involve origin-destination pairs that are separated by a small distance on one axis
and larger distances on others (or vice versa,) in which case the bounding box |
and hence the cells at all levels of the search | would have an aspect ratio as in
�gure 5.10. The terms small and large here are clearly relative; if the attractor is
tall and thin, a tall and thin cell may be an advantage. Regardless, hand-crafted
changes should be allowed, but only if the user knows what he or she is doing, as
bad choices can have fairly serious e�ects. Finally, for reasons that are discussed
at the beginning of section 5.3.3, a value for R0 must be speci�ed even when it is

to be bypassed.

The default value m = 5 is another seat-of-the-pants design choice, like the
transient length on page 56. The main inuences were personal perception of
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computational and graphical complexity and the condition that m0 must not be
near an integer multiple of R0 | the latter to prevent objectives from falling near
a cell corner and causing problems like those shown in �gure 5.4.

These \design choice" arguments are very far from rigorous. Firming up the
underlying theory and using it to completely automate the choices would make
PerfectMoment easier to use | particularly by novices| and muchmore palatable
to theorists and mathematicians. Control theory and nonlinear dynamics would
both play roles in these solutions, as would the wishful thinking about region
revision that appears in chapter 4. For example, in the basin of attraction of
an asymptotically-stable �xed point, only a few trajectories | those emanating
from the ring of cells that form the discretized analog of the basin boundary |are
necessary to characterize the dynamics. Some related issues that arise in problems
of this nature are addressed in muchmore detail in [84], wherein domain knowledge
about nonlinear systems is used to infer when important trajectories are missing
from state-space portraits.

5.3.2 On Successive Passes

The same inputs | search region geometry, trajectory length and step | must
be computed by the path �nder and passed back to the mapper after every pass;
after the �rst pass, they are based not on user input but on information about the
partial path.

Having successfully completed a pass, the path �nder would be in possession
of a list of trajectory segments, each of which might look like:

(#(-.88 -2.06 -.74) ; startpoint

#(1.93 -3.94 .67) ; endpoint

.325 ; parameter value

(#(-10. 4. -6.1) #(11. -10. 5.8))) ; search region corners

#[compound-procedure 23] ; sensitivity deriv

#[compound-procedure 24]) ; variational deriv

This particular segment was the result of a map/search invocation connecting
#(-1 -2 -1) to #(2 -4 .7) with m = 2 in the R�ossler scenario in chapter 2.4.

Suppose that the path has been analyzed by the tolerance algorithms of sec-
tion 5.4 and judged to be inadequate because of one or both of the gaps between
the endpoints of this particular segment and the objectives that it was supposed
to connect. If neither gap is a problem, no further recursive calls are necessary on
this branch. The path �nder must compute the area(s) of and cell size(s) within
the new search region(s), then dispatch the appropriate calls.

The next-level search regions are determined by:
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Figure 5.11: Re�ning regions between search passes: each endpoint cell is recen-
tered around the pair of points that will be an [origin destination] pair on the next
search pass. A new grid division is then computed in each region, reecting the
local dynamics therein. Note that the two regions are the same shape and size,
but that the discretization can be di�erent

� the cell size

� the origin and destination

� the segment endpoints

� the region corners

The endpoint cell | the parallelepiped that is

j1
2
[#(11 -10 5.8) - #(-10 4 -6.1)]j = #(10.5 14 11.9)

in size and encloses the gap to be spanned | is �rst shifted so that its center falls
on the midpoint between the new origin and destination; see the dashed boxes in
�gure 5.11. The shift is intended to allow for the situations shown in �gure 5.12,
where those points fall close to or even on opposite sides of a cell boundary. The
situation shown in part (a) of the �gure can arise, for example, if m0 is close to
an integer multiple of R0. Part (b) can occur if the reduced reconstruction time
step alters the dynamics su�ciently. This recentering strategy is critical: it allows
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(b)(a)

Figure 5.12: Problematic situations that can arise during the search and are par-
tially solved by the shift of the new search region (dashed square) (a) important
points near a cell boundary (b) numerical error that has caused a trajectory to
move across a cell boundary

counterintuitive moves up to the size of the current grid square at any level of the
search.

The sizes of the regions on both dispatched calls at any level are identical6:
the dashed boxes in �gure 5.11. However, the discretizations may be di�erent in
each. Within a particular branch of the tree, a segment found at the nth level is
usually smaller than one found at the (n� 1)st level, but this does not hold across
the entire tree, as the dynamics in di�erent state-space regions dictate di�erent
grid divisions. In �gure 5.8, for example, it is obvious that segments three levels
deep in the top right are not larger than those four levels deep at the bottom left.
Because of this, information about the corners used to choose a particular segment
cannot be reconstructed from the original corners and level, so it must be carried
along through the search.

After the �rst pass, the path �nder is always connecting segments of unequal
length7, so all calls involve two di�erent-size search regions: the one that was used
to �nd the larger segment (e.g., the large solid box in �gure 5.11) and the one used
to �nd the smaller segment (the dashed boxes in �gure 5.11.) No further expansion
occurs unless the search fails; see section 5.3.3.

The path �nder takes apart the segment data structure on page 75 | and its

6
and inaccessible to the user at this level

7
The control origin and destination are viewed as zero-length segments.
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two neighbors | in order to build the next-level origin/destination pairs. It deter-
mines the regions from which those segments were chosen using (subtract-vector
high-corner low-corner), where low-corner and high-corner are the car and
cadr of get-corners applied to the appropriate segment. This process is repeated
for both segments that de�ne each gap; the smaller of the two regions is divided
into m chunks and recentered:

(recenter new-orig new-dest

(scale-vector corners (/ 1.0 intervals)))

intervals is m and corners is the result of the subtract-vector call above.

The quantities that are used to determine the discretization for the next pass
are:

� the current m

� the new origin and destination ~xorig and ~xdest

� the variational system derivative

The basic idea behind most of the revision rules in the rest of this section is to
choose the grid spacing so that a prede�ned variation | in state or in parameter
| grows no more than roughly one cell size as a nominal trajectory travels through
the endpoint cell containing the new origin. The de�ned state variation is a scaled
version of the distance between the two points to be connected; in parameter
space, the variation is the range [kl kh] speci�ed by the user. The reasons behind
the latter should be clear. The former couples the control requirements into the
exploration scale. The scaling indirectly de�nes an arbitrary threshold between
\turbulent" and \not turbulent" and is discussed later in this section.

The next few pages illustrate the construction and use of the variational deriva-
tive, which measures the amount of \spreading" undergone by nearby trajectories
and is used by the rules that manipulate the grid size between search passes. It
is an indication of how errors evolve, so is also used in robustness calculations
and in the computation of the eigenvalues and eigenvectors that are used in the
programmable junction controller (chapter 6,) as well as in the determination of
when a path meets the tolerance (section 5.4.)

Perfect Moment's jacobian function symbolically di�erentiates the input sys-

tem to obtain the entries @F j

@xi
, then compiles these expressions into a procedure

that computes the derivative
_~� of the n2-vector of variations f�ijg. A combina-

tion of this procedure and the original system derivative is used to integrate the
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Figure 5.13: The geometry of the variational system: (a) the evolution of the

variational system (b) system trajectories from [~x0] and [~x0 + ~I]

(n2 + n)-dimensional variational equation

8<
:

_~x
_~�

9=
; =

(
~F

Dx
~F

)

from the initial condition (
~x0
~I

)

with t = t0. The time evolution of the �rst n elements of this augmented state

vector follows the trajectory �t(~x0; t0). The column sums of the matrix formed
by the next n2 elements are the evolved version of the initial variations, shown in
part (a) of �gure 5.13. Any basis can be used as the initial variation; ~I is simply
convenient in cartesian space.

Note the approximation here: the state variables ~x in this vector are evolved

using the full nonlinear equation, but the variations ~� are evolved using a derivative
that is linearized around the starting point. Thus,

"
�t(~x0; t0)� �t(~x0 +

nX
i=1

x̂i; t0)

#
6=
"

nX
i=1

~ei(t)

#

for all but t ! 0. The ~ei(t) are the column sums of the time-evolved variational
matrix. In other words, the separation between the two trajectories emanating
from [~x0] and [~x0+ ~I] | marked \D" in part (b) of �gure 5.13 | is not necessarily
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equal to the evolved variation (the sum of the two superimposed vectors in part
(a) of the �gure.)

One could certainly improve this accuracy by repeating the linearization and
recomputing the variational-derivative procedure at every integration step, at the
cost of O(n2) operations per point on the trajectory. Note, too, that the eigenvalues
of the evolved variational state at each point are di�erent from the eigenvalues of
the Jacobian evaluated at that point. The latter are a local, instantaneous property
of the system; the former depend on previous history and evolution.

Figure 5.14 gives a detailed example of this | the Lorenz system that is ex-
plored in section 7.1. Part (a) shows the information that is actually presented to
Perfect Moment, part (b) the procedure that the program compiles from this in-
formation and passes to the numerical integration routines that evolve the system
state, and part (c) the compiled Jacobian procedure that is used to evolve the vari-
ational system. The system derivative generator is a procedure that, given values
for the parameters a, r and b, returns a second procedure | a system derivative
| that takes a state vector *state* = (x y z) and a time t and returns a list
whose components are the time derivatives of the components: ( _x _y _z). Perfect Mo-

ment's runge-kutta4 integrator invokes this system derivative four times for each
timestep. The Jacobian derivative generator is similar, but takes an augmented

state vector
(x y z �xx �xy �xz �yx �yy �yz �zx �zy �zz)

and returns
( _x _y _z _�xx _�xy _�xz _�yx _�yy _�yz _�zx _�zy _�zz)

The Jacobian for the Lorenz system with parameter values a = 16; r = 50; b =
4, evaluated at the point (x y z) = (8 10 20) is

2
64
16(�xy � �xx) 30�xx � �xy � 8�xz 10�xx + 8�xy � 4�xz
16(�yy � �yx) 30�yx � �yy � 8�yz 10�yz + 8�yy � 4�yz
16(�zy � �zx) 30�zx � �zy � 8�zz 10�zx + 8�zy � 4�zz

3
75

The variational system integrated forwards from the initial condition
(8 10 20 1 0 0 0 1 0 0 0 1) for 0.05 seconds | to the state-space point �t=:05(~x0) =
(13.087 23.455 24.204) | is roughly

2
64

:79 :95 :89
:61 1:23 :79
�:14 �:48 :66

3
75

The column sums are [1.26 1.70 2.34] The actual Jacobian of the function at
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; (a) Lorenz system as input to program
(define lorenz

'((* a (- y x))
(- (* r x) (+ y (* x z)))
(- (* x y) (* b z))))

(define *state-variables* '(x y z))
(define *parameters* '(a r b))
(define *augmented-state-variables*
'(x y z delxx delxy delxz delyx delyy delyz delzx delzy delzz))

; (b) System derivative generator
(lambda (a r b)
(lambda (*state* t)

(let ((x (list-ref *state* 0))
(y (list-ref *state* 1))
(z (list-ref *state* 2)))
(list (* a (- y x))

(- (* r x) (+ y (* x z)))
(- (* x y) (* b z))))))

; (c) Variational system derivative generator
(lambda (a r b)
(lambda (*augmented-state* t)
(let ((x (list-ref *augmented-state* 0))

... as in (b) above ...
(delxx (list-ref *augmented-state* 3))
.
.
.
(delzz (list-ref *augmented-state* 11)))
(list (* a (- y x))

(- (* r x) (+ y (* x z)))
(- (* x y) (* b z))
(+ (* (* a -1) delxx) (* a delxy))
(+ (* (- r z) delxx) (+ (* -1 delxy) (* (- 0 x) delxz)))
(+ (* y delxx) (+ (* x delxy) (* (- 0 b) delxz)))
(+ (* (* a -1) delyx) (* a delyy))
(+ (* (- r z) delyx) (+ (* -1 delyy) (* (- 0 x) delyz)))
(+ (* y delyx) (+ (* x delyy) (* (- 0 b) delyz)))
(+ (* (* a -1) delzx) (* a delzy))
(+ (* (- r z) delzx) (+ (* -1 delzy) (* (- 0 x) delzz)))
(+ (* y delzx) (+ (* x delzy) (* (- 0 b) delzz))))))

Figure 5.14: (a) The Lorenz system as it is presented to Perfect Moment (b)
compiled system derivative procedure used to evolve the system state (c) compiled
Jacobian procedure used to evolve the variational system state
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the point (13.087 23.455 24.204) is

2
64

�16 16 0

25:796 �1 �13:087
23:455 �13:087 �4

3
75

Finally, simply integrating (9 11 21) forwards for the same time period brings the
state to (14.324 25.051 26.581): within (0.16 0.42 0.14)% of the point �t=:05(8 10 20)+
(xc yc zc): On a ten times longer integration, the di�erence | a result of the grow-
ing distance from the point where the linearization was made | grows to (0.29
0.32 0.6)%.

� � �

In the cell size revision, the m from the previous pass is used as a baseline and
raised or lowered depending on tests that measure an evolved variation against
the cell size. The identity matrix | the typical starting condition of a variational
integration | is multiplied by a scaled version of the di�erence vector between
the points to be connected. One assumption implicit in this choice is that moves
directly towards the destination are more important than those in other directions.
This approach is crude and reminiscent of steepest-descent techniques: standard,
local-view-of-the-world nonlinear control. However, this heuristic is only used in
the cell size determination and does not in any way constrain or predispose the
path �nder to steepest-descent paths. A second implicit assumption is that the
distance between control objectives is a rough measure of the move that will be
made at a particular pass and hence should a�ect the program's view of scale.
This biased variational system is integrated forwards from the center of the new
origin endpoint cell to its boundary, then compared to the cell size. Appropriate
adjustments are made to m and the process is repeated across the parameter range.

A formal version of this revision algorithm is given below. Refer to �gure 5.15
for graphical interpretations of the important quantities.

1. Subdivide the new region using the previous m. Compute the scaled dif-

ference vector ~V = f~xdest�~xorig
m2 g. Compute the centerpoint ~xc of the new,

factor-of-m-smaller endpoint cell that contains the origin.

2. With k = kl, integrate the augmented system f _~x; _~�g forwards from f~xc; ~I �~V g
until the trajectory exits the cell at ~xboundary.

3. Compare the evolved variations with the cell size: compute the column sums
of the variational matrix f�ijg at the cell boundary and divide the result, ele-
mentwise, by the vector of cell edge lengths [h1 h2 : : : hn] =

~xhigh�corner�~xlow�corner

m

and take the absolute value of each element to obtain the comparison vector
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~Ck (k identi�es the parameter value involved.) Find the largest element ckj
of ~Ck. If ckj > 1, set m = m� ckj ; otherwise record c

k
j .

4. Repeat steps 2 and 3 for all klow + n�k for (klow + n�k) 2 [klowkhigh].

5. Ifm remains unchanged after step 4 is complete, multiply it by themaximum

of the values recorded in step 3.

6. Round m upwards to the next integer (or 2, whichever is greater.)

Step 6 avoids:

Figure 5.15 shows a schematic of a single pass of this algorithm on a 2D example.
The area enclosed by the solid box is the shifted endpoint cell from the previous
pass; ~xorig and ~xdest are either the old origin and the segment startpoint, or the
segment endpoint and the old destination. Since this is not the �rst pass, these
points need not be on the main diagonal, but the region is still centered around
them because of the recentering rule. The old m was two, so the solid box is
redivided into four cells to begin. The di�erence vector ~x� = ~xdest � ~xorig cannot
be used, unscaled, as a variation; its worst-case length is O(

p
n �m) cells, far larger

than the normal units in variational integrations (� 1.) The normal variation,
shown at the left of �gure 5.15, would be invisibly small on this scale. If the
scaling were 1

m
, the variations would start out comparable to the cell size and

always fail the (variation size � cell size) test of step 3. For these reasons, the

scaling used is 1
m2 : ~V = 1

4
(~I �~x�) here. These vectors are shown at the centerpoint

~xc of the new origin endpoint cell, the initial condition for the integration of the
(dashed) trajectory �t(~xc). The evolved variation is shown at the intersection of
�t(~xc) with the cell boundary; note how much the magnitude and direction of the
constituent vectors have changed. They are clearly larger than the cell edges, so m
is adjusted up and then rounded to the next integer. Note that m can be reduced
as far as two, and no further. When m = 1, the next pass will only generate
two trajectories per portrait (�t(o) and ��t(d)) and counterintuitive moves will be
impossible.

Many alternatives and several areas for improvement are apparent in these
steps. For example, m is scalar, so the cell aspect ratio is constant. If m were an
n-vector, the cell shape could be adapted to the dynamics as well, eliminating the
situation where one edge of the cell is always driving the expansion or shrinkage.
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Figure 5.15: Re�ning the grid: if the variation ~V , integrated forwards from the
centerpoint ~xc of the origin cell to its boundary, grows to be larger than the cell
itself, the cell size is reduced. The initial variation is a scaled version of the
di�erence vector ~x� between the origin and the destination
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This modi�cation would simply be a matter of bookkeeping. More interesting, sub-
tle, and far-reaching changes could be made in the variational integration scheme.
The di�erence vector could be scaled by 1

n�m
instead, for example. An di�erent

vector altogether, like the diagonal of the endpoint cell, could be used as well,
perhaps with a di�erent scaling factor. The initial condition could be the origin
instead of the cell centerpoint, but that could cause the types of problems depicted
in �gure 5.12. The key design choice in the rule that uses these results | the factor
of one in step 3 above | is another area for improvement. Currently, ows that
diverge faster than one cell size per cell are considered turbulent enough to warrant
�ner discretization; this threshold e�ectively causes the cell size to be reduced until
trajectories look roughly linear therein. Finally, the parameter range is checked
only at the original �k-spaced values, so highly-turbulent behavior that is hidden
between steps will be missed and the cell size will be inadequate when the mapper
zeroes in on this behavior | which it is designed to do. Using the inter-portrait
parameter spacing computed by the mapper instead of the constant �k would
partially solve this problem. Many other interpretations, rules, and modi�cations
are certainly possible as well.

The path �nder's �nal actions are to reduce the time step by the ratio of the
new m to the old m, as alluded to in section 4.2.1, and to invoke the mapper with
the new origin, destination, region and intervals.

The revision rules in this section serve as a reasonably-successful �rst cut, from
an engineering point of view, at adapting the resolution to turbulence, sensitivity,
and to the changing control scale via automatic manipulation of the region and
cell size.

5.3.3 If the Search Fails

The last layer of region and cell size revision rules concern actions that are taken if
the path �nder fails to �nd an adequate segment between the endpoint cells. This
failure can occur for a variety of reasons. If the endpoints of the shortest segment
on one pass are downstream of the destination, for instance, the metric returned
by minimum-sum-distance-tiebreaker for all segments \found" will be longer
than the original distance to be spanned. Perfect Moment divides failures into two
classes, depending upon how many trajectories enter the sink cell, and treats each
class di�erently.

If the search fails and all trajectories go to the sink cell, the region size is
increased by R0. In this event, m is left unchanged | not multiplied by R0 and
rounded upwards to maintain accuracy. This rule is meant to catch dynamics that
were missed by the mapper because the region is too small. The \all trajectories
exit the grid" test is basically a rough way to determine whether or not the region
covers all the attractors that it touches; it works in conjunction with the method
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described on page 58. One could obviously de�ne a di�erent (constant) fraction, or
one that adapts to an important metric like the amount of turbulence. A yet-more
intelligent approach might be to check the destinations of the trajectories outside
the ring of cells level, in a cell-distance-from-the-center sense, with the objectives;
this scheme would automatically aid in the solution of the problem mentioned in
the �rst paragraph of this section. Ultimately, broader, AI-based improvements
on the techniques for reasoning from partial data that are suggested on page 56,
perhaps involving vision techniques and pattern recognition, would be the best
solution.

The use of R0 as the region scaling factor gives the user a hook into this process.
This feature requires an R value to be given even when it is to be bypassed with
a speci�c region speci�cation; it also gives the user rope to hang him or herself,
as serious problems can result from bad choices. For example, the expansion and
discretization rules can cancel each other out if R0 is large and the dynamics are
laminar. In this case, the region might be expanded by by 4, then divided into
three cells on a side, making later search regions larger instead of smaller.

If the search fails and all trajectories do not go to the sink cell, the number of
intervals is multiplied by 1.5 and rounded upwards to the next integer. This rule
originally doubled m in the fashion of standard binary-search algorithms every-
where, but the factor of two often, in practice, turned out to be excessive. More
importantly, if the source of the Perfect Moment's failure is that interesting state-
space behavior is evading exploration because its initial condition is near a cell
boundary, multiplying m by an integer will not help.

Since the case where the attractors' areas exceed the grid is caught by the �rst
rule in this section, the second rule covers the case where the behavior has been
sampled, but not on a �ne enough grain. A better way to do this might be to
lower the factor of one in step 3 of the algorithm on page 83; this would couple the
actual dynamics, rather than a semi-arbitrary integer, into the m-modi�cation.

After one or the other of these adjustments is made, the path �nder calls the
mapper with the new values and repeats the search. This transcript demonstrates
the second rule in action:

(beginning mapping process)

(mapping region from

#(0 -24.25 41.5 7.5) to

#(0 24.75 -28.5 -2.5) with

4 cells on a side)

(map: parameter = 20)

< ... >
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(no path exists between o and d on param = 40 map

- hit space to proceed)

(no path segment was found between #(-2.2 10 3) and #(2.7 3 2)

for the parameters

(klow 20 khigh 40 kstep10

R 10 m 4 points 200))

(revising intervals!!)

(stop me if you want to change the parameter range or spacing)

(beginning mapping process)

(mapping region from #(0 -24.25 41.5 7.5) to #(0 24.75 -28.5 -2.5)

with 6. cells on a side)

< ... >

(segment found:

(#(6.29 -1.45 2.02)

#(-5.64 10.01 2.56)

25

#(-24.25 41.5 7.5)

#(24.75 -28.5 -2.5)

#[compound-procedure 45]

#[compound-procedure 46]))

The R and m on the previous pass were 10 and 4, respectively; the former was
large enough to cause at least some of the trajectories to �nd attractors inside the
search region, so the second search-failure rule �red and adjusted the m to 6, at
which point Perfect Moment was able to �nd a path.

These two rules cost a lot in run time, but, as the transcript above shows, they
sometimes solve the problem. If, however, no magni�cation or resolution would
help, the various rules will blindly continue revising the region outwards to in�nity
and the cell size downwards to zero, and the user should intervene. There is no
obvious way to cause Perfect Moment to recognize this ahead of time and yell for
help.

5.4 Tolerance and Termination

The programs described in this section | grouped in the dashed box inside block
C in �gure 2.4 | ascertain whether or not a segmented path meets a speci�ed
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(c)(a) (b)

Figure 5.16: Error types at segment junctions: (a) additive (b) timing (c) pa-
rameter. Solid lines are the desired paths and dashed lines reect the respective
errors

control tolerance. These computations depend on the speci�ed tolerance, on the
properties of any existing partial path, and on the range of the linearized controller
that the program constructs for each segment junction8. The techniques in this
section do not address errors made at points away from the segment junctions; the
implicit assumption here is that, to �rst order, errors are most likely to occur at
the junctions. Tracking techniques | that extend local-linear control across the
entire length of each segment | are discussed in chapter 6.

Without the linearized controller, errors made at the junctions would simply
grow or shrink along the entire path, according to the nonlinear expansion or
contraction in force at each point along its length. Errors at the origin end are
potentially worse than errors near the destination because of their longer exposure
to nonlinear ampli�cation. If the path contains no strange attractor segments
or unstable trajectories, the state-space \tube" around the trajectory is always
contracting and errors are less of a problem. If the local-linear controller has
a particularly wide range at one junction because of the value of the system's
Jacobian, errors at that junction have less leverage.

Junction errors take three forms: state/additive, switch timing or parameter
magnitude. The e�ects of each are shown in �gure 5.16. A gap in the path |
the concern addressed by the tolerance checker | is of the form (a). Timing and
parameter magnitude errors are covered in chapter 6.

The following algorithm checks a single-segment path S0 against the tolerance
~T :

8The techniques involved in the design of such a controller are demonstrated in the worked-out

example of section 3.3.1.
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1. Check whether the segment endpoint falls within the tolerance region ~T
around the control destination. If not, the gap between the destination and
~S0
final is causing a tolerance problem and requires �lling in.

If step 1 fails and the segment comes from a trajectory with a positive Lya-
punov exponent, the gaps at both ends are automatically remanded for fur-
ther path �nding.

If step 1 succeeds, the gap at the other end of the segment is checked:

2. Compute the range ~L of the linear controller at ~S0
init.

3. Integrate the tolerance region ~T backwards along the segment (to ~T 0).

4. Intersect the regions de�ned by ~T 0 and ~L.

5. If the origin lies in this region, the segment passes the check.

Perfect Moment's lyapunov function computes the largest positive Lyapunov
exponent �1, operating on a variational derivative, an integration period, and a
multiplier. The mathematics of this method are discussed in section 3.2.1; it can
be extended to �nd the other (n� 1)�s[60], but Perfect Moment only uses �1.

See �gure 5.17 for a schematic of this process. The tolerance, as currently
speci�ed to Perfect Moment, is an n-vector, so the target region is a rectangular n-
parallelepiped | marked T on the �gure. That region is evolved backwards to T 0,
the larger rectangle around the trajectory's starting point. The ellipse represents
the controller's domain; the origin must lie in the shaded intersection region to
pass the tolerance check.

If the path contains more than one segment, this process is iterated backwards
from the destination across all segments in the path, using the shaded region as
the new T at each step. Any inter-segment gap that is not entirely contained by
the corresponding shaded intersection region causes a tolerance failure.

The key assumptions here are that the linear controller (1) is accurate (2)
achieves control much more quickly than the transit time of the trajectory through
its region of control and (3) reacts to reprogramming of its parameters more quickly
than the time taken to traverse the smallest segment. Much of chapter 6 is based
on the various failure modes that invalidate these assumptions.

In nonautonomous systems, tolerance checking is much simpler. Only origin
trajectories are generated and used; the path grows forwards from the control
origin and reaches closer and closer to the destination as the run progresses. At
any point, there is only a single gap; if that gap is smaller than the tolerance region
at the destination, the path passes.

Finally, if the tolerance checker encounters a segment whose length is below the
machine epsilon or below the e�ective resolution of any physical I/O devices, it
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T

L

T’

Figure 5.17: Computing whether a single-segment path meets a tolerance. The

solid arrow is the path segment ~S; T is the tolerance region at its endpoint. T 0 is

the same region, integrated backwards to the starting point ~Sinit. L is the domain

of the junction controller at ~Sinit. If ~Sfinal lies in T and ~Sinit lies in the intersection
of T 0 and L, the segment passes the check.
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signals an error, at which point the user should restart the program with di�erent
parameters. This type of error can occur if, for example, the tolerance is funda-
mentally too small, or if Perfect Moment has made a bad choice and is struggling
to make up for it.
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Chapter 6

On-Line Control

Real-time control | the right-hand box in �gure 2.3 | has two stages. The system
must �rst be routed along the segmented path (section 6.1) and then stabilized
upon its arrival at the destination (section 6.2.)

6.1 Navigating Along the Path

The system state can be caused to evolve along a trajectory consisting of a series
of path segments fS0; : : : ; Slg via the following set of control actions. Because
of the recursive, longest-�rst nature of the path-�nding algorithm, the segments
are not followed in the order in which they are found, so the list must �rst be
sorted into the proper order fŜ0; : : : ; Ŝlg. Beginning at the control origin, the

parameter is set to k̂0 to initiate the �rst segment Ŝ0, and the local-linear junction
controller is programmed with the values at Ŝ1's starting point. The state is then
monitored and the controller is turned on when ~x enters the control range around
the junction between Ŝ0 and Ŝ1. The parameter is then changed to k̂1 and the
combined closed-loop dynamics of the system and the junction controller pull the
trajectory towards Ŝ1's starting point. When the trajectory arrives, the junction
controller is turned o� and the system proceeds along Ŝ1. As soon as the trajectory
exits the control range1, the junction controller is reprogrammed with the values
at the next junction. This procedure is repeated through all segments in the path.
After the �nal switch, if necessary, the system is stabilized at the destination by
the same local controller.

Of course, this scenario can only be borne out in an ideal world.

In addition to the timing, state and parameter magnitude errors depicted on
�gure 5.16, the model can be wrong or the mechanical integrator can introduce

1
and not before, in case errors require it to be turned on again
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(b) (c)(a)

Figure 6.1: Control at the segment junctions: (a) ideal case (b) successful control
(c) unsuccessful control. The dotted circle is the junction controller's range; the
solid trajectories are the desired path segments and the dashed paths are the actual
trajectories.

spurious dynamics. Errors are all but unavoidable; the optical encoder used to
measure the position of the pendulum described in chapter 7, for example, has
an angular resolution of 0.7 degree. Quantization error is inescapable because of
the discrete nature of computer arithmetic in a continuous world. Actuators have
�nite response times; gusts of air hit pendulums, dust contaminates ball bearings,
circuits pick up local radio stations, etc. The linear junction controller can only
compensate for state and parameter errors if they are within its range | and then
only if they occur at the junctions, where it is turned on. It is useless once it
has been reprogrammed for a di�erent junction. Incidentally, the reprogramming
speed puts a lower bound on the segment length: if the new coe�cient values do
not reach the controller's registers and DACs before the trajectory reaches the
control region around the next junction, the scheme will fail. If the dynamics are
inaccurate because of modeling- or integrator-induced error, the design assump-
tions on which the junction linearization is based are invalid and control can be
lost. This inaccuracy need not be large and can be highly sensitive to position and
parameter because of the nonlinear ampli�cation.

If the linear junction controller works perfectly, the trajectory follows a path
like the one shown in part (a) of �gure 6.1. The path in part (b), perhaps the
result of a small error that has moved a system pole a bit, is still adequate, but
the one in part (c) is not, perhaps because that same pole has moved too far.

State noise is the simplest problem to analyze. It is additive, resembling part
(a) of �gure 5.16, and need only be measured against the range of the junction
controller. The very use of strange attractor segments, somewhat paradoxically,
introduces a avor of robustness: if the last segment in the path is part of a
chaotic attractor, shadowing implies that it will eventually pass near that point
again. Though it does \solve" the problem of state noise-induced loss of control,
such a path would be unpredictably circuitous and probably far from optimal. If
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the error is made upstream from a critical nonchaotic path segment, the correction
task simply falls to the linear controller. Though no exact calculations of control
failure at a junction due to additive state noise are possible unless the precise
form of the noise vector is known, a stochastic measure of how often the controller
succeeds can be obtained by dividing the area of its range at that junction by the
RMS noise value2.

Timing problems like those in part (b) of �gure 5.16 typically arise from the
combined reaction times of the computer, the actuator and the sensor. These can
be approximated as state noise, given an estimate of the delay �t: one simply
computes the di�erence vector �t � ~F and treats the results as in the previous
paragraph. If the sum of the �ts and the time required to program the junc-
tion controller are both much (> 10�) smaller than the natural frequencies of the
target system, timing errors can be disregarded. This requirement is one com-
pelling reason to choose mechanical pendulums, not communications circuits, as
test systems.

Parameter magnitude errors can cause serious problems, as discussed in previ-
ous chapters: nonexistent attractors, suddenly-positive �s, etc. Even small changes
that do not cause such global, catastrophic e�ects can still send the system in the
wrong direction; recall part (c) of �gure 5.16. As with timing errors, if the error is
known, its e�ects can be estimated and treated as state noise: �k � @F

@k
.

A �rst-order upper bound on the achievable path length is

T

error � e�1tpath
(6.1)

where T is the control tolerance, �1 is the largest positive Lyapunov exponent of
any path segment, and tpath is the time to traverse the entire path. error can arise
from several sources, summarized below:

1. environment

(a) noise

(b) system degradation

2. computer

(a) machine epsilon

(b) reaction time (interrupt servicing)

(c) numerical integrator error

3. controller I/O

2assuming white noise.
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(a) sensor resolution and delay

(b) actuator resolution and delay

4. model inaccuracy

The achievable path length may actually be even worse than equation (6.1)
if the error causes �1 to change | for example, if a parameter magnitude error
is made near a bifurcation boundary or in a range where the attractor is rapidly
getting \more chaotic" (in the sense that its �s are rising quickly.) Avoidance of
boundary regions could actually be programmed into the optimization functions,
partially solving this problem. A worse problem is possible lack of correspondence
between state-space features of the model and of the system; unlike the previous
case, there is no easy solution to this problem.

Modeling errors have complicated, coupled, global nonlinear e�ects, much like
those of numerical integrators; their e�ects are perhaps the hardest and most seri-
ous set of problems encountered in this research. Coe�cient di�erences | \para-
metric uncertainties" | are e�ectively identical to the very parameter changes
that Perfect Moment uses for control leverage. System degradation over time has
the same e�ects. A recently-developed scheme[70] actually uses this preternatural
sensitivity to construct better estimates of the parameters themselves. Structural
di�erences, like the presence of an unmodeled saturation, friction, mechanical in-
terference between two parts, etc, introduce worse problems, as they change the
form of the equation and not just the coe�cient values. The very nonlinear/chaotic
sensitivity that is used here for leverage can, paradoxically, back�re and make a
simple problem insoluble (i.e., a bifurcation that obliterates the chaotic attractor
that is critical to the controller's performance.) Modeling accuracy is a serious
problem; solving it requires accurate measurement technology, intelligent interpre-
tation and use of the measured data, and a deep understanding of the underlying
physics. This problem is fundamental and far-reaching | the sole focus of entire
research groups in applied math departments | and I have no sweeping, original
solutions to o�er.

One step towards a solution would be to gather state-space portraits directly
from the physical system. This would eliminate numerical integrator error (timestep
issues and the necessity to corroborate results with several di�erent integrators.)
This tack is related to [50], a program that automatically produces and analyzes
a parameter-space graph for chaotic and periodic behavior zones in an electronic
circuit. The inherent problem here is sensor and actuator resolution, coupled
with the ubiquitous nonlinear ampli�cation. The very same ampli�cation, surpris-
ingly, can be highly bene�cial: it can be used to enhance experimental parameter
estimates[43], using nonlinear dynamics knowledge to combine separate measure-
ments in such a way as to cancel out their error.

Another obvious and highly-useful modi�cation would be to make this control
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scheme robust: less sensitive to small state or parameter perturbations. Accom-
plishing this while at the same time preserving Perfect Moment's original goals
would require balancing some subtle tradeo�s, as the tension between robustness
and sensitivity is fundamental and inescapable. One solution would be to plan on
a global scale and track on a local scale, extending the use of the linear controller
across the entire length of the path, rather than con�ning it to the junctions.
This type of intelligent, computer-controlled tracking would move the boundary
in �gure 2.3 to the right. It would allow the controller to respond to errors made
anywhere along the path and give it more time and space to recover from any single
error. The critical obstacles are computer speed and the response time of the linear
controller; the latter would have to respond continuously and instantly to repro-
gramming instructions and the former would have to compute those instructions
accurately and on the y.

Finally, one could couple some measure of the system's performance back into
the control recipe | a avor of adaptive control | making information ow both
ways across the boundary in �gure 2.3. Coupled with the tracking scheme de-
scribed in the previous paragraph, this type of intelligent, computer-controlled
parameter estimation and model adaptation would allow Perfect Moment to adapt
to inaccurate models or changing systems.

6.2 Stabilizing the System at the Destination

Standard linear control can be used to stabilize the system at the destination after
the reference trajectory has been traversed. A detailed example of this process is
given in section 3.3.1. Alternatively, if the destination lies on or near a strange
attractor, one can �nd and stabilize a nearby unstable periodic orbit. This section
describes and illustrates that approach. Of course, these techniques do not make
all points controllable, even in a highly-restricted neighborhood; see the caveats in
chapter 8.

Since any chaotic trajectory covers its attractor densely, it will eventually have
a close encounter with every one of the embedded unstable periodic orbits. When
this happens, the trajectory retraces its path for some number of cycles: more or
less, depending on how close it was to the orbit in the �rst place. This denseness is
exploited by Perfect Moment's gunaratne3 function. Points on a Poincar�e section
that return to their own small neighborhoods after m piercings are assumed to
be very close to m-cycles. Averages of tight bunches of such points are taken to
be good approximations to unstable �xed points. The size of the neighborhood
(�) is �xed at two or three orders of magnitude smaller than the signal and the
separation between bunches is de�ned as 2�. The averaging re�nes the estimate

3the name of the �rst author of the paper [36] that suggests this technique
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and also serves to reduce noise by a square root. gunaratne takes a Poincar�e
section and an �-order, and returns a vector of lists of candidate points, sorted
according to the number of cycles before their return. The �-order choice is a
tradeo�. For a given data set, use of a large �-order causes very few points to
satisfy the criteria, but those that do will be closer to the UPO. If the order is
small, the bunches contain more points, but are more di�use. The latter is used
here because it makes the bunches easier to recognize.

Continuing the Lorenz example begun in section 5.3.2, the seventh element of
the vector (gunaratne psection order) | where psection is 3000 piercings of
the y = 20 plane | contains the following bunch of four points, among others:

...

(102 (-21.160 60.151))

(105 (-21.151 59.941))

(109 (-21.058 59.767))

(946 (-21.181 60.163))

...

These four points are candidates for a seven-cycle. The �rst entry in each element is
the number of the point that ends the periodic orbit; thus, these orbits started on,
respectively, the 95th; 98th; 102nd, and 939th piercings of the plane. Note that the
95th point must have been closer to the UPO than the others were, as it returned
twice. These four points are then averaged to �nd a better approximation to the
true UPO | (-21.138 60.005). This point returns to the neighborhood four times,
then escapes. Better estimates and longer periods spent on the UPO simply require
more points. [36] used 32000 points and noted 50-100 points per bunch.

Once found, an unstable periodic orbit can be stabilized using a control scheme
developed by a group at the University of Maryland[59, 69], wherein the system's
dependence upon the parameter is linearized about the �xed point on the n � 1-
dimensional surface of section through the orbit. This technique works where the
linearization is a good approximation: in the n � 1-dimensional \control paral-
lelogram" around the point, whose size is determined by the control parameter's
range, its e�ects on the orbit and the orbit's unperturbed stability properties. A
small change in k causes a k = k0 periodic orbit to return, after m cycles, not to
its original coordinates ~P0, but to some nearby point ~P. The vector ~gk measures
this e�ect:

~gk �
@ ~P0

@k
jk0 �

1

k � k0
(~P � ~P0) (6.2)

The stability properties are determined by integrating the variational system around
the orbit to obtain a Jacobian. f j is the jth component of the system equations
(3.1) and the �ik are variations around ~P0. In a three-dimensional system, the
single unstable eigenvector êu and eigenvalue �u of the Jacobian matrix, together
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with the admissible variation of the parameter k� around k0 and the vector ~gk,
determine Pck , the size of the control parallelogram, according to

Pck = k�j(1� ��1u )~gk � êuj (6.3)

Details about the derivation of these formulae are given in [59]; an example is
worked out in section 5.3.2. This method has been successfully demonstrated on
a magnetoelastic ribbon[28].

Trajectory denseness and UPO embedding make this a self-contained control
scheme. Since the control parallelogram surrounds a point that is in a chaotic
attractor, all trajectories will eventually enter the controller's domain, be driven
to the orbit, and, in the absence of noise, remain there inde�nitely. The denseness
of these orbits makes this technique practical if a chaotic attractor overlapping the
target state exists; however, target acquisition is a problem. The delay before any
particular trajectory wanders into the parallelogram is unpredictable, although it
does depend stochastically on the ratio of the areas of the parallelogram and of the
entire attractor. Target acquisition | active intervention to hasten this event | is
still somewhat of an open problem, though it has been addressed recently[15, 16, 69]
and is discussed at length in the next chapter of this thesis.
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Chapter 7

Examples

All of the examples in this section are simulated. However, physical applications
are the ultimate target of this work, so the models and controls in sections 7.2 and
7.3 reect the physical parameters of a driven-vertex pendulum and a phase-locked
loop circuit that have been constructed as test cases for these techniques. Modeling
and experimental error, discussed in section 7.4, have caused serious problems in
the extension of the simulated results to actual physical systems.

Most of the �gures in this chapter are actual copies of the graphics output
of the program | with most of the grid lines and trajectories edited out. The
purpose of this pruning was to clarify the exposition; the values for m, R, etc,
were chosen here to do real design, not for cosmetic purposes, so the real plots are
fairly complex.

7.1 The Lorenz System

The Lorenz equations[52] are:

F (~x; a; r; b) =

2
64

_x

_y
_z

3
75 =

2
64
a(y � x)

rx� y � xz
xy � bz

3
75 (7.1)

This well-known system models convection in a heated uid. It is an ODE
truncation of a partial di�erential equation model | the Navier-Stokes equations.
The state variable x is proportional to convective intensity, y is proportional to
temperature variation, and z expresses the amount of deviation from linearity in
the vertical convection pro�le. The coe�cients a and r are physical parameters
of the uid | the Prandtl and Rayleigh numbers | and b is an aspect ratio.
Edward Lorenz discovered exponential trajectory separation on a chaotic attractor
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Figure 7.1: Lorenz attractor for a = 16, r = 45, and b = 4

Figure 7.2: x� z section at y=-15 of Lorenz attractor for a = 16, r = 45 and b =
4

in a series of simulations of these equations on an analog computer. He found
that if an initial condition was entered to a di�erent number of decimal places,
the trajectories diverged exponentially in the time domain, but covered the same
attractor. Practically every text or review of chaos has a picture of the Lorenz
attractor, most of them at or near the parameter values a = 16, r = 45 and b = 4,
as in �gure 7.1. This �gure shows an x�z projection of a single trajectory covering
a three-dimensional object, so the apparent crossings do not represent uniqueness
violations. The parameter values and the initial state are shown at the bottom
of the �gure. The latter is immaterial unless it falls outside the basin boundary,
which is far larger than the area enclosed by the solid box. Within the basin,
the position of the initial condition only a�ects the time and path to reach the
attractor and the order in which the whorls are traced out by the trajectory, not
the geometric structure of the attractor. The values in the upper right and lower
left corners of the �gure are normalized axis coordinates. An x� z section of the
same attractor, through the y = �15 plane, is shown in �gure 7.2. Note the fractal
nature of both the section and the attractor itself.

The Hausdor� dimension of the latter is approximately 2.1. Perfect Moment's
fractal-dimensionprocedure uses the grid to obtain an extremely quick and dirty
implementation of the de�nition (3.5), using grid cells as the \balls of radius �" in
equation 3.5. Figure 7.2, incidentally, represents a much longer integration than
�gure 7.1 and both are much longer than Perfect Moment's standard ten orbits.
In the portraits that are automatically constructed by the program, trajectories
converge on the attractor from all angles, so it appears densely-covered despite the
�nite (ten-orbit) length of each individual trajectories; the longer integration was
used in �gures 7.1 and 7.2 to duplicate this e�ect and make the structure of the
objects visible.

One of the unstable periodic orbits (UPOs) embedded in the r = 50 attractor

| a seven-cycle | passes through the point ~P7 = #(-24.673 -19.983 68.207).
This UPO is plotted in x� z projection and y = �20 section in �gure 7.3(a) and
(b), respectively. <It was found by the gunaratne procedure of section 6.2, using
a 3000-point Poincar�e section and an �-order of two.

This UPO can be stabilized using the local-linear method of [59], as discussed

Figure 7.3: Trajectory and x� z section (y = �20) of unstable seven-cycle embed-
ded in r = 50 Lorenz attractor
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Figure 7.4: Time to acquire and achieve control on an unstable periodic orbit

Figure 7.5: Two stable �xed points

in section 3.4. The eigenvalues of the variational system, integrated once around
the seven-cycle from ~P7 are �u = 0:734 and �s = �502:077, with the associated
eigenvectors êu = 0:834x̂ + 0:552ẑ and ês = 0:685x̂ + 0:728ẑ. A 1/2% change in

r causes the point ~P7 to return not to itself, but to ~P70 = #(-23.929 -19.983

66.498), so

~gr �
@ ~P7

@r
jr=50 �

1

�r
(~P70 � ~P7) = 70:8x̂� 170:9ẑ

The allowed range of variation of r, for a 1% control tolerance, is �0:0075. Using
these values in equation (6.3) gives Pcr = 0:096. A trajectory emanating from
the point #(8 29 64) will enter the control parallelogram after traveling 25223
normalized distance units around the attractor in 104 normalized time units. See
�gure 7.4.

The \eyes" of the Lorenz attractor contain two unstable �xed points. As r is
lowered from the values in the previous �gures, a bifurcation at r = 24 causes these
points to become stable; see �gure 7.5, constructed at r = 20. Note the di�erent
basins of attraction. These �xed points | whose coordinates are #(8.72 8.72

19.00) and #(-8.72 -8.72 19.00)1 on these axes | move about the space as r
is varied, but always remain in the bottom third of the region.

Stable periodic orbits exist at much higher rs. For example, orbits that wind
once, three times or four times around each lobe exist at r = 350; 126:52, and
132.5, respectively, all with a = 10 and b = 8=3. With these a and b values, the
one-cycle actually persists for all r > 312[75]. More details about the structure
and properties of Lorenz attractors may be found in [52], [75], or [81].

7.1.1 Targeting and Stabilizing an Unstable Periodic Or-

bit

Perfect Moment was given the task of navigating between the two points marked
by crosses in �gure 7.6, starting at the rightmost (A) and ending at the leftmost
(B.) On the axes of the �gure, which are identical to those of all previous �g-
ures in this chapter, the coordinates #(x y z) of these points are #(8 29 64) and
#(-24.5 -20 68). The parameter r is used as the control parameter and a and
b are �xed. No serious claims are made or implied here about whether changing

1The symmetry is not coincidence; see [81] for details.
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Figure 7.6: Origin and destination points

this parameter | a uid's Rayleigh number | is practical or even possible; this
example is purely a mathematical one2. Realistically speaking, the entire exam-

ple bears little resemblance to nature | it is a particular ODE truncation of a
particular PDE model of a complex and di�cult-to-observe physical system.

The destination B is near the unstable periodic orbit discussed earlier in this
section. More precisely, the latter is near the former | the gunaratne function
was speci�cally directed to explore the small region surrounding B. As long as the
destination falls on or near a chaotic attractor, the algorithm should always be able
to �nd a UPO within any given �. The non-zero fractal dimension of the attractor
and the denseness of the trajectories on and UPOs in that attractor make such a
coincidence much more likely than the discovery of a parameter value that moves
one of the �xed points (Dh = 0) to the same proximity.

Since an unstable periodic orbit exists near the destination, the local stabiliza-
tion method of [59] can be invoked once a trajectory attains the control parallelo-
gram. Perfect Moment's task here is to hasten target acquisition and improve on
the 25223 distance unit trajectory of �gure 7.4.

The inputs to the program are:

� equations (7.1)

� origin and destination: #(8 29 64) and #(-24.5 -20 68)

� search region #(-45 -205 -5) to #(55 195 95)

� intervals m0 = 5

� parameter range: [rl rh] = [10 60] and step: �r = 5

� tolerance T = 0:096

� optimization criteria:

{ shortest-path-between-two-cells

{ minimum-sum-distance-tiebreaker

� iteration depth Di = 3

2Lorenz himself explored the parameter space outside the range (r � 1) within which the

equations are considered to be an accurate physical model.
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These values are actually a second attempt. They were adjusted after a highly
unsuccessful �rst pass that used the default values R0 = 2 and m0 = 5, wherein
the search failed repeatedly. The graphics output showed a series of pictures that
were clearly (at least to a human; see page 56) small sections of larger attractors.

The underlying problem is that the z-separation between A and B is too small.
The aspect ratio of the bounding box of the two points is very di�erent from that
of the box that bounds the attractors that exist for 10 � r � 60. This problem
and its solution were discussed in section 5.3.1: the user overrides the �xed R0

and explicitly speci�es the corners of a region that contains the attractor for all
allowed r values. To determine the shape of that region, the user attempts a
run with ridiculously-high R, looks at the cells touched by the attractor, and
computes their bounding box. The overrange R0 would have to be 35.5 for the
region to enclose the attractor of �gure 7.1; in that case, m would have to be 58 to
attain the same x axis exploration accuracy as that given by the numbers in the
bulleted list above. The performance gain from this hand crafting is signi�cant:
O(53) versus O(583) in run time, or approximately 1560 times faster for the same
accuracy. This region speci�cation duplicates the axes on the previous �gures in
this section (again, the latter actually duplicates the former.) The region is a
100 � 400 � 100 rectangular parallelepiped centered at #(5 -5 45), so all cells
have an aspect ratio of 1:4:1.

The other choices are far less involved. m0 = 5, for instance, was used simply to
test the success of the default. The user happened to know that the range [10 60]
holds several di�erent kinds of interesting dynamics, and she chose that because
wants to make this example interesting so people will read her thesis. T is the
size of the control parallelogram around ~P7 that was computed for a 1% control
tolerance. The �r and the Di are fairly arbitrary; their combined resolution
requires the putative \actuator" to be accurate to 0.1 units. The optimization
criteria were discussed at length in chapter 5.

On the �rst pass, the region was divided into 125 cells, each #(20 80 20) in
size3. 25 cells would be visible on a view of any of the three faces of the region.
The adaptive integrator settled on a .0005 time unit step. This choice is governed
by the trajectory speed at the tips of the attractor's lobes; note the point spacing
on the various �gures in this section. All trajectories were 1000 steps long, as
discussed in section 4.2.1.

The mapper was then invoked with these parameters. It proceeded to construct
portraits at r = 10; 15 : : : 60, analyze the dynamics, and reduce the �r as required
by the rules on page 57.

On the �rst three portraits, all trajectories were classi�ed as relaxing to one or
the other of the two stable low-r �xed points. As mentioned before, these points

3If the overrange machinery had not been bypassed and the default values had been used, the

cells would have been #(13 19.6 1.6) on a side: an aspect ratio of #(8.125:12.25:1).
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Figure 7.7: Two stable �xed points: movement with changing r value: (a) r = 10
(b) r = 15 (c) r = 20

Figure 7.8: A \�xed point" for a = 16, r = 25 and b = 4: (a) ten orbits (b) 50
orbits

move (upwards on the axes in the �gures) as the parameter is raised; at the same
time, the damping of the oscillation around the points shrinks. See �gure 7.7.
Identical initial conditions were used for the two trajectories in each of parts (a),
(b) and (c) of the �gure; note that a basin boundary has moved across the lower of
the two points between r = 10 and r = 15. Perfect Moment does not respond to
this by increasing the parameter range resolution because none of the cells involved
contains a control objective.

At r = 25, integrator accuracy caused the program to err in its analysis of the
dynamics | numerical damping had smothered a chaotic attractor into two �xed
points. Moreover, the mapper almost lost track of these numerically-induced �xed
points. Note that the trajectory on �gure 7.8 takes one turn around the opposite

basin on its way to what with a longer trajectory (part (b) of the �gure) would
be recognized as a �xed point. This detour, coupled with the large cell size, short
trajectory length and low damping of the oscillation, prevents the trajectory from
settling to the �xed cell in the allotted ten orbits, so it was classi�ed as unknown.
However, trajectories in adjacent cells | other parts of the same basin | do relax
far enough to cause the cells to be classi�ed as �xed, so the mapper did not signal a
bifurcation. See page 58 for discussion of this rule. A smaller time step, smaller cell
size and longer trajectory length would let the classi�cation algorithm explicitly
determine that this particular trajectory is chaotic, but at the cost of signi�cant,
distributed performance loss across the entire run. These tradeo�s are discussed
in chapter 4.

Figure 7.9 shows a trajectory for r = 30, just above the point where, at least
to the program's perception, the �xed points of �gure 7.7 and 7.8 mutated into a
chaotic attractor. The trajectory performs several circuits of the dark oval around
the newly-unstable right-hand �xed point, almost succumbing to the �xed point's
pull before it spirals out and goes to the other lobe. The same dark oval exists
on �gure 7.8, but there the state-space contraction was larger than the expansion.
Because of this (recognized) bifurcation, the mapper reduced �r and constructed
portraits at r = 27:5 and 28.75. The former contained a �xed cell and the latter
a strange attractor, so the true bifurcation lay between the two, but a more exact
measure of its location was inaccessible because of Di (or, indirectly, the limits

Figure 7.9: Lorenz attractor for r = 30
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Figure 7.10: Lorenz attractors for r = 35 and r = 40

Figure 7.11: Lorenz attractors for r = 56:25 and r = 60

that dictated it.)

As r was raised further, the attractor shifted and expanded; nothing interesting
enough to pique the mapper's attention occurred until one of the lobes entered the
endpoint cell containing B. Perfect Moment sensed this event at r = 40, again
reducing �r twice and constructing portraits at r = 37:5 and r = 36:25. The
range containing the actual event was narrowed to [36:25 37:5]. Portraits of the
r = 35 and r = 40 attractors are shown in �gure 7.10. (draw-cross -24.5 68 .5)
The r = 36:25 and 37.5 attractors are almost identical to the r = 35 one, but each
is successively higher, closer to the destination endpoint cell. The integration is,
as in �gure 7.1, much longer than ten orbits in an attempt to visually duplicate
the coverage e�ect of the 125 trajectories that the mapper normally generates.

The mapper then produces four more portraits at the �r = 5 spacing: r =
40; 50; 55 and 60. All are garden-variety chaotic attractors, but the latter ex-
tends over the region boundary (the user didn't get it quite right when she was
hand-crafting the region to include all attractors) and is classi�ed as a sink-cell

trajectory, causing the mapper to zero in again. The r = 57:5 attractor also exits
the region, but the r = 56:25 one does not; see �gure 7.11.

The interesting part of the transcript of the mapper's run looks like:

(map: parameter = 10)

(map: parameter = 15)

(map: parameter = 20)

(map: parameter = 25)

(map: parameter = 30)

(zeroing in because of bifurcation between

(fixed cell at param = 25) to

(strange attractor at param = 30))

(map: parameter = 27.5)

(zeroing in because of bifurcation between

(fixed cell at param = 27.5)

(strange attractor at param = 30))

(map: parameter = 28.75)

(zeroing in because of bifurcation between

(fixed cell at param = 27.5)
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(strange attractor at param = 28.75))

(map: parameter = 28.125)

(iteration depth reached!)

(map: parameter = 35)

(map: parameter = 40)

(zeroing in because of attractor

entering endpoint cell at param = 40)

(map: parameter = 37.5)

(zeroing in because of attractor

entering endpoint cell at param = 37.5)

(map: parameter = 36.25)

(zeroing in because of attractor

entering endpoint cell at param = 37.5)

(map: parameter = 36.875)

(iteration depth reached!)

(map: parameter = 45)

(map: parameter = 50)

(map: parameter = 55)

(map: parameter = 60)

(zeroing in because of bifurcation between

(strange attractor at pa<ram = 55)

(sink-cell at param = 60))

(map: parameter = 57.5)

(zeroing in because of bifurcation between

(strange attractor at param = 55)

(sink-cell at param = 57.5))

(map: parameter = 56.25)

(zeroing in because of bifurcation between

(strange attractor at param = 56.25)

(sink-cell at param = 57.5))

(map: parameter = 56.875)

(iteration depth reached!)

The resulting collection of portraits was then examined by the optimization
and tiebreaker functions for paths between the grid squares containing A and B.
The r = 50 portrait contained the best segment, shown in �gure 7.12 and hereafter
designated S0:
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Figure 7.12: Core segment (r = 50) and new search region for the next pass

(segment found:

(#(8.82 -4.37 57.21)

#(-24.51 -19.99 68.05)

50

(#(-45 -205 -5) #(55 195 95))

#[compound-procedure 87]

#[compound-procedure 88])

Its endpoint S0
final was within the tolerance of B, so no additional path segments

were required on the destination end of the core segment. However, the gap at
the other end did present a problem. The nature of the projection makes the
distances deceptive; A is actually quite far above (in the y-direction suppressed
in this projection) the nearest threads of the r = 50 attractor. The trajectory
�t(A, 50) emanating from the origin with r = 50 misses the control parallelogram
completely. In fact, this trajectory is the very one upon which it was Perfect

Moment's mission to improve (see �gure 7.4.)

To �nd the subpath that spans the gap, the mapping and search were repeated
in the region surrounding A and S0

init. The new region, outlined by the square in
�gure 7.12, was determined by recentering the old endpoint cell that contained the
o�ending gap; see the dashed square in �gure 7.12. The new grid spacing within
this cell was then determined, starting at m = 5 (the second layer of dotted lines
in the �gure) and working upwards or downwards according to the revision rules
in section 5.3.2.

The new 20 � 80 � 20 search region in the dashed box was divided into 125
4�16�4 cells. The centerpoint of the new origin endpoint cell | #(3 4 2) in the
new coordinate system | was ~xc = #(9 27 65). The di�erence vector ~x� from
A to S0

init was

#(8.8230 -4.3716 57.2139) - #(8 29 64)

= #(.8230 -33.3716 -6.7861)

and the scaled di�erence vector ~V was 1
52
~x� = #(.0329 -1.3349 -.2714).

The variational system (part (c) of �gure 5.14) was integrated forwards in time,
with r = 10, from the initial condition

#(9 27 65 .0329 0 0 0 -1.3349 0 0 0 -.2714)

until the state-variable section of the trajectory exceeded the bounds of the cell at
t = 0:0635 and

#(6.227 -8.143 55.085 ; x y z
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-.010 -.036 -.007 ; del.x.x del.x.y del.x.z

-.366 .100 -.503 ; del.y.x del.y.y del.y.z

.046 .084 -.174) ; del.z.x del.z.y del.z.z

Comparing the magnitude of the column sums of the variational system #(-.330

.148 -.684) to the cell size #(4 16 4) yielded a vector of c10j values #(.0825

.0093 0.1712), all less than one. The largest | c103 | was recorded. This entire
process was repeated for r = 15; 20; : : : ; 60. The scaled and evolved variation
never exceeded the cell size, so the maximum of all the csjs, c

50
3 = 0:224, was used

to adjust m to d0:224 � 5e = 2.

The mapping is repeated with these new region and grid parameters. The
process is similar to the �rst pass, but the size of the region a�ects the dynamics
classi�cation. All of the attractors are either completely or partially outside the
new region, so all trajectories are classi�ed as headed for the sink-cell and the
mapper never reduces �r and the portraits are evenly spaced at r = [10; 15 : : : 60].
The r = 35 attractor is the �rst to even touch the search region; the r = 50
attractor, if not truncated, would cover about half of its volume.

The segment S1, found on the r = 40 map, connects the new endpoint cells
around A and around S0's endpoint. The two-segment path [S1; S0] fails the
tolerance check because its endpoint is outside the range of the linearized controller
at S0

init. Because the gap at the endpoint causes problems and the Lyapunov
exponent is positive on the attractor from which S1 was drawn, the gap at the
beginning is automatically re�ned as well.

In the recentering and redivision of both 4 � 16 � 4 endpoint cells, the initial
condition for the variation is smaller than the one used in the 1st ! 2nd pass
revision. ~x� | and hence ~V | are at least a factor of two smaller, the integration
distance over which the variations can evolve is shorter, the dynamics don't have
any local wild singularities that remained undetected in the previous pass or that
respond particularly emphatically to the new direction of the variational system4,
and thus all crj � 1 and the mi+1

mi
� 2 cap (step 6 of the synopsis on page 83) kicks

in to set m = 2.

Working with 4�16�4 search regions and 2�8�2 cells, the third pass of the
mapper again generated eleven equally-spaced portraits whose trajectories almost
all went to the sink-cell. Searching these portraits, the path �nder chose two
very short segments S2 and S3, both at r = 10, that connected S1 to A and to S0,
to the �nal satisfaction of the tolerance check.

A schematized version of the overall path �AB = fS2; S1; S3; S0g is shown
in �gure 7.13. It is composed of the four segments discussed in the previous

4
if one direction ~etrouble has a huge Lyapunov exponent and the �rst-pass ~x� happened to be

orthogonal to it, the variations will be much more spectacular on the second pass and m will be

revised far upwards.
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r3 = 10

(8.82, -4.37, 57.44)

(8.8230, -4.3716, 57.2139)

S3
(8.10, 29.3, 63.7)

r1 = 40

r0 = 50

S0

S1

(8, 29, 64)
A(-24.5, -20, 68)

B
r2 = 10

S2

Figure 7.13: Schematized segmented path between A and B
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Figure 7.14: Numerical integration of segmented path

paragraphs. The two longer segments are segments of chaotic attractors; the two
shorter ones, enlarged so as to be visible, are sections of transient trajectories
ultimately destined for one of the system's �xed points. The former are examples
of a \strange attractor bridge", connecting two otherwise-unreachable points. The
values for the ri and the S

i
f inal are shown next to the segments and their junctions.

The actual numerical integration of the path �AB from A to B along the path
is shown in �gure 7.14. On this (true) scale, the smaller connecting segments are
invisible.

Several important observations and conclusions should be noted this point:

� The fS2; S1; S3g subpath actually moves the system state directly away from

B. This locally counterintuitive move is made in order to reach a globally
good path.

� The parameter switch that initiates S0 is perhaps the most critical of the
three, as nonlinear expansion along this segment's great length can severely
magnify any error. This sensitivity was reected in the care with which
Perfect Moment was forced to re�ne the subpath that connected A to this
point.

� Since S0 actually enters the control parallelogram around B, this process of
connecting to it amounts to a solution to the \target acquisition problem"
of [59]5. The path length between A and B is 130.1 normalized distance
units, requiring 0.3567 normalized time units to traverse. The contrast to
the case without active target acquisition6 is striking.

7.1.2 Targeting a Fixed Point

If the control destination is near one of the system's low-r �xed points, one need not
rely on UPO stabilization | parameter-controlled movement of the �xed points
can be used to force convergence to the control objective. Though the destination
can then be reached with a single segment from any point in the basin, the use
of a multi-segment path can alter macroscopic quantities like convergence speed
| and reachability, if the initial condition is not in the same basin as the desired
destination. For example, a trajectory starting from the point A = #(22.4 30.5

60) at the value r = 25 would normally converge to the left hand �xed point C

5
A solution to this problem is presented in a paper from the same group, currently in press

in Physica A.
625533 and 104 units, respectively; see �gure 7.4
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Figure 7.15: Segmented path to a �xed point

= #(-10.40 -10.40 27.01) on �gure 7.15 along the tightly-wound spiral at the
bottom left.

Perfect Moment found the right-hand path in the �gure, acting upon inputs
identical to those in section 7.1.1 except for the origin, destination and tolerance.
This path contains two segments: an r = 60 trajectory that travels from A deep
into the basin of the other �xed point, which lies nearB= #(10.40 10.40 27.01),
followed by a short section of the r = 25 spiral that surrounds the second �xed
point.

Note, again, that the controlled trajectory's initial counterintuitive move is
directly away from the objective B. Since the origin(A) is actually in the basin of
attraction of the other �xed pointC|- as indicated by the uncontrolled trajectory
from A in �gure 7.15 | the strange attractor segment may again be thought of
as forming a bridge: not only over the basin boundary, but also over most of the
slow spiral around B, which speeds the convergence. Note also that no additional
control is required here after the �rst segment is complete, unless uncertainty or
noise exceed the distance from the �xed point to the basin boundary. One simply
sets r = 25 and the system's �xed point holds the state within the tolerance.

7.2 The Driven Pendulum

The driven pendulum is arguably the most closely-studied simple chaotic system
(e.g., [18, 27, 37]) and is of interest here for a variety of reasons. It has many
practical applications, from robotics to o�shore drilling platforms to earthquake-
proo�ng of buildings. It is isomorphic to many other interesting systems, among
them the Josephson junction and the phase-locked loop of section 7.3. Used here
as an example, it serves to demonstrate how Perfect Moment works on a nonau-
tonomous system. It is a good point of reference for comparisons to traditional
nonlinear control, as virtually every text in the �eld presents it as the classic prob-
lem. Finally, as a test �xture for computer-aided control via a potentially ticklish
algorithm, a time constant on the order of a hundred milliseconds is far less daunt-
ing than the kilohertz (or higher) bandwidths found in electronic circuits, even if
one has access to a powerful computer with fast and accurate I/O.

Consider the pendulum shown in �gure 7.16. A mass m on a rigid, massless
rod of length l pivots freely in the plane of the paper around the point A. Writing
F = ma at the mass yields

ml
d2�

dt2
+ �l

d�

dt
+mg sin � =

T (t)

l
(7.2)
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Figure 7.16: Geometry of the simple pendulum

Where � is the coe�cient of the friction, referenced to the location of the mass,
and T (t) is the torque applied at the pivot.

Scaling time by t =
q

l
g
� and using the substitutions (t) = T (t)

mgl
and B = �

m

q
l
g

gives
d2�

d� 2
+B

d�

d�
+ sin � =  (7.3)

which can be rewritten as the following system of �rst-order equations:

_� = !

_! =  � sin � �B! (7.4)

The only di�erences between equation (7.4) and equations (3.7) or (7.2) are the
scaling and the substitutions. Of all three equations, (7.2) is the most conducive
to physical intuition, but the normalized forms are more common in the litera-
ture. This particular set of normalizations maps B to the damping ratio (2 �
actual/critical); the time unit is the inverse of the natural frequency. Both [18]
and [27] �x the damping ratio at B = 1=4 and apply a sinusoidal torque per unit
mass (t) = �gl cos
t at the pivot, where 
 is the ratio !d

!0
of the forcing frequency

to the natural frequency !0 =
q
g=l.

It is mechanically easier to move the pivot point than to apply a torque to the
shaft. If the vertex of the device is driven vertically with a sinusoid of amplitude
� and frequency ratio 
, the equations are

ml
d2�

d� 2
+ �l

d�

d�
+ sin �(mg +m�
2 sin
� ) = 0 (7.5)

Gravity is e�ectively modulated (�
2 sin
� ) by the movement of the pivot. The
corresponding normalized, pasteurized, homogenized and condensed equations are

_� = !

_! = � sin �(1 +A
2 sin
t)�B! (7.6)
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Figure 7.17: Movement of driven-vertex pendulum (twelve time-lapse images start-
ing at (t; �; !) = (0, 1.9, 0)

The substitutions are the same as before, with the addition of � = gA, which
makes the modulating term dimensionless.

If the axis along which the vertex is driven is tilted sideways to an angle � from
the positive x-axis, the equation is

ml��+mg sin � +m�
2 sin
t cos(�+ �) + �l _� = 0 (7.7)

which translates to

_� = !

_! = � sin �(1 +A
2) cos(�+ �)�B! (7.8)

Finally, if the device is inclined to an angle  with respect to the positive z-
axis, gravity is reduced to g cos in all of the equations above. This reduction is
mechanically useful; it reduces the speeds at which interesting things happen |
so they are visible and so the design need not withstand the higher frequencies (!
energies.)

In (7.2), (7.5) and (7.7), both the amplitude and the frequency of the drive play
roles in chaotic state-space changes. The behavior | and mutations thereof | of
all three systems is quite similar, though the particular parameter values that cause
di�erent bifurcations di�er by the appropriate normalization factors. The driven-
vertex versions are a bit di�erent in spirit, as the torque actually delivered by the
movement of the vertex depends on the angle of the pendulum. See �gure 7.17.

If the drive is not turned on, the system cannot be chaotic | it does not
have enough dimensions. The analysis is relatively simple; the simple pendulum
is one of the few nonlinear systems that have a closed-form solution7. The de-
vice has a stable �xed point hanging downward (� = 2n�) and an unstable �xed
point inverted (� = �(2n � 1)�.) The state space is cylindrical, as suggested by
these formulae; however, points separated by 2n� are not always identical for the
purposes of control8. For small �, one approximates sin � � �; solutions to this ap-
proximated equation are similar to the voltage and current in a linear RLC circuit
or a damped harmonic oscillator. For larger �, this approximation fails and elliptic
functions must be used to obtain a closed-form solution. The state-space portrait
of an undamped, undriven device (� =  = 0) is shown in �gure 7.18. The closed
elliptical orbits | \oscillating solutions" | at small � deform into oblate spheroids
and then into hyperbolic separatrices as the angle increases and the nonlinearity

7
Hence much of its attention in textbooks.

8
Consider, e.g., the long-term e�ects of ignoring the rotations of a telephone handset.
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Figure 7.18: State-space portrait of the simple pendulum

Figure 7.19: Driven pendulum Poincar�e sections (a) damped oscillations with small
drive (A = :01; 
 = 30) (b) chaotic behavior with larger drive (A = 1; 
 = 1:5.)
Rectangle corners are (0, -3) and (2�, 3).

begins to exert its inuence. Outside the separatrices, the device follows \running"
solutions, where the sign of the angular velocity remains constant. The curves on
�gure 7.18 can also be obtained by writing the Lagrangian (or Hamiltonian) for
the pendulum and using conservation of energy. Damping (� > 0) simply makes
the trajectories spiral inwards to one of the 2n� �xed points, perhaps rotating a
few times around the cylinder in the process if the initial energy is high enough.

With a nonzero drive, the behavior is more complicated and interesting. For
small-amplitude drives, the damping dominates, causing the oscillations to slowly
die out, as shown in the Poincar�e section of �gure 7.19(a). The spiral appears to
be sliced in half because of the way that the cylinder is unrolled onto the page.
Larger amplitudes and/or frequencies cause chaotic behavior, as in �gure 7.19(b).
See [18, 19, 27] for simulations of this system over a wide range of drive frequencies
and amplitudes, together with derivations of the resonance curves and stability
regions that de�ne and describe the di�erent types of behavior. The discussion
in this paragraph and the preceding one is valid for all of the equations in this
section; in the discussion that follows, however, only the driven-vertex equation
will be used.

In the experimental setup constructed as a testbed for Perfect Moment |
which is modeled by equation (7.6) and shown in the photographs in �gure 7.20 |
changing A is di�cult9, so 
 was chosen as the control parameter. The coe�cients
in these simulations | damping, length, etc | were chosen to reect those of this
physical system as closely as possible. A positive input voltage causes the motor
shaft to spin clockwise and a negative one causes it to spin counterclockwise; the
direction in which the pendulum is driven depends on the position of the arm as
well as on the shaft rotation. Thus, changing the sign of 
 is possible as well; this
leverage is used by the junction controller but not in the segmented path. Note
that the pendulum \bob" is a rectangular block of aluminum with a milled slot,
not a ball on the end of a massless rod. The bob geometry shown in the picture
reduces the moment of inertia | and the coe�cient of the �� term in (7.6) | by
about a factor of ten. The damping ratio is initially �xed at an experimentally-
measured value of 0.25, but this value can become invalid as, for example, the
bearings heat up or wear out. This variability is actually a symptom of a much
harder and more interesting problem that will be revisited in section 7.4. Finally,
note that gravity has half a dozen settings on this particular pendulum, one for

9Note the linkage in the closeup of part (b) of the �gure.
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Figure 7.20: Photographs of the experimental pendulum setup
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Figure 7.21: Parameter-space plot for the driven-vertex pendulum

Figure 7.22: Controlling the driven-vertex pendulum (a) origin and destination
points (b) uncontrolled trajectory from origin

each set of holes drilled in the fan-shaped supports.

A coarse-grained parameter-space plot for (7.6) is shown in �gure 7.21. The
circles represent periodic behavior (single for period-one and double for period-
two) and the �s chaotic behavior. There is a wealth of detail hidden between
these few points; see one of the cited papers for more detail. Fixing A constrains
the domain of the system to one horizontal row of the graph.

Perfect Moment was used to balance the pendulum inverted | at B = (�; 0)
| from some random initial condition A = (��=2; 15). See �gure 7.22(a). If
the pendulum is started from A with no applied torque, the uncontrolled system
follows the trajectory shown in �gure 7.22(b). The initially-high kinetic energy gets
dissipated over eight circuits of the cylinder; the trajectory then ceases running
and begins to oscillate down to the �xed point. At no time does it closely approach
B.

While the linearized controller of section 3.1 could certainly balance this device,
it would require large torques, many reversals of the motor voltage polarity at
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The short-term control torques exerted by the global controller to bring the device
into this range are allowed to be much (� 202 times; see below) higher. For the
parameter variation that corresponds to one torque unit, the state-space range of
the controller is far less than the (�=2; 15) that would be required to capture the
trajectory from A. Once the segmented path gets within striking range, however,
it is a highly-e�cient scheme.

As an interesting aside, a rather-mindless control scheme that relies only upon
parametric resonance could also be used to stabilize the inverted pendulum with
regard to small deviations. If the drive frequency is high enough | � 2:4 Hz in the
physical setup, at the \middle gravity" setting | the 2n� points lose their stability.
At yet-higher frequencies (� 4:8 Hz), the �(2n�1)� points actually become stable.
Figure 7.23 shows two rough versions of the parameter-space stability region of the
inverted equilibrium point, one computed for a starting position of � = 2:9 and
one for � = 3:1. The latter is larger, as the energy required to stabilize the closer
initial condition is smaller.

Inputs to the program were:

� the tolerance computed above for the one torque unit control input

� equations (7.6)

� a range [0 20] and step �
 = 5 for the frequency parameter 


� an iteration depth of 2

� region parameters R0 = 1:5 and m0 = 3.

As discussed in chapters 4, 5 and 6, the mechanics of the program are very
di�erent when the target system is nonautonomous. At each step, Perfect Mo-

ment evaluates a fan of trajectories emanating from that level's origin, one for
each value of the drive frequency. This restriction stems from the \state" require-
ments imposed by the position of drive arm, and the resulting behavior is very
similar to that of shooting algorithms[76] or other schemes which try a variety of
parameter values, evaluate the behavior, and use the results to modify the next
attempt[87]. Because the state space is cylindrical, only the !-axis gets multiplied
by the overrange factor. The R0 = 1:5 choice is large enough to include some but
not all of the attractors. The cell aspect ratio was not out of line with the attractor
aspect ratio, so no hand-crafting was performed to adjust the region and cell size.
Finally, recall that tolerance checking is considerably simpler for nonautonomous
systems because the segmented path evolves forwards from the origin and is always
connected.

The other inputs are based on the parameters of the experimental setup. The
natural frequency of the device at the second-to-lowest gravity setting |  = �

4

| is � :4 Hz and the motor is capable of � 7 Hz, so the [0 20] range reects
the true limits of the physical system. The step and iteration depth require a
resolution of 1 Hz ( �
 = 2:5.) This extremely pessimistic guess was based on
bad experiences with the slop and hysteresis in the dial. The very same empirical
observations suggested that the separation between di�erent behavior types is less
than 1 Hz. This combination has depressing implications for both analysis and

10i.e., (mapping region from ... ) (zeroing in because of ... )
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Figure 7.24: True dynamics for 
 = 15: a quasiperiodic orbit. (a) full-scale
Poincar�e section (b) close-up of small square region

synthesis; among other things, it means that many interesting e�ects escape notice
because they fall between the mapper's snapshots. One obvious solution to the
inadequate-resolution problem | to tilt the pendulum even further back and slow
everything down | was not pursued because of a design parameter that limited
long-term use in that position11. Incidentally, if the range and step for 
 are
such that those snapshots occur at integer multiples of the natural frequency (i.e.,

 = 4 instead of 5 here), and the drive amplitude is high enough to overcome
the damping, the pendulum spins madly and the mapper never �nds anything
besides periodic running solutions. Perfect Moment has no way to recognize or
recover from this pathological combination of inputs. In light of the prediction
that virtually every parameter step will set o� a bifurcation, the same ends could
have been accomplished more quickly if �
 = 2:5 and Di = 1 were speci�ed and
the dynamics classi�cation scheme were turned o�. The rationale behind the small
m-value is that the bifurcations will be so sweeping and easy-to-recognize that a
coarse discretization will be adequate for recognition. The successes and failures
of the combination of these various choices are discussed later in this section.

The mapper constructed six portraits, described here in the order in which
they were produced. The classi�cations and the true dynamics, if di�erent, are
described after each 
-value. All � values are mod 2�.

Depth 
 Classi�cation True Dynamics

1 0 fixed cell

1 5 sink-cell running oscillation (periodic one-cycle) with

(�; !) � (:53�; �3:64) on the Poincar�e section

2 2.5 unknown running oscillation (periodic one-cycle) with

(�; !) � (0; �1:83) on the Poincar�e section

1 10 sink-cell running oscillation (periodic one-cycle) with

(�; !) � (:50�; 7:30) on the Poincar�e section

1 15 sink-cell quasiperiodic orbit; see �gure 7.24.

1 20 sink-cell chaotic attractor.

The mapper did not do very well here. The main cause of this failure is the
limited region size; the cells are small enough to allow adequate classi�cation, but
the attractors leak over the boundaries. The intent of this example is to design
an adequate controller, not to demonstrate the mapper's capabilities; the latter is
emphasized in the other two examples in this chapter. All of these classi�cations
could be improved with the investment of more computer time (via larger R and
m.) In fact, that was how the \actual dynamics" data in the right hand column
above were generated.

11I used radial-load bearings, not thrust or angular-contact bearings.
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Figure 7.25: Portraits for 
 = (a) 5 (b) 7.5 (c) 15

Figure 7.26: The segmented path: (a) the core segment (b) the second-pass search
region (c) the second segment

Three of the portraits | at 
 = 5; 7:5 and 15 | contained trajectories that
touch the cell containing A and the cell containing B. See �gure 7.25. The latter
was the best of the three:

(segment found:

#(-1.57 -15)

#(-2.8082638490023566 -.4785929790001656)

15

#(0 -22.5) #(6.283185308 7.5)

#[compound ... ]

#[compound ... ])

This segment, part of the origin trajectory �t(o), is plotted in part (a) of �gure 7.26.
The path did not pass the tolerance check, as its endpoint did not fall within the
speci�ed range of B, so another pass was necessary to close the (single) gap between
this core segment and the objective.

The endpoint cell was recentered around the points #(-2.808.. -.478..)

and #(-3.14 0), then divided into nine smaller cells. Here the state space is not
treated as cylindrical12; see part (b) of �gure 7.26. The variational integrations
from the new endpoint cell, tested across the parameter range, indicated a new m
of 9. The three-fold increase was due, understandably, to the highest (
 = 20)
parameter value. All trajectories exited this small region and were classi�ed as
sink-cell, so the mapper never reduced 
 and produced �ve equally-spaced plots.

The segment returned by the second mapping/search pass, found on the 
 = 0
portrait and shown in part (c) of �gure 7.26, brings the path into the local-linear
controller's range, so no further iterations were required. The total path is shown
in �gure 7.27.

The physical interpretation of this path is interesting; the controller jerks the
drive arm hard enough to get the pendulum upstream from the destination, then
turns o� the control (
 = 0) and lets the device coast into the linear controller's
clutches. The linear controller performs a complex, continuously-varying control

12unless the search fails

Figure 7.27: The controlled trajectory
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Figure 7.28: A controlled trajectory requiring less torque and more time. Perfect

Moment was given a more limited frequency range and was forced to explore more

subtle solutions. This trajectory \pumps" up from the initial condition over sev-

eral cycles, attaining the control destination using one ninth the torque used in

�gure 7.27 | but over 45 times slower. A linear controller, allowed this amount

of torque, would not be able to reach the destination

action, based on the system's evolving behavior, while Perfect Moment works with
a single discrete switch. Conversely, the former can adapt to unforeseen behavior
more readily.

If the local-linear controller were to attempt this task, the peak required torque
be � 130 normalized units. Perfect Moment's maximum requirement is a fair bit
more than this | on the order of 
2, or 225. In other words, if minimizing the
maximumtorque required from the controller is the criterion for success, the classic
linear control wins in this case.

This comparison, however, is unfair. If the torque is limited to a value lower

than 130 units, the linear controller will fail, but Perfect Moment can still succeed.
The trajectory shown in �gure 7.28 is the result of a run that is identical except
for the parameter range [0 10] and step �
 = 2:5 (both halved.) Here, Perfect
Moment \pumps" the trajectory up from the origin using 
 = 3:5 | � 12 units of
maximum torque. It makes one small correction at the end of this process, using a
slightly higher (
 = 5) frequency to reach the linear controller's domain after 6.05
normalized time units. Allowed this amount of torque, a linear controller would
lift the pendulum up to an angle � (mg sin� = 25, modulo normalizations) and
then hold it there, unable to go higher. Incidentally, Perfect Moment only turned
the drive to 
 = 5 for the last 13% of the time.

The �rst set of parameter values subtly and e�ectively torpedoed the program
by causing it to search for a fast, brute-force reference trajectory | a task that
it is not very good at because of its quick-and-dirty approach to optimization13.
The tighter requirements in the second run forced the program to retrench and
�nd a roundabout trajectory that �nessed the control objectives. The program
would have selected this trajectory to begin with if (1) the original iteration depth
had been three instead of two on the �rst run and (2) the rough-cut optimization
function minimized closest approach distance instead of state-space pathlength.

The main conceptual di�erences between this section and the previous one all
stem from the pendulum's nonautonomous nature. The practical di�erences give
the example a di�erent feel; choices are no longer antiseptic and mathematical,
but driven | and limited | by real engineering constraints.

13Optimization clearly plays a more important role when the grain of the search space is

excessively rough.
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Figure 7.29: Phase-locked loop block diagram

7.3 The Phase-Locked Loop

A phase-locked loop (PLL) is an electronic circuit that tracks the frequency and
phase of an input signal. In one particular class of these circuits, the di�erential
equations that describe the evolution of the locking process are identical, within
coe�cient values, to equation (7.2). Inputs and implementation can be analog or
digital; many PLLs contain a mix of both types of components. The heart of the
circuit's feedback loop is a variable oscillator (VCO.) A phase detector (PD) | the
main source of the nonlinearity and of the harmonics that necessitate the �lter |
compares the VCO's output to the input signal and uses the di�erence to adjust
the VCO's phase and frequency so as to drive (�o � �ref ) to zero. Figure 7.29
shows a block diagram of a simple PLL. Loop compensation is lumped into F(s) in
this �gure as well. Once a PLL is locked to a signal, changes in frequency can be
tracked over some lock range. Initial lock can be acquired over a smaller capture
range. The range of applications of such circuits is limited only by the imagination
of the user; some of the more common are as frequency synthesizers, tracking �lters
and signal modulators and demodulators.

A digital PLL can be as simple as an XOR gate phase detector feeding a dressed-
up counter VCO. An S-R latch is a somewhat better PD, a pair of D ipops better
still. A virtually endless collection of ipops and gates can be tacked on until
the circuit's timing and state are completely customized. The VCO can be a
divided-down clock with a variable divisor or an autonomous oscillator. Design
strategies depend on requirements; a crystal oscillator, for example, is stable but
has a limited range. Digital PDs and VCOs can even be used in analog PLLs,
if accompanied by good �lters to smooth out the square corners and perhaps an
accumulator or charge pump to convert pulse trains to DC levels.

Analog phase detection circuits are much more subtle. Multipliers are an ob-
vious solution; multiplying the two sinusoids vR = a sin!0t and vo = b sin(!0t+�)
gives

vRvo =
ab

2
[cos�� cos(2!0t+ �)] (7.9)

A low-pass �lter with an appropriate cuto� frequency is typically used to �lter out
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Figure 7.30: Time and frequency response of sample-and-hold: !0 =
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the second harmonic, leaving only the cos � term. Another type of analog phase
detector uses sampling: vR is strobed at the VCO's frequency. After the math is
chased through, the equation contains a similar DC term14 and all of the higher
harmonics of the VCO frequency. Sample-and-hold circuits are sometimes used as
�lters in sampled PDs; if the hold time and sampling frequency are set up correctly,
the S&H has zero gain at all of the troublesome harmonics. See �gure 7.30 and
the derivations later in this section. Filter designs can be found in handbooks, but
designing around the linearity, switching speed and stability problems associated
with multipliers, samplers, and sample-and-holds requires real creativity and skill.

PLL designers almost invariably linearize around the phase-locked state, which
makes �gure 7.29 look like �gure 7.31. The VCO converts a phase to a frequency,
so its transfer function is:

d�

dt
= KvV (t)

�

V (s)
=
Kv

s
(7.10)

The Ks are the PD and VCO gains near the \locked" operating point. One can
plug various kinds of inputs (step change in phase, steady ramp in frequency, etc)

14cos(� +  ) instead of the cos � term in equation 7.9, where  relates input and VCO

frequencies
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Figure 7.32: Lock and capture ranges

into this model, determine the loop's response and adjust F(s) to modify that
behavior, much like the adjustment of closed-loop poles discussed in section 3.3.
Samplers can be particularly hard to compensate, as the phase shift of a pure time
delay is negative and increases linearly with frequency.

The capture and lock ranges depend in a complicated way on the global, non-
linear properties of the loop, particularly those of the nonlinear phase detector.
These ranges de�ne rectangular regions on the system's state space (whose axes
are VCO input voltage and the phase di�erence (�o � �i).) See �gure 7.32. The
points on the y-axis (zero phase di�erence) are locked states. The vertical value
for each is the di�erence between that individual input frequency and the VCO's
free-running frequency; the point at the origin represents a PLL being driven at
the natural frequency of its VCO. The o�-axis point 
 is outside the capture range.
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Figure 7.33: Sampled phase modulator

Note that its frequency is the same as that of the top \locked" point; the latter
must have started out inside the capture range.

The lock range can be estimated by testing the linearized model on a frequency
ramp input. If the loop is in lock but straining, the cos � term in the VCO's
input (KvKp cos �, assuming a slow ramp in frequency) approaches one, so the
lock range is roughly equal to the DC forward path gain KvKp. The capture range
is smaller: when the loop is out of lock, the di�erence voltage is beyond the �lter's
cuto� frequency and the loop has little or no leverage. Calculations for higher-
order PLLs are made more di�cult by poles at the origin and other mathematical
problems[74].

When linearization fails, descriptions are vague and analysis becomes ad hoc

and/or numerical: \A general expression for loop capture range is not available as
the system is highly nonlinear."[74]. The exact form of the calculations depend on
the dynamics of the phase detector.

Improving the capture range of a phase-locked loop is a global, nonlinear prob-
lem, an ideal test case for Perfect Moment. This application has several other
attractive features: circuits are much easier to build and modify than machined
metal objects (or low-temperature semiconductors | Josephson junctions are the
other widely-studied variation on this system of equations[8].) Also, gathering
data from a 3000 Hz PLL is far faster than studying a 0.5 Hz pendulum. These
tradeo�s have led some authors, notably [27], to use PLLs in studies of pendulums.

A block diagram of the sampled PLL circuit that is actually used for the sim-
ulations in [27] is shown in �gure 7.33. The main di�erence between this picture
and �gure 7.29 is the extra input vE. This circuit is a phase modulator: if the
input phase �R is constant, the output phase �O is proportional to the derivative
of the modulating signal vE, at least in the linear regime15. Without the driving
term, incidentally, the equations are second-order, autonomous, and not chaotic.
The sampled input, VR sin(!R�n + �0), and the perturbation, vE, are routed to a

15Demodulation is even more straightforward: if a PLL is locked to a carrier signal, the VCO

input voltage reects changes in the carrier frequency.
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�rst-order opamp RC �lter. The di�erential equation for the VCO's input is

C
dv

dt
+
v

R
+
VR
RS

sin(!R�n + �0) = � vE

RE

(7.11)

where R and C set the �lter's pole and the �lter input voltages appear across RS

and RE (the schematic is given in appendix B.) Substituting from equation (7.10)
and recognizing that, because the sampler �res at the zero crossings of vO, the
sampled phase (!R�n + �0) is the same as � gives

C

Kv

d2�

dt2
+

1

KvR

d�

dt
+
VR

RS

sin � = � vE

RE

(7.12)

This derivation follows [27] and contains several strong simpli�cations; for example,
the inuence of gravity on the pendulum is continuous, while the circuit only
samples the reference voltage discretely. These simpli�cations result in di�erences
between the system and the model and all the attendant di�culties of those errors.
Appendix B covers this development in more detail.

Comparing equations (7.12) and (7.2), one can identify interesting physical
analogies between electrical and mechanical quantities. The c sin � term, for exam-
ple, is due to gravity (via the pendulum's restoring torque) in equation (7.2) and
due to the PLL's reference input vR in equation (7.12). Damping and resistors are
similarly related, as are momentum and capacitors. The voltage vE corresponds
to the external torque T (t) applied to the pendulum. Once again, the equations
are normalized to

_� = !

_! =  � sin � �B! (7.13)

identical to equation (7.2), but of course with di�erent values for B; , etc. See
appendix B for a table of coe�cient correspondences between the phase-locked
loop and the pendulum.

Though the physical interpretation is slightly di�erent, the behavior of the
system is, of course, identical to that of the pendulum. If the loop is locked to
some reference frequency and the external drive kicks in, the circuit recovers |
in the sense that it remains locked to VR despite the external disturbance | for
small-energy drives. It loses lock, almost always in a spectacularly chaotic fashion,
for higher modulation amplitudes and frequencies.

A group at Berkeley is also exploring how to exploit nonlinear dynamics knowl-
edge | and chaos itself | to improve the design and application of phase-locked
loops. For example, lock range can be maximized by picking the best point in a
stable basin whose (fractal) boundaries have been predetermined by a bifurcation
analysis[12]. More recently, synchronization to a chaotic signal has been explored
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for use in secure communications[23, 35]. This technique uses three coupled digital

PLLs, two to transmit the chaotic signal and one to receive it16.

Perfect Moment uses chaos to broaden the capture range of the circuit. The
general idea is as follows: the program is presented with an input frequency 
x

that is inside the lock range and outside the capture range: 
capture � 
x � 
lock.
It manipulates the frequency of the phase-modulating input vE(t) to �nd a value

f that, in conjunction with the input 
x, creates a chaotic attractor that overlaps
the capture range limits of the inner rectangle in �gure 7.32. Whenever the input
reference frequency 
x is detected, the loop is modulated at the predetermined
frequency 
f until the system enters the rectangle. The drive is then immediately
turned o�, letting the circuit's original dynamics lock on to the signal. This type
of strange attractor bridge, if it exists, e�ectively expands the circuit's capture
range to include the entire lock range.

This scheme is robust with respect to state-space noise17 because of the shad-
owing lemma. It does, however, have several potential drawbacks:

1. the time to achieve lock is e�ectively unpredictable in a particular case,
though a stochastic average can be computed

2. parameter or modeling errors, if made near a parameter-space bifurcation
boundary, have serious implications because they can cause the critical chaotic
attractor to vanish

3. 
x must be known ahead of time and be detectable in real time

The �rst item is identical to the targeting problems in [59, 69], discussed in sec-
tions 3.4 and 7.1 and demonstrated in �gure 7.4. From an engineering standpoint,
this unpredictability is bearable: even if the worst-case time to achieve lock is long,
the average time | essentially the ratio of the area of the capture range to that
of the chaotic attractor | is reasonable. Moreover, the alternatives are in�nitely
long; recall that this frequency was outside the capture range. Rough solutions
to the second and third drawbacks on this list could be obtained by widening the
speci�cations and customizing the optimization functions. These functions could
be programmed to use the dynamics classi�cation information | that the map-
per has computed anyway | to avoid chaotic attractors that are near bifurcation
boundaries. One could direct the program to look for attractors that overlap a
large state-space region around the objective, not just the endpoint cell. This
type of extensive hand crafting was really not the point of this thesis and is not
pursued here. Applying the techniques described here to a real PLL, rather than

16
Synchronization between two systems linked by a chaotic signal was originally introduced by

Pecora and Carroll[61].
17
within the attractor's basin, of course
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a simulation of one, will certainly require these problems to be worked out; the
issues involved in doing so will probably fall more into the realm of circuit design
than the development of programs that use domain knowledge to autonomously
do interesting design tasks. See section 7.4.

The PLL is similar to the pendulum in that it is nonautonomous. It is di�erent
in that the classi�cation accuracy is critical. These issues are reected in the choice
of inputs for the example that is presented in the remainder of this section. This
usage is also di�erent in spirit from the paths described in the previous example,
as the control objective is a wide range and not a single point (\point to region
steering.")

The target region is easy to characterize in this example: it is simply the
original capture range. Two important modi�cations were used in the mapping
process. The ten-orbit limit was extended to several thousand orbits and the
mapper worked only with Poincar�e sections. The former was motivated by the
importance of making the right classi�cation decision; the latter was an attempt
to take less than a month to do so. The longer integrations are not the only
source of added complexity. R0 and m were also chosen very large to enhance the
classi�cation.

Most of the other input choices were guided by experimental constraints. The
circuit of [27] was used as a model, so the published resistor and capacitor values
give the parameter ranges and the ratios which relate them to the coe�cients in
equation (7.4). The frequency was again chosen as the control parameter, but the
amplitude could easily have been used instead, in contrast to the previous example.
Designers being what they are, it is fairly safe to assume that the input frequency is
pushing the limits of the loop, so the modulating input should not be much higher.
This motivates a parameter range choice of [0.1 1.5]. The drive amplitude was then
chosen high enough to set o� a variety of interesting dynamics in this range. The
step was 0.4 and the iteration depth was 3, combining for a minimum parameter
step of 0.1. The optimization function simply applied touches-in-order? to
the trajectory and the tiebreaker function computed and maximized the fractal
dimension within the cells that cover the capture range.

The mapper constructed and classi�ed the following portraits, in this order:
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Figure 7.34: Chaotic phase-locked loop attractors at various drive frequencies

Depth 
 Classi�cation Interpretation

1 .1 periodic period-one

1 .5 chaotic touches the capture range

2 .3 chaotic far above the capture range
3 .2 periodic period-one

3 .4 periodic period-one

1 .9 periodic period-one
2 .7 chaotic touches the capture range

3 .8 chaotic below capture range

1 1.2 periodic period-one
1 1.5 periodic period-one

Note that the chaotic and periodic zones are interleaved on the parameter
space. The four chaotic attractors are shown on �gure 7.34. The axes are the
same as �gure 7.32, but the cylinder is unrolled di�erently | the horizontal axis
is [0, 2�]. The various periodic orbits would appear as points on these sections.
The 0.3 attractor is qualitatively di�erent from the other three; the latter can be
deformed smoothly into one another. Because of the periodic regime at 0.4, it can
be inferred that the system underwent at least two bifurcations as the frequency
was raised from 0.3 to 0.5. Note that Perfect Moment only found this periodic
window because the 0.3 attractor did not touch the capture range and the 0.5
attractor did; the cause of this was the large, bifurcation-induced change in the
attractor's area. This discernment on the program's part is a good sign: it indicates
that the dynamics classi�cation algorithm may be better at �nding hidden features
than was predicted on page 59.

The search region parameters and the longer integrations did succeed in making
the classi�cations very accurate, but they also made the run very slow. Each
invocation takes most of a weekend to run.

The capture range is enclosed in the two half-rectangles at the crossing points
of the axis lines on the �gure; their range on the VCO-voltage axis is 2 normalized
units, about one-twelth of the vertical range of the graph. The 
 = :5 and 
 = :7
attractors both touched these ranges. Perfect Moment chose the former because
the fractal dimension in the destination endpoint cell | split in half on this plot
| was larger. Note that this metric also rules out transients and periodic orbits.
Incidentally, the tiebreaker function performed almost all of the work, as the �rst
test was simplistic and almost all trajectories passed. No tolerance checking or
additional segments were required. The former was programmed into the opti-
mization function. The latter are moot because the problem was not set up that
way: this example, in direct contrast to the pendulum, exercises the mapper to
the exclusion of the path �nder.
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This development is by no means a universal solution to phase-locked loop
design. The capture range is only reachable if a chaotic attractor that covers the
appropriate area can be found for a particular reference frequency. Moreover, the
initial condition must lie in the basin of that attractor. Success depends on the
value chosen for the drive amplitude as well; a two-dimensional parameter-space
search would certainly be better, but is not implemented here | see section 8.2.

7.4 Summary and Applications to Reality

Controlling the Lorenz system is unrealistic for a variety of reasons, foremost of
which is �nding one: no known physical system is exactly modeled by equations
(7.1). The actuator that varies r is less of a problem than it would appear because
of recent advances in research on electrorheological uids, whose viscosity responds
to an applied voltage. These uids are used in electrically-controlled shock ab-
sorbers and computer-controlled exercise equipment; some respond as quickly as 1
millisecond, but require several thousand volts of drive18. Experimental computa-
tion of the Jacobian and sensitivity derivatives in this system would be made less
di�cult by its continuous/PDE nature, which makes it more likely that the partic-
ular state that the program wishes to recreate, vary and observe exists somewhere

in the uid. Note that a large-enough error will destroy the targeting improvement
between �gure 7.14 and �gure 7.4 but will not destroy the overall control. The
scheme is then reduced to that of [59] | interesting regardless, but nothing new.
This sensitivity does not hold for the �xed point of section 7.1.2, where the gains
should be much more immune to perturbations. All problems aside, this example
is a classic and interesting paradigm in the �eld. It exhibits all of the properties
that Perfect Moment is designed to exploit and presents none of the state-variable
associated di�culties discussed in the last paragraph of section 4.2.2.

From a practical point of view, the other two examples in this chapter have
more practical potential and value, but also present several practical di�culties,
many of which could be addressed by the extensions of the junction controller that
are presented at the end of section 6.1.

The pendulum's main problem is the slop in the drive system: the controller
board's inaccuracy, the motor's dynamics (coast-down, overshoot, etc) and the
backlash in the linkage (the gap between the cam follower and the slot in which it
runs, etc.) Among other things, these problemsmay invalidate the assumption that
the control parameter can be controlled to high accuracy (though it can change
much faster than the the system's time scales.) Modeling is, of course, an issue: I
dropped the motor one day, one of the gear teeth broke, the rotational motion was
no longer smooth, causing a visible change in the system's dynamics. Similarly,

18I am indebted to Karon Maclean, John Morrell and Erik Vaaler for this information.
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the (unshielded) bearings acquired foreign matter over the course of a year or two
and the pendulum's Q decreased noticeably. In fact, the assumption that the
damping is linear and viscous may well be inaccurate; the o�set-linear damping in
the bearings is probably much larger than the air friction, so equation 7.2 would
be a better model if the �v (�l _�) term were replaced by �0+�1v (�0 � �2.) These
various structural and parametric uncertainties | and their potentially-sweeping
e�ects | raise serious doubts about Perfect Moment's ability to respond to changes
in a target system. In this system, recreating state-space points and determining
the derivatives experimentally is not di�cult at all, as the reference trajectory
grows forward from the control origin and each junction is a priori reachable.

The phase-locked loop has all of these problems, but in mitigated form. Elec-
tronic technology is more accurate than mechanical technology and no transduc-
tion between the two realms is necessary to communicate with a computer. Also,
circuits don't change over time and environment quite as quickly as mechanical
devices, thanks in part to decades of milspecs. This is particularly true of digital
circuitry; a digital version of this phase-locked loop circuit would perhaps be a bet-
ter test case for Perfect Moment because the modeling problems that it presents
are less severe. The circuit's speed may pose a problem that is absent in the
pendulum: the ratio of computer response time to device time constant is much
smaller. Experimental derivative computations would not present serious prob-
lems in this application: for the same reason described at the end of the previous
paragraph and because only one segment | a strange attractor at that, where
shadowing renders the issue all but moot | is used. This circuit was constructed,
but never demonstrated the advertized behavior, at least partially due to errors
in the schematic in [27]. Once again, this drives home the sensitivity issue. If the
circuit is chaotic for one resistor value and periodic when the value is 2% higher
| let alone if one semiconductor is replaced by another | transferring all of the
sterile mathematics involved in Perfect Moment's gains to real systems is likely to
be a di�cult task.

The recurring theme here is nonlinear error ampli�cation: in parameter, state,
or model. These problems are inherent and fundamental. Paradoxically, nonlin-
earity and sensitivity that cause these problems are the very sources of Perfect
Moment's power, so solving them is very much worth whatever brain, computer
and hardware e�ort it requires. Some possible solutions to these problems are
proposed in the next chapter.
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Chapter 8

Caveats, Lessons Learned, and

Future Directions

A wide variety of shortcomings and problems are obvious in these algorithms.
Some arise from the inherent properties of nonlinearity and are truly intractable.
Problems of this form place fundamental restrictions on the domain and perfor-
mance of the program and are discussed at the beginning of section 8.1. Problems
that appear di�cult but whose solutions probably only require more knowledge
than the author possesses appear at the end of that section.

A long list of solutions to Perfect Moment's distributed shortsightedness and
various failure modes arose while this thesis was being written; a distilled and
interpreted version of this list appears in section 8.2. Much of the discussion therein
extends and generalizes the short, low-level suggestions that appear throughout
this thesis, each in conjunction with the description of the algorithm step in which
it arises.

8.1 Hard Problems

For these algorithms to work, the system state must be observable. If state vari-
ables are not directly accessible and information about the system state cannot be
synthesized from outputs and other accessible signals (via \observers" | dynam-
ical systems whose state variables are estimates of the state variables of another
system[20, 32]), the system cannot be controlled using this | or any other |
approach.

Secondly, if no known control scheme, linear or nonlinear, can stabilize the
system in a satisfactory manner in the tolerance region surrounding the destination,
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all of the machinery described in this thesis is moot1.

Though the control parameters add dimensions to the space that can open
conduits between previously-unreachable regions, some destinations may still be
unreachable. The following rules describe Perfect Moment's reachability condi-
tions:

1. A valid attractor touches the destination and the origin is in its basin

2. The origin and destination are both in the same basin and the latter is near
the trajectory from the origin to the attractor

The following recursive extensions make this applicable to multi-segment
paths:

3. The origin is in the basin of an attractor that has at least one point that
satis�es condition 1 (i.e., it is in the basin of another valid attractor, at a
di�erent parameter value, that touches the destination)

4. The origin is in the basin of an attractor that has at least one point that
satis�es condition 2

ad in�nitum

Whether or not Perfect Moment actually �nds the trajectories described by
items 2 and 4 in this list depends on the initial conditions | via R; m, and the
rules that manipulate them | as well as on the nonlinear dynamics. Note that
the higher the dimension of the attractor, the higher the probability that one of
these four conditions will be satis�ed.

As discussed in chapter 6, small control tolerances are fundamentally unachiev-
able in the face of large Lyapunov exponents, inaccurate computer arithmetic, slow
I/O or bad models. Slight timing or parameter value errors (e.g., quantization er-
ror) can be magni�ed exponentially, particularly if they occur at the beginning of
a long segment or in a state-space region where either the vector �eld or the sen-
sitivity derivative is large or is changing rapidly. This task is currently left to the
junction controller, but could also be addressed in the planning algorithm. One
could program these ideas into the optimization functions, forcing the program to
choose paths in tamer areas. However, this modi�cation would negate one of Per-
fect Moment's primary goals: the active use of those less-tame areas. The search
algorithm could also be altered to create paths with shorter segments, forcing the
junction controller into a larger role, but this approach would subvert the plan-
ning philosophy that allows Perfect Moment to make counterintuitive moves and
use short path segments to reach long, useful ones. In the limit where the ranges

1only because the goal state cannot be sustained, not because the program cannot �nd a path

that gets there.
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touch, incidentally, this forced use of shorter segments would reduce to Kalman's
local-view-of-the-world scheme. One obvious solution to modeling problems is to
gather data from systems and not simulations of systems. Experimental error,
however, limits resolution and accuracy and can undermine any gains that might
be obtained in this fashion.

The program currently handles systems that have a single control parameter.
As mentioned in section 2.3, the coding involved in the generalization of this would
be easy, but a higher-dimensional parameter space would slow the mapping and
search processes and might make the mathematics somewhat di�erent. Many of the
structure theorems in nonlinear dynamics, for example, depend on dimension, and
an additional, dynamically-varying control parameter increases the dimension of
both the system and the search space. The number of control parameters typically
plays a critical role in controllability calculations. In [59], for example, the number
of control parameters required to assure controllability is equal to the number of
unstable eigenvalues of the unstable periodic orbit to be stabilized. I have not
investigated computation of these kinds of results for Perfect Moment.

The problem in the previous paragraph is a speci�c instance of a general lack of
mathematical rigor. The design rules that manage the coarseness of the mapping
and search make it impossible to prove many truly global and general results about
what types of systems are particularly receptive or inimical to Perfect Moment's
approach, whether or not the paths that it �nds are optimal, how long a given run
will take, etc. Despite these problems with rigorous, satisfying mathematics |
or perhaps because of the back-of-the-envelope engineering assumptions that are
the underlying cause| this program, even in its current rough state, is a practical
design tool.

8.2 Easier Problems

Many of the problems that were raised in the text could be solved with better inte-
grations (longer; smaller timestep) and more generous bounds and design choices
(e.g., more than �ve orbits to establish a periodic orbit.) The dynamics would be
truer to the system, the classi�cations thereof would be better, locations of bifur-
cations would be more precisely explored, etc etc. All of these a�ect how close the
path found by the program is to the true optimum, but all are computationally
expensive | some exponentially so. The current choices de�ne a particular bal-
ance of this tradeo�; di�erent design requirements (e.g., control of something like
a nuclear plant, where reliability and optimality are truly worth months of CPU
time) would dictate a di�erent set of choices.

Even with these approximations, Perfect Moment is slow: a typical run takes
several hours on a state-of-the-art RISC workstation. Real-time control was not
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Series Machine Time

HP 7000/900 720 0.07517 sec
HP 350 0.77640 sec

HP 375 0.25720 sec
Toolkit 0.11708 sec

Table 8.1: Comparisons of a 5000-step integration of the driven pendulum equa-
tions (interpreted, unoptimized Scheme code) on several di�erent computing plat-
forms

a goal of this thesis. The program is intended to �nd paths that will be followed
many times or paths that are particularly important. For these reasons, only one
round of serious e�ort was devoted to improving the speed. The mapping task
was ported2 to the Supercomputer Toolkit[2], without much success; see table 8.1
for comparisons to Hewlett-Packard series-300 and series-700 workstations. Of the
three types of machines, the latter performed the fastest. The Toolkit is better at
longer integrations that require fewer interventions, as communication and setup
are expensive, and Perfect Moment's tasks are too small and interactive to use it
e�ciently. The obvious next steps are to tighten up the code, use memory more
e�ciently, rewrite the entire program in a faster language than Scheme, and/or
port it to a parallel computer. The obvious opportunities for parallelization are
the cell-level concurrency in each mapping pass and the 2n branches on the tree of
path-�nder calls.

A rich and interesting area for improvement is the nonlinear dynamics knowl-
edge that the program encodes. For example, basin boundaries could be identi�ed
and used to limit mapping and search, or even to establish or rule out the reach-
ability of a particular point. A related scheme is discussed in [85], where basin
boundaries are used to group trajectories into equivalence classes, drastically re-
ducing the number of data objects that must be manipulated and tested during the
course of a search. One could also improve Perfect Moment's IQ by adding to or
modifying the entries in the table of conditions that govern when the inter-portrait
parameter spacing is reduced (page 57,) perhaps taking into account the reacha-
bility conditions on page 132. One could also allow the amount of that reduction
to adapt to the dynamics in some useful way, rather than its current binary search
division.

Perfect Moment's knowledge about control theory could also be vastly im-
proved. For example, no attempt is made here to use variations and sensitivity
derivatives to search between existing trajectories and portraits and �nd the true
optimum. The information that the mapper constructs is simply a rough cut at a

2The adaptive Runge-Kutta integrator for the Toolkit was written by Sasha Ferguson.
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representative sampling of the state and parameter spaces. This choice is an engi-
neering design tradeo�. Currently, if one wants a better optimum, one must specify
a �ner resolution: via m; �k; and Di. A powerful and useful modi�cation would
be to allow extrapolation in the state or parameter range between two trajectories
that straddle an objective. Such a scheme would require that the tiebreaker func-
tions be more intelligent (perhaps manipulating the metric di�erently,) that the
mapper perform some extra analysis, and that a slight change in the control ow
of the program be made to allow the extra levels of interaction between the path
�nder and the mapper that would be necessary for the extrapolation.

Parameter changes are not assumed to be small | in direct contrast to many
classical techniques (and [59]) that judge success at least partially according to the
size of the control parameter variation required to attain the objectives. In some
sense, all that really matters is the energy delivered by the controller. With the
same control-ow modi�cation suggested in the previous paragraph, a minimum-
energy constraint could be programmed into the optimality procedures, but it
might severely restrict the program's available choices. More intelligent programmed
constraints could also address the issue of speed of parameter changes. Currently,
if the actuator cannot respond quickly enough, the reference trajectory overshoots
the segment junction and exceeds the linear controller's range. Smaller �ks would
reduce this problem and could also be encouraged by appropriate weights in the
optimization functions.

A potentially-serious problem is hidden in the pendulum example. For the local
controller to work when the pendulum arrives at the inverted point, the segmented
path must leave the drive arm in the right place. Fortunately, the \right place"
is a large region. The best places to leave it are at ��

2
, where the motor has

the most leverage. The only places where control will fail completely are at the
ends of the range, where the local-linear controller has no leverage at all if the
pendulum starts to fall the wrong way. The global-scale solution to this problem
is very interesting: one could make the tolerance check a user-speci�ed Scheme
function as well (i.e., a path only meets tolerance if it ends near the destination
and some condition on the drive phase is satis�ed.) Note that this problem cannot
just be solved by a better optimization function, as this condition only applies at
the control destination and not at the partial path endpoints. Note, too, that none
of these techniques would be possible if procedures could not be passed around as
�rst-class procedure objects.

Finally, improvements are possible in the techniques herein that are tradi-
tionally de�ned as part of AI. The search could be organized better, perhaps by
presorting the trajectories according to region; the multiple-scales algorithm would
bene�t from better organization as well. Rather than the interstate highway route-
planning paradigm, with one long segment and a tree of recursively-constructed
shorter segments that connect to it, a di�erent planning algorithm could be used.
One could perform the standard trick and split the problem into two subproblems,

135



aiming instead for a point between the origin and the destination, and derive the
standard O(n log n) performance gain. Each time the path is split, a choice would
have to be made about the location of the halfway point; traditionally, the mid-
point of the segment joining the two endpoints is chosen. Like the modi�cation
of the optimization function to avoid bifurcation regions, this modi�cation would
conict with Perfect Moment's original goals: it would con�ne its choices and re-
strict its use of any interesting and useful dynamics that lie away from this path.
This conict could be partially circumvented by reintroducing the physics into the
process, using nonlinear dynamics and partial path results to guide the choice of
the halfway point. In the limit, this approach would produce an odd amalgam:
a piecewise nonlinear control scheme. Another | related | planning algorithm
would be to intersect all of the trajectories on a set of portraits and determine if
any combination would be better than the single long segment that is currently
sought out and used.
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Chapter 9

Conclusion

In the most general terms, the implications of this research are that:

� A broader view and understanding of chaotic state-space features and the
e�ects of parameters upon these features is a powerful tool, but its application
requires great computational e�ort

� Understood and controlled, chaotic behavior can be pro�tably used to im-
prove a system's design and performance

These observations are encouraging, considering that much of nature | hence
most of the systems that people consider interesting, useful and in need of control
| is chaotic.

Domain knowledge is to an AI program as education and prejudices are to a
human: the fundamental guiding principles behind its behavior. Perfect Moment

extends beyond the set of accepted design precepts and techniques of traditional
nonlinear control in that it not only allows but actually encourages chaos. This
concept, perhaps more than the individual results in chapter 7 or the algorithms
in chapters 4, 5 and 6, is the truly novel contribution of this thesis.

A chaotic system's behavior, and thus its state-space features, are strongly
a�ected by parameter values. Moreover, the trajectories that make up those fea-
tures separate exponentially over time. Small changes in parameters or in state
can thus have large and rapid e�ects; this leverage can be a powerful tool for a
control algorithm. This thesis is a detailed description and demonstration of how
fast and accurate computation can be used to synthesize paths through a chaotic
system's state space that exploit this leverage to accomplish otherwise-impossible
control tasks. Nonlinear dynamics provides the mathematical tools used by these
algorithms to choose values, tolerances, heuristics and limits for the selection and
synthesis of trajectory segments into segmented reference trajectories. Perfect Mo-
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ment can �nd trajectories that are shorter and faster than those found by tradi-
tional control methods, make unreachable control objectives reachable and improve
convergence. It does so by constructing strange attractor bridges, making counter-
intuitive moves, and utilizing regions of sensitive dependence. This performance
gain does, of course, have a cost: the complexity of the tasks that are executed
by the program and the accuracy demanded by the very sensitivity that gives the
program its power make computation speed a vital issue. Perfect Moment does
not always outperform classical linear and nonlinear control techniques. In fact,
the program sometimes fails to �nd a path at all in a problem that is easily solved
by the standard techniques. The converse is also true, however, making this type
of technique a useful addition to the arsenal of control techniques.

The examples presented here demonstrate a variety of interesting uses of non-
linear and chaotic behavior:

� Targeting: a small control action at the \perfect moment" can accurately
direct a trajectory to a distant state-space objective

� The program's planning algorithms allow it to synthesize reference trajecto-
ries that exploit both global and local dynamics (e.g., counterintuitivemoves,
pumping up the pendulum with a small torque, etc)

� The fractal dimension of a chaotic attractor can improve reachability and the
unstable orbits embedded densely in such attractors can be located, targeted
and stabilized

� Strange attractor bridges can allow trajectories to cross basin boundaries or
other previously-insurmountable obstacles, improving both local and global
convergence

This approach can be thought of as a new avor of adaptive control | one
that takes a global viewpoint and eschews almost all linearization. It extends
the active use of chaos in control, which is currently very limited. Its AI avor
distinguishes it from classical control, particularly in its use of approximations
and simplifying assumptions to balance design time against quality of the results.
Because of these approximations, Perfect Moment has a completely di�erent set
of failure modes than traditional control methods | ones that make formal proofs
di�cult. Another signi�cant deviation from the classical control paradigm is that
parameter changes are not restricted in size here; this reects the goal of �nding
and using | on a global scale | a wide variety of interesting dynamics.

Perfect Moment uses methods from several areas of science and engineering in
its analysis of the target system and synthesis of the reference trajectory. None of
the individual methods are considered | in their own �elds | to be radically-new
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technology1, but the hybridization is very powerful. A few of the more important
paradigms that make this combination possible are:

� Programs that work with the output of other programs (e.g., the interleaved
mapper and path �nder calls)

� Combined numerical and symbolic methods (e.g., a numerical integrator op-
erating on a symbolically-di�erentiated function)

� Combined algebraic and geometric methods (e.g., the inter-step cell size re-
duction and the multiple-scales dynamics classi�cation scheme that is based
on that cell size)

� Linear control used to perform local corrections; global, high-cost control
used to do large-scale planning

� Domain knowledge from both control theory and nonlinear dynamics used to
make intelligent estimates and choices, improving both the results and the
performance of the program as it constructs those results

Several nagging problems resist even this broad-based approach: modeling, nu-
merical, and experimental errors | magni�ed by the very nonlinear ampli�cation
that give the program its power | and their e�ects on robustness. Modeling error
is particularly pernicious, as it can quickly and easily negate all the gains derived
by this program. In light of the di�culty of modeling systems to the accuracy
demanded by the nonlinear ampli�cation, this is a serious and imposing problem.

Though these programs have been successfully tested on simulated models of
several systems, the ultimate goal of this project is the control of real physical de-
vices. Versions of the driven-vertex pendulum and the phase-locked loop discussed
in chapter 7 have been constructed and are in the midst of being instrumented for
control. A double pendulum | an autonomously chaotic system wherein bifurca-
tions are a�ected by damping, the ratio of the moments of the two bobs, etc |
has also been constructed (see �gure 9.1,) but its instrumentation is much more
di�cult because of the spatial rotation of the second pivot point and is proceed-
ing more slowly2. Because of the problems outlined in section 7.4 and chapter 8,
much e�ort will be required in the areas of system identi�cation and observation
| modeling error, sensor and actuator inaccuracy due to D/A and A/D conver-
sion and time delay, etc | before the gains demonstrated in these simulations can
be fully realized in the corresponding physical systems. A �rst step along this
path, currently in process, is to obtain experimental veri�cation of the state-space

1although several, notably the algorithms at the end of section 6.2, were developed in the past

few years
2One |rather macabre | reference to controlling a double pendulum appears in the �nal

scene of Umberto Eco's novel Foucault's Pendulum (Harcourt Brace Jovanovich, 1989.)
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Figure 9.1: Photographs of the double pendulum

data given in chapter 7 using actuators, sensors, and computer I/O | rather than
Runge-Kutta | to explore the target system's behavior. In addition to its posi-
tive e�ects on modeling error, this approach would probably be much faster than
computer simulations, at least for the phase-locked loop. Experimental error, of
course, would be a problem| similar to numerical error. Beyond instrumentation,
a wealth of other improvements are possible, ranging from di�erent planning algo-
rithms, parallelization, use of di�erent properties of chaos, and perhaps to better
automation of the few initial choices required from the user. Immplementation of
these changes would cause Perfect Moment to evolve from a design assistant to the
equivalent of a very junior engineer.

The complexity of the tasks that are executed by this control program and the
accuracy with which it must perform make it extremely complex and slow. All of
this work is worth it, however; allowing a system to operate in its chaotic regimes
creates new possibilities for better designs. Faster computers might be part of the
ultimate solution, together with the understanding and algorithms gained in the
course of this research, to attaining novel and e�ective control of useful systems
via knowledge of nonlinear theory and intensive computation.
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Appendix A

How to use Perfect Moment

A.1 Setting up the run

The scenario in chapter 2 gives a good example of how to run Perfect Moment;
please read it �rst.

The �rst task is to write a system derivative procedure that takes a state n-
vector and a time n-vector and produces an n-vector of derivatives at that point:

; *parameter* plays the role of the damping

(define (variable-damping-pend state t)

(let ((theta (car state))

(omega (cadr state)))

(list omega

(* -1

(+ (* (sin theta) (+ (/ g *pendulum-length*)

(/ (* *drive-amp*

(sqr *drive-freq*)

(sin (* *drive-freq* (car t))))

*pendulum-length*)))

(* *parameter* (/ omega *pendulum-mass*)))))))

(variable-damping-pend '(1 0) '(.1 .1))

;Value 3: (0 -54.97610434078257)

See rossler in the scenario or lorenz in �gure 5.14 for other examples. The
global variable *parameter* plays a special role: it is assumed to be the (single)
control parameter.

To invoke the program, evaluate (perfect-moment). You will be asked for the
following information:
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� Origin and destination: the n-vectors representing the speci�ed and ending
points

� Optimization function: a function which computes optimality weight from a
discretized trajectory. Use shortest-path-between-two-cells or refer to
section A.2 for instructions on writing your own

� Tiebreaker function: a function which computes optimality weight from a
nondiscretized trajectory. Use minimum-sum-distance-tiebreaker or refer
to section A.2 for instructions on writing your own

� Tolerance: this is currently an n-vector of percentages (dotted with the des-
tination vector)

� Overrange factor (default = 2): use the default unless you know that the
interesting dynamics occur on a larger scale

� Initial grid division (default = 5 cells/side): this is a reasonable choice for
systems of less than four dimensions, unless you want to use the graphics

� Parameter range: this should reect your actuator's physical range

� Parameter step: this de�nes the top-level grain of the search

� Iteration depth (default = 5): choose the default unless you get impatient or
unless you don't want the program to zero in on the parameter scale.

Make sure that the combination of range, step and depth don't overextend
your actuator.

� Monitoring the run (g[raphics]/d[escriptive]/n[o]): selecting \g" can be in-
teresting and useful; it can also be very confusing, particularly if n or m is
high, and always slows the program down signi�cantly.

If \g" is chosen, the program will ask for display information; specify the two
state-variables that de�ne the projection that you wish to observe. If you do
want to watch what's going on, use a smaller m.

I rarely, if ever, use \n."

Typically, one would use the default R, a small m (e.g., 2), an iteration depth
of 2, and watch the run's graphical output. Once assured that all dynamics are in
bounds, one might then restart the run with a larger m. If truncated structures
are recognizable on the graphics screen, one would repeat the initial run with a
larger R. Recall, however, that m must be increased accordingly to preserve the
same accuracy. If the aspect ratios of the bounding boxes of the attractors and the
objectives are very di�erent, one can explicitly enter two n-vectors instead of an R
value; see section 7.1 for an example of a situation where such a choice is a good
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idea. If the structures are clearly recognizable and fully contained in the search
region, but do not set o� the dynamics classi�cation algorithm, the run requires a
larger m.

Beyond this, the next step is to change the source code or the system.

Many potentially-useful code changes can be e�ected at the top level, inside
the perfect-moment function itself. A �xed (smaller or larger) timestep, rather
than the one determined by the adaptive integrator run, can be forced in the
let statement. The length of the integration can easily be changed (the variable
points.) Often a subtle alteration in an optimization or tiebreaker function will
do the trick. Other changes can be made in the dynamics classi�cation or search
region re�nement code, via the appropriate global variable that is examined by the
functions attractor-type, refine-region and refine-intervals:

� *orbits*: the number of pattern repeats required to establish periodicity
(currently �ve)

� *transient-length*: the fraction of the trajectory that is regarded as tran-
sient (currently 0.5)

� *variation-scaling*: the scaling of the di�erence vector for purposes of
the variational integration (currently m2)

� *turbulence-threshold*: the variation threshold that determines when the
cell size is reduced (currently 1)

� *m-expansion*: the amount by which the grid size is reduced if the search
fails (currently 1.5)

Changes in the initial condition for the variational integration used to re�ne the cell
size can be made inside refine-intervals (e.g., using the origin rather than the
cell centerpoint.) See chapters 4 and 5 for more details on all of these quantities.

The last recourse is to change the target system. This requires engineering,
modeling, and programming skills. Perhaps the easiest way is to buy or build a
better actuator | with a wider range or better resolution | and adjust the range
and step accordingly. One would write a new system derivative, using *parameter*
in a di�erent coe�cient, in a physically-meaningful way. Examples are: substitut-
ing a voltage- or current-controlled electronic component for a �xed-value one,
adding a magnetic brake to a pendulum, etc. If parametric changes made to ex-
isting coe�cients still do not give Perfect Moment enough leverage to �nd a path,
structural changes may work (e.g., another input to an op amp, another sensor fed
back to the pendulum controller, etc.)

Once the path is found, you can test it on physical hardware | if implemented
and connected | simulate it, or quit the program (\h," \s" or \q," respectively.)
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A.2 Specifying di�erent optimization functions

This section presents the actual code for the optimization functions used in this
thesis.

(shortest-path-between-two-cells cells)

returns a procedure that is applied to a trajectory and returns an evaluation.
minimum-sum-distance-tiebreaker returns a function that takes a list of evaluations
and returns the best one.

(define (shortest-path-between-two-cells cells)

(define (shortest-path traj from-cell to-cell best-yet)

(let

((next-piece (rest-after-inclusive traj from-cell))

(current-count (cells-between traj from-cell to-cell)))

(if (null? next-piece) best-yet

(shortest-path

(cdr next-piece)

from-cell to-cell

(cond ((not (number? current-count)) best-yet)

((> (get-metric best-yet) current-count)

(make-evaluation current-count

next-piece

'trash))

(else best-yet))))))

(let

((from-cell (car cells))

(to-cell (cadr cells)))

(lambda (trajectory)

(if (equal? from-cell to-cell)

(make-evaluation -1

; the -1 signals that the points lie in the same square

(rest-after-inclusive trajectory from-cell)

trajectory)

(let* ((partial-eval

(shortest-path

(rest-after-inclusive trajectory from-cell)

from-cell to-cell *starting-case*))

(metric (car partial-eval))

(int-val (cadr partial-eval)))

(make-evaluation metric int-val trajectory))))))
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(define (minimum-sum-distance-tiebreaker

fcn points

low high intervals

special-points

param-value magfactor)

(define (inner set-of-evaluations current-best)

(if (null? set-of-evaluations) current-best

(let ((this-eval (car set-of-evaluations)))

(if (equal? this-eval *starting-case*)

(make-evaluation

(get-metric *starting-case*)

'no-path-found

'param-goes-here)

(let*

((min-dist-to-orig

(find-minimum-distance

(reconstitute-trajectory (get-trajectory this-eval)

special-points low high intervals

fcn points param-value magfactor)

(get-origin special-points)

*starting-case*))

(min-dist-to-dest

(find-minimum-distance

(reconstitute-trajectory (get-trajectory this-eval)

special-points low high intervals

fcn points param-value magfactor)

(get-destination special-points)

*starting-case*))

(this-metric (+ (get-metric min-dist-to-orig)

(get-metric min-dist-to-dest))))

(inner (cdr set-of-evaluations)

(if (< this-metric

(get-metric current-best))

(make-evaluation this-metric

(list min-dist-to-orig

min-dist-to-dest)

'endpoints)

current-best)))))))

(lambda (evals) (inner evals *starting-case*)))

Some other suggestions:
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� fastest-time-optimizer/tiebreaker: subtract the timestamps of the cells
or points involved

� path-length-tiebreaker: the pointwise analog to shortest-path-between
two-cells

� minimum-energy-optimizer/tiebreaker: compute the energy required from
the controller to execute the segment

� minimum-maximum-acceleration-optimizer/tiebreaker: compute the peak
acceleration on each segment

� minimum-maximum-jerk-optimizer/tiebreaker: compute the peak jerk on
each segment

All optimization functions operate on discretized trajectories and compute with
cells. All tiebreaker functions operate on state-space points.
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Appendix B

The Phase-Locked Loop

The phase-locked loop circuit in �gure B.1 was used by D'Humieres et al[27];
they state that it was \described by Bak[8] ...[and] patterned after that developed
by Henry and Prober[38]." The schematic in �gure B.1 follows the former1. The
former paper gives a much better description of the nonlinear dynamics of equa-
tion 7.2 and its implications; the latter is a better reference for anyone who wants
to really understand the electronics.

The VCO (2206) output is mixed with the 100kHz reference signal VR, �ltered
to remove harmonics, then fed back (IBF ) to the VCO input via an opamp that
performs loop compensation and allows the external modulating input VE to be
added in. Typical values for the compensation components R and C are given
as 11K
 and 0.1�F. The sampling and �ltering operations are combined in a 398
sample-and-hold circuit in the manner discussed on page 122; the zero-crossings of
the frequency response of this device must be tuned (the 1K pot and 10K resistor
at the bottom of the �gure) to hit these harmonics exactly. The VCO's initial
freqeuncy range is tuned by the 1K pot and 6.8K resistor at pin 7. The 5K/100pF
combination sets the one-shot pulsewidth | and hence the sampling window |
to 1�sec; samples of this length are triggered by each rising edge on the VCO's
output. The hold capacitor is .001�F, so leakage (via the impedance seen across
pins 6 and 7 of the 398) is not a problem over the periods involved. The VCO gain
factor[74] | the Kv in equation 7.10 | is 2000 Hz per volt.

Most of the mathematics (given in section 7.3) of squeezing equation 7.2 out of
this circuit are straightforward. The exception is the samping: recall the statement
\... recognizing that, because the sampler �res at the zero crossings of vO, the
sampled phase (!R�n + �0) is the same as � ..."

The reference voltage, V1 sin(!st+�0), sampled at time �n, is V1 sin(!s�n+�0),

1This diagram contains enough errors to make it impossible to reconstruct, so I have not been

able to duplicate their experiment exactly.
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variable pendulum phase-locked loop

� angular position phase di�erence
between oscillators

_� angular velocity kV
mg sin � restoring torque feedback current
ml inertial momentum C/k

�l viscous damping 1/kR
(t) applied torque applied current VE=RE


0 =
q
g=l natural frequency

q
kV1=RSC

Q =
q
m2g=�2l quality factor

q
kV1CR2=RS

Table B.1: Correspondences between the di�erent coe�cients

where !s = 2� � 100kHz. The next sample is taken at �n+1, where

!s(�n+1 � �n) + k
Z �n+1

�n

V (t) dt = 2�

Substituting �n = (2n+ 1)� � !s�n � �0 in the equation above yields

�n+1 = �n + 2� � !s(�n+1 � �n)

= �n + k
Z �n+1

�n
V (t) dt

The next steps involve three (sequential) assumptions:

1. !s is larger than the highest frequency encountered on V (t) between succes-
sive samples

2. Thus, V (t) can be considered as constant

3. The time between the samples can be neglected

(1) and (2) imply that

V (t) = lim
!s!1

"
1

k

"
�n+1 � �n

�n+1 � �n

##
=

_�

k

or _� = k V (t) | the substitution that turns equation 7.11 into equation 7.12.

Appendix A of [27] also discusses a few interesting drawbacks that stem from
the non-ideal dynamics of the sample-and-hold (its overshoot, in particular,) that
introduce phase-dependent errors and hence asymmetries in IFB. These authors
explore a variety of DC biases to prove that the system's symmetry breaking is
intrinsic and not a result of the simulator circuit's irregularity.
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