
@ MIT

massachusetts institute of technology — artificial intelligence laboratory

Sparsely Faceted Arrays: A
Mechanism Supporting Parallel
Allocation, Communication, and
Garbage Collection

Jeremy Hanford Brown

AI Technical Report 2002-005 June 2002

© 2 0 0 2 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sparsely Faceted Arrays: A Mechanism

Supporting Parallel Allocation, Communication,

and Garbage Collection

by

Jeremy Hanford Brown

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c© Massachusetts Institute of Technology 2002. All rights
reserved.

Certified by: Thomas F. Knight, Jr.
Senior Research Scientist

Thesis Supervisor

Accepted by: Arthur C. Smith
Chairman, Department Committee on Graduate Students

Sparsely Faceted Arrays: A Mechanism Supporting Parallel
Allocation, Communication, and Garbage Collection

by
Jeremy Hanford Brown

Submitted to the Department of Electrical Engineering and Computer
Science on May 24, 2002, in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Abstract

Conventional parallel computer architectures do not provide support for non-
uniformly distributed objects. In this thesis, I introduce sparsely faceted ar-
rays (SFAs), a new low-level mechanism for naming regions of memory, or
facets, on different processors in a distributed, shared memory parallel pro-
cessing system. Sparsely faceted arrays address the disconnect between the
global distributed arrays provided by conventional architectures (e.g. the Cray
T3 series), and the requirements of high-level parallel programming methods
that wish to use objects that are distributed over only a subset of processing
elements. A sparsely faceted array names a virtual globally-distributed ar-
ray, but actual facets are lazily allocated. By providing simple semantics and
making efficient use of memory, SFAs enable efficient implementation of a
variety of non-uniformly distributed data structures and related algorithms.
I present example applications which use SFAs, and describe and evaluate
simple hardware mechanisms for implementing SFAs.

Keeping track of which nodes have allocated facets for a particular SFA is
an important task that suggests the need for automatic memory management,
including garbage collection. To address this need, I first argue that conven-
tional tracing techniques such as mark/sweep and copying GC are inherently
unscalable in parallel systems. I then present a parallel memory-management
strategy, based on reference-counting, that is capable of garbage collecting
sparsely faceted arrays. I also discuss opportunities for hardware support of
this garbage collection strategy.

I have implemented a high-level hardware/OS simulator featuring hard-
ware support for sparsely faceted arrays and automatic garbage collection. I
describe the simulator and outline a few of the numerous details associated
with a “real” implementation of SFAs and SFA-aware garbage collection.
Simulation results are used throughout this thesis in the evaluation of hard-
ware support mechanisms.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist

2

Acknowledgments
During my time at MIT I have received innumerable kinds of help from un-
countably many people. It pains me that I have neither the space, nor the
accuracy of memory, to thank them all personally here; I beg forgiveness
from those whom I fail to acknowledge.

First and foremost among those who have helped me produce this thesis
is Katie Hayes, to whom I am immensely grateful. Without her unflagging
moral and emotional support, I would have been locked in a small rubber
room weeks ago. Without her technical assistance, I would still be preparing
slides for my defense talk. Katie, if I’m graduating, it’s because of you. You
are the best.

I want to thank Tom Knight, my eternally patient advisor, for providing
an environment genuinely open to unorthodox thinking. I also want to thank
André DeHon, who first introduced me to Tom and the AI lab.

I am indebted to Anthony Zolnik and Marilyn Pierce, extraordinary ad-
ministrators who have gone out of their way to help me time and time again.
I also want to thank Anthony for his invaluable suggestions on my writing.

I want to thank all of the friends who have helped me through the years at
MIT — there are too many of you to list here, but you know who you are. I
do, however, want to single out three people for special attention.

Michelle Goldberg has been an extraordinary friend to me for over ten
years. My friendship with her has been one of the foundations of my experi-
ence at MIT.

Nick Papadakis is another long-time friend. He has helped me time and
time again on matters ranging from auto repair to grad school recommenda-
tions; he has also hired me repeatedly.

Marc Horowitz, past and present roommate, in the last year has taken
on the additional roles of landlord, sysadmin, consultant, and source of en-
couragement. In addition to providing me with a place to live and work, he
has been an incredible source of help whenever I have had to wrestle with
recalcitrant computers and C code.

I want to thank my family for their encouragement and their patience.
When I came to MIT as a freshman in 1990, I’m sure that nobody expected
I would still be a student in 2002; I am greatly appreciative of my family’s
continuing support in the face of repeatedly-slipping graduation dates.

This thesis has benefited immensely from conversations with Kálmán Réti,
Jan Maessen, Tom Knight, my thesis readers Gill Pratt and Gerry Sussman,
and all of the members, past and present, of the Aries research group, includ-
ing Andrew “bunnie” Huang, J.P. Grossman, Ben Vandiver, Josie Ammer,
and Dom Rizzo. (Bunnie also deserves a special mention for helping with
some of the technical details of thesis production.)

Of course, any errors, omissions, etc. are entirely my responsibility!

3

This thesis describes work performed under DARPA/AFOSR Contract Num-
ber F306029810172.

4

In memory of Laurie Wile.

Contents

1 Introduction 12
1.1 Challenges . 12

1.1.1 A Class of Parallel Architectures 12
1.1.2 A Class of Parallel Data Structure 13
1.1.3 An Architectural Disconnect 14
1.1.4 The need for automatic memory management 14

1.2 Research Contributions . 14
1.3 Thesis Road Map . 15

2 Related Work 17
2.1 Naming distributed resources 17

2.1.1 Hardware support 17
2.1.2 Library support . 18
2.1.3 High Level Parallel Programming Models and Lan-

guages . 19
2.2 Parallel, Distributed, and Area-Based Garbage Collection . . 19

2.2.1 GC survey works 20
2.2.2 Copying GC . 20
2.2.3 Reference listing 21
2.2.4 Reference flagging 23
2.2.5 Distributed reference counting 24
2.2.6 Weighted reference counting 24
2.2.7 Indirect reference counting 26
2.2.8 Grouped garbage collection 27
2.2.9 Other indirect GC schemes 27

3 Sparsely Faceted Arrays 29
3.1 Introduction . 29
3.2 An introduction to Sparsely Faceted Arrays 29
3.3 Example applications . 31

6

3.3.1 Data structures over all nodes 31
3.3.2 Message-passing between arbitrary sets of processors 32
3.3.3 Partition-vectors and Quicksort 33
3.3.4 Kd Trees . 38

3.4 Implementation . 45
3.4.1 Translation table implementation 46
3.4.2 Relationship to hashtables 48
3.4.3 Additional hardware support: a translation cache . . 48

3.5 Summary . 51

4 On Garbage Collecting a Massively Parallel Computer 53
4.1 Intra-node and inter-node garbage collection 53
4.2 Garbage collecting Massively Serial Data Structures 54

4.2.1 Precise garbage collection can eliminate effective par-
allelism . 57

4.2.2 Reference counting and other conservative strategies 58
4.2.3 The role of programmer discipline 59
4.2.4 A typical hybrid approach 59

4.3 A new, parallel marking algorithm 60
4.3.1 Parallel connected components 60
4.3.2 The GC algorithm 60
4.3.3 Why this algorithm is conservative 62

4.4 Conclusion . 66

5 Garbage Collection of Sparsely-Faceted Arrays 67
5.1 Overview . 67
5.2 SFA-Aware Indirect Reference Counting 68

5.2.1 A quick review of IRC 68
5.2.2 Making IRC SFA-aware 69

5.3 Implementing IN and OUT sets 76
5.3.1 A cache for IRC entries 76
5.3.2 Using IRC entries as translation records 79
5.3.3 Simulation caveats 81

5.4 An optimization . 81
5.5 Summary . 82

6 Mesarthim: a high-level simulation of a parallel system 83
6.1 Overview . 84

6.1.1 Feature Overview 84
6.1.2 Implementation Technology 84

6.2 System Details . 84
6.2.1 Synchronization 84

7

6.2.2 Pointer representation 85
6.2.3 User-generated messages 86
6.2.4 Thread scheduling 86
6.2.5 Cycles . 87
6.2.6 Heap memory hierarchy 87
6.2.7 Immutable objects 87

6.3 Support for SFAs . 88
6.3.1 Typed pointers . 88
6.3.2 GUID generation 88
6.3.3 Translation Cache 89

6.4 Idealizations and Abstractions 89
6.4.1 Network . 89
6.4.2 Executable code distribution 89
6.4.3 Stacks . 90

6.5 Garbage Collection . 90
6.5.1 Garbage collection memory hierarchy 90
6.5.2 SFA-aware Indirect Reference Counting 91
6.5.3 Node-local GC . 91
6.5.4 Qualitative Evaluation 93

6.6 High-level programming 95
6.6.1 Immutable closures 95
6.6.2 Capturing-lambda 96
6.6.3 named-capturing-lambda 96

7 Conclusions 97
7.1 Contributions . 97

7.1.1 Sparsely Faceted Arrays 97
7.1.2 Evaluation of precise parallel garbage collection . . 98
7.1.3 An SFA-aware, scalable parallel garbage collection

strategy . 98
7.1.4 Additional contribution 99

7.2 Summary . 100

A Review of Indirect Reference Counting 101
A.1 Counting up . 102
A.2 Counting down . 104
A.3 Corner cases . 106

A.3.1 Receiving the same pointer multiple times. 106
A.3.2 An object with only remote pointers. 106
A.3.3 Inter-area cycles. 106

A.4 Benefits Summary . 107

8

List of Figures

3.1 A global, uniformly-distributed array with a facet on every
node, and a pointer to element 3 on node 1. Note that the
array has been assigned the same base address on every node. 30

3.2 A sparsely faceted array with facets on a subset of nodes, and
a pointer to element 3 on node 1. Note that within a node,
pointers to the SFA on other nodes are represented in terms
of the local facet address. 30

3.3 Some example partition-vector ranges over the range of node
IDs. 33

3.4 Linear partitioning due to quicksort; each node must store
O(log(N)) pvectors for a length N array. 34

3.5 Non-linear Quicksort partitioning using SFAs. Note that the
left SFA is denser than the right SFA, i.e. its facets are larger. 34

3.6 Quicksort: Ratio of instructions executed by quicksort with
work-ratio partitioning to instructions executed by quicksort
with size-ratio partitioning, on 256 nodes; ratios for four dif-
ferent problem sizes, and four different random seeds, are
shown. 36

3.7 Quicksort: Ratio of cycles needed to complete quicksort with
work-ratio partitioning to cycles needed to complete quick-
sort with size-ratio partitioning, on 256 nodes; ratios for four
different problem sizes, and four different random seeds, are
shown. 37

3.8 Quicksort: Ratio of cycles needed to complete quicksort with
work-ratio partitioning to cycles needed to complete quick-
sort with size-ratio partitioning; ratios are shown for sorting
8192 numbers, generated with four different random seeds,
on varying numbers of processors. 38

3.9 Constructing a Kd tree partition of points in 2-D. The initial
point-set is shown in (a). Recursive partitioning in steps (b)-
(f) lead to the final partition shown in (g). 39

9

3.10 A Kd tree in 2 dimensions. Regions containing points are
leaves; T-intersections are inner nodes. Note the relative uni-
formity of points-distribution in nodespace in spite of their
asymmetric distribution in coordinate space. 41

3.11 The replication of the nodes of the Kd tree from Figure 3.10.
Figure is in nodespace rather than coordinate space. 42

3.12 A pointer to an SFA is sent from node X to node Y. (a) shows
the pointer representation on node X; (b) shows the same
pointer in the network; (c) shows the pointer on Node Y. (d)
and (e) show the network interface translation entries for the
SFA in nodes X and Y, respectively. 45

3.13 Translation cache spill rate for several applications and cache
sizes. 49

3.14 Translation cache miss rate for several applications and cache
sizes. 49

4.1 Inter-node GC treats these 5 objects as two meta-objects. . . 55
4.2 Creating O(N)-length data structures in O(1) time. 56
4.3 For each reachable node, an oracle picks only incoming edges

which are on legitimate paths from marked supernodes. This
ensures that garbage objects are never coalesced into a marked
supernode. 62

4.4 Bad decisions may pick incoming edges from unreachable
objects to reachable objects, thus causing garbage objects to
coalesce into marked supernodes. 63

4.5 A plausible garbage data structure: each element of a garbage
circular linked list points to an element in a live linked list. . 65

5.1 Pointer to Q copied from Area 0 to Area 1, then from Area 1
to Areas 2 and 3. The IRC fan-in copy-tree is dashed. 69

5.2 An IRC copy tree for an SFA; note facets on all nodes. . . . 70
5.3 A partially-formed anchor tree; note facets are preserved on

unparented nodes. 72
5.4 A completely-formed anchor tree. 73
5.5 IRC cache spill rate for various applications and cache sizes. 77
5.6 IRC cache “miss” rate for various applications and cache sizes. 77
5.7 Combined IRC/translation cache translation fill-from-memory

rate for various applications and cache sizes. 79

6.1 The format of a guarded pointer C pointing into an segment S. 85

A.1 Object Q allocated in Area 0. 102

10

A.2 Pointer to Q copied from Area 0 to Area 1. The copy-tree
links are shown as dashed lines. 103

A.3 Pointer to Q copied from Area 1 to Area 2 and 3. 103
A.4 All pointers to Q in Area 2 have been destroyed. 104
A.5 All pointers to Q in Area 1 have been destroyed. 105
A.6 All pointers to Q in Area 3 have been destroyed. 105
A.7 Objects Q and R form an inter-area cycle. 107

11

Chapter 1

Introduction

Although microprocessor performance continues to improve at an astonishing
rate, there remain problems which cannot be practically solved using only
one processor. To solve such a problem with adequate speed, one must use
multiple processors to work on subproblems in parallel.

Computer programming is an inherently complex task. Programming par-
allel computers requires the coordination of a number of processors to accom-
plish a single task, and is therefore even more complex.

This is a thesis about reducing the complexity of parallel programming by
raising the level of abstraction available to the parallel programmer. In partic-
ular, it is about making it possible to efficiently implement an important class
of data structures on an important class of parallel computer architectures.

In the following section I describe the challenges addressed by this the-
sis, illustrating the inadequacy of conventional parallel architectures. Next, I
outline the major research contributions this thesis makes in addressing these
challenges. Finally, I outline the structure of the rest of this document.

1.1 Challenges

1.1.1 A Class of Parallel Architectures

The class of parallel computer architectures addressed in this thesis is repre-
sented by machines such as the Cray T3D [59] and T3E [62], and the NEC
SX series of vector supercomputers. This class has several defining charac-
teristics.

• Massively Parallel Processors (MPP): These machines are massively
parallel; they are scalable to hundreds or thousands of processors.

12

• Distributed, Shared Memory (DSM): Each processor is bundled into
a node along with some memory. There is hardware support for each
processor to access memory in other nodes.

• Non-Uniform Memory Access (NUMA) times: Access to memory within
a node is low-latency; access to memory in other nodes is higher-
latency, often varying depending on the relative locations of the two
nodes within the machine.

• No inter-node data caching: Unlike cache-coherent NUMA (ccNUMA)
architectures such as DASH [37], FLASH [31], and the SGI Origin
[67], these explicitly NUMA architectures do not attempt to conceal
inter-node memory latency with a complex data caching strategy.

I shall refer to this class of architectures as the NUMA-DSM class; NUMA-
DSM machines are the most common type of shared-memory parallel com-
puter available today.

NUMA-DSMs have several appealing characteristics.
Scalability is straightforward: each new node brings with it both process-

ing and memory resources.
Hardware-supported shared memory provides an extremely low-latency

mechanism for inter-node communication.
By opting not to attempt cache-coherent data sharing between nodes, the

design is kept relatively simple. This design also works to the benefit of many
irregular computations which tend to miss in caches; for such applications,
the absence of overhead from a cache hierarchy is beneficial.

1.1.2 A Class of Parallel Data Structure

In a parallel computer, a distributed object[24] is an object that has been allo-
cated memory on multiple nodes. The nameof a distributed object somehow
identifies all of these constituent pieces of memory; using the name and an
index, it is possible to access each piece of memory in turn.

It is desirable to be able to create a distributed object that has memory
only on a subset of the nodes of a parallel machine. Such non-uniformly dis-
tributed objects are useful in implementing hierarchical data structures with
replicated components, and in implementing divide-and-conquer algorithms
such as quicksort.

Such “partitioning” data structures and algorithms use large numbers of
non-uniformly distributed objects, each potentially distributed over a different
set of processors. To support such fine-grain usage, allocating and using non-
uniformly distributed objects must have low overhead.

13

1.1.3 An Architectural Disconnect

Unfortunately, conventional NUMA-DSM architectures do not provide sup-
port for non-uniformly distributed objects. On these architectures, objects are
allocated on a single node or distributed uniformly over every node. Since
the overhead of implementing non-uniformly distributed objects in software
is enormous, conventional parallel programs are unable to use them in fine-
grain fashion.

This is the first of two major problems addressed by this thesis. To solve
it, I describe Sparsely Faceted Arrays, a hardware-supported mechanism that
enable the implementation of non-uniformly distributed objects.

1.1.4 The need for automatic memory management

Automatic memory management is the second major problem addressed by
this thesis.

Even in a single-processor environment, memory management is one of
the most error-prone aspects of programming. Explicit memory management
makes the programmer responsible for requesting memory when needed, and
“freeing” it when it is no longer needed. Programs written using explicit
memory management often suffer bugs by freeing memory that is still being
used, or by failing to free memory after it is no longer used.

On the other hand, automatic memory management places the burden of
detecting unused memory on an underlying system of “garbage collection.”
Programs using automatic memory management still request memory when
they need it. However, an automatic garbage collector is made responsible
for detecting objects that are no longer in use, and reclaiming their memory
for future re-use.

In general, programs written using automatic memory management suffer
dramatically fewer bugs than those using explicit memory management.

Parallel architectures and distributed objects add to the complexity of
the memory management task; non-uniformly distributed objects add further
complication.

Current, conventional parallel programming systems do not provide garbage
collection. Those few parallel programming systems that have provided par-
allel garbage collection have not, in general, addressed the issue of garbage
collecting non-uniformly distributed objects.

1.2 Research Contributions

This thesis offers three major research contributions.

14

The most important contribution is Sparsely Faceted Arrays (SFAs).
Sparsely faceted arrays are a new, parallel data structure that enable the ef-
ficient, straightforward implementation of non-uniformly distributed objects.
A Sparsely Faceted Array is virtually a global, uniformly distributed array; in
actuality it is sparse, as regions of memory on individual nodes — facets —
are allocated lazily. In order to illustrate their usefulness, I discuss the use of
SFAs in several parallel applications. Sparsely faceted arrays require simple
hardware support; I describe the implementation requirements and evaluate
the effectiveness of additional support mechanisms in simulation.

Although the high-level semantics of SFAs are quite simple, the underly-
ing lazily-allocated data structure is inherently complex; automatic manage-
ment, including garbage collection, is essential to preserving the simplicity of
the mechanism presented to the parallel programmer. This leads to the other,
garbage-collection-related contributions of this thesis, discussed below.

The traditional approach to parallel GC has been based on parallelizing
precise, tracing garbage collectors, e.g. mark/sweep. As my second major
contribution, I prove that in the worst case, “precise” tracing garbage collec-
tors can eliminate the entire performance benefit of parallel processing.

In a minor related contribution, I also present a novel garbage collection
algorithm which, given an oracle, is precise; I leave open the question of
whether or not a heuristic approximation to an oracle exists which could make
the algorithm effective in practice. Due to its ineffectiveness, I do not use this
algorithm in the remainder of the thesis.

As my third major contribution, I present a novel scalable, parallel garbage
collection algorithm capable of managing sparsely faceted arrays. This strat-
egy meets two key requirements for managing sparsely faceted arrays: cor-
rectness, which requires that no facets be garbage collected until there are
no live references to the SFA anywhere in the system; and efficiency, which
requires that freeing an SFA does not require communication with nodes that
never received pointers to the SFA. This GC scheme requires simple hard-
ware support which in large part parallels that required for SFAs. I describe
the implementation requirements, and evaluate additional supporting mecha-
nisms in simulation.

1.3 Thesis Road Map

The remainder of this document is organized in the following fashion.
First, in Chapter 2 I review prior work on parallel programming models,

garbage collection, and various related topics.
Next, in Chapter 3, I introduce Sparsely Faceted Arrays. I present ex-

amples of their use; describe their implementation; and present the results of

15

simulating a hardware support mechanism.
In Chapter 4, I prove that precise tracing garbage collectors can elimi-

nate the entire performance benefit of parallel processing. I also present a
novel, impractical garbage collection algorithm, leaving open the question of
whether it could be made useful in practice; I make no further mention or use
of this algorithm.

In Chapter 5 I move from theoretical matters to practical matters by in-
troducing a novel parallel garbage collection algorithm for garbage collecting
sparsely faceted arrays. I discuss the algorithm’s implementation, and present
the results of simulating a hardware support mechanism.

In Chapter 6, I describe Mesarthim, the high-level simulation system used
to generate the simulation results used in Chapters 3 and 5. Whereas previous
chapters maintain generality as much as possible, in this chapter I describe
many of the details associated with a specific implementation of sparsely
faceted arrays and parallel garbage collection. I also discuss the node-local
garbage collection strategy that cooperates with the inter-node parallel GC
strategy of the previous chapter.

Finally, in Chapter 7, I summarize the key points and results of the work
described in this thesis.

16

Chapter 2

Related Work

In this section, I will briefly discuss previous work related to this thesis. In
particular, I will discuss mechanisms for naming distributed objects in the
NUMA-DSM class of parallel architectures, and I will discuss work on par-
allel, distributed, and large-heap garbage collection.

2.1 Naming distributed resources

In this section I discuss mechanisms for naming distributed objects in NUMA-
DSMs. Such mechanisms have been provided at the hardware, library, and
programming language level, and I discuss each in turn.

2.1.1 Hardware support

In conventional NUMA-DSM architectures such as the Cray T3D [59] and
T3E [62], the NEC SX series, etc. node manages its own local memory.

Processes running on multiple nodes can conspire to allocate the same
local memory locations to a distributed object; the name of the common loca-
tion thus becomes the name of the distributed object. This approach requires
that all of the conspiring nodes have similar allocation situations, and thus
typically all nodes are required to participate in all allocations — in other
words, every distributed object is distributed over every node in the system.
The Cray/SGI shmem [12] libraries provide a specific example, requiring that
any distributed memory object exist over all nodes; such an object is called a
“symmetric data object” in the shmem documentation. In fact, shared mem-
ory operations may only be carried out on symmetric data objects — i.e. there
are no provisions at the library level for allocating referencing scalar objects
on independent nodes.

17

One notable departure from the conventional approach is the J-machine
[51] parallel computer. In the J-machine, all references to objects, distributed
or otherwise, are indirected through a segment table on each node; this style
of addressing is similar to that used by early capability[14] architectures [39].

Using indirection tables allows the J-machine to provide distributed ob-
jects with arbitrary, globally unique names. The COSMOS operating system
[25] uses the J-machine’s translation tables to name “aggregate objects”. Ag-
gregate objects are composed of representative objects distributed over some
subset of the system’s nodes; each node holding a “representative” of an ag-
gregate object has a translation entry mapping from the aggregate object’s
name to the local representative’s capability. To keep track of which nodes
actually have allocated space, COSMOS encodes information in a distributed
object’s name specifying the placement of its constituent objects. Under this
encoding, if there are fewer constituent objects than there are nodes in the
machine, the constituents are placed in such a manner as to provide an even
distribution over the entire machine.

The J-machine suffers from the problem, common to early capability sys-
tems, that indirecting every memory access through a segment table is in-
efficient; [51] reports that in practice, an unacceptably large percentage of
program time is spent engaged in translation.

The M-machine [15] multicomputer, a successor to the J-machine, pro-
vides direct addressing. It supports a coarse-grained mechanism for distribut-
ing resources over variable regions of the architecture. In particular, the
M-machine’s page-translation mechanism provides partitions over multiple
adjacent nodes; partitions are at the page granularity, and have dimensions
measured in powers of 2. Each distinct partition requires a separate TLB
entry; objects distributed over distinct partitions must therefore be stored on
different pages.

2.1.2 Library support

PVM [19] and MPI [17, 18] are popular, oft-ported libraries for parallel pro-
gramming based on message-passing. Both PVM and MPI provides the abil-
ity to name distributed resources in a coarse-grained fashion by assigning
processes to groups; the name of a group thus denotes a set of distributed
resources, in this case processes.

The recent MPI 2.0 standard [18] goes one step further. A group of pro-
cesses may simultaneously allocate local “windows” of memory which are
then directly accessible by other processes in the group. Using the put and
get operations on windows is known in MPI as “one-sided communication”,
since, on a shared-memory architecture, only one processor needs to be in-
volved in the operation.

18

Since each window may have different address, length, and other proper-
ties, in practice every process is compelled to record the attributes of every
window in every other process (e.g. [69] which discusses implementing one-
sided communications on the NEC SX-5); in a group of N processes, this
means that there is an O(N) storage requirement per process, per window.

2.1.3 High Level Parallel Programming Models and Lan-
guages

SIMD languages such as HP Fortran [30], *Lisp [42], and APL [20] provide
data-parallel primitives which are a thin veneer on standard vector-parallel
operations.

“Idealized” SIMD languages such as Paralation Lisp [60] and NESL[8]
express parallelism with parallel-apply operations performed over data col-
lections (typically vectors); nested parallelism is allowed, but is compiled
into non-nested, vector-parallel operations.

None of these languages is well-suited to distributing objects non-uniformly
over a multiprocessor.

Concurrent Aggregates [10] and Concurrent Smalltalk [24, 23] are lan-
guages specifically intended for the J-machine. Each is based on the notion
of essentially replicating important data structures spatially in order to pro-
vide means for parallel access. The languages do not explicitly reveal dis-
tributed object placement to the programmer; the programmer merely speci-
fies at allocation-time the number of representative objects that an aggregate
object should contain.

2.2 Parallel, Distributed, and Area-Based Garbage
Collection

There are an incredible number of schemes for parallel, distributed and seg-
mented garbage collection. In this section I will focus on garbage-collection
schemes with particularly compelling relationships or contrasts to the work
presented in this thesis.

It is not my intent in this section to duplicate the efforts of many fine sur-
vey works, but rather to present the salient details of those schemes which
are directly relevant, either by similarity or by significant contrast, to the ap-
proach I am taking.

19

2.2.1 GC survey works

Classical GC

Rather than attempt a survey of approaches to uniprocessor garbage collec-
tion, I shall refer the reader to Jones’ and Lins’ Garbage Collection[27], an
excellent survey of traditional garbage collection techniques including, but
certainly not limited to, copying garbage collection, mark-sweep GC, and
reference-counting. Its coverage of distributed and parallel garbage collec-
tion is somewhat sparse.

Distributed GC

Although I shall discuss most of the major approaches to the distributed GC
problem below, additional approaches and references are presented in the sur-
vey paper [56]. Another presentation and detailed analysis of several dis-
tributed GC schemes is presented in chapter 2 of the thesis [43]. Additional
references may be found in the bibliography paper [61], which includes not
only avant-gardetopics such as parallel and distributed GC, but also a great
many references on classical GC techniques.

2.2.2 Copying GC

System-wide copying GC doesn’t actually use areas to any great effect; each
processor is responsible for GCing its own region of memory, but GC is
system-wide and requires cooperation between all the processors. When a
GC is started, each processor begins a copying collection from its local roots.
When it encounters a local pointer, it copies as normal; when it encounters
a remote pointer, it sends a request to the processor owning the target ob-
ject which causes that processor to copy from that pointer. This approach
is used by the Scheme81 processor [4] in multiprocessor configurations, and
by the distributed garbage collector for the parallel language Id described
in [16]. Termination detection is an important issue in copying GC. The Id
garbage collector detects termination by a messaging protocol,very similar
to the scheme described in [58], based on arranging all the processors in a
logical ring.

In general, since copying GC requires GCing the entire heap at once, it
is inappropriate as the only means of GC in a large parallel system, and is
always inappropriate when the size of the heap exceeds that of main memory.

20

2.2.3 Reference listing

Schemes which use reference listing keep track of which remote areas have
pointers to an object in a particular area; the IN list serves as a set of roots
for performing independent, area-local GCs which do not traverse references
that point out of the area.

Note that reference listing requires that whenever a pointer into area A is
copied from an area B to an area C, a message must also be sent to area A to
create the appropriate IN entry.

Some reference listing schemes have an entry for every instance of a
pointer in a given area; others have one entry for an area regardless how
many copies of the pointer there are in that area.

ORSLA

The first area-based garbage collection system in the literature is the reference-
listing scheme described in [7] as part of the custom-hardware capability sys-
tem ORSLA. ORSLA has an IN and OUT entry (actually the same object, an
Inter-Area-Link (IAL), threaded onto one area’s IN list and the other area’s
OUT list) for every single inter-area pointer. Whenever an inter-area pointer
is created, ORSLA’s hardware detects the event and updates the appropriate
IN and OUT lists. Area-local GC is performed with a copying collector which
copies data objects and IALs; at the end of an area-local GC, the old set of
data and IALs is freed.

Inter-area pointers are actually indirected through their IAL under normal
circumstances; an area may be “cabled” to another, however, in which case
pointers from the first to the second may be “snapped” to point at their targets
directly. Note that this means that while the first area may be GCed indepen-
dently, the second area may only be GCed simultaneously with the first, since
its IN list does not record incoming pointers from that area.

ORSLA eliminates garbage cycles by migrating objects which aren’t reach-
able from area-local roots into areas that reach them; in theory, this eventually
causes a garbage cycle to collapse to a single area, at which point area-local
GC destroys it. [7] doesn’t work out details insuring that migration termi-
nates. For many architectures, the overhead of an IAL for every inter-area
pointer would be unacceptable due to the consumption of per-node physi-
cal memory; additionally, having one IAL object serve as both an IN and an
OUT entry requires that area-local GC operations require inter-area update
messages.

21

Thor

A reference-listing scheme was designed for Thor [41], a persistent, dis-
tributed, object-based database for which garbage collection has been the
subject of much research. Thor runs on a heterogeneous collection of con-
ventional hardware; object references are opaque (indirect), thus allowing
intra-area object relocation without requiring inter-area communications.

The garbage collection scheme described in [43] uses conservative refer-
ence lists between operating regions (ORs) of the database itself, and between
ORs and front-end (FE) clients. The scheme is designed to be fault-tolerant
in the face of lost or delayed messages.

Each OR maintains a table of objects reachable from other ORs, listing
for each object which other ORs might have references. Each OR maintains a
similar table for objects reachable from FEs. When an FE or an OR performs
a local GC, it sends a “trim” message to each OR listing only those objects
still reachable from the OR/FE, thus allowing the OR to clear some entries in
the appropriate table. If a trim message is lost, no harm is done, since the ta-
ble is conservative; the next trim message will fix the problem. Timestamping
prevents delayed trim messages from removing entries created after the mes-
sage was initially sent. Since FE clients are relatively unreliable, FE entries
are “leased” — if not renewed periodically, they expire and can be cleared.
Note that inter-area garbage cycles aren’t reclaimed at all by this scheme.

The problem of inter-area garbage cycles in Thor is taken up in [44],
which adds a migration scheme on top of the reference listing scheme. Each
object is marked with its distance from its nearest root at local GC-time; ob-
jects which are only rooted via IN entries start with the distance at that entry
and increase it as they proceed. Distances are exchanged with “trim” mes-
sages. Thus, while rooted (i.e. reachable) data distances remain finite, the
distances associated with garbage cycles will always increase with each round
of local GC and trim-message exchanges. A cutoff threshold on distance dic-
tates when migration should occur; an estimated target-node for migration is
propagated with distance values, thus causing most objects in a garbage cycle
to immediately migrate to the same area.

This strategy has several drawbacks. The overhead of translating opaque
references is high. Repeatedly broadcasting trim lists means that bandwidth
is continuallyconsumed in proportion to the number of inter-area references.
Finally, migrating garbage to discover cycles consumes bandwidth in propor-
tion to the amount of garbage, but garbage is the last thing to which we wish
to dedicate precious communications bandwidth.

22

2.2.4 Reference flagging

Reference flagging systems are extremely conservative: each area maintains
an IN list which records all objects for which remote references might exist.
An entry is created for an object when a reference to that object is first stored
into a remote area. The primary advantages of reference flagging are first,
that no inter-area messages are needed when a pointer into area A is copied
from area B to area C; and second, that IN lists may be extremely compact.
The disadvantage is that some form of global knowledge is needed to remove
conservative IN entries and inter-area garbage cycles.

Hughes [26] attacks the problem of global garbage collection using a
timestamp-based scheme in which inter-area messages are assumed to be re-
liable, and nodes are assumed to have synchronized clocks. Remote point-
ers are indirect. Area roots (including IN entries) and remote pointers carry
timestamps. Area-local GC propagates the most recent timestamp from roots
to remote pointers;- active process objects, the true roots of the system, are
timestamped with the time at which the local GC begins.

At the end of the local GC, the timestamps on remote pointers are prop-
agated to the IN entries in their target areas. Each area keeps track of the
oldest timestamp that it may not have propagated yet, called the “redo” time.
The globally oldest redo time is called “minredo”; at any time, any IN entry
which is timestamped with a time older than minredo is garbage and may
be deleted. Minredo is calculated using the ring-based termination-detection
protocol described in [58].

The reference flagging scheme described in [32] uses Hughes’ algorithm
adapted to cope with unreliable hardware, network, and messages, and also
loosely synchronized clocks. Heap segmentation is at the node granularity;
intra-node pointers are direct, but inter-node pointers are indirect in order to
allow node-local relocation of objects. The scheme relies on a high-reliability
central service to preserve certain information across individual node-crashes.
Areas occasionally send their OUT lists to the central service; the service
uses the collected OUT lists of all areas to compute less-conservative IN lists
for each area. Additionally, the Hughes algorithm variant runs entirely on
the central service. A variety of additional complexity underlies the correct
operation of this system in the face of various message and node failures.

The major drawback of reference flagging is that each pass at eliminating
conservatively-created IN entries involves communications and work over-
head proportionate to the number of live entries.

23

2.2.5 Distributed reference counting

In distributed reference counting (DRC) [38], for each remotely reachable ob-
ject in an area, the area maintains a count of the number of remote areas which
can reach that object. When an object’s reference count goes to zero, it is no
longer remotely reachable. DRC has roughly the same messaging require-
ments as reference listing, but obviously has much smaller memory overhead
– one counter per remotely reachable object, regardless of how many areas it
is reachable from. Distributed reference counting is much more vulnerable to
message loss, duplication, and reordering than reference listing; significant
care must be taken to avoid race-conditions. DRC does not collect inter-area
garbage cycles.

The DRC-based scheme proposed in [50] for use with the Thor [41] dis-
tributed database system is particularly interesting because it uses logging
to defer updating reference counts immediately, and thus avoids the need to
page in IN entries for an area every time the number of outstanding references
changes.

A more complex use of logging for GC Thor is described in [45]. In this
scheme, each area maintains IN and OUT lists, where an IN list contains pre-
cise counts of external references to objects in the partition, while an OUT
list precisely identifies all outgoing pointers. Partition-local garbage collec-
tion uses objects in the IN list as (part of) the partition’s root set. Rather than
maintain IN and OUT lists eagerly, this scheme records all object modifica-
tions in a globally shared log. The log is scanned to generate an up-to-date IN
list prior to garbage collecting a partition. IN and OUT lists are broken into
several parts, however, in order to avoid having to go to disk on every update.
A number of synthetic benchmarks demonstrate the effects of tuning various
parameters related to the sizes of the “basic”, “potential”, and “delta” lists.

Inter-area cyclic garbage is collected using an incremental marking scheme
piggybacked on partition-local garbage collection. Marking begins at global
roots; marks are propagated intra-area by local GC, which also pushes marks
across OUT pointers. A mark phase terminates when every area has per-
formed a local GC without marking any new data; at that point, any unmarked
data may be discarded.

2.2.6 Weighted reference counting

Weighted reference counting was independently described at the same time
in both [6] and [70]. In weighted reference counting each object has a weight
assigned to it at allocation time, and each pointer to that object also has a
weight. Pointer weights are powers of two.

When a pointer is duplicated, its weight is reduced by half, and the dupli-

24

cate receives the other half of the weight; thus, duplicating a pointer requires
no communication with the area holding the target object. When a pointer
is deleted, a message is sent which causes the weight of the pointer’s tar-
get object to be decremented by the weight of the pointer. When the object’s
weight reaches zero, there are no outstanding pointers to the object and it may
be reclaimed. There are no synchronization issues with weighted reference
counting. WRC does not collect garbage cycles.

One problem with WRC as described is that when a pointer’s weight hits
one, evenly splitting it becomes impossible. [6] suggests that at this point a
new indirection object is created with a large weight; the indirection object
contains the weight-one pointer to the actual target object, but the results of
the pointer duplication are pointers to the indirection object. This avoids any
need to send messages to the original object upon pointer creation, at the cost
of memory and indirection overhead.

Note that this scheme as described does not really make use of areas, but
it is a a straightforward extension to move the weights to IN and OUT list en-
tries on a per-area basis, rather than maintaining them in every single object
and pointer. Such a scheme would reduce the space overhead of normal ob-
jects and pointers, and enable arbitrary per-area garbage-collection that would
recover intra-area cycles.

[11] proposes a slightly different approach to duplicating a pointer whose
weight has dropped to one; the weight in a pointer is tagged as being either
original or borrowed weight. When a pointer with weight one (original or bor-
rowed) is duplicated, its weight is replaced by a borrowed-weight of MAX,
and MAX is added to an entry for the pointer in a reference weight table.
When a pointer with borrowed weight is destroyed, the borrowed weight is
subtracted from the table entry, whereas when a pointer with original weight
is destroyed, the weight is subtracted from the original object’s weight. The
advantage of this scheme is that it avoids loading pointers with indirections;
the space overhead is claimed to be roughly equivalent to that of maintaining
indirection objects. [11] does not address details such as maintaining separate
reference weight tables tables on different nodes.

A key disadvantage of WRC is that if multiple pointers are destroyed at
once, the original object’s home node may become swamped with decrement
messages.

Generational reference counting, proposed in [21], is very similar to
weighted reference counting; instead of maintaining an individual weight,
however, an object keeps a ledger counting outstanding pointers of each of
several generations, and a pointer keeps track of its own generation, and the
number of children that have been copied from it. When a pointer is de-
stroyed, a message is sent to its target object which decrements the ledger
entry for its generation, but increments the entry for the next generation by

25

the size of its children-count.

2.2.7 Indirect reference counting

Two problems with weighted reference counting are first, how to handle the
case when a pointer runs out of weight to divide amongst further copies; and
second, when multiple pointer copies are destroyed simultaneously, the re-
sulting decrement operations can create a message backlog at the node con-
taining the target object.

Indirect reference counting [52] (IRC) avoids the problem by counting up,
instead of down. Specifically, when a pointer P is copied from area A to area
B, area A increments a reference count associated with P, and area B records
the fact that the pointer came from area A. When all copies of P are finally
eliminated from B, if B’s reference count for P is zero, B sends a message
to A decrementing A’s reference count for P. Thus, the total reference count
of P is represented in a tree whose structure mimics the inter-area diffusion
pattern of P; the root of the tree is the area containing P’s target, and children
point to their parents, rather than the other way around. Note that as long as B
still has a copy of P, even if A eliminates all of its copies, it must preserve the
reference count entry for P as long as it is nonzero. Area-local GC operates
using any local object with a nonzero reference count as a root.

The communications overhead of IRC is one extra message per inter-
area pointer copy – the decrement message sent when an area discovers it
no longer has copies of a pointer it has received. The space overhead is the
record at each intermediate node in the diffusion tree which notes the local
outstanding reference count, and from which area the pointer was originally
received.

Object migration is relatively easy with IRC – the object is migrated to its
new location, and the root of the IRC tree is made an internal node, with the
new root as its parent.

In the worst case, a single remote area holding a copy of P may lock
in place an arbitrarily long chain of records through other remote areas. [49]
presents a scheme similar to IRC, but which eliminates these chains via diffusion-
tree reorganization. In this scheme, when an area B is to send a pointer P to
area C, where P points into A, the following sequence happens: B incre-
ments its local reference count for P; B sends the pointer to C; C sends an
“increment-decrement” message to A; A increments its local reference count
for P; A sends a decrement message to B; B decrements its local reference
count for P. Thus, at the end of the flurry of messages, all diffusion tree leaves
have area A as their parent – and since area A is where P’s target object lives,
they need not explicitly record their parent area.

This scheme thus has two advantages: first, it avoids long chains of records

26

through areas that otherwise have no copies of a pointer; second, records
may be smaller since they don’t need to record a parent area distinct from
the pointer’s target area. The disadvantage, however, is that the communica-
tions overhead for a pointer copy is now three messages instead of one: the
“increment-decrement” message to the home area, the “decrement” message
to the sending area, and then eventually the “decrement” message to the home
area. Only the last of these is needed in straight IRC.

The garbage collection algorithm presented in Chapter 5 of this thesis
builds on IRC; a more thorough review of IRC is included in Appendix A.

2.2.8 Grouped garbage collection

Weighted or indirect reference counting alone does not collect of inter-area
garbage cycles. One approach to solving this problem suggested in [7], [33]
and [54] is to dynamically form groups of areas, and garbage collect them to-
gether. [33] describes how to do such grouping with a mark-sweep algorithm
on top of distributed reference counting; [54] extends the grouping scheme to
work with indirect reference counting. Groups may be dynamically formed,
and can exclude failed nodes in order to reclaim garbage cycles which do not
pass through failed areas.

2.2.9 Other indirect GC schemes

As pointed out in [54], nearly any GC algorithm can be modified to be an
indirect algorithm by altering it to traverse parent pointers in the IRC tree
instead of directly following remote pointers to their targets.

For instance, indirect mark and sweep [53] builds on top of the IRC dif-
fusion tree by propagating marks normally within an area, but when marking
from a remote pointer, following the parent link in the remote pointer’s copy-
tree entry. When the marking phase is completed, any object or copy-tree
entry which hasn’t been marked may be eliminated in the sweep phase (note
that sweeping does need to keep reference counts consistent in surviving por-
tions of IRC trees.)

Another indirect scheme is indirect reference listing (IRL) [55], in which
counters in an IRC tree are replaced by explicit entries, one for each area to
which a pointer has been copied. IRL is somewhat more resistant to individ-
ual node failures than IRC, although it is still not resistant to message loss or
duplication.

The SSP chains scheme [63] is similar to indirect reference listing, but
includes a timestamping protocol which adds tolerance for duplicated, lost,
delayed, and reordered messages, as well as individual node crashes. [35]

27

extends SSP chains with a timestamp propagation scheme inspired by [26]
that eventually eliminates inter-area cycles.

28

Chapter 3

Sparsely Faceted Arrays

3.1 Introduction

In this chapter I introduce Sparsely Faceted Arrays (SFAs), which are in many
ways the centerpiece of this thesis. Sparsely faceted arrays are a novel shared-
memory mechanism for implementing distributed objects on NUMA-DSMs.
Implemented with simple hardware support, they are extremely low overhead,
as they enable shared memory access at full hardware speeds.

In section I will discuss the gap, filled by SFAs, that lies between existing
hardware support for distributed objects and the type of distributed objects
that are desirable for certain algorithms and data structures. In Section 3.2, I
introduce sparsely faceted arrays. In Section 3.3, I discuss several application
of SFAs, with detailed explanation of their use in quicksort and Kd trees. In
Section 3.4, I address the details of implementing SFAs at the hardware level,
supporting the discussion with simulation results. Finally, in Section 3.5, I
conclude by summarizing the important characteristics of SFAs.

Although sparsely faceted arrays are amenable to garbage collection, I
reserve discussion of SFA memory management for Chapter 5, which is ded-
icated to the topic.

3.2 An introduction to Sparsely Faceted Arrays

A conventional globally-distributed array has a region of storage allocated on
every node in a system. I will refer to the per-node regions of a distributed
array as facets, in order to differentiate them from regions of storage allocated
to scalar (non-distributed) objects. A typical distributed array is shown in
Figure 3.1; the per-node blocks of memory for such an array are generally

29

Node 0 Node 1 Node N-2 Node N-1

0x10

Node Offset
Common
base

0x1 0x30x10

POINTER:

Figure 3.1: A global, uniformly-distributed array with a facet on every node,
and a pointer to element 3 on node 1. Note that the array has been assigned
the same base address on every node.

0x0
0x8

0x10
0x18

Node 0 Node 1 Node N-2 Node N-1

Node Offset
Local
facet base

0x1 0x30x18

POINTER:

Figure 3.2: A sparsely faceted array with facets on a subset of nodes, and a
pointer to element 3 on node 1. Note that within a node, pointers to the SFA
on other nodes are represented in terms of the local facet address.

30

located at identical locations on every node.
A sparsely faceted array is essentially a virtual, globally-distributed array.

Although it has virtual facets on every node, actual facets are allocated lazily;
in other words, an SFA has a sparse set of actual facets.

Because an SFA may be used over arbitrary subsets of nodes, the abstrac-
tion presented is explicitly two-dimensional: the first dimension is the node;
the second is the offset within a facet on the node. For example, if S is an
SFA, S[1][3] refers to the third word of the facet on node 5. See Figure 3.2.

Since an SFA’s facets are allocated lazily, there is no guarantee that they
will be allocated at identical locations on different nodes. Within a node, a
pointer to an SFA is always represented in terms of the node’s local facet
address; a pointer to an SFA may be dereferenced just like a pointer to a
scalar object, and therefore a thread which accesses a local facet suffers no
indirection overhead. Again, see see Figure 3.2.

A translation table at the network interface converts from local facet ad-
dress to an SFA’s globally unique identifier (GUID) and back. The details of
implementing the translation mechanism are discussed in Section 3.4.

3.3 Example applications

3.3.1 Data structures over all nodes

There are a wide variety of data structures that evenly distribute information
over the entire machine. SFAs can be used to implement any data structure
that could be implemented with a more traditional globally-distributed array
mechanism; of course, such implementations do not make take full advantage
of SFAs.

Vectors

One common class of parallel data structures is the class of vectors and arrays
distributed over all nodes; these primitives are found in data-parallel SIMD-
style languages such as *Lisp [42], NESL [8], and HPFortran [30]. A vector
with K words per node over N nodes is represented with an SFA with C-word
facets. Translating a simple vector reference to an SFA reference is straight-
forward: a reference V[i], where V is a vector backed by SFA S, translates
to S[i/C][i%C]. (HPFortran allows multidimensional arrays with varying
alignment to be distributed evenly over all nodes; the reference translations
from such an array to an SFA will be correspondingly more sophisticated, but
still quite straightforward.) References can be made in parallel by any and all
nodes with a reference to the vector.

31

Hashtables

An SFA can serve as the basis for a distributed hashtable. Each slot of the SFA
stores a (possibly empty) linked-list of key/value pairs. To perform a lookup
key K in a hashtable H using hash function hash, and which is backed by
SFA S with facet size C, we find the appropriate slot in the hashtable much
as we found a vector index above: S[hash(K)/C][hash(K)%C]. Again,
references can be made in parallel by any and all nodes with a reference to
the hashtable.

Tables

Database-style tables are another important type of data structures. By dis-
tributing each table over the entire set of nodes, it becomes possible to search
all of the entries in the table with maximal parallelism. The mapping between
SFA and table is sufficiently straightforward as to merit no further discussion
here.

Array-of-queues

A distributed array of queues, with one queue on every node, is an important
data structure. It can serve as the basis for a message-passing layer, or for a
work-stealing mechanism. Such a structure is quite easy to implement with
an SFA: each facet consists of two words containing pointers to the head and
tail of the queue on that node.

3.3.2 Message-passing between arbitrary sets of processors

The Message Passing Interface standard [17, 18] provides an interface allow-
ing processes to form themselves into groups which may be arbitrary subsets
of the complete set of processes. Groups may generate “communicator” ob-
jects in order to perform intra-group communications.

Sparsely faceted arrays provide a natural mechanism for implementing
communicator objects. In essence, a communicator can be represented by an
SFA-based array-of-queues as discussed above. A processor sends a message
to another processor by inserting the message into its target’s local queue
using synchronized shared-memory operations.

This is a more interesting application than the global array of queues be-
cause the communicator for a group which does not include all nodes can be
sparsely faceted. Since MPI does not allow communicators to be shared with
processes outside of a group, the name of an SFA underlying a communicator
will never be passed to nodes outside of the group, and thus facets will only
be allocated on those nodes that are in the group.

32

Node ID space

Some partition vector ranges

Figure 3.3: Some example partition-vector ranges over the range of node
IDs.

3.3.3 Partition-vectors and Quicksort

A partition-vector, or pvector, is much like the distributed vectors described
above. However, rather than being striped over the entire machine, a pvec-
tor may store its data over a contiguous subset of nodes; in other words, if
we treat the node identifiers as representing as a one-dimensional space, a
partition-vector stores data over a line segment in that space. See Figure 3.3.

A partition vector is represented by an immutable structure containing (at
least) three pieces of information: its base node, the number of nodes over
which it is striped, and the SFA providing its backing store.

Note that while a pvector only stores data on nodes in its node span, if
a pvector-structure is stored on a node outside of the span, a facet for the
pvector’s SFA will be allocated on that node anyhow. Thus, it behooves the
programmer to avoid widespread distribution of pointers to “small” pvectors.

Conventional data-parallel operations including reduce, scan, map, etc.,
can all be implemented straightforwardly for pvectors. Using these opera-
tions, divide-and-conquer algorithms such as quicksort can be implemented
using pvectors.

Quicksort

Quicksort benefits from the use of pvectors and careful partitioning of re-
cursive quicksort invocations. The initial invocation of quicksort partitions
the input into three sets: less than, equal to, and greater than an arbitrarily-
selected pivot element; the less-than and greater-than sets are recursively
sorted with quicksort, and these partial results concatenated with the equal-to
set to form the final, sorted result.

To exploit locality of reference, the recursive quicksort invocations may
performed over independent partitions of the machine, rather than spreading
each sub-problem more thinly over the whole machine. Thus, with each sub-
problem, the less-than set is allocated to a pvector over a subpartition of cur-
rent problem’s partition, and the greater-than to a pvector over the remainder

33

Node ID space

Initial pvector range

split partitions

further recursion...

Figure 3.4: Linear partitioning due to quicksort; each node must store
O(log(N)) pvectors for a length N array.

(a) Initial partition sizes

(b) Sub-partitions in SFAs — virtually everywhere...

(c) ...but actually allocated only where used.

Figure 3.5: Non-linear Quicksort partitioning using SFAs. Note that the left
SFA is denser than the right SFA, i.e. its facets are larger.

34

of the current partition. See Figure 3.4.
Note that since a linear partitioning strategy results in an even density of

elements distributed over the processor array, it is possible to express this type
of quicksort in terms of operations on global, uniformly distributed vectors,
albeit at the cost of unnecessary synchronization between independent sub-
problems. This strategy is used by NESL [8], which converts recursively data
parallel algorithms into operations on global vectors.

Unnecessary synchronization is not the only cost of such a strategy, how-
ever; partitioning the processor array linearly with respect to the size of the
quicksort subproblems turns out to be suboptimal because it does not balance
the expected work.

Expected work of Quicksort

The expected work of quicksorting N numbers is O(N log N). Consider an
initial split which produces subproblems with a ratio of sizes of 4:1. (For this
analysis, let us assume that the equal-to set is small enough to be negligible.)
The expected work due to the larger subproblem will be

4N

5
log

4N

5

while the expected work due to the smaller subproblem will be

N

5
log

N

5
.

The expected work ratio R of the two subproblems will therefore be

R =
4N
5 log 4N

5
N
5 log N

5

= 4 +
8

log N
5

For N = 1280, R = 5; if we increase N significantly to N = 330, 000,
R = 4.5. In other words, even for large N , there is a significant difference
between the subproblem size ratio and the subproblem work ratio. This dif-
ference is magnified by decreasing the overall problem size, but even very
large problems can exhibit a significant difference.

This analysis suggests that the processing resources should be partitioned
according to the expected work ratio of the subproblems, rather than than
according to the subproblem sizes. This will have the effect of spreading
the elements of the larger subproblem more thinly, while placing those of
the smaller subproblem more densely. See Figure 3.5. Note that in order to
pack each subproblem efficiently, it is necessary to use different SFAs, with
different facet sizes.

35

Figure 3.6: Quicksort: Ratio of instructions executed by quicksort with
work-ratio partitioning to instructions executed by quicksort with size-ratio
partitioning, on 256 nodes; ratios for four different problem sizes, and four
different random seeds, are shown.

36

Figure 3.7: Quicksort: Ratio of cycles needed to complete quicksort with
work-ratio partitioning to cycles needed to complete quicksort with size-ratio
partitioning, on 256 nodes; ratios for four different problem sizes, and four
different random seeds, are shown.

Simulation results

The benefits of partitioning processors by work-ratio rather than by size-ratio
are borne out by simulations of an idealized architecture using the Mesarthim
simulator described in Chapter 6.

Figure 3.6 shows the ratio of total instructions executed in performing
quicksort with work-ratio partitioning vs. the total instructions executed in
performing quicksort with size-ratio partitioning. The total number of in-
structions executed in solving the problem are a rough indication of the total
amount of work involved in solving the problem; as the figure makes clear,
the total work performed by both versions of quicksort is about the same, with
the work-ratio partitioning strategy performing a little extra work, primarily
due to the more complex partitioning calculations.

Figure 3.7 shows the ratios of the total number of cycles needed to com-
plete quicksort with work-ratio partitioning vs. the total number needed to
complete quicksort with size-ratio partitioning. For the smaller problem sizes,
speedups of up to 17.4% are observed; for larger problems, the impact is not
generally as great. An outlier at 4096 elements is a reminder that quicksort’s
performance is dependent upon the selection of splitting values, and that a bad

37

Figure 3.8: Quicksort: Ratio of cycles needed to complete quicksort with
work-ratio partitioning to cycles needed to complete quicksort with size-ratio
partitioning; ratios are shown for sorting 8192 numbers, generated with four
different random seeds, on varying numbers of processors.

series of choices can have a significant impact. Since we can see from Figure
3.7 that, for the problem in question, work-ratio partitioning quicksort does
not perform significantly more work than size-ratio partitioning quicksort,
we may conclude that the trouble in this case is a series of bad splits which
conspire to distribute the actual workload unevenly in the case of work-ratio
partitioning.

Figure 3.7 shows that the importance of work-ratio splitting goes down
as problem size grows. By contrast, Figure 3.8 shows that the importance
of work-ratio splitting goes up as the number of processors grows, relative
to a fixed problem size. As more parallelism becomes available for use, the
impact of bad work balancing increases.

3.3.4 Kd Trees

For many problems, the one-dimensional model of pvectors is a natural repre-
sentation, but there are problems for which an awareness of higher dimension-
ality is advantageous. One example is the Kd tree [13]. A Kd tree partitions
a set of points or objects in N-dimensional space (where N is typically two or
three) such that each leaf of the tree contains only a few items.

38

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.9: Constructing a Kd tree partition of points in 2-D. The initial
point-set is shown in (a). Recursive partitioning in steps (b)-(f) lead to the
final partition shown in (g).

39

An application of Kd trees

One potential application of Kd trees is in model registration in medical imag-
ing [34]. In this application, sensors provide real measurements of a feature
of interest, e.g. a skull. The goal of model registration is to determine the
geometric relationship between the sensor data and a pre-surgical model; dis-
covering this relationship enables, for instance, the real-time overlay of pre-
surgical planning images on top of images of the actual surgery.

The approach taken in [34] is to build an octtree [13] of a model surface,
and to then use an iterative closest points algorithm [5] refine an initial align-
ment estimate to within a very small error. A kd tree is a close relative of
an octtree, but is more amenable to spatially-aware, recursive, parallel, non-
uniform partitioning; thus, the remainder of this discussion will assume the
use of a kd tree in place of an octtree.

In the iterative closest points algorithm, each sensor-provided sample data
point is translated and rotated according to the current alignment estimate,
then the Kd tree is used to find the closest point on the model-surface to
the transformed sample point. The per-point distances are used to refine the
alignment guess, and the process is repeated until the alignment error is suf-
ficiently low.

The role of the Kd tree in this algorithm is in finding the closest surface-
point to a sample point. This may involve searching multiple Kd tree leaves.
The initial traversal of the tree simply finds the leaf whose volume contains
sample point’s coordinates; the minimum distance between the sample point
and any of the model points in the leaf volume is computed by brute force.
If, however, the distance from the sample point to the nearest model point is
greater than the distance from the sample point to one or more boundary of
the leaf’s volume, it is possible that there might be a point in one of the leaf’s
neighbor’s volumes containing a point closer to the sample. Thus, a given
sample point may need to be compared against the model points in a number
of neighboring leaves.

Basic Kd tree generation

An algorithm for generating a Kd tree over a volume V and a point set P such
that each leaf has fewer than K points is as follows:

KD-build(P):

1. If |P | < K return a leaf node containing P .

2. Otherwise, pick a dimension D. V has a certain length on D; parti-
tion the data around the midpoint M of that dimension into two sub-
volumes VL and VR, where VL gets all points whose position along the
dimension is less than or equal to M , and VR the rest.

40

Coordinate space Node space

Figure 3.10: A Kd tree in 2 dimensions. Regions containing points are
leaves; T-intersections are inner nodes. Note the relative uniformity of points-
distribution in nodespace in spite of their asymmetric distribution in coordi-
nate space.

3. Recursively apply KD-build to VL and VR, rotating through splitting
dimensions with each layer of recursion.

4. Return an interior node containing D, M , and the two sub-trees re-
turned in the recursive builds of the previous step.

An example partitioning is shown in Figure 3.9.

Distributed, partitioned Kd trees

The purpose of building a distributed Kd tree is to be able to compute the
closest-points for an entire set of sample-points in parallel; the strategy is to
replicate the upper nodes of the tree to enable parallel access. I will assume
that the processor node ID encodes the same number of physical dimensions
of the machine as the number of dimensions of the volume the Kd tree is
partitioning.

The scheme I am about to describe for representing a distributed Kd tree
is based on the following assumptions:

1. The sample points are roughly evenly distributed over the model.

2. The initial alignment estimate is pretty close. (Typically a human pro-
vides the initial alignment estimate for medical image alignment.)

If these assumptions hold, roughly equal numbers of sample-points will
be compared against model points in each leaf. Thus, we would like each
leaf-node to be given an approximately equal portion of the processor array in

41

Top node

Leaf nodes

Inner nodes

Figure 3.11: The replication of the nodes of the Kd tree from Figure 3.10.
Figure is in nodespace rather than coordinate space.

42

order to load-balance the final comparisons. Furthermore, since the sampling
process for a single sample-point may involve comparing it against several
neighboring leaves, we would like leaves representing adjacent volumes to
be spatially adjacent in the processor array in order to exploit the locality.

Thus, each time we split a coordinate-space dimension in half, we split
the processor array along the same dimension – but not in half. Rather, we
split it according to the ratio of the number of points that falls on either side
of the partition. This strategy will generate a fairly even distribution of points
over the processor array, while also roughly preserving the spatial relation-
ships between adjacent nodes. An example in two dimensions is shown in
Figure 3.10.

Of course, we distribute each leaf over its N-dimensional partition simply
by allocating an SFA, and using it as an N-dimensional array over the partition
storing the leaf’s points.

In addition to spatially distributing the leaves of the Kd tree, we must
replicate the inner nodes of the tree over their partitions to enable parallel
traversal, i.e. the topmost-node is replicated over the entire machine, its chil-
dren are each replicated over their partitions, and so forth. See Figure 3.11
for a visualization. Once again, we resort to SFAs to implement the replicated
nodes, with the replicated data contained in the facets within each node’s par-
tition.

Thus, each leaf node and each inner node is represented with an im-
mutable structure defining its partition/volume and identifying its SFA. Ab-
sent degenerate model-point distributions, each node ends up storing data
associated with O(log N) Kd tree nodes.

There is a point of inefficiency here that deserves a brief mention: since
each inner node V contains references to the SFAs of both of its children, each
processor in V ’s partition will allocate a facet for both children’s SFAs, al-
though usually only one child will actually store replicated data on the parent
node. This will cause excess allocation by roughly a factor of two, although
the bound remains the same at O(log N).

SFA-based, replicated distributed objects are similar to the distributed ob-
jects of Concurrent Smalltalk [24, 23]. There is a key distinction, however:
the SFA-based placement respects the spatial properties of the problem be-
ing represented; by contrast, distributed objects in CST as provided by the
COSMOS [25] operating system will be evenly distributed over the entire
machine, thus losing the advantages of locality of subproblems.

The importance of being sparse

The importance of the sparsity of the SFA representation can be seen by con-
sidering the case in which the point distribution is moderately even. Assume

43

that on an N -processor machine, each SFA leaf is distributed over an aver-
age number of processors M where M is fairly small, and that SFA leaves
are non-overlapping.1 Then there are N/M leaf nodes, and nearly that many
inner nodes; since I specified a small M , this is essentially O(N) Kd tree
nodes.

If sparse arrays were not available, and storage for each node was simply
allocated across every processor (even if not used on most), the per-node
storage requirement for the Kd tree would be increased by O(N

log N).
Alternatively, in the absence of distributed arrays of any sort, we could

construct fan-out data structures to represent each replicated node.... but then
the root of each fan-out tree itself becomes an un-replicated bottleneck!

Of course it is ultimately possible to build any structure with enough soft-
ware, but SFAs make the task simple and the implementation efficient.

Computing closest-points

The process for computing closest-points in parallel thus becomes the follow-
ing, for each sample point, starting from the root node:

kd-closest-point(V, P):

1. If V is a leaf node, compare P against each of its points and find the
closest point. Return the point and the distance to it.

2. Otherwise, compare P against N ’s split-coordinate, and choose the
appropriate sub-node VL or VR.

3. If current processor is within the sub-node’s partition, recursively call
kd-closest-point on the current processor. Otherwise, pick a random
processor within the sub-node’s partition, and make a remote, recursive
call on that processor.

4. If the returned distance is greater than the distance from P to the split-
coordinate (i.e. if the returned distance is greater than the magnitude of
the difference of P’s coordinate in the split dimension and the split coor-
dinate value), then recurse on the other sub-node, and return whichever
result had the smaller distance.

5. Otherwise, simply return the result from the recursive call.

The reasons for executing recursive calls on processors in the child-nodes’
partitions, rather than simply reading their data structures remotely, are twofold.

1In practice, since we have integral numbers of nodes in each dimension, SFA leaves will
sometimes wind up overlapping at the edges. This only increases the amount of per-processor
data storage by a constant factor in the worst case.

44

Node 0

Memory

Network
Interface

Processor

0x30

Node 1

Memory

Network
Interface

Processor

0x08

Network

0x8 0x2623 0x08

Facet
Size GUID

Local
Facet Base

0x8 0x2623 0x30

Facet
Size GUID Local

Facet Base

Node Offset
Local
facet

0x1 0x30x30

Node Offset

Local
facet

0x1 0x30x080x8

Node

Offset GUID

0x1

Facet
Size

0x30x2623

Figure 3.12: A pointer to an SFA is sent from node X to node Y. (a) shows
the pointer representation on node X; (b) shows the same pointer in the net-
work; (c) shows the pointer on Node Y. (d) and (e) show the network interface
translation entries for the SFA in nodes X and Y, respectively.

First, each reference to a remote SFA read from a foreign partition may cause
another facet allocation on the local node; although it is possible for garbage
collection to later reclaim this unused facet (see Section 5.4) this is ineffi-
cient. More importantly, however, is simply that it is advantageous to move
computation closer to the data it is working on, as this reduces latency and
network load.

3.4 Implementation

Although an SFA has an virtual presence on every node in a system, when an
SFA is first created it only requires memory on the creating node. Thus, the
initial creation of an SFA is a purely local operation, requiring no inter-node

45

communication or synchronization. The node which first creates an SFA is
known as the SFA’s home node; other nodes are remote nodes with respect to
the SFA.

An SFA pointer is represented differently on different nodes, and in the
network. Figure 3.12, which shows the different representations and the trans-
lation points between them, provides a reference for the following discussion.

An SFA’s home node must create a globally unique identifier (GUID) for
the SFA when a pointer to the SFA is first sent to a remote node. A remote
node allocates a facet to an SFA when it first encounters that SFA’s GUID; to
enable this allocation, GUIDs must include facet size information.

Within a node, an SFA is named by its local facet’s address; thus, pointers
to SFAs may be dereferenced just like pointers to scalar objects, and a thread
which accesses a local facet suffers no indirection overhead.

Since a node allocates new storage to each SFA encountered, there is
always a one-to-one mapping between a facet address and the corresponding
SFA GUID. Every node maintains a translation table with such a mapping
for each local facet. As shown in Figure 3.12, an SFA pointer sent between
nodes is translated from its local name (facet address) on the source node to
its global name (GUID); the global name is transmitted over the network; and
upon receipt, the global name is translated to its local name (facet address)
on the destination node.

Obviously, the heart of an SFA implementation lies in the translation ta-
bles.

3.4.1 Translation table implementation

The signature property of a shared memory architecture is the ability for one
node to reference another’s memory without interrupting its processor. In
such architectures, the node network interface is capable of directly accessing
node memory in order to respond to remote requests.

To maintain this signature property in the presence of sparsely faceted
arrays, the network interface (NI) must be able to perform SFA translations
independently; this implies low-level support for SFAs — although whether
or not it implies “hardware” support depends on the programmability of the
NI in question.

In principle, a node’s translation table is stored in the network interface;
this enables the NI to translate incoming and outgoing references without in-
terrupting the processor. In practice, the table may grow too large to fit in an
NI-specific hardware table. Since the network interface in a shared-memory
machine has direct access to a node’s memory, one approach to implement-
ing a GUID/facet translation table is to store it as a hashtable in the node’s

46

physical memory. In general, this approach is quite straightforward, but there
are a few details which merit specific discussion.

Incoming translations

When an SFA’s GUID is first received by a node, the node will have to al-
locate a facet for the SFA, and create a GUID/facet translation entry in the
translation table.

One perfectly reasonable strategy for handling this case is to interrupt the
processor and handle it in software. However, if the process of allocation
is made sufficiently simple, it is reasonable to consider letting the network
interface perform the allocation of facet and translation entry.

In a system featuring compacting garbage collection, allocation is as sim-
ple as advancing a pointer: each new object is allocated immediately after the
previous one. In such a system, the network interface could be assigned its
own allocation region; the processor would only need to be interrupted when
the region ran out of space, or when the hashtable requires resizing.

Hashtable resizing will disable SFA translation services for the duration
of the operation; its frequency should therefore be minimized. In practice,
it would be to a system’s advantage to synchronize hashtable resizing be-
tween all nodes so that individual nodes did not randomly stall the entire
computation by becoming unresponsive; [68] demonstrates that independent
per-node garbage collection operations should be performed synchronously
for the same reason.

Outgoing translations

A translation entry from facet-address to GUID is keyed on the base address
of the facet. If pointer math is allowed, a pointer being sent out of a node
could refer to an interior word of a facet, rather than the base. In order to
make translation work in the presence of pointer math, the NI must be able to
determine the base address of a facet from a pointer to an interior word.

My recommended strategy, employed in the Mesarthim simulator, is to
use a guarded pointer [9] format from which it is simple to determine the
base of the segment of memory the pointer denotes. See Section 6.2.2 for
details of Mesarthim’s guarded pointer format.

An SFA must be assigned a GUID when a pointer to its first facet is sent
out of its home node. To enable other nodes to allocate facets for the SFA, the
GUID must embed the facet size. If the network interface is to be responsible
for generating a GUID when it discovers that no translation entry exists for
a particular facet address, it needs to be able to determine facet size, given a
pointer to the facet.

47

Once again, my recommended strategy is to use a guarded pointer format;
the data which makes it possible to determine the base of a memory segment
from a guarded pointer into the middle of the segment also encodes the seg-
ment’s size. An alternate strategy, in the absence of pointer math, would be
to store an object’s size in its first or last word; the network interface could
then look up the object’s size on demand, at the cost of additional latency and
memory bandwidth consumption.

3.4.2 Relationship to hashtables

The translation tables underlying sparsely faceted arrays are much like system-
maintained, communal hashtables. However, they have several unique prop-
erties which differentiate them from regular hashtables.

• The keys – local addresses and GUIDs – are system-generated, unique
values.

• Because keys are unique, the system can detect when no copies of a
key remain.

• Each table is directly accessed by the network interface hardware.

The first two properties enable SFAs to be garbage collected; a translation-
table implementation built on top of normal hashtables, without system sup-
port, would be incapable of detecting when an SFA was no longer in use.

The third property is simply related to efficiency: to provide true shared-
memory performance, the network interface must be able to perform transla-
tions without interrupting the main processor.

3.4.3 Additional hardware support: a translation cache

There are two drawbacks to maintaining the facet/GUID translation table in
a node’s main memory. The first is that the act of translation will consume
valuable memory bandwidth. The second is that the latency of accessing
information in main memory may be several cycles; latency in performing
translations inherently delays the delivery of messages.

Both of these drawbacks may be addressed by a translation-entry cache
at the network interface. To study the efficacy of such caches, I ran a handful
of benchmark programs under the Mesarthim simulator described in Chap-
ter 6. The results should be taken not as definitive — the benchmarks are
tiny, the simulator idealized — but rather as indicative of the likelihood that
a reasonably-sized cache could significantly ameliorate these drawbacks.

48

Figure 3.13: Translation cache spill rate for several applications and cache
sizes.

Figure 3.14: Translation cache miss rate for several applications and cache
sizes.

49

In these studies, a single cache is used to perform both incoming and
outgoing translations. Each cache is fully associative. The simulated machine
has 256 nodes.

I present results for three applications, representing three categories of
SFA usage.

Pointer-stressmark is a benchmark from the Data Intensive Systems “stress-
mark” suite [2]. Pointer-stressmark allocates a single SFA, fills it with random
indices2, and then starts a number of threads; each thread accesses a small re-
gion of values in the SFA centered around some index, computes a new index
from the values, and repeats the process until a specific value is found, or until
it has repeated the process a certain number of times. In terms of SFA usage,
pointer-stressmark represents a minimalist extreme: it allocates a single SFA,
then pounds on it for the rest of its run.

Quicksort stands at the other extreme. This implementation is the recur-
sively partitioning, work-ratio quicksort described in Section 3.3.3; it allo-
cates new SFAs for every subproblem, uses them just long enough to solve
the subproblem, then discards them.

The Kd tree benchmark fits in the middle, and this is represented by the
two different runs. The benchmark first constructs a distributed Kd tree, as
described in Section 3.3.4, based on a 3-D volume filled with random “model”
points. Once the tree is constructed, an additional set of random “sample”
points is generated. The tree is then used to find the closest model point for
each sample point; the operation is performed in parallel for all sample points.
The two runs construct the same Kd tree over the same set of model points,
but differ in the number of sample points that are subsequently searched for
in the tree – the “lighter usage” run looks up fewer sample points.

Figure 3.13 shows the translation cache spill rates for these benchmarks
and various cache sizes; Figure 3.14 shows the corresponding miss rates. The
spill rate is the frequency with which a cache access forces an existing cache
entry to be written back to memory; the miss rate is the frequency with which
a cache access does not find a translation entry. In a long-running application,
of course, these rates would be identical as soon as the cache filled; in appli-
cations that run only for a limited time, increasing the cache size decreases
the spill rate by preventing the cache from entirely filling.

The spill rates of Figure 3.13 interest us only tangentially: we see that for
cache sizes of 128 entries and above, spill frequency is essentially zero, which
implies that corresponding misses are not due to cache capacity limitations,
but are instead compulsory. Looking at the miss rates in Figure 3.14, we
see that they level off around a cache size of 32 entries, experiencing only
incremental improvement for larger cache sizes.

2My implementation of pointer-stressmark is not entirely faithful to the formal specification,
particularly with respect to the means of generating the initial random numbers.

50

The miss rates reflect the different SFA utilization patterns of the bench-
mark applications. Using only a single SFA, the pointer-stressmark applica-
tion has a miss rate of less than 1% for caches of two entries or more. Using
multiple SFAs for relatively brief periods of time each, Quicksort sees a sig-
nificantly higher miss rate than pointer-stressmark.

Finally, we see that, as expected, the Kd tree miss rate drops with increas-
ing utilization of the tree after construction, i.e. it drops for the longer-running
version that uses the Kd data structure more.

For these applications, the worst miss rate for a cache size of 32 is slightly
over 21%. Although studies of larger applications and larger numbers of pro-
cessors would be necessary to draw a definitive conclusion, it seems likely
that most applications using SFAs will hit in the cache at least as often as the
lightly utilized Kd tree. Although a hit rate of 79% isn’t stellar, it is more than
sufficient to decrease the expected translation latency in a practical implemen-
tation, as well as significantly reducing the memory bandwidth consumed by
the translation process.

I will conclude with a reminder: due to the simplicity of the applications
and the idealizations of the simulation framework, these results are indicative,
rather than definitive, in suggesting that a reasonably-sized cache can handle
the majority of SFA translations. Picking a cache size for a specific archi-
tecture will require both a precise simulation of the architecture, and a set of
full-scale applications which are representative of the intended workload.

3.5 Summary

In this chapter I have introduced Sparsely Faceted Arrays, a novel, low-
overhead, parallel data structure. I have given examples illustrating the use
of SFAs in implementing partitioned algorithms and data structures. I have
shown how to implement SFAs in practice, and provided simulation results
to aid in the evaluation of specialized helper hardware.

SFAs provide several advantages over other methods of implementing dis-
tributed objects.

• Allocating an SFA is an asynchronous operation, requiring no inter-
node communication; this is unique among distributed object allocation
mechanisms.

• An SFA provides a simple programming model: a virtual, globally dis-
tributed array.

• An SFA only consumes actual memory on nodes which use the SFA.

• An SFA consumes O(1) space on each node where it has a facet.

51

• Random access to an SFA’s elements operates in O(1) communications
steps; no data structure traversals are necessary.

• Intra-node references to a local facet operate at full memory rate; no
indirections are required.

• An SFA which is allocated and used only within a single node con-
sumes no resources beyond those consumed by a scalar object of the
same size as the SFA’s facet size.

• The data in an SFA is explicitly placed, enabling programs to build
data structures that respect the spatial properties of the problem being
modeled.

• SFAs are low-overhead, and may therefore be used in large numbers
(i.e. they are fine-grained.)

• SFA facets may be densely packed within each node; the per-node
translation table even allows local facets to be relocated by node-local
garbage collection with no impact on remote references to the SFA.

The cumulative impact of these features is significant: SFA semantics
make it simple to implement explicitly placed, non-uniformly distributed ob-
jects; SFA performance characteristics make fine-grain use of such objects
efficient in terms of both running time and per-node memory consumption.

This chapter has left one important issue unaddressed: beneath the sim-
ple abstraction presented to the programmer, SFAs are complex data struc-
tures. Memory management with SFAs is inevitably going to be a complex
task. This complexity can be hidden from the programmer with an SFA-
aware garbage collection system; the next two chapters explore the issues of
designing a scalable parallel garbage collector.

52

Chapter 4

On Garbage Collecting a
Massively Parallel
Computer

Or, how I learned to stop worrying and love reference counting
In this chapter I address some of the theoretical issues in garbage col-

lecting a massively parallel processor. In particular, I explain why precise
techniques such as copying or mark-sweep garbage collection are inappropri-
ate for MPPs, and argue that reference counting does not suffer from the same
theoretical performance issues. This argument justifies my use of reference-
counting techniques for inter-node GC in the remainder of this thesis.

At the end of this chapter, I also describe a novel, parallel garbage col-
lection algorithm which, although unusably conservative, has the ability to
reclaim some garbage cycles, and has better theoretical running time than
precise techniques on an MPP. I leave open the question of whether there are
heuristic approximations to an oracle which could make my algorithm behave
in a precise or nearly-precise fashion. Because this algorithm as it stands is
impractical, I do not use it elsewhere in this thesis.

4.1 Intra-node and inter-node garbage collection

From the perspective of a single node in any distributed-memory system,
memory falls into two basic classes: the node’s local, low-latency memory;
and everything else, which is relatively high-latency. This is exactly why most
distributed garbage collection systems employ a two-level approach: a node-

53

local garbage collector and an inter-node garbage collector. The inter-node
GC typically manages an IN list on each node corresponding to the node-
local objects reachable from other nodes, while the intra-node GC maintains
an OUT list of objects on other nodes reachable from local objects.

In the remainder of this chapter, I will be speaking almost entirely about
inter-node garbage collection, with little or no attention paid to intra-node
GC. From the perspective of inter-node GC, a connected group of local ob-
jects on one node which are reachable from a single IN reference can be
treated as a single meta-object sporting the combined set of OUT edges (see
Figure 4.1).

4.2 Garbage collecting Massively Serial Data Struc-
tures

Garbage collecting a massively parallel computer faces a unique challenge:
Massively Serial Data Structures (MSDSs). Consider the following case, also
shown in Figure 4.2 in which a process on each node performs the following
sequence of operations:

1. Allocate a local object.

2. Send a pointer to the new object to the node on the left.

3. Receive a pointer from the node on the right.

4. Store the pointer received from the node on the right into the local
object.

On N nodes organized in a logical ring, this sequence creates a circu-
lar linked list of length O(N) in O(1) time; every pointer in the list is an
inter-node pointer. Obvious variations on this algorithm can generate a data
structure of length O(KN) in O(K) time. I call such a structure a massively
serial data structure or MSDS.

Now, imagine that after generating a massively serial list, only one node
were to retain a direct reference to the list; we will say that the list is singly-
rooted.

A singly-rooted MSDS turns out to be a terrible problem for precise, par-
allel GC schemes.

54

Node 0 Node 1

(a) Node 0 contains five objects...

Node 0 Node 1

(b) ...which compose two meta-objects.

Figure 4.1: Inter-node GC treats these 5 objects as two meta-objects.

55

Node 0 Node 1 Node 2 Node 3

(a) Allocate objects

Node 0 Node 1 Node 2 Node 3

(b) Send pointers left

Node 0 Node 1 Node 2 Node 3

(c) Store pointers into objects

Figure 4.2: Creating O(N)-length data structures in O(1) time.

56

4.2.1 Precise garbage collection can eliminate effective par-
allelism

Precise garbage collection techniques must traverse the entire reachable-object
graph from its roots in order to differentiate reachable data from garbage. For
instance, copying GC traverses the live data graph, copying each live object
thus found into a new region of memory. Similarly, mark-sweep GC traverses
the live data graph, marking each live object found; after the conclusion of
the mark phase, a sweep phase traverses all objects, freeing those that are
unmarked.

Because they must traverse the entire live data graph, given a graph of
depth L, such precise GC techniques require O(L) time to complete a single
pass; no amount of parallel processing power can eliminate the need to se-
rially traverse at least one path from a root to every live object.1 Of course,
until a pass is completed no memory may be reclaimed.

The unfortunate upshot of all this is that, in the presence of massively
serial data structures, precise garbage collection can nullify the entire parallel
advantage of an MPP! Here is how this can happen.

Consider a parallel program running on an N processor MPP. Suppose
that after it has run for some time O(K), doing at most O(KN) work, mem-
ory is exhausted. During that time, a massively serial data structure of length
O(KN) could have been constructed, and thus a precise GC pass takes time
O(KN) to complete. Until the GC is complete, no memory is freed and the
program is stalled.

Note that regardless of whether or not computation and garbage collection
are overlapped, the cumulative time due to compute and GC is O(KN); let
us call this period one step.The amount of work accomplished in one step is
O(KN). If we divide the work accomplished in one step by the time it takes
to complete one step, we find that the effective parallelism we have gotten
from our N-node MPP is... O(1)!

This is already unacceptable, but in fact, the worst case is even worse
(albeit unlikely to occur in practice): if, rather than generating a fresh MSDS
of length O(KN), the program were to extend an existing MSDS by the
same length, then after C steps, the program could in theory be maintaining
an MSDS of length O(CKN); in this awful case, after a step of time O(K),
garbage collection will take time O(CKN).

1Although pointer jumping [36] can solve the problem for certain limited data structures,
in the general case in which each object may have multiple incoming and outgoing pointers, it
cannot.

57

Practical matters

As a practical matter, one might question whether or not a programmer would
ever intentionally generate a massively serial data structure, but in practice,
such structures have useful applications.

For instance, the leaves of a binary tree might be connected in a linked-list
in order to facilitate rapid traversal of the leaves without needing to traverse
interior nodes. The linked leaves would then compose a MSDS. As long as
the tree remained rooted, the depth of the overall data structure would only
be logarithmic in the total number of leaves.

The real problem arises when an MSDS is rooted in only a few nodes.
Unfortunately, there are ways in which such a situation could arise by acci-
dent. Most insidious among these ways is the problem that an MSDS such
as the linked leaves described above could become singly-rooted during the
transition from being multiply-rooted to being unrooted. A garbage collec-
tion pass which begins during this transition may discover that only a single
node retains a pointer to the MSDS, requiring the garbage collector to tra-
verse the MSDS serially in its entirety. Thus, any program which creates and
then forgets about MSDSs may intermittently be stalled for extended periods
waiting for memory while the GC traverses an MSDS.

4.2.2 Reference counting and other conservative strategies

If precise garbage collection techniques are detrimental to performance, then
we must examine conservative techniques as an alternative. One well-known
conservative GC strategy is reference counting [27].

Reference counting has a compelling feature for use on an MPP: it does
not have to traverse the entire live-object graph in order to reclaim memory.
In fact, there is no notion of a reference counting “pass” as such; reference
counting is a continuous process, and memory can be reclaimed as soon as an
object’s reference count drops to zero.

Unfortunately, as demonstrated above in Section 4.2, it is easy to make
a massively serial, circular linked list. Reference counting can never collect
such a list even if the last live pointer to it is destroyed, since in general
reference counting cannot reclaim memory occupied by objects in cycles or
by objects reachable from cycles.

Thus, while reference counting will never reduce the effective parallelism
delivered by an MPP, it may effectively leak memory to garbage cycles, po-
tentially causing eventual failure of the system due to lack of free memory.

Other conservative strategies such as reference flagging provide the same
advantages and drawbacks as reference counting in this domain, although
they are notably different in terms of other costs. In particular, where refer-

58

ence counting imposes a fixed overhead to each pointer copy and deletion,
reference flagging imposes an overhead proportionate to the length of time a
pointer survives.

4.2.3 The role of programmer discipline

One can always compensate for the failings of a garbage collection scheme by
imposing constraints on the programmer. For instance, in reference-counting
systems, the programmer is expected to avoid creating cycles, or to explicitly
destroy cycles nature before releasing them.

Under a precise GC scheme on an MPP, one could insist that program-
mers either never create MSDSs, or explicitly destroy the inter-structure links
before releasing them as discussed in Section 3.

Although it is impossible to say with certainty which type of discipline is
more “natural” to impose on programmers, it is certainly simpler to break a
cycle than it is to destroy the entirety of an MSDS.

It is worth noting that in pure functional languages, and in languages that
feature write-once variables (e.g. “final” variables in Java), it may be impos-
sible for the programmer to destroy pointers within a data structure — either
to break cycles, or destroy MSDSs.

4.2.4 A typical hybrid approach

A hybrid strategy provides some of the best of both worlds. One fairly typ-
ical hybrid strategy uses reference counting to provide short-term garbage
collection. If, at some point, reference counting is unable to reclaim enough
memory, precise mark-sweep collection is invoked to reclaim memory occu-
pied by garbage cycles. The mark-sweep collector may also run continuously
in the background at a relatively low priority in order to exploit otherwise idle
processor time.

On a system employing this strategy, the programmer who avoids cre-
ating garbage cycles need never fear extended garbage collection stalls, and
even the programmer who creates garbage cycles need not fear running out
of memory due to uncollectable garbage cycles.

Although I am endorsing hybrid schemes here, in following chapters of
this thesis, I will focus on designing a primary garbage collection mechanism
based on reference counting capable of managing sparsely faceted arrays; a
secondary mark/sweep strategy is beyond the scope of this thesis.

59

4.3 A new, parallel marking algorithm

Although I do not explore the idea further in this thesis, in this section I
briefly present a novel, conservative garbage collection algorithm for parallel
garbage collection. Unlike other conservative GC algorithms, this algorithm
has the ability to collect some (but not necessarily all) garbage cycles; in
fact, given an oracle, it is actually a precise garbage collection algorithm.
In the absence of an oracle, however, it is unable to reliably collect garbage
structures which other conservative strategies can reclaim. Thus, I present this
algorithm here not as a finished work, but rather as as a jumping-off point for
future work.

4.3.1 Parallel connected components

This GC technique is based on computing the connected components of an
undirected graph in parallel. In general, a parallel connected components
algorithm operates in the following fashion:

First, every node in the graph begins as the sole member of its own su-
pernode. Then the following sequence of operations is performed:

1. Each supernode selects an edge going to some other supernode.

2. A set of supernodes all connected by selected edges are coalesced into
a single supernode.

3. Iterate from step 1 until surviving supernodes have no outgoing edges.

Each iteration of this algorithm cuts the number of supernodes with out-
going edges by at least half; thus, it completes in O(log N) iterations.

4.3.2 The GC algorithm

The general idea behind this new parallel GC scheme is to coalesce connected
groups of objects into supernodes. At the end of the process, all objects in
a supernode which contains no objects reachable from a root are definitely
garbage; all other objects are preserved. In the absence of an oracle to help
pick supernode-coalescing order, the strategy is conservative; garbage objects
may be coalesced into supernodes with non-garbage objects and therefore
preserved through the GC pass. Below is a more detailed description of the
scheme.

60

Preliminary assumptions

This GC scheme makes two assumptions.

1. It assumes that the nodes are able to directly, immediately access each
object (or rather each meta-object, as per the discussion above in Sec-
tion 4.1), whether or not they are reachable from real roots; any GC
scheme in which each node maintains IN and OUT lists will meet this
assumption handily, as the IN and OUT entries identify all objects in-
volved.

2. It assumes that it is feasible to determine, for each meta-object, the set
of incoming references. Given IN and OUT lists, this is not technically
difficult to accomplish — for every OUT entry, send information to
the IN node necessary to “point” in the other direction — but in gen-
eral will take time proportionate to the maximum number of incoming
references to a single node.

Connected components variation

Each meta-object is treated as a single graph node; each graph node starts as
the sole component of a supernode. Each supernode reachable from a root on
its local processor is marked; all other supernodes are unmarked.

Garbage collection then involves the following iteration:

1. For each marked supernode, select one outgoing edge to another su-
pernode (if such an edge exists.)

2. For each unmarked supernode, select one incoming edge from another
supernode (if such an edge exists.)

3. Perform pointer-jumping across the selected edges twice:

(a) The first performs leader-election in newly-connected groups of
supernodes.

(b) The second propagates the identity of the leader to all supernodes
as their new supernode identifier.

4. If any object in a supernode is marked, the supernode is considered to
be marked in its entirety.

5. Iterate until steps 2 and 1 both fail to add new edges.

61

MARKED MARKED MARKED

Initial graph Edge selection Supernodes

Figure 4.3: For each reachable node, an oracle picks only incoming edges
which are on legitimate paths from marked supernodes. This ensures that
garbage objects are never coalesced into a marked supernode.

When this algorithm concludes, objects in unmarked supernodes are garbage
and can be freed; objects in marked supernodes may or may not be garbage,
and must be preserved.

On its own, Step 1 is simply a limited form of precise marking; by select-
ing only a single node, it actually foregoes opportunities for parallelism.

It is Step 2 that this algorithm novel; this step causes supernodes which
are not yet connected to a marked root to speculatively join with other su-
pernodes. See Figures 4.3 and 4.4 for examples of the process of picking
edges.

4.3.3 Why this algorithm is conservative

If we could somehow maintain the invariant that all supernodes contain ex-
clusively live objects or garbage objects, but never both, then Step 1 would
never break that invariant. Given such an invariant, this step simply represents
tracing the graph of marked data just as any precise GC mechanism would;
indeed, if we omit Step 2, this algorithm is exactly a standard precise parallel
mark algorithm, and will take time proportionate to the depth of the longest
serial data structure just as described above in Section 4.2.1.

While the choice of outgoing edges in Step 1 is safe with respect to the
desirable invariant, Step 2 is speculative. It represents an as-yet unmarked
supernode trying to climb “up” toward some marked root in order to become
marked itself. Because it is speculative, Step 2 runs the risk of commingling

62

MARKED

Final result
Second round

MARKED

First round

MARKED

MARKED

Initial graph

Figure 4.4: Bad decisions may pick incoming edges from unreachable objects
to reachable objects, thus causing garbage objects to coalesce into marked
supernodes.

garbage and live objects in a single supernode, and thus destroying our ability
to maintain the desired invariant.

Here are the possible cases of outgoing edge selection in Step 2:

• The selected edge is between two live objects. No danger is posed to
the invariant; the selection connects two supernodes of live objects.

• The selected edge is between two garbage objects. Again, no dan-
ger is posed to the invariant; the selection connects two supernodes of
garbage objects.

• By definition of garbage object, it is impossible for the selected edge to
point from a live object to a garbage object; otherwise, the target object
would not, in fact, be garbage. Thus, this case cannot actually occur.

• The remaining case is the problem case: the selected edge is a pointer
from a garbage object to a live object. This will destroy the invariant,
as supernodes containing garbage and live objects will be coalesced
together in Step 3.

Figure 4.3 illustrates the result of good choices (i.e. all choices from the
first two cases); Figure 4.3 illustrates the result of a less successful set of
choices (i.e. some choices from the final case.)

63

Running time

It is difficult to provide a satisfying bound on the running time of this GC al-
gorithm, largely because in practice the problem does not conform to typical
theoretical assumptions of one graph edge or one graph vertex per processing
element. However, if we make the simplifying assumption that each pro-
cessor holds O(1) objects featuring O(1) incoming and outgoing edges we
can perform a rudimentary analysis. Note that on N nodes, this assumption
implies that there are, overall, O(N) objects and edges.

Under this assumption, prior to a GC pass, constructing the set of an ob-
ject’s incoming edges will take time O(1), as each node with an outgoing
pointer sends connectivity to the pointer’s target node.

For a given supernode, selecting a single edge is equivalent to leader-
election, requiring O(log N) communications steps. Similarly, the two sub-
sequent pointer-jumping steps require O(log N) communications steps each.

If we treat a marked supernode with no outgoing edges as if it has been
removed from the graph, and we also treat an unmarked supernode with no
incoming edges as if it has been removed from the graph, then we can say that
every step of the algorithm reduces the number of supernodes in the graph by
at least half, since every remaining supernode is merged with at least one
other supernode. Thus, the algorithm iterates O(log N) times, for a total of
O(log N2) steps.

The cost of an individual step is dependent upon the cost of inter-processor
communications. Under a PRAM model, where the cost of each step is O(1),
the algorithm completes in time O(log N 2) steps; on an architecture with a
log-deep network such as a hypercube, butterfly, or fat-tree, the algorithm
completes in time O(log N 3); etc.

In specifying and analyzing this GC algorithm, I build on the simplest
possible approach to parallel connected components. There is a lot of work
on improving the exponent for various types of parallel architecture (see, e.g.,
[28]). It is quite possible that one or more of these superior algorithms could
be adapted to suit this GC algorithm. However, as will be discussed in the
next section, this GC algorithm is presently conservative to the point of unus-
ability; additional thought spent on this algorithm should be directed toward
reducing the conservativism before it is spent figuring out how to reduce the
exponent.

The role of an oracle, and an open question

If incoming edges are simply selected randomly, any garbage structure which
has a lot of pointers to live data is likely to survive indefinitely. Consider
the data structure of Figure 4.5, in which there is a live linked list, and a
garbage circular linked list. Every node in the live list has two incoming

64

Root

Figure 4.5: A plausible garbage data structure: each element of a garbage
circular linked list points to an element in a live linked list.

65

pointers: one from a live object, one from a garbage object. If, during a GC
pass, any single live object happens to choose a garbage object in Step 2 of the
algorithm, all of the garbage objects will be preserved. If each list contains N
objects, then the likelihood of every live object making the correct decision
is 1

2N . For even moderately-sized N , random decision-making will lead to
indefinite preservation of garbage objects.

An oracle would, of course, solve this problem. In fact, given a perfect
oracle to guide the choice of edges in Step 2, this garbage collection strategy
would be precise; the oracular case is shown in Figure 4.3. In the absence of
a perfect oracle, however, this strategy is conservative; the imperfect counter-
part to the case shown in Figure 4.3 is shown in Figure 4.4.

The key question, which I leave open here, is whether or not there are
heuristics, perhaps based on the results of previous rounds of garbage collec-
tion, that can successfully approximate a good oracle.

4.4 Conclusion

In this chapter I have shown why precise garbage collection schemes are a
poor fit for inter-node garbage collection on massively parallel processors: in
the worst case, they can effectively nullify the entirety of the machine’s par-
allelism. Reference counting, while conservative in its memory reclamation,
does not suffer from this problem. As a result, in the following chapter I fo-
cus on a reference-counting-based garbage collection strategy for managing
sparsely faceted objects.

The other, minor contribution of this chapter is a a novel, parallel garbage
collection algorithm which, although conservative to the point of uselessness,
has the ability to reclaim some garbage cycles, and has better theoretical run-
ning time than conventional precise techniques on an MPP. Given an oracle,
my new GC scheme would become precise and therefore useful; I have left
open the question of whether there are heuristic approximations to an oracle
which could notably improve its precision. Because in its current state this
algorithm is too conservative to be useful, I do not make use of it elsewhere
in this thesis.

66

Chapter 5

Garbage Collection of
Sparsely-Faceted Arrays

5.1 Overview

A scheme for automatic memory management with sparsely faceted arrays
must meet several requirements. It must ensure that for a given SFA, at most
one facet is allocated on each node. It must also ensure that as long as any
node in the system holds a pointer to an SFA, all of the SFA’s facets remain
available even when there are no pointers on some of the local nodes. Finally,
it must ensure that when no nodes in the system hold pointers to an SFA, all
of its facets are freed.

The first requirement is met by recording facet allocation in the trans-
lation tables discussed in Chapter 2. In this chapter I describe a method
of garbage collection which accomplishes the remaining two requirements.
My method extends Indirect Reference Counting (IRC) [52], a distributed
reference counting scheme which tracks references between independently
garbage-collected areas.

For clarity of exposition, in this chapter I assume a one-to-one mapping
between areas and processing nodes, i.e. each node contains exactly one area.
In Chapter 6, I briefly describe extensions to the garbage collection scheme
of this chapter that enable independent management of multiple independent
areas per node.

This chapter is organized as follows. In Section 5.2, I describe a garbage
collection scheme, based on indirect reference counting, which is able to per-
form correctly and efficiently in the presence of sparsely faceted arrays. In
Section 5.3, I discuss the implementation of the GC bookkeeping tables, and

67

study the efficacy of dedicated bookkeeping caches in simulation. In Section
5.4, I describe an optimization which reduces the impact of the unused-facet
problem. I close with a summary discussion in Section 5.5.

5.2 SFA-Aware Indirect Reference Counting

Any scheme for automatic management of SFAs should meet the following
two requirements:

1. Correctness: No facet of an SFA can be destroyed while there are any
live pointers to the SFA in any node.1

2. Efficiency: In order to free an SFA without broadcasting a message to
every area/node, at free-time the system must be able to determine the
location of each of the SFA’s allocated facets.

As I have shown in Chapter 4, reference counting is well-suited to garbage
collection in a massively parallel system because it does not have to trace the
entire live-object graph in order to free memory. Thus, I meet the above re-
quirements by extending a distributed reference counting strategy, Indirect
Reference Counting (IRC) [52], such that it can manage sparsely faceted ar-
rays in addition to scalar objects.

5.2.1 A quick review of IRC

Indirect Reference Counting is a distributed reference counting strategy in-
tended for tracking inter-area pointers; it cooperates with an area-local garbage
collection system to provide whole-system GC. In this section I provide a very
brief review; a more comprehensive review is presented in Appendix A.

Under IRC, when an area first exports a pointer to a locally-allocated
scalar object, it creates an IN entry containing a reference count; the reference
count is incremented for every pointer sent to other nodes. When an area A
first receives a pointer to a scalar object, it creates a local OUT entry recording
the sending (AKA parent) area. The OUT entry also contains a reference
count which is initially zero, but is incremented every time A sends a copy of
the pointer to another node.

This strategy results in the construction of a fan-in copy-tree of IRC en-
tries whose structure reflects the pattern of distribution of the pointer. See
Figure 5.1.

1Actually, there is an exceptional/optimization case, discussed in Section 5.4, in which it is
not only acceptable but beneficial to delete an SFA facet.

68

IN OUT

AREA 0

Q

IN OUT

AREA 1

IN OUT

AREA 2

IN OUT

AREA 3

Q:0:2

Q:1:0Q:1:0

Q:1

Figure 5.1: Pointer to Q copied from Area 0 to Area 1, then from Area 1 to
Areas 2 and 3. The IRC fan-in copy-tree is dashed.

Area-local GC uses IN and OUT entries as garbage-collection roots when
GCing an area, and is responsible for identifying OUT entries for pointers of
which the area no longer holds any copies.

When an OUT entry’s reference count is zero — i.e. the OUT entry is a
leaf of the IRC tree — and area-local GC determines that there are no copies
of its pointer left in its area, the OUT entry is destroyed and its parent area
is notified. The parent area decrements its corresponding IN or OUT entry’s
reference count, possibly reducing it to zero and making it, itself, a possible
subject for destruction.

When all OUT entries have been destroyed, the IN entry in the object’s
home area will have a reference count of zero and can be destroyed regardless
of whether the home area still contains copies of the pointer.

5.2.2 Making IRC SFA-aware

Unmodified, indirect reference counting is suitable only for managing scalar
objects. In this section I will show how to extend IRC such that it can manage
sparsely faceted arrays as well.

69

QA

IN
Q:QA:1

OUT IN OUT
Q:QB:A:2

IN INOUT
Q:QC:B:0

OUT
Q:QD:B:0

Node A Node B

Node C Node D

QC

QB

QD

Figure 5.2: An IRC copy tree for an SFA; note facets on all nodes.

70

Copy tree construction

In SFA-aware IRC, copy-tree construction proceeds as usual. Each time an
area receives a pointer to an SFA for the first time, it constructs a new OUT
entry for the SFA; the OUT entry records the area from which the pointer
was received as usual. At the same time, of course, the node allocates a local
facet for the SFA and makes an entry in the both the translation table and in
the OUT entry. (I will discuss the possibility of merging the IRC entries and
translation entries in Section 5.3.2.) See Figure 5.2.

Area-local GC

Just as node-local GC uses scalar objects recorded by IN entries as garbage-
collection roots when GCing an area, local garbage collection use the local
facets recorded by IN and OUT entries as roots; local facets, and anything
reachable from them, are therefore preserved by each local GC pass. Local
GC may freely relocate a facet, but it must update the corresponding IRC
entry.

Unparenting OUT entries

In order to meet Requirement 1, Correctness, we cannot destroy a OUT entry
when we might destroy a scalar OUT entry; it records the existence of a local
facet. Thus, we will simply unparentsuch an entry.

Unparenting a OUT entry is as simple as decrementing the reference
count of its parent in the IRC reference tree. If its node later receives a pointer
to the SFA again, the OUT entry is re-used, recording the sending node as its
new IRC parent; this process is called reparenting.

Area-local garbage collection continues to use unparented OUT entries as
roots for the local GC.

Aside from the fact that OUT entries are not eliminated when it sends
a decrement to its parent area, IRC proceeds identically for SFA references
as for scalar references: the reference count in an OUT entry increases each
time its pointer is sent to another area, and decreases when decrements are
received from other areas.

Anchoring OUT entries

When all OUT entries for a particular SFA are unparented, the reference count
on the SFA’s IN entry will be zero. This condition, in conjunction with the
discovery that there are no pointers to the SFA on its home node, identifies
the SFA as entirely unreachable; at this point, the SFA is garbage and all of
its facets may be freed.

71

QA

IN
Q:QA:1

OUT IN OUT
Q:QB:A:0
 C,D

IN INOUT
Q:Qc:-

OUT
Q:QD:-

Node A Node B

Node C Node D

QC

QB

QD

Figure 5.3: A partially-formed anchor tree; note facets are preserved on
unparented nodes.

72

QA

IN
Q:QA:0
 B

OUT IN OUT
Q:QB:-
 C,D

IN INOUT
Q:Qc:-

OUT
Q:QD:-

Node A Node B

Node C Node D

QC

QB

QD

Figure 5.4: A completely-formed anchor tree.

73

However, when an SFA’s IN entry reference count goes to zero, the system
needs to be able to discover the set of nodes which have unparented OUT
entries in order to meet Requirement 2. This requirement is met by anchoring
each OUT entry the first time it becomes unparented. Anchoring is essentially
the process of reversing the directionality of the edges in an IRC reference
tree.

A OUT entry requests anchoring by setting an ANCHOR bit in the decre-
ment request sent to its parent-area. Upon receiving a decrement message
with set ANCHOR bit, a parent area both decrements the reference count in
its IRC entry as usual, and also records the requesting area in an “anchored”
list attached to the IRC entry. See Figure 5.3.

Since the direction of each link in the IRC copy-tree is reversed when
a OUT entry becomes unparented, when all of an SFA’s OUT entries have
become unparented, they are all anchored; the IN entry is thus the root of an
anchor-tree of pointers which fan out to identify every area containing one of
the SFA’s facet. See Figure 5.3.

One minor note for completeness: as mentioned in the previous section, a
OUT entry may be unparented and reparented multiple times over the course
of its lifetime; however, it is only anchored the first time it becomes unpar-
ented, and is never un-anchored thereafter.

Freeing an SFA

An SFA is garbage when its IN entry has a zero reference count and area-
local GC determines that there are no pointers to the SFA within its home
area. To free a garbage SFA, its home node simply sends a delete message to
each anchored-child of the SFA, and deletes the IN entry; each anchored area,
upon receiving such a delete message, recursively sends it to any anchored-
children rooted in its OUT entry, and then destroys the OUT entry. With OUT
and IN entries destroyed, node-local GC can reclaim the now-orphaned facets
on its next pass.

Delete messages add another message to the communications cost of an
individual pointer-copy, raising the number to as high as three: the initial
copy, the subsequent decrement/anchor, and the final delete; in cases of OUT
entries that are repeatedly reparented, the cost of the latter pointer copies
will still only be two messages. Regardless, the aggregate communications
overhead per inter-area pointer copy is still O(1).

Building a better anchor-tree

Unfortunately, if a particular node has a large number of children, the “an-
chored” list of an entry can grow to occupy space of O(N) for N areas. This

74

eliminates one of the key advantages of reference counting. In order to avoid
this problem, we can employ a more sophisticated anchoring strategy using
distributed trees instead of local lists.

Under this approach, each faceted IRC entry contains two slots2 in which
to record anchored areas. An area honors the first two anchor-requests it
receives for a particular pointer by recording the requesting areas in the two
slots of the area’s IRC entry for the pointer.

For each subsequent anchor-request the area receives, it forwards the re-
quest to one or the other of the recorded, anchored areas. Recipient areas
forward the message recursively until an empty slot is found in some part of
the anchor-tree.

This strategy regains the benefits of O(1) storage per node per SFA, but
increases the potential messaging cost for a single pointer copy to O(N)in the
worst case as anchor messages are forwarded — although in practice, these
costs will almost certainly be much, much lower.

Timing

Although indirect reference counting is generally self-synchronizing, the method
of forwarding anchor requests introduces the possibility of a specific problem:
suppose that a OUT entry sends a decrement/anchor request to its parent in
the IRC tree. Suppose that the parent must forward the anchor request; the
anchor message is launched toward one of the parent’s anchor-children.

Let us further suppose that the initial decrement action is sufficient to
zero the reference count for the entire SFA – the SFA has become garbage.
In this case, delete messages will be sent from the anchor-tree root IN entry;
each receiving OUT entry will forward the deletion request to its anchored-
children before destroying itself.

The problem-case arises if the forwarded anchor request is delayed in the
network, and the deletion messages from parent to child overtake it. In this
case, when the anchor request arrives at its destination area, the area will have
no record of the SFA whose facets this request is trying to anchor.

As long as an SFA’s GUID is not re-used after its destruction, this problem
case is easily handled. An area which receives an anchor message for an SFA
for which it has no record may assume that the SFA has been deleted; the area
simply sends a delete message to the area being anchored.

On the other hand, if SFA GUIDs are re-used, then there is a risk that that
this sort of message reordering could result in the facets of an old SFA be-
coming associated with a new, unrelated SFA. In this case, a protocol must be

2For a shallower tree, we could use larger numbers of slots, but that would increase the per-
pointer, per-node space overhead.

75

adopted to ensure that delete messages can never overtake anchor messages
in the network.

5.3 Implementing IN and OUT sets

Each node must maintain a table of IN and OUT entries; these entries will
be manipulated both by the network interface, and by the node-local garbage
collector. As with SFA translation tables, these tables may be implemented
as hashtables stored in the node’s physical memory. In fact, although IN
and OUT sets are conceptually distinct, we can implement them as a sin-
gle hashtable residing entirely within physical memory; each entry in the the
hashtable is keyed by the pointer (and, for SFA entries, the GUID) it docu-
ments.

Unlike SFA translation operations, whose latency directly impacts the
performance of message sends and receives, IRC bookkeeping operations can
be pipelined without delaying message delivery. Correspondingly, the moti-
vation to avoid latency in performing IRC bookkeeping is therefore much
lower than it is in performing translations.

However, avoiding unnecessary use of main memory bandwidth remains
a concern, and an IRC entry update is expensive. In the best case, the pointer
is hashed; the appropriate entry-key is read from memory; the pointer is com-
pared against the key; the reference count is read from memory; the count is
incremented; the count is written back to memory. To write a single pointer
to remote memory, this adds at least three memory references – two word-
reads, one word-write – at both source and destination nodes. This effectively
quadruples the memory bandwidth cost of the copy at the destination; since
the sending node may have been sending the value from a register, this cost
represents an infinite increase in the memory bandwidth cost at the sender.

These costs motivate the consideration of a dedicated IRC-entry cache in
the network interface.

5.3.1 A cache for IRC entries

An IRC cache is keyed on object pointers, and contains abbreviated versions
of IN and OUT entries. An increment or decrement request which hits in
the cache requires no memory access. An increment or decrement request
which misses in the cache causes an invalid (unused) or clean (contents are
backed by the IRC entry in memory) cache entry to be allocated to handle the
request. Note that since cache entries may be allocated to handle incoming
decrements, childcounts in the cache may be negative.

76

Figure 5.5: IRC cache spill rate for various applications and cache sizes.

Figure 5.6: IRC cache “miss” rate for various applications and cache sizes.

77

A cached IN entry whose childcount goes to zero may be declared clean.
However, in the presence of an incremental area-local garbage collector (e.g.
Baker’s copying collector), a cached OUT entry whose childcount goes to
zero is dirty until the backing OUT entry in the main hashtable is marked.
This is because a pointer received from a remote node can be written into an
already-swept part of the area; if the IRC entry is not marked when the cache
entry is flushed, when the GC pass completes, it could erroneously conclude
that no local copies of the pointer still exist, and free the entry.

In the event that no invalid or clean entries are available, the NI logic must
merge some or all cache entries into the main-memory hashtable, marking the
merged entries clean; the cache implementation I study in this section cleans
all cache entries at once.

Merging an OUT entry in the cache with an OUT entry in the hashtable
may uncover an unusual situation: the two entries could refer to different
copy-tree parents. In this event, the count from the cache entry is added
to the count in the hashtable entry, and a decrement message is sent to the
parent-area named in the cache’s entry.

As long as a relatively small number of pointers are being exchanged
between areas at any one time, such caches should be very successful at min-
imizing the cost of IN/OUT bookkeeping. The actual success of IRC entry
caches is obviously dependent both on applications and on cache geometries.

Simulation results

Figure 5.5 shows the cache spill rate for a dedicated, fully associative IRC
cache which is used for both incoming and outgoing pointer bookkeeping.
The applications shown are the same as those used in Section 3.4.3; quick-
sort and pointer stressmark are each run for two problem sizes, and Kd tree
for one. All are run under the Mesarthim simulator, described in Chapter 6,
simulating a 256 node system.

The lesson of the spill rate graph is that by a cache size of 512 entries,
the spill rate has gone to zero for these benchmarks. This implies that the
miss rates shown for a 512-entry cache in the following figure, Figure 5.6,
are compulsory, rather than capacity misses. Tracking backwards, we see
that caches with as few as 64 entries have miss rates that are only slightly
larger than the rates seen with bigger caches.

Each of the three test applications performs some of its inter-node com-
munications via shared memory operations on scalar objects, generally allo-
cating a new scalar object for each inter-node thread invocation; the constant
generation of new scalar objects is the primary reason for the high compul-
sory miss rates which, for one application, exceeds 30% for a cache with 64
entries.

78

Figure 5.7: Combined IRC/translation cache translation fill-from-memory
rate for various applications and cache sizes.

As noted in the previous section, cache misses do not necessarily require
communications with memory; the IRC cache can simply record the informa-
tion to be merged into memory later, and in some cases (i.e. cached IN entries
whose reference count goes to zero), the information may never need to be
written back. Thus, for this cache, in a long-running program, the steady state
spill rate may be well below the miss rate; this is good news, since the actual
memory bandwidth cost is related to the spill cost, not the miss rate.

Unfortunately, the benchmark applications are not sufficiently long-running
in simulation to reliably illustrate the precise steady-state behavior. Thus, we
must settle for the upper bound on cache spill rates provided by the cache
miss rate. Although a 30% miss rate is quite high, it nevertheless implies a
70% hit rate, which would represent a significant decrease in main-memory
bandwidth consumption due to IRC bookkeeping.

5.3.2 Using IRC entries as translation records

When an SFA is first created, a single facet is allocated on the creating node.
As long as pointers to the SFA don’t escape the initial area, there is no need
to generate a globally unique identifier for the SFA.

A GUID must be generated when a pointer to the SFA is first sent to
another node/area. At the same time, an IRC IN entry must be created for the

79

SFA. A faceted IRC entry must be placed in its area’s IRC table under two
keys: the GUID, and the local facet name.

Similarly, when a node/area first receives a pointer to an SFA, it must
allocate a local facet to associate with the SFA’s GUID; at the same time, it
must create an IRC OUT entry for the SFA.

Rather than maintaining separate data structures for translation and for
garbage collection, we may wish to consider using the mapping stored in the
IN and OUT entries for sparsely faceted arrays.By storing translation and and
IRC data in a single entry, we only need to perform a single lookup operation
in an IRC entry hashtable.

By adding a few fields to the IRC cache discussed in the previous section,
we can perform most SFA-related updates in cache. The rules for working
with faceted IRC cache entries are slightly different from those for scalar
IRC entries.

Most notably, if an SFA reference requiring translation misses in the IRC
cache, the network interface is required to check the main hashtable to see if a
translation (and thus an IRC entry) already exists. If so, then the appropriate
information is copied from the entry into the cache from the hashtable; if not,
a new IRC entry is created along with the appropriate translation information,
recorded in the hashtable, and a cache entry set up.

There are two types of SFA-related references which do not require trans-
lation, and therefore even if they miss in the cache do not require references
to the backing hashtable. These references are first, decrement requests re-
ceived from remote areas; and second, anchor requests received from remote
areas. Both types of request can be satisfied by recording information – either
a decrement, or the identity of the area requesting anchoring – in a freshly-
allocated cache line; the line must be marked as dirty but unsuitable for an-
swering translation-requests.

When a cache entry which has recorded anchor-requests is merged with
the IRC entry in the hashtable, if the IRC entry has already filled its anchor-
slots, the requests may need to be forwarded to its anchor-children; this can
be handled by the NI software/firmware that handles the merging.

Simulation results

Figure 5.7 shows the frequency with which references to a combined IRC/
translation cache must retrieve facet/GUID translation information from main
memory. Although this “facet fill” rate is lower than the translation cache
miss rates demonstrated in Section 3.4.3, the comparison is not straight-
forward: the translation cache is only referenced for translation operations,
whereas the combined IRC/translation cache is referenced for IRC bookkeep-
ing operations in addition to translations. However, since the fill rate levels

80

out for caches of 64 entries or more, we may conclude that remaining fills are
compulsory, rather than due to capacity limitations, and therefore that a cache
of 64 entries or more is adequate to perform both translation and bookkeeping
with close to optimal cache performance.

5.3.3 Simulation caveats

I will reiterate this caveat one last time: the cache simulations performed in
the preceding sections are indicative, not definitive. The applications used
are simplistic, and the simulation is idealized. While these results suggest
that a small, dedicated cache can handle a large majority of IRC bookkeeping
and SFA translation tasks without requiring access to main memory, the task
of picking a cache size for a specific architecture will require both a precise
simulation of the architecture, and a set of full-scale applications which are
representative of the intended workload.

5.4 An optimization

One failing of SFAs is the problem of unused facets: any node which receives
an SFA pointer will allocate a facet for it, even if the facet is unused and the
pointer is rapidly destroyed.

With some help from the local garbage collector, SFA-aware IRC can be
modified to eliminate these unused facets, and in some cases the correspond-
ing IRC entries as well.

Recovering local memory

Assume that a facet, when first allocated, is initialized to some initial value,
e.g. 0.

At the end of any local GC pass which discovers that the area contains
no pointers to an SFA, and also that the local facet contains only the initial
value, the IRC entry’s “local-pointer” field may be set to INVALID, and the
local facet GCed. If the area later receives a new copy of the pointer, it must
notice the INVALID entry and allocate a new local facet to the SFA.

This strategy adds overhead to the process of area-local garbage collec-
tion; the corresponding reward will depend heavily on the actual applications.

Eliminating redundant IRC entries

The previous section showed how to eliminate unused facets, but did not elim-
inate their IRC entries. In this section, I show how to eliminate a limited class
of IRC entry as well.

81

Suppose a OUT entry is unanchored, and local GC has set its local-pointer
field to INVALID. Suppose further the entry has a zero reference count, and
that area-local GC has found that the area contains no copies of its pointer.
Normally, SFA-aware IRC would unparent and anchor this entry. However,
in this case it can unparent and eliminate the entry instead. A decrement
message is sent to the parent as usual; in addition to the decrement request,
the message also contains anchor-requests for any anchored-children of the
dying OUT entry. This will attach any anchored-children of the dying entry to
the anchored-entries subtree rooted in its former parent. Once the decrement
message is sent, the OUT entry may be destroyed.

5.5 Summary

Automatic memory management is an important tool in reducing the burden
of programming any system. The complexity of parallel programming is in-
trinsically greater than that of sequential programming, and thus any and all
tools which simplify the task are inherently of great value.

In previous chapters, I presented sparsely faceted arrays, a data struc-
ture enabling straightforward partitioned programming in terms of both al-
gorithms and data structures, and suggested that SFAs could be garbage col-
lected. In this chapter I have followed through on that suggestion.

In particular, I have described automatic memory mechanisms capable
of correctly and efficiently managing sparsely faceted arrays. My mecha-
nism, SFA-aware IRC, meets all three requirements for automatically manag-
ing SFAs listed in the introduction to this chapter: it ensures that for a given
SFA, at most one facet is allocated on each node; it ensures that as long as any
node in the system holds a pointer to an SFA, all of the SFA’s facets remain
available; and it ensures that when no nodes in the system hold pointers to an
SFA, all of its facets are freed.

As with any reference counting scheme, SFA-aware GC cannot collect
inter-area garbage cycles; however, as discussed in Chapter 4, it does reclaim
memory without the risk of eliminating the parallel advantage of an MPP
imposed by precise GC schemes.

82

Chapter 6

Mesarthim: a high-level
simulation of a parallel
system

γ Ari: This beautiful pair is one of the best known in the
sky and one of the first to be discovered; the pale yellow stars
dominate a field well sprinkled with scattered stars. There has
been no change since at least 1830 and common proper motions
indicates a physical system of very long period.
— Astronomical Objects, by E J Hartung. Cambridge University
Press, 1984. [22]

In this chapter I describe Mesarthim1, a high-level simulation of a dis-
tributed shared memory parallel computer and operating system. Mesarthim
is designed to accurately count heap-related events of various types, but no
attempt is made at cycle-accurate simulation of a specific architecture. Sys-
tem aspects not directly related to heap management are not generally not
simulated.

Developing Mesarthim provided an opportunity to experiment with the
implementation, use, and garbage collection of sparsely faceted arrays. Lessons
learned during the development experience are reflected in the final designs
presented in the earlier chapters of this thesis.

An additional goal in developing Mesarthim was to experiment with garbage
collection in Small Physical memory, Large Virtual memory (SPLV) systems.

1The research reported in this thesis was performed under the auspices of the Aries group at
the MIT AI Lab. Mesarthim is a nickname for γ Ari.

83

Since these experiments were neither as innovative nor as successful as the
SFA experiments, they have gone unmentioned in the rest of this thesis; for
the sake of completeness, I will briefly discuss them in this chapter.

6.1 Overview

6.1.1 Feature Overview

Mesarthim simulates a distributed shared memory parallel processor with no
inter-node data caching. Each node features processor, network interface,
memory, and secondary storage (i.e. disk.)

Data words are tagged with hardware recognized types. Mesarthim pro-
vides hardware support for sparsely faceted arrays, and recognizes SFA point-
ers as distinct from scalar pointers.

To simplify the task of programming and compiling for Mesarthim, pro-
cessors are stack based, rather than register based. Application programs are
written or compiled to an assembly language which is a cross between Alpha
assembly [64] and Java Virtual Machine [40] instructions.

Each processor supports lightweight multithreading. Threads synchronize
using empty/full bits on words in the heap.

In addition to simulating the basic hardware, Mesarthim also simulates an
operating system, including thread and memory management.

6.1.2 Implementation Technology

Mesarthim consists of about 19,000 lines of C code; it runs under Linux and
UNIX operating systems, and has been verified to run with identical results
on Intel Pentium, AMD Athlon, and Compaq Alpha processors. It is com-
piled with gcc [66] version 2.95.2. Its graphical user interface is based on
Gtk++, and was in large part designed using the Glade Graphical User Inter-
face designer.

Mesarthim uses the ran1 algorithm from [57] to guarantee consistent,
high-quality pseudo-random number generation across platforms.

6.2 System Details

6.2.1 Synchronization

Mesarthim provides synchronization through a distinguished, hardware-
recognized EMPTY word type, and an atomic-exchange operation. A thread

84

B N F A

0 1 2 (F) N-3 N-2 N-1

2
B

Capability C

Object O

Figure 6.1: The format of a guarded pointer C pointing into an segment S.

which attempts to read an empty word is blocked; when an active thread
writes into an empty word, any threads blocked on that word are reactivated.

In order to maintain a sequentially consistent memory model, a thread is
blocked whenever it has an outstanding memory operation.

This synchronization strategy is similar to that employed by the BBN
Butterfly [46] and the Tera MTA [1], among others.

6.2.2 Pointer representation

Mesarthim words are 128 bits, including type tags. Addresses are word-
based.

Mesarthim’s pointers are guarded pointers[9] or capabilitieswhich spec-
ify not only a target address, but also the bounds of the segmentin which the
address lies. Hardware uses these bounds to dynamically detect access viola-
tions. Thus, even without more sophisticated access-control, guarded pointers
provide a much more finely-grained mechanism for inter-process protection
and cooperation than the traditional page-based protections of conventional
architectures.

The specific format of a guarded pointer C for an address A in Segment
S is C = [B, N, F, A] where S is composed of N blocks of 2B words each
(allocated block-aligned;) and F is the number of the block into which A
points. See Figure 6.1. The presence of the finger-field F allows the rapid
discovery of the beginning and end of the segment regardless of where the
address A is pointing.

A Mesarthim pointer is 82 bits long. An actual address is 64 bits: the up-
per 20 bits identify a physical node; the lower 10 bits are the page offset; and
the middle 34 bits are the virtual page number. The bounds field is encoded
with 16 bits: 5 bits for each of N and F, and 6 bits for B. Finally, a pointer-type
tag is encoded with two bits, identifying pointers as either scalar, immutable,
sfa-local, or sfa-global.

85

In general, a single object is stored in a given segment; because the bounds
encoding has limited resolution, a segment may be up to 1

16 (i.e. one block of
2B words) larger than the object it contains.

6.2.3 User-generated messages

Mesarthim provides two types of program-generated inter-node operations:
remote memory references, and remote procedure invocations.

Programs do not need to do anything special to perform remote memory
accesses. When a node performs a memory access (read, write, or exchange)
on an address, the hardware compares the node’s ID against the address’s
node field. If they match, the access completes locally; if not, the appropriate
message is constructed and placed into the network.

Remote invocations may be synchronous (i.e. call with return value) or
asynchronous (i.e. remote spawn.) Programs must explicitly perform remote
procedure invocations, specifying the remote node’s identity.

6.2.4 Thread scheduling

Mesarthim provides lightweight threading which enables programs to create
many short threads. There are three granularities of thread scheduling.

At the top level are jobs. Each application runs as a job. A node with
threads from multiple jobs will assign processor time evenly partitioned be-
tween each job in a round-robin fashion.

At the next level are subjobs. A given node may have multiple subjobs for
a single job; a subjob exists only on a single node. The scheduler divides a
job’s processor time evenly amongst the job’s subjobs in a round-robin fash-
ion. When a message received from a remote node starts a new thread within
a given job, that thread starts in a new subjob; this ensures that independent
parts of a subproblem can not indefinitely block one another from getting
processor time.

At the bottom level are threads. A subjob may contain many threads.
Within a subjob, threads are scheduled unfairly, using a scheme similar to
that described in [47]. In particular, when a thread spawns a new, child thread,
the child is run unfairly until it completes or blocks. This tends to minimize
the number of threads spawned on a single processor by executing threads in
depth-first order.

When a thread resumes from being blocked, it moves to the head of its
subjob.

86

6.2.5 Cycles

Each node with runnable threads executes one instruction from one applica-
tion thread on each machine cycle. Operating system and garbage collection
operations happen outside of the cycle system; they don’t take cycles away
from user code. Thus, cycle counts represent an idealized measure of the time
it takes user code to complete an algorithm independent of system software
overhead.

6.2.6 Heap memory hierarchy

The Mesarthim heap is built on a simple two-level memory hierarchy: physi-
cal memory, and disk. Each node has a fixed amount of physical memory, and
a TLB (Translation Lookaside Buffer, a hardware page-map) with an entry for
every physical page.

An attempt to access a page which is on disk results in a page-in (often
preceded by a page-out); since Mesarthim is event-based, rather than cycle-
based, the operations of page-out and page-in are essentially instantaneous –
no attempt is made to simulate a realistic paging delay.

6.2.7 Immutable objects

In addition to normal (scalar) objects and sparsely faceted arrays, Mesarthim
supports “immutable” objects. Within a node, immutable objects are treated
identically to scalar objects. However, pointers to immutable objects are
never sent inter-node; instead, when a network interface sees an immutable
object pointer, it recursively copies the entire object (i.e. it serializes the
object) into the outgoing message; the receiving network interface will de-
serialize the data into a newly allocated segment. This strategy ensures that
references to immutable objects never travel inter-node. Some uses of im-
mutable objects are discussed in Section 6.6.

Supporting immutable objects at the hardware level is, in this case, some-
what unrealistic. In particular, this implementation relies on the fact that
paging an immutable object in from disk takes no “time”; a true implemen-
tation would need to directly address the issue of immutable data which was
not in-core.

87

6.3 Support for SFAs

6.3.1 Typed pointers

A node’s network interface must be able to translate pointers to sparsely
faceted arrays from local to global representations and back. A key element
in making sparsely faceted arrays work is somehow distinguishing pointers
to SFAs from pointers to scalar objects. This can be accomplished in at least
two different ways, using either static or dynamic typing strategies.

In the static strategy, there is no typing data associated with a pointer
itself; rather, the program must manipulate pointers to SFAs using special
instructions to indicate to the hardware that the pointer in question is an SFA
pointer. In the dynamic strategy, each pointer is actually tagged to indicate
whether or not it refers to an SFA.

In either case, after an SFA pointer has been translated into global form
and placed on the network, it must be tagged as an SFA pointer to enable
automated translation to local form at the recipient node.

Mesarthim employs the fully dynamic approach; SFA pointers are recog-
nized by hardware, and translation is fully automatic on both ends of an inter-
node pointer transmission. If the hardware did not enforce the scalar/SFA
distinction, it would be possible for an erroneous program to treat a region of
memory as both a facet and as a scalar object. This has the potential to create
inconsistent garbage-collection bookkeeping situations, since GC operations
are, themselves, pointer-type-dependent. Since, in Mesarthim, all programs
run in a shared address space with shared garbage collection services, the
conservative strategy of dynamic, hardware-recognized typing seemed the
appropriate choice.

6.3.2 GUID generation

As described in Section 3.4, the first time a pointer to an SFA is sent inter-
node from its home node, the home node must generate a globally unique ID
(GUID) for the SFA. In Mesarthim, the GUID is simply the full address of
the SFA’s facet on the home node. Because each node has a very large virtual
address space (244 words, or 16 Terawords, per node), memory management
never normally reuses a virtual address, thus guaranteeing that these GUIDs
are unique.

Is it reasonable to assume that GUIDs never need to be reused? Even
in a very high-performance hardware implementation, for a single node to
allocate and use 244 words of memory will take quite some time. Consider
an extreme example: a processor which allocated an average of one word per
cycle and ran at 10 Ghz would take nearly 30 minutes to exhaust its local

88

virtual address space.
In the event that a node were to exhaust its local virtual address space,

a system-wide garbage collection pass could compact all surviving data into
one end of the address space in order to make the remainder of the space
usable once again.

6.3.3 Translation Cache

Mesarthim provides a simulated SFA-translation cache; measurements of this
cache are used in the discussion of Section 3.4.3.

A single cache is used for both incoming and outgoing translations. An
obvious opportunity for future study is to study using distinct caches for in-
coming and outgoing translation.

6.4 Idealizations and Abstractions

As mentioned in the introduction to this chapter, Mesarthim does not attempt
to simulate system aspects which are not directly relevant to the experiments
of interest. This section mentions some of the “glossed over” details that a
real system implementation would need to address.

6.4.1 Network

The simulated communications network between processing nodes delivers
messages with no failures. Messages are enqueued at the recipient node in-
stantaneously; each node processes one incoming messages per user-cycle.
The network does not impose any notion of topology.

The network interface performs remote memory requests directly. If a re-
mote memory request encounters an exceptional condition, e.g. it attempts to
read an empty word, the network interface creates a thread to run on the local
processor; the thread then re-attempts the operation, and if the exceptional
condition recurs, the processor can deal with it in the usual fashion.

6.4.2 Executable code distribution

The mechanisms of distributing executable program code were not a topic
of study for this thesis, and thus Mesarthim simply elides the problem by
providing every node with a copy of every piece of code. Code does not
occupy heap memory.

89

6.4.3 Stacks

Mesarthim provides each thread with its own stack. Each stack frame con-
tains an arbitrary number of named slots. Stacks do not occupy heap memory.

6.5 Garbage Collection

Mesarthim was designed to enable the study of two relatively independent
issues in programming DSM architectures. The first issue, already discussed
extensively in this thesis, is the implementation, use, and garbage collection
of sparsely faceted arrays. The second issue, left largely unmentioned until
this chapter, is the implementation of garbage collection on an SPLV system
— that is, a system with Small Physical, but Large Virtual, per-node memory.

By far the more interesting of these topics turned out to be sparsely faceted
arrays, and so my strategies for local garbage collection have gone unmen-
tioned in most of this thesis. Rather than let these other issues go entirely
unremarked upon, however, in this section I provide a high-level description
of the entirety of Mesarthim’s garbage collection system, and provide some
discussion of the qualitative properties of the global and local components.

6.5.1 Garbage collection memory hierarchy

Virtual memory is divided into several classifications for the purposes of
garbage collection in Mesarthim. In decreasing order of virtual memory foot-
print, they are:

• System: The virtual memory of all the nodes in the system.

• Node: The virtual memory on a single node. The upper 20 bits of an
address uniquely identify its node.

• Area: The virtual memory of a node is divided into a number of areas.

• Region: An area consists of one or more regions. In Mesarthim, a
region is of fixed size, 216 pages; since a page is 10 bits, means that the
upper 38 bits of an address uniquely identify its region.

• Segment: A guarded pointer in Mesarthim denotes a segment. Seg-
ments are allocated such that each lies within a single region.

• Object: A segment contains a single object. The distinction between
segment and object exists for two reasons: one technical, one termi-
nological. The technical reason is that the segment sizes encoded in
guarded pointers have limited resolution, and thus segments may have

90

to be larger than the objects they contain. The terminological reason
is that it is convenient to be able to say that when garbage collection
copies data from one segment to another, that the contained object has
movedeven though the segments obviously have not.

Each node has a designated “allocation area” into which new objects are
allocated. When the allocation area becomes full, and GC is unable to reclaim
space, it is replaced with a new area.

6.5.2 SFA-aware Indirect Reference Counting

For inter-node garbage collection, Mesarthim employs the SFA-aware indi-
rect reference counting scheme described in Chapter 5.

Mesarthim simulates an IRC bookkeeping cache in the network interface;
this cache provides the measurements used in Sections 5.3.1 and 5.3.2. A
single cache is used for both incoming and outgoing transactions. As with
the SFA translation cache, an obvious opportunity for future study is to study
using distinct caches for incoming and outgoing translation.

Within a node, IRC entries are owned by individual areas. However, for
most purposes, the inter-node messaging treats each node as containing a
single area. In particular, IN and OUT entries only record which node they
received a pointer from; this avoids the need to consume network bandwidth
by accompany every inter-node pointer transmission with the identity of its
source-area.

6.5.3 Node-local GC

Mesarthim’s node-local garbage collection is based on a combination of three
garbage collection mechanisms: Baker’s incremental copying collector [3],
card marking [65], and SFA-aware IRC. Its design is inspired in part by the
GC strategies of ORSLA [7] and the Symbolics Lisp Machine [48].

Area GC

Individual areas are garbage collected using Baker’s incremental copying col-
lector. Two factors led me to employ this algorithm. First, in a parallel sys-
tem, an individual node which asynchronously stops to perform garbage col-
lection can become a bottleneck as other nodes stall while waiting for it to
begin responding to their requests [68]; an incremental collector, which nom-
inally minimizes GC stalls, seemed likely to avoid this problem.

Second, Baker’s incremental algorithm migrates objects into copyspace
in the order that they are referenced; this tends to produce improved locality

91

of reference for the working set of objects, a particularly desirable goal in an
SPLV system.

Mesarthim provides hardware support for Baker’s incremental algorithm.
Baker’s algorithm relies on a read barrier which detects when a pointer to
oldspace is read from memory. Mesarthim features a hardware region-cache
which records, for each region, the boundary between oldspace and current
space. Since the upper bits of an address encode its region, this cache can
be used as a “lookaside” buffer to check, for each such pointer, whether it is
oldspace or not.

Inter-area pointer tracking

Since areas are independently garbage collected, Mesarthim provides mech-
anisms for tracking inter-area pointers. Mesarthim employs two separate
mechanisms: a simple, low-overhead mechanism for tracking inter-area point-
ers within physical memory (“in-core” inter-area pointers), and a more com-
plex mechanism for tracking inter-area pointers from secondary storage.

Card-marking [48, 65] used to track in-core inter-area pointers. Each
page is divided into four cards. When a pointer to one area is written into
a card belonging to another area, the card is marked as dirty. When any area
performs local garbage collection, it must sweep every dirty card in other
areas for incoming pointers.

Mesarthim provides three mechanisms supporting the card-marking write-
barrier. First, each page table entry contains a set of dirty bits for the page’s
cards. Second, each page table entry identifies the area to which the page
belongs. Third, each entry in the region cache identifies the area to which
a region belongs. The write barrier uses these mechanisms as follows: the
area of the pointer being written is looked up in the region cache, while, in
parallel, the area of the page being written to is looked up in the page table.
If the areas differ, the barrier sets the dirty bit for the card being written into.

Inter-area pointers stored to disk are handled differently. Before a page
is written to disk, any dirty cards on the page are swept for inter-area point-
ers. For each inter-area pointer found, an IRC OUT entry is made (if one
doesn’t already exist) in the page’s area; its parent in the copy tree is another
area on the same node which could have provided the pointer — i.e. either
the pointer’s home area, or another area which has an IRC OUT entry for
the pointer. Note that these intra-node copy-tree edges specifically identify
parent areas, whereas the inter-node edges identify only parent nodes.

Thanks to this two level strategy, garbage collection on an individual area
does not require paging in parts of other areas; inter-area pointers in-core are
denoted by marked cards, while pointers on disk are recorded as part of the
area’s set of IRC entries.

92

Multiple areas on a node may possess IRC entries for the same object or
facet. Each area maintains its own table of IRC entries, and the node main-
tains a combined table in order to service inter-node bookkeeping requests.

Area deactivation

One problem with indirect reference counting in general is that the number
of IRC entries in each node is unbounded. To avoid keeping all entries stored
in the active table at all times, I have developed a scheme for “deactivating”
areas.

In brief, when an area’s data and IRC entries have gone unused for a
period of time longer than some threshhold, the data is all paged out, and the
IRC entries removed from the node’s combined IRC entries table.

During deactivation, steps are taken to maintain the system invariant that
IRC entries in deactivated areas specifically record their IRC parents by area.
This invariant is desired because it means that deactivated entries do not re-
quire their IRC parent entries to remain in a node table.

To make this work, each IRC entry maintains separate counts for children
that know its area specifically, and children that only know the node upon
which it resides. The latter class of children may be freely transferred among
active IRC for the same object without effect. When deactivating an IRC
entry with the latter class of children, those children are transferred to a still-
active area’s IRC entry for the same object. (A new entry may need to be
created.)

Also, as each IRC OUT entry is removed from the node table, its IRC
parent field is examined. If the field names a specific area, no more work
needs to be done. If the field names only a node, then a message is sent to
that node requesting a specific area to record as the parent; this message will
result in the reclassification of the deactivating OUT entry as a child which
knows the precise area that is its parent. Over time, this reclassification will
allow all IRC entries for a particular long-lived, seldom-used object to be
deactivated; such an object will then consume no primary memory resources
for data or meta-data (until it is next referenced.)

6.5.4 Qualitative Evaluation

Mesarthim’s overall garbage collection strategy meets the first requirement of
any GC strategy: it works.

The joy of inter-node GC

The inter-node garbage collection strategy, SFA-aware IRC, is simple and
straightforward to implement. The initial implementation worked flawlessly

93

with a minimum of tinkering.

The trouble with node-local GC

Unfortunately, Mesarthim’s node-local garbage collection is not as success-
ful. It suffers from three basic problems.

First, as is obvious from the description in the preceding section, local GC
is quite complex; the ongoing interactions between nodes and areas while per-
forming incremental GC present many opportunities for subtle bookkeeping
errors. Developing a correct implementation was a taxing, time-consuming
process: many an error only manifested itself after hours of simulation, leav-
ing few clues as to its moment of origin. Ultimately, a complete simulation
checkpointing system was implemented in order to be able to replay bugs on
a relatively short time scale.

The second problem with Mesarthim’s node-local GC is that it is inef-
ficient; it often performs more heap memory accesses than the actual appli-
cations do. Without going into the innumerable motivating details, the fun-
damental problem is that whenever a remote pointer or an SFA pointer is
written into a card, the card must be dirtied. Combined with intra-node, inter-
area pointers, the result is that an inordinately large percentage of cards tend
to be dirtied. Every dirty card must be swept by every GC pass. Thus, GCing
an area which only occupies one quarter of physical memory may, and often
does, require scanning the majority of physical memory.

The third problem with Mesarthim’s node-local GC is that at the end of
the day, it fails at the goal of being non-interrupting. In order to guarantee
termination of a pass, Mesarthim sweeps all dirty cards atomically at the end
of a GC pass; if other processes were allowed to continue operating, more
cards can be dirtied, thus preventing GC from completing.

Potential solutions exist for the second and third problems. However,
exploring them is made difficult by the first problem: a complex system is, in
this case, also a brittle system; seemingly trivial changes can introduce faults
which require days to track down and fix.

Based on my experiences with Mesarthim’s local GC, I would offer the
following recommendations for future implementations of this type of sys-
tem.

• Garbage collect all active areas on a node as if they were a single unit.
This eliminates the need for card-marking. This does increase the cost
of deactivating an area, however, as the entire set of active areas must
be swept for pointers into the outgoing area.

This suggestion mirrors the strategy for dealing with “cabled” areas
suggested in [7].

94

• Use a monolithic garbage collection algorithm, e.g. stop-and-copy, for
node-local GC. Follow the recommendation of [68]: synchronize all
nodes so that they perform local garbage collection simultaneously;
this prevents individually GCing nodes from stalling other, working
nodes.

This change eliminates many of the tricky issues associated with incre-
mental GC in a multithreaded, distributed environment, e.g. synchro-
nization while migrating an object, remote writes into memory which
has already been swept, simultaneous modification of IRC entries by
the garbage collector and the network interface, etc.

This change reduces the runtime overhead of garbage collection. Read
traps, in particular, must inevitably incur a high overhead in modern
processors due to flushing the processor pipeline; this change elimi-
nates the need for such traps entirely.

There are two drawbacks to this change: it introduces GC pauses that
an incremental GC approach might avoid, and it does not provide the
same locality benefits of Baker’s algorithm. However, the reduced
complexity, and the correspondingly reduced brittleness of implemen-
tation, should enable more experimentation and performance tuning
that could offset these drawbacks.

6.6 High-level programming

In order to be able to write applications of nontrivial size, I implemented a
very simple compiler for a Scheme-like language I call TupleScheme, abbre-
viated TScheme. TScheme extends standard Scheme [29] with several mech-
anisms. Some, such as deconstructors, are primarily a convenience. Others,
such as immutable tuples and capturing-lambdas, are critical in enabling effi-
cient parallel programs.

I will not discuss the entirety of TScheme here, but I will briefly describe
three key features provided for efficiently programming a DSM machine.

6.6.1 Immutable closures

To begin with, closures, once constructed by lambda or capturing-lambda
(see below), are immutable objects; thus, there are never inter-node pointers
to closures. This ensures locality when a closure is applied, regardless of
where it is originally created.

95

6.6.2 Capturing-lambda

In Scheme, the body of a lambda expression may refer to variables defined
in an environment outside of the lambda itself. However, when a closure is
created on processor A, but invoked on B, these bindings can be a source of
inefficiency as all references to these variables turn into remote memory ac-
cesses. The special form capturing-lambda, abbreviated c/lambda, addresses
this problem.

(c/lambda (arg0 arg1 ...) (pass-name0 ...) (body... free-var0 .. free-
var1...))

When a c/lambda expression is encountered, a closure is constructed. The
procedure body may contain variables which aren’t bound within the body.
In addition to recording the enclosing environment, the closure records the
current value in the environment of the free variables in the procedure body;
I call these variables captured variables.

When a closure is applied, references to captured variable references in
the body refer to the copied values in the closure object, rather than the orig-
inal values in the environment in which the closure was constructed. Thus,
the executing body need never again refer to the bindings of variables in the
defining environment. This has important performance benefits when a clo-
sure is constructed on one node, but copied to and then invoked on another.

pass-name0, etc. specify free variables which should not be captured, but
instead should be treated as would free variables in a regular lambda would
be.

6.6.3 named-capturing-lambda

named-capturing-lambda, or nc/lambda, provides a means of naming a clo-
sure in a captured fashion — otherwise, a tail-recursive closure invoked on a
different node than it was constructed on might have to refer back to its con-
structing node every time it needed to look up its own name and call itself.

(nc/lambda name (arg0 arg1 ...) (pass-name0 ...) (body... free-var0 ..
free-var1...))

Much like a named let, this syntax binds name within the body of the
procedure to the procedure itself.

96

Chapter 7

Conclusions

In this chapter I briefly review the major research contributions of this thesis,
then conclude with a high-level summary of the impact.

7.1 Contributions

7.1.1 Sparsely Faceted Arrays

As the most important contribution of this thesis, I have defined Sparsely
Faceted Arrays (SFAs), a new data parallel data structure. A sparsely faceted
array names a virtual global array, but facets on individual nodes are allocated
lazily. As a result, SFAs present extremely simple shared-memory semantics,
while making efficient use of memory. Additionally, since an SFA is ref-
erenced within a node by a pointer to its local facet, intra-node references
proceed at full memory rate – no additional indirections are incurred.

SFAs enable the efficient implementation of explicitly-placed, non-uniformly
distributed objects and data structures on an important class of parallel archi-
tectures. To drive home their importance, I have described the specific ap-
plication of SFAs in implementing the quicksort algorithm and a distributed,
replicated version of a Kd tree data structure.

Hardware support evaluation

In order to be implemented as a true shared-memory mechanism, SFAs re-
quire hardware support for translating between global and local names. This
support is most naturally provided at the network interface on each node. Al-
though the logic for accessing a translation table in memory is simple, we

97

would prefer to avoid the latency of unnecessary memory accesses, and thus
I have suggested the use of a dedicated translation cache.

Using a high-level simulation, I have evaluated the effectiveness of such
a cache, empirically demonstrating that for several applications run on a 256-
node machine, a 32-entry cache achieves a nearly optimal translation hit rate.
The specific hit rate is highly application dependent; applications which build
an SFA-based data structure, then use it repeatedly, have much higher hit rates
than those which build and discard SFAs in rapid succession. With the 32-
entry cache, different applications in my experiments demonstrate hit rates
varying from 79% to 99%, with the majority of misses being mandatory due
to the allocation of new SFAs. Although a hit rate of 79% is far from perfect,
it is more than sufficient to decrease the expected translation latency in a
practical implementation. Due to the simplicity of the applications and the
idealizations of the simulation framework, these results are not definitive;
rather, they merely suggest that a reasonably-sized cache can handle the vast
majority of SFA translations.

The GC imperative

Although the high-level semantics of SFAs are quite simple, the underlying
lazily-allocated data structure is inherently complex; automatic management,
including garbage collection, is essential to preserving the simplicity of the
mechanism presented to the parallel programmer. This need leads to the other
major contributions of this thesis

7.1.2 Evaluation of precise parallel garbage collection

The traditional approach to garbage collection in parallel computers has been
based on parallelizing precise, tracing garbage collectors, e.g. mark/sweep;
by contrast, the usual approach to garbage collection in distributed systems
has been based on conservative garbage collectors, e.g. reference counting.

As another of my contributions in this thesis, I have shown that in the
worst case, precise tracing garbage collectors can eliminate the effective par-
allelism gains on an arbitrarily large parallel architecture. I have argued that
bad cases are likely to crop up in practice. I have also shown that reference
counting does not suffer from this problem.

7.1.3 An SFA-aware, scalable parallel garbage collection
strategy

My third major contribution is a scalable parallel garbage collection strategy
capable of managing sparsely faceted arrays. My strategy extends a reference

98

counting strategy to perform inter-node pointer tracking, and is therefore con-
servative with respect to inter-node references; it operates in conjunction with
an arbitrary, presumably precise, node-local garbage collection system.

My strategy meets two key requirements for managing sparsely faceted
arrays: correctness, which requires that no facets be garbage collected until
there are no live references to the SFA anywhere in the system; and effi-
ciency, which requires that freeing an SFA does not require communication
with nodes that never received pointers to the SFA.

I meet these requirements by extending Indirect Reference Counting [52]
to incrementally reverse the fan-in copy-tree structure built by pointer distri-
bution. This reversal constructs a fan-out anchor-tree; by the time an SFA has
become garbage, its home node is the root of an anchor tree which identifies
all facet-bearing nodes.

This SFA-aware garbage collection strategy is intended to track inter-node
pointer references, cooperating with a node-local garbage collection strategy
to provide overall system garbage collection. The strategy requires various
bookkeeping operations due to each inter-node pointer copy — both imme-
diate (e.g. reference count increment), and delayed (e.g. reference count
decrement and possible anchor-tree manipulation.)

The logic of these operations is generally quite simple for the network in-
terface to perform, and unlike SFA translation, latency is not a pressing con-
cern, as such bookkeeping can be pipelined without delaying message trans-
mission or reception. However, it is still desirable to avoid the unnecessary
consumption of memory bandwidth, and so I have run simulations to evaluate
the effectiveness of dedicated hardware caches. For different applications I
have studied, caches of 64 to 128 entries provide hit rates approaching the
ideal possible — but the overall hit rate ranges from around 70% to only a bit
over 90%. Most operations on an IRC entry are incremental adjustments that
can be recorded in a write-back fashion; thus, misses do not necessarily re-
quire a read from memory. However, in system running at steady-state, each
miss which creates a new entry must spill an old one to memory.

Whether the memory bandwidth saved by a GC bookkeeping cache is
worth the additional design complexity will be entirely dependent on the char-
acteristics of a specific implementation.

7.1.4 Additional contribution

In addition to the major contributions detailed above, this thesis makes an
additional minor, yet noteworthy, contribution.

99

A novel, conservative, impractical GC algorithm

In reaction to the problem of precise parallel garbage collection, I have de-
veloped a novel garbage collection algorithm based on a parallel connected
components algorithm. As with typical parallel connected components algo-
rithms, this GC algorithm runs in poly-logarithmic steps.

In general, this new algorithm is extremely conservative, and may often
fail to free garbage objects which hold pointers to live objects. However, I
also show that, given an oracle, the algorithm becomes precise. I leave open
the question of whether there exists a heuristic which can approximate an
oracle sufficiently well to get good performance in practice.

Because I have not conceived of an adequate heuristic, this algorithm re-
mains so conservative as to be highly impractical, and I have not attempted to
implement it in this thesis.

7.2 Summary

At a high level, the entirety of this thesis contributes to a single goal: raising
the level of abstraction available to the programmers of an important class of
parallel architectures. Overall, the result of raising the abstractions available
to the programmer simplifies the task of parallel programming.

SFAs and garbage collection provide important abstractions. Implemented
in a large-scale parallel system, these tools will enable the straightforward
use of fine-grained distributed/partitioned objects and partitioning algorithms,
both of which are ill-supported by existing mechanisms.

100

Appendix A

Review of Indirect Reference
Counting

In order to make this thesis self-contained, this chapter contains a review of
indirect reference counting(IRC), a distributed garbage collection technique
first reported by Piquer in [52]. Like many other distributed GC strategies,
IRC is designed to keep track of references between nodes or other logical
areas which also undergo independent local garbage collection.

The main idea behind IRC is this: each area maintains a reference count
for each pointer it has sent to another area, and remembers from which area
it received each foreign pointer. For each pointer, this generates a copy-tree
or diffusion-tree of reference counts; the tree’s shape mimics the pattern in
which the pointer is initially distributed. As copies of a pointer are destroyed,
the leaves of the tree prune themselves and notify their parents, resulting in
a collapse of the tree which mirrors its construction both temporally and in
terms of communications pattern. Once the reference count at the root hits
zero, area-local memory management has complete control over the object.

In the following subsections I review IRC in more detail. Section A.1
describes the construction of an IRC copy-tree;, Section A.2 describes the
deconstruction of an IRC copy-tree; Section A.3 discusses the handling of a
few corner-cases; finally, Section A.4 discusses some of the key benefits of
indirect reference counting.

The interested reader is referred both to the original work on indirect ref-
erence counting [52], and the related papers [53, 54, 55] on other indirect GC
schemes.

101

IN OUT

AREA 0

Q

IN OUT

AREA 1

IN OUT

AREA 2

IN OUT

AREA 3

Figure A.1: Object Q allocated in Area 0.

A.1 Counting up

Consider the example in Figures A.1-A.3.
In Figure A.1, an object Q is allocated in Area 0. Note that each area

maintains an IN set and an OUT set; entries in the IN set correspond to point-
ers coming into the area pointing at local objects, while entries in the OUT
set correspond to pointers pointing out of this area to remote objects.

In Figure A.2, a pointer to Q is copied from Area 0 to Area 1, resulting in
entries in the OUT set on Area 0 and the IN set on Area 1.

The IN list record format is simple: the object identifier is followed by the
count of how many times its pointer has been sent to a remote area. The OUT
list record is only slightly more complex: the object identifier is followed
by the identity of the area from which the pointer was initially received, and
then by a reference count of the number of areas to which the pointer has been
subsequently sent. In this case, one copy of the pointer has been sent out of
Area 0, and no copies of the pointer have been sent out of Area 1, so the IN
entry on Area 0 is Q:1, and the OUT entry on Area 1 is Q:0:2.

In Figure A.3, a pointer to Q is copied from Area 1 to Areas 2 and 3; the
reference count in Area 1’s OUT entry for Q is incremented twice to record
the transfers, and each of Areas 2 and 3 record the fact that they received the
pointer from Area 1.

Note that constructing the IRC tree requires no communications overhead

102

IN OUT

AREA 0

Q

IN OUT

AREA 1

IN OUT

AREA 2

IN OUT

AREA 3

Q:0:0Q:1

Figure A.2: Pointer to Q copied from Area 0 to Area 1. The copy-tree links
are shown as dashed lines.

IN OUT

AREA 0

Q

IN OUT

AREA 1

IN OUT

AREA 2

IN OUT

AREA 3

Q:0:2

Q:1:0Q:1:0

Q:1

Figure A.3: Pointer to Q copied from Area 1 to Area 2 and 3.

103

IN OUT

AREA 0

Q

IN OUT

AREA 1

IN OUT

AREA 2

IN OUT

AREA 3

Q:0:1

Q:1:0

Q:1

Figure A.4: All pointers to Q in Area 2 have been destroyed.

– its construction results from the transmission of pointers from one area
to another. In particular, unlike conventional reference counting schemes,
no special communications are needed with Area 0, even though the copied
pointer refers to an object stored there.

A.2 Counting down

Let us now examine how the IRC tree of the previous section collapses as
local copies of pointers to Q are destroyed.

In Figure A.4, all pointers to Q in Area 2 have been destroyed; the entry
for Q in Area 2’s OUT set has been removed, and Area 1’s reference count
for Q has been decremented. This operation requires one message to be sent
from Area 2 to Area 1 containing the decrement order.

Area-local garbage collection is responsible for discovering that all point-
ers to Q in Area 2 have been destroyed;. Such a discovery does not have to be
immediate; as long as the discovery is made eventually, the reference counts
will be decremented appropriately.

In Figure A.5, all pointers to Q in Area 1 have been destroyed. When
this fact is discovered, the OUT entry for Q is flagged, but since its reference
count is non-zero, it is not deleted, and no messages are sent.

In Figure A.6, all pointers to Q in Area 3 have been destroyed. The decre-

104

IN OUT

AREA 0

Q

IN OUT

AREA 1

IN OUT

AREA 2

IN OUT

AREA 3

Q:0:1*

Q:1:0

Q:1

Figure A.5: All pointers to Q in Area 1 have been destroyed.

IN OUT

AREA 0

Q

IN OUT

AREA 1

IN OUT

AREA 2

IN OUT

AREA 3

Figure A.6: All pointers to Q in Area 3 have been destroyed.

105

ment message sent from Area 3 to Area 1 allows 1 to finally clear its OUT
entry and send a decrement message to Area 0 which can in turn clear its IN
entry.

Overall, one decrement message is sent for each initial inter-area pointer-
copy between the same two areas in each case; multiple decrement messages
from one area to another may, of course, be batched into a single, larger mes-
sage, but the overhead remains the same: O(1) for every inter-area pointer-
copy.

A.3 Corner cases

A.3.1 Receiving the same pointer multiple times.

Consider the hierarchical reference tree in Figure A.3. The question arises:
in the course of continuing computation, what happens if a pointer to Q is
copied from, say, Area 2 to Area 3, or even from Area 1 to Area 3 a second
time?

The answer is straightforward: as soon as the copy arrives at Area 3, Area
3 looks up the pointer in its OUT list and finds that 3 has already received a
copy; Area 3 then immediately sends a decrement message back to the source
area. This ensures that there is at most one path in the copy-tree between any
area and the area where Q is stored.

Once again, one decrement message is sent for each inter-area pointer
copy – there is simply no delay between the copy and the decrement when
the receiving area has previously received a copy of the pointer.

A.3.2 An object with only remote pointers.

It is possible for an object to be reachable only from remote pointers. In this
case, the fact that remote pointers exist is recorded by the object’s entry in the
area’s IN set. Area-local garbage collection must therefore use the IN set as
(part of) the root set.

A.3.3 Inter-area cycles.

Indirect reference counting suffers from the classic reference counting prob-
lem: the reference counts on inter-area cycles such as shown in Figure A.7
will never go to 0, even though neither object is really reachable anymore.
Thus, in order to identify and eliminate garbage cycles, an additional garbage
collection mechanism must be employed.

106

IN OUT

AREA 0

Q

IN OUT

AREA 1

R

Q:1 R:1 Q:0:0R:1:0

Figure A.7: Objects Q and R form an inter-area cycle.

A.4 Benefits Summary

Indirect reference counting offers several properties which are beneficial in
a distributed/parallel environment. I mention them here with a minimum of
discussion.

• O(1) space overhead per pointer per area. Each pointer an area sends
or receives requires only one IRC IN or OUT entry, and the entry itself
is of fixed size, containing as it does a reference count rather than a
list of children. By comparison, reference-listing schemes maintain
entries identifying each of their children, thus bounding the per-area
space overhead due to a single pointer at O(N), given N areas.

• O(1) GC work overhead for every inter-area pointer copy, regardless of
the longevity of the copied pointer. This contrasts with tracing schemes
such as mark/sweep where the GC cost per inter-area pointer is propor-
tional to the number of GC passes through which the pointer survives.

• No additional synchronization requirements. In conventional distributed
reference counting [38], bookkeeping for a single inter-area pointer
transfer can involve three areas: the source, the destination, and the
area into which the pointer points. This imposes synchronization re-
quirements to function correctly in the presence of, say, network delays
between nodes.

• The messaging pattern associated with IRC tree collapse is the reverse
of the pattern of tree formation; thus, if a pointer is distributed via a fan-
out tree pattern, the IRC tree will form and later collapse along the same
tree pattern. By contrast, although weighted reference counting [6, 70],
avoids the synchronization issues of the previous point, all messages
associated with the deletion of a pointer must be sent to the pointer’s
home area; this can create a hot-spot.

107

• Conservative in the case of node failure or system partition. If an area
in an IRC tree becomes unreachable, any object to which the area, or
any of its children in the IRC tree, holds a pointer will be preserved in-
definitely, since an unreachable area will never send a decrement. How-
ever, IRC trees which do not pass through the missing areas will not be
affected, and garbage collection may continue uninterrupted elsewhere
as a result.

108

Bibliography

[1] Gail Alverson, Preston Briggs, Susan Coatney, Simon Kahan, and
Richard Korry. Tera hardware-software cooperation. In Proceedings
of Supercomputing 1997, November 1997.

[2] Atlantic Aerospace Electronics Corporation. DIS Stressmark Suite, July
2000.

[3] Henry G. Baker. List processing in real-time on a serial computer. Com-
munications of the ACM, 21(4):280–294, 1978.

[4] John Batali, Edmund Goodhue, Chris Hanson, Howie Shrobe,
Richard M. Stallman, and Gerald Jay Sussman. The SCHEME-81 ar-
chitecture – system and chip. In Conference on Advanced Research in
VLSI, pages 69–77, January 1982.

[5] Paul J. Besl and Neil D. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14:239–256, February 1992.

[6] D. I. Bevan. Distributed garbage collection using reference counting. In
PARLE ’87 Parallel Architectures and Languages Europe, pages 176–
87, June 1987.

[7] Peter B. Bishop. Computer Systems With A Very Large Address Space
And Garbage Collection. PhD thesis, Massachusetts Institute of Tech-
nology, May 1977.

[8] G. E. Blelloch. NESL: A nested data-parallel language. Technical Re-
port CMU-CS-93-129, Carnegie Mellon University, April 1993.

[9] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hard-
ware support for fast capability-based addressing. In Proceedings of
the 6th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS VI), pages 319–27,
October 1994.

109

[10] Andrew Chien. Concurrent Aggregates: Supporting Modularity in Mas-
sively Parallel Programs. MIT Press, 1993.

[11] H. Corporaal, T. Veldman, and A. J. van de Goor. An efficient, refer-
ence weight-based garbage collection method for distributed systems.
In PARBASE-90 International Conference on Databases, Parallel Ar-
chitectures and Their Applications, pages 463–5, March 1990.

[12] Inc. Cray Research. Application programmer’s library reference man-
ual. Technical Report SR-2165, Massachusetts Institute of Technology,
1994.

[13] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: algorithms and applications.
Second edition.Springer, 2000.

[14] R. S. Fabry. Capability-based addressing. Communications of the ACM,
17(7):403–12, July 1974.

[15] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter,
Andrew Chang, Yevgeny Gurevich, and Whay S. Lee. The M-machine
multicomputer. In Proceedings of the 28th Annual International Sym-
posium on Microarchitecture (MICRO-28), pages 146–156, November
1995.

[16] Cormac Flanagan and Rishiyur S. Nikhil. pHluid: The design of a paral-
lel functional language implementation on workstations. In Proceedings
of the first ACM international conference on functional programming,
pages 169–79, May 1996.

[17] MPI Forum. MPI: A message-passing interface standard. International
Journal of Supercomputer Application, 8((3/4)):165–416, 1994.

[18] MPI Forum. MPI-2: Extensions to the message-passing interface. Tech-
nical report, june 1997.

[19] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine. A
Users’ Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[20] Leonard Gilman and Allen J. Rose. APL: an interactive approach. 3rd
ed. John Wiley, 1974.

110

[21] Benjamin Goldberg. A reduced-communication storage reclamation
scheme for distributed memory multiprocessors. In Proceedings of the
fourth conference on hypercubes, concurrent computers, and applica-
tions, pages 353–9, March 1989.

[22] E. J. Hartung. Astronomical Objects. Cambridge University Press, 1984.

[23] Waldemar Horwat. Revised Concurrent Smalltalk manual. Technical
report, MIT Concurrent VLSI Architectures Group, April 1993.

[24] Waldemar Horwat, Andrew Chien, and William J. Dally. Experience
with CST: Programming and implementation. In Proceedings of the
ACM SIGPLAN 89 Conference on Programming Language Design and
Implementation, 1989.

[25] Waldemar Horwat, Brian Totty, and Willian J. Dally. COSMOS: An
operating system for a fine-grain concurrent computer. In Gul Agha,
Peter Wegner, and Akinori Yonezawa, editors, Research Directions in
Concurrent Object-Oriented Programming, pages 452–476. MIT Press,
1993.

[26] John Hughes. A distributed garbage collection algorithm. In Func-
tional Programming and Computer Architectures, volume 201 of Lec-
ture Notes in Computer Science, pages 256–72, September 1985.

[27] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for
Dynamic Memory Management. John Wiley & Sons, 1996.

[28] David R. Karger, Noam Nisan, and Michal Parnas. Fast connected com-
ponents algorithms for the EREW PRAM. SIAM Journal on Computing,
28(3):1021–1034, 1999.

[29] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5

Report on the Algorithmic Language Scheme. Februrary 1998.

[30] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L.
Steele, Jr., and Mary E. Zosel. The High Performance Fortran Hand-
book. MIT Press, 1994.

[31] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Si-
moni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Bax-
ter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, , and John Hen-
nessy. The stanford FLASH multiprocessor. In Proceedings of the
21st International Symposium on Computer Architecture, pages 302–
313, April 1994.

111

[32] Rivka Ladin and Barbara Liskov. Garbage collection of a distributed
heap. In 12th International Conference on Distributed Computing Sys-
tems, pages 708–15. IEEE Computer Society, June 1992.

[33] Bernard Lang, Christian Queinnec, and Jose Piquer. Garbage collecting
the world. In Conference Record of the 19th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
39–50, January 1992.

[34] Stéphane Lavallée, Richard Szeliski, and Lionel Brunie. Anatomy-
based registration of three-dimensional medical images, range images,
X-ray projections, and three-dimensional models using octree-splines.
In Russel H. Taylor, Stéphane Lavallée, Grigore C. Burdea, and Ralph
Mösges, editors, Computer-Integrated Surgery: technology and clinical
applications, pages 115–143. MIT Press, 1996.

[35] Fabrice Le Fessant, Ian Piumarta, and Marc Shapiro. An implementa-
tion of complete, asynchronous, distributed garbage collection. In Pro-
gramming language design and implementation, pages 152–61, May
1998.

[36] F. Thomson Leighton. Introcution to parallel algorithms and architec-
tures: arrays, trees, hypercubes. Morgan Kaufmann, 1992.

[37] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis
Stevens, Anoop Gupta, and John Hennessy. The DASH prototype: Im-
plementation and performance. In Proceedings of the 19th International
Symposium on Computer Architecture, pages 92–103, Gold Coast, Aus-
tralia, May 1992. ACM.

[38] Claus-Wener Lermen and Dieter Maurer. A protocol for distributed ref-
erence counting. In Proceedings of the 1986 ACM conference on lisp
and functional programming, pages 343–350, August 1986.

[39] Henry M. Levy. Capability-based computer systems. Digital Press,
1984.

[40] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1999.

[41] B. Liskov, M. Day, and L. Shrira. Distributed object management in
Thor. In M. T. Ozsu, U. Dayal, and P. Valduriez, editors, Distributed
Object Management. Morgan Kaufmann, 1992.

[42] The Essential *LISP Manual: Release 1, Revision 7. Thinking Ma-
chines Corporation, July 1986.

112

[43] Umesh Maheshwari. Distributed garbage collection in a client-server,
transactional, persistent object system. Master of engineering thesis,
Massachusetts Institute of Technology, February 1993.

[44] Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed
garbage by controlled migration. In Principles of distributed computing,
August 1995.

[45] Umesh Maheshwari and Barbara Liskov. Partitioned garbage collec-
tion of a large object store. Technical Report MIT/LCS/TR 699, Mas-
sachusetts Institute of Technology, October 1996.

[46] John M. Mellor-Crummey. Experiences with the BBN Butterfly. In
Proceedings of the 1988 COMPCON, pages 101–104, February 1988.

[47] Eric Mohr, David Kranz, and Jr. Robert H. Halstead. Lazy task creation:
a technique for increasing the granularity of parallel programs. Techni-
cal Report MIT/LCS/TR 449, Massachusetts Institute of Technology,
June 1991.

[48] David Moon. Garbage collection in a large lisp system. In Conference
Record of the 1984 ACM Symposium on LISP and Functional Program-
ming, pages 235–246, August 1984.

[49] Luc Moreau. A distributed garbage collector with diffusion tree reor-
ganization and mobile objects. In Proceedings of the 3rd ACM interna-
tional conference on functional programming, pages 204–15, Septem-
ber 1998.

[50] Tony C. Ng. Efficient garbage collection for large object-oriented
databases. Masters thesis, Massachusetts Institute of Technology, May
1996.

[51] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The
J-machine multicomputer: An architectural evaluation. In Proceedings
of the 20th Annual International Symposium on Computer Architecture,
pages 224–235, 1993.

[52] Jose M. Piquer. Indirect reference counting: A distributed garbage col-
lection algorithm. In PARLE ’91 Parallel Architectures and Languages
Europe, pages 150–165, June 1991.

[53] Jose M. Piquer. Indirect mark and sweep: A distributed GC. In Memory
Management, volume 986 of Lecture Notes in Computer Science, pages
267–82, September 1995.

113

[54] Jose M. Piquer. Indirect distributed garbage collection: Handling object
migration. ACM Transactions on Programming Languages and Sys-
tems, 18(5):615–47, September 1996.

[55] Jose M. Piquer and Ivana Visconti. Indirect reference listing: A robust,
distributed GC. In Euro-Par ’98 Parallel Processing, pages 610–19,
September 1998.

[56] David Plainfosse and Marc Shapiro. A survey of distributed garbage
collection techniques. In Memory Management, volume 986 of Lecture
Notes in Computer Science, pages 211–249, September 1995.

[57] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, October 1992.

[58] S. P. Rana. A distributed solution of the distributed termination problem.
Information Processing Letters, 17(1):43–6, July 1983.

[59] C. Research. Cray T3D system architecture overview, 1993.

[60] Gary W. Sabot. The paralation model: architecture-independent paral-
lel programming. MIT Press, 1988.

[61] Nandakumar Sankaran. a bibliography on garbage collection and related
topics. ACM SIGPLAN Notices, 29(9):149–158, September 1984.

[62] Steven L. Scott. Synchronization and communication in the T3E mul-
tiprocessor. In Architectural Support for Programming Languages and
Operating Systems, pages 26–36, 1996.

[63] March Shapiro, Peter Dickman, and David Plainfosse. Robust, dis-
tributed references and acyclic garbage collection. In Principles of dis-
tributed computing, August 1992.

[64] Richard L. Sites. Alpha Architecture Reference Manual. Digital Press,
1992.

[65] Patrick G. Sobalvarro. A lifetime-based garbage collector for lisp sys-
tems on general-purpose computers. Bachelor’s thesis, Massachusetts
Institute of Technology, 1988.

[66] Richard M. Stallman. Using and Porting GCC Version 2. Free Software
Foundation, 1992.

[67] Silicon Graphics Computer Systems. Origin ccNUMA servers: true
scalability with a difference. white paper.

114

[68] Kenjiro Taura and Akinori Yonezawa. An effective garbage collection
strategy for parallel programming languages on large scale distributed-
memory machines. In Proceedings of PPOPP ’97, 1997.

[69] Jesper Larsson Träff, Hubert Ritzdorf, and Rolf Hempel. The imple-
mentation of MPI-2 one-sided communication for the NEC SX-5. In
Proceedings of Supercomputing 2000, 2000.

[70] Paul Watson and Ian Watson. An efficient garbage collection scheme for
parallel computer architectures. In PARLE. Parallel Architectures and
Languages Europe, volume 986 of Lecture Notes in Computer Science,
pages 432–43, June 1987.

115

