
Automated Qualitative Modeling of

Dynamic Physical Systems

Jonathan Amsterdam

January 1993

This work has been supported in part by research grant no. R01 LM 04493 and by

Medical Informatics training grant no. T 15 LM 07092 from the National Library of

Medicine.

This report describes research done at the Arti�cial Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the Laboratory's arti�cial intelli-

gence research is provided in part by the Advanced Research Projects Agency of the

Department of Defense under O�ce of Naval Research contract N00014{89{J{3202.

This report is a revised version of my Ph.D. thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

This report describes MM, a computer program that can model a variety of me-

chanical and uid systems. It addresses several issues: What is the appropriate input

to the modeling process? How should the search for models be organized? What

evidence can be brought to bear to constrain the task?

MM takes as input both a description of the structure of the system to be mod-

eled and a trace of the system's behavior. The structure can be represented by 2D

line drawings augmented with some additional information, or by component types

and their interconnections, or both. The behavior trace provides the program with

qualitative information about the behavior that the user wishes to capture with a

model.

MM organizes its search for models using a generalized, energy-based modeling

framework and represents its models using bond graphs, a notation optimized for

that framework. The program searches the system structure for plausible locations of

primitive elements, connects the elements together via pathways that conduct power,

and veri�es the resulting model by comparing its predictions with the user-supplied

behavior.

MM attempts to analyze models by using some general facts about systems and

their behavior to relate qualitative properties of the desired behavior to qualitative

properties of the model. These facts enable a more focussed search for models than

would be obtained by mere comparison of desired and predicted behaviors. When

these facts do not apply, MM uses behavior-constrained qualitative simulation, a mod-

i�ed version of standard qualitative simulation, to verify candidate models e�ciently.

If multiple candidate models are found, MM can design experiments to distinguish

among them.

3

To my parents

4

Acknowledgments

I would �rst like to thank my advisor, Peter Szolovits, for continual faith, gen-

erosity, kindness, support, constructive criticism and gentle prodding. My readers,

Patrick Winston and Neville Hogan, have also been extremely kind and gracious. All

three committee members provided substantive comments that have improved the

content and presentation of this thesis. Neville Hogan taught me nearly everything I

know about modeling and was instrumental in debugging the engineering side of the

thesis. Peter Breedveld, Michael Caine, David Clemens, William Durfee, Derek Row-

ell, Warren Seering, Karl Ulrich, and John Wyatt also contributed to my engineering

and modeling education.

My life over the past several years has been enriched bymany wonderful friends, in-

cluding Scott Brewer, Miriam Cardozo, Jennifer Duncan, Oren Etzioni, Grace Freed-

man, Michael Kashket, Rachel Lefkowitz, Liora Minkin, Melanie Mitchell, Barbara

Moore, Larry Penn, Paulo Pereira, Paul Resnick, Naomi Ribner, Ruth Schonfeld, Re-

becca Simmons, Cindy Wible, and especially David Clemens, Nomi Harris, Michele

Popper, Karen Sarachik, and Rachel Thorburn. I apologize to anyone I may have

omitted.

My squash partners, Lijian Chen, David Clemens, Robert Givan, David Jacobs,

Partha Niyogi and David Sturman, kept me running three hours a week so I could sit

the rest of the time.

My o�cemates, Sajit Rao and Ruth Schonfeld, have borne much with no com-

plaints. At last the day of their deliverance is at hand.

In my secret life as a thespian I have been aided and abetted by mentors Alan

Brody, Michael Ouellette and Janet Sonenberg, and inspired by colleagues too nu-

merous to mention. Special thanks go to Rachel Thorburn for starting me out and

to Jennifer Duncan for keeping me in. David Thorburn also deserves thanks for his

literary encouragement, literate criticism, and warm friendship.

I thank my relatives, especially my sister, Valerie, her husband Kevin, and my

grandparents Charles and Molly, for their unconditional support and a�ection.

I am especially grateful to Valerie Leiter for accompanying me through my �nal,

arduous year with compassion, encouragement and love.

Finally I thank my parents, Daniel and Carol, who have made this and everything

else possible.

Contents

1 Introduction 11

1.1 Why Modeling is Important : 12

1.2 Why Modeling is Hard : 13

1.3 A Glimpse of MM in Action : 17

1.4 Roadmap : 19

2 Energy-Based Modeling 21

2.1 The Elements of Modeling : 22

2.1.1 Resistors : 22

2.1.2 Energy Storage : 23

2.1.3 Sources : 24

2.1.4 Bond Graphs : 24

2.1.5 Junctions : 26

2.1.6 Transformers and Gyrators : 27

2.2 Pros and Cons of Energy-based Modeling : : : : : : : : : : : : : : : : 28

3 The MM Program 31

3.1 Input Representations : 31

3.1.1 Geometric Structure Representation : : : : : : : : : : : : : : : 32

3.1.2 Component Representation : : : : : : : : : : : : : : : : : : : 33

3.1.3 Behavior Representation : 37

3.2 Output Representation : 40

3.3 The Main Loop : 42

3.4 The Rule Interpreter : 43

4 Analysis 47

4.1 Order Determination : 48

4.1.1 Causality Assignment : 49

4.1.2 Order from Behavior : 51

4.2 Resistance Analysis : 53

4.3 Simulation : 54

4.3.1 QSIM : 55

4.3.2 QSIM-CHECK : 58

5

6 CONTENTS

5 Examples 65

5.1 The U-tube : 65

5.1.1 Analysis : 68

5.1.2 Adding Resistance : 69

5.1.3 Adding Capacitance : 69

5.1.4 Second-Order Behavior : 73

5.1.5 The Curved U-tube : 73

5.2 The Hydraulic Piston : 76

5.2.1 Connecting Bond Graph Fragments : : : : : : : : : : : : : : : 77

5.2.2 The Zeroth-order Model : 80

5.2.3 The First-order Model : 81

5.3 The Motor and Flywheel : 81

5.3.1 Experiment Design : 86

5.4 The Table Bed System : 87

6 Conclusion 93

6.1 Related Work : 93

6.1.1 Other Fields : 93

6.1.2 Automated Modeling : 94

6.2 MM's Contributions : 100

6.3 Limitations and Future Work : 102

6.3.1 Expressiveness of the Modeling Language : : : : : : : : : : : : 102

6.3.2 Quantitative Information : 102

6.3.3 Geometry : 103

6.3.4 Explicit Assumptions : 104

6.3.5 Component Models : 104

6.3.6 Control Structure : 104

6.3.7 Knowledge : 105

A Rules 107

A.1 Interpretation Rules : 107

A.2 Geometric Rules : 107

A.2.1 Resistors : 108

A.2.2 Capacitors : 108

A.2.3 Inertias : 109

A.3 Component Rules : 109

List of Figures

1-1 An electrical circuit : 14

1-2 A U-tube : 14

1-3 \Standard" model for the U-tube : 15

1-4 A curved U-tube : 16

1-5 U-tube with resistance : 18

1-6 U-tube with superimposed bond graph : : : : : : : : : : : : : : : : : 18

2-1 Circuit corresponding to bond graph Se|R : : : : : : : : : : : : : : 25

3-1 U-tube structure : 34

3-2 Rendering of the U-tube structural description : : : : : : : : : : : : : 35

3-3 Motor-Flywheel structure : 36

3-4 Non-oscillating behavior of the U-tube : : : : : : : : : : : : : : : : : 38

3-5 Top-level Algorithm for MM : 43

4-1 Constraints on causal strokes : 50

5-1 Structure of U-tube : 66

5-2 U-tube model with interpreted outputs : : : : : : : : : : : : : : : : : 66

5-3 The previous U-tube model, connected : : : : : : : : : : : : : : : : : 67

5-4 Two conventions for uid ow : 67

5-5 U-tube model with resistor : 70

5-6 A uid bladder : 71

5-7 U-tube model with resistor and capacitor : : : : : : : : : : : : : : : : 72

5-8 Complete U-tube model : 73

5-9 Second-order behavior for the U-tube : : : : : : : : : : : : : : : : : : 74

5-10 Model for U-tube with second-order behavior : : : : : : : : : : : : : : 74

5-11 Curved U-tube : 75

5-12 First-order model of curved U-tube with regions of capacitance : : : : 75

5-13 A hydraulic piston : 76

5-14 Zeroth-order behavior of the piston : : : : : : : : : : : : : : : : : : : 76

5-15 Piston with interpreted I/O variables : : : : : : : : : : : : : : : : : : 77

5-16 Flow graph for the piston. Starred polygons are �xed in place. : : : : 79

5-17 Interpreted piston model, connected : : : : : : : : : : : : : : : : : : : 80

7

8 LIST OF FIGURES

5-18 Zeroth-order piston model with capacitor : : : : : : : : : : : : : : : : 81

5-19 First-order behavior of the piston : 81

5-20 First-order piston model : 82

5-21 Motor-ywheel structure (shape information elided) : : : : : : : : : : 82

5-22 Component descriptions used in the motor-ywheel system : : : : : : 83

5-23 Initial model for motor-ywheel system : : : : : : : : : : : : : : : : : 83

5-24 First-order behavior of the motor-ywheel : : : : : : : : : : : : : : : 84

5-25 One model for the motor-ywheel system : : : : : : : : : : : : : : : : 85

5-26 A second model for the motor-ywheel system : : : : : : : : : : : : : 85

5-27 Output of MM's experiment design facility : : : : : : : : : : : : : : : 88

5-28 A table-bed positioning system (after [18]) : : : : : : : : : : : : : : : 89

5-29 MM's version of the table bed system : : : : : : : : : : : : : : : : : : 89

5-30 Initial bond graph for the table-bed system : : : : : : : : : : : : : : : 89

5-31 Second-order behavior of the table-bed : : : : : : : : : : : : : : : : : 90

5-32 Table-bed model with resistor and uid capacitor : : : : : : : : : : : 91

5-33 Correct table-bed model : 91

6-1 Graph of Models for a pipe : 97

List of Tables

2.1 E�ort and ow variables for energy domains : : : : : : : : : : : : : : 22

3.1 Variable types supported by MM : 39

4.1 QSIM's constraints and their meanings : : : : : : : : : : : : : : : : : 56

4.2 QSIM constraints generated for bond-graph elements. The variables e,

f , e1, f1, etc. refer to the e�ort and ow on the bond(s) of the element. 56

9

10 LIST OF TABLES

Chapter 1

Introduction

This thesis is about the automatic qualitative modeling of dynamic physical systems.
Modeling, for the purposes of this thesis, is the activity of creating a mathematical

system whose behavior is analogous to some other object or system. In this thesis

the models will in general be sets of di�erential equations with time the independent

variable; this is the essence of the meaning of dynamic. The equations will be models

of physical systems|mechanical and uid devices like motors, pumps, a U-shaped

uid-�lled tube, and so on|rather than, say, economic or biological systems. The

modeling process discussed here is qualitative in that it makes no attempt to determine

particular numerical parameters of the model in order to make the model conform

exactly with the modeled system's behavior; instead, the models provide a rough

approximation, a �rst cut. (The notion of a qualitative model is familiar to workers

in Arti�cial Intelligence (AI) and will be made more precise in Section 3.2.) Finally,

this thesis is about the automation of the modeling task. It describes a working

computer program, MM,1 that is capable of modeling some simple physical systems.

I was motivated to write MM by two observations. The �rst occurred while taking

a mechanical engineering course on modeling. I noticed that many students had

trouble with modeling even simple systems. Sometimes the di�culty was that the

student's model was incapable of describing even the gross behavior of system being

modeled. More subtle was the tendency to over-model|to create a more complex

model than necessary. Experienced modelers tended not to have these problems.

I began to wonder whether a program could model simple physical systems while

avoiding these basic errors.

My second observation arose out of reading the automated modeling literature.

Work in automated modeling seemed to beg certain modeling questions by provid-

ing programs with system descriptions that already embodied important modeling

choices. I wished to explore whether automated modeling was feasible when the in-

put was in a somewhat more \raw" form, in which little besides the geometry of the

1\Machine Modeler" is one plausible expansion of this acronym.

11

12 CHAPTER 1. INTRODUCTION

system was presented to the program.

So in writing MM my goal was to uncover the principles that make it possible to

model physical systems, particularly when the program's input embodied few or no

modeling decisions.

I believe I have achieved this goal to a large extent. Here, in brief, are the principles

that describe my approach:

� Modeling is a generate-and-test process. Like many complex tasks, modeling

consists of conjecturing candidates, then analyzing them to see if they are ap-

propriate. MM's architecture mirrors this breakdown: the program proposes

candidate models based on heuristic rules, then passes the candidates to an

analysis phase.

� Multiple structural representations are useful. Describing a system in geometric

terms helps avoid usurping modeling decisions, but sometimes it makes more

sense to describe a part of a system by using a component name, such as \mo-

tor." MM accepts both geometric and component descriptions, and allows the

two representations to be combined.

� Modeling is aided by knowing both structure and behavior. Modeling a phys-

ical system is di�cult or impossible without some idea of the geometrical or

component-and-connection structure of the system; and model analysis requires

some standard against which to evaluate candidate models. MM's rules use the

structure to provide hints about plausible model elements, and MM's analysis

phase compares the model against a given behavior trace to determine if the

model's behavior matches the system's and, in many cases, to diagnose the

model's aws if the behaviors disagree.

� The energy-based approach aids automated modeling. MM employs ideas from

system dynamics that treat systems as collections of elements that exchange,

store and transform energy. These ideas have long been used by human mod-

elers; MM's success demonstrates that they are useful for machine modelers as

well.

1.1 Why Modeling is Important

Modeling is one of the most central and challenging tasks in engineering and science.

It comes into play in all of the following activities:

Understanding. Scientists are continually trying to model systems that they do not

understand, or understand only imperfectly. A mathematical model of a phys-

ical system can by itself provide insight about the system, and can focus the

search for other phenomena that also provide insight.

1.2. WHY MODELING IS HARD 13

Prediction. If a model of a system can be simulated faster than the system itself

evolves, then the model can be used to predict the future behavior of the system.

This can be useful for warning (e.g. earthquakes), investment (e.g. the stock

market) or for controlling the system to keep its behavior within pre-determined

limits.

Design. Building a new device of more than trivial complexity requires modeling, in

order to ensure that the design will provide the intended behavior at reasonable

e�ciency and cost.

Diagnosis. Determining what is wrong with a broken system is greatly facilitated by

having a model of the properly functioning system, and also by having models

of the system in various failure modes.

Testing. A model can aid in designing a comprehensive test suite for a device.

This thesis is concerned with modeling for engineering activities, rather than the

kind of modeling in which science engages. All the systems2 MM can model are well-

understood scienti�cally;MM is not a scienti�c discovery program along the lines of,

say, BACON [20], which could also be said to be constructing models of systems.

Thus the �rst goal, understanding, does not motivate the sort of modeling MM does.

It is still a non-trivial problem to construct a good model for a system even when all of

the system's phenomena are well-understood scienti�cally. The focus is on choosing

a small and appropriate set of known phenomena to describe the system, rather than

on discovering new scienti�c laws.

1.2 Why Modeling is Hard

One might argue that modeling is not all that di�cult. One might use as a supporting

example the system of Figure 1-1, which is a simple electrical circuit. Modeling this

system, it could be argued, is quite simple: just write down the equations governing

the resistor, capacitor and voltage source|a matter of table lookup|add Kircho�'s

voltage and current laws, and solve for the desired output. This is a process most

undergraduates master quickly. More relevantly, it is patently easy to automate:

collecting the equations is trivial, and they can be handed o� to one of several high-

quality symbolic mathematics programs for solution.

I agree that going from schematic to model|set of equations|is easy. It is so

trivial, in fact, that I would not call it modeling. The schematic already is the model;

it already is, for all intents and purposes, a mathematical description of a system. In

fact, a schematic-like notation called a bond graph is the output, not the input, to

MM. (I explain bond graphs in Chapter 2.)

2The word \system" in this thesis always refers to some external device; the word is never used
to refer to the MM program or any other piece of software.

14 CHAPTER 1. INTRODUCTION

R

CV

Figure 1-1: An electrical circuit

Figure 1-2: A U-tube

1.2. WHY MODELING IS HARD 15

h1 = m1(v1)

h2 = m2(v2)

p1 = m3(v1)

p2 = m4(v2)

f = m5(p1 � p2)

_v1 = �f

_v2 = f

Figure 1-3: \Standard" model for the U-tube

For a better example of what makes modeling di�cult, consider the U-tube of

Figure 1-2. The �gure depicts a U-shaped tube of some solid material, like glass or

plastic, partially �lled with uid. The �gure is an actual rendering of the input to

MM. If some excess uid is quickly added to the left side of the tube, the amount of

uid in the left side will decrease and the amount in the right will increase until both

sides are at the same height. (Imagine that the uid is molasses, so that there is no

oscillation.)

The \standard" model for this system, given in many papers on qualitative rea-

soning, is shown in Figure 1-3. In the equations, the hi and vi are the uid heights and

volumes in the two sides of the U-tube, the pi are the pressures at the sides' bottoms,

f is the rate of uid ow through the tube, and the mi are monotonically increasing

functions. The model is \correct" in the sense that it predicts the described behavior

of the system. Indeed, I would argue that the model is more than merely correct;

it is in fact a good model, because it contains only what is necessary to explain the

behavior.

There is a simple, straightforward explanation for how one might arrive at the

above model. Begin with the facts that height is proportional to volume in a container,

and the volume of uid in a container is proportional to the pressure at the bottom of

the container. This gives us the �rst four equations, where the containers are the two

sides of the U-tube. Now note that in any tube or pipe carrying uid, there is some

resistance to uid ow, such that the higher the di�erence in pressure, the faster the

uid moves. The �fth equation represents this resistance in the horizontal section

of the U-tube. The remaining two equations merely express the de�nition that uid

ow rate is the time derivative of volume, and provide a consistent sign convention

for the direction of ow.

This explanation seems plausible, but on closer inspection it contains a number

of puzzling gaps. It begins by talking about properties of uid in a container, then

applies these properties to each side of the U-tube. But why is a side of the U-tube

a container? Why couldn't we take as a container, say, the leftmost vertical inch of

16 CHAPTER 1. INTRODUCTION

Figure 1-4: A curved U-tube

the left side of the U-tube, or the left side plus one inch of the horizontal section?

After all, the same properties hold for those regions of space. For that matter, the

horizontal section itself could be a container.

The discussion of resistance is puzzling as well. For if \any tube or pipe" has resis-

tance, then the sides of the U-tube should have resistance just as does the horizontal

section. Of course, the model neglects these resistances, just as it quite properly ne-

glects many other e�ects; but why then does it include the resistance of the horizontal

section? If one is going to neglect resistance, why not do a thorough job of it? Per-

haps, you say, the resistance of the sides is lower than the resistance of the horizontal

section. But assume it isn't; I claim that the above model is still a reasonable one.

But the most dramatic failure of the explanation appears when we note that the

U-tube of Figure 1-4 is validly described by the same model, even though there is

patently no principled way to divide the U-tube up into horizontal and vertical parts.

This example demonstrates the lumping problem: how should a spatially continu-

ous system be divided into discrete lumps? Lumping is one of the essential abstraction

techniques of physical systems modeling. When it succeeds, the system can be de-

scribed by a set of ordinary di�erential equations. When lumping is not possible, or

not su�ciently accurate, the modeler must enter the much more complex world of

partial di�erential equations.

One of the goals of this thesis is to demonstrate that it is possible to solve the

lumping problem, if only partly, by means of a computer program. One of the crucial

observations enabling a solution to the lumping problem is that lump boundaries

are largely arbitrary. Many di�erent choices for lumps will produce qualitatively

1.3. A GLIMPSE OF MM IN ACTION 17

equivalent models. (A precise de�nition of qualitative equivalence is provided later.)

The key to solving the lumping problem is avoid fastidiousness in choosing lumps; a

modeler must be willing to make arbitrary decisions, up to a point.

1.3 A Glimpse of MM in Action

To preview Chapter 5, here is a summary of how MM solves the U-tube problem.

Keep in mind that this is a greatly simpli�ed description; many aspects of the process

have been abstracted or simply ignored. All of the magic is dispelled in chapters 3

through 5.

MM begins with a description of the U-tube's structure in the form of a set of

two-dimensional polygons annotated with information about the composition of the

object. For the U-tube, there are three polygons: the two walls and the uid inside.

MM is also given a trace of the behavior of the system. The U-tube system is described

as having no input and two outputs, the heights of the uid in each side of the tube.

MM is told that the height of uid in the left side of the tube decreases, and that in the

right side increases, until both come to rest at some intermediate value. The behavior

trace is not a plot of numerical values, but is instead a qualitative description, with

pretty much the same information as is contained in the previous sentence. The

complete input to MM is given in Chapter 3.

MM �rst tries to interpret the input and output variables. MM has a general

typology of quantities based on energy domain (hydraulic, electrical, and so on) and

the generalized power variables e�ort and ow.3 MM attempts to �t the input and

output variables into this framework in order to facilitate model construction and

analysis. For the U-tube, MM determines that the height of the uid is the integral

of a ow variable, uid ow rate.

Once the variables are interpreted, MM analyzes the resulting model. MM's anal-

ysis portion consists of several special-purpose rules based on general properties of

physical systems, as well as a general-purpose qualitative simulator (based on QSIM

[19]) when the special-purpose rules fail. In this case, one of the special-purpose rules

is triggered; it recognizes that the given behavior of the system implies the presence

of a resistance, and since the model contains no resistance, it is labeled as defective.4

In fact, MM does not simply give a Pass/Fail grade to its models; rather, it attempts

to classify their problems in order to focus the search for improvements. In this case,

as you might guess, the model is labelled as lacking a necessary resistance.

The model is then enqueued for subsequent processing by MM's conjecture phase,

which now is charged with looking for plausible locations for resistance. No geomet-

rical feature suggesting resistance is present, so MM arbitrarily chooses regions of the

3Chapter 2 explains these concepts in detail.
4Chapter 4 describes the analysis portion ofMM, including the exact content of and justi�cation

for this resistance rule.

18 CHAPTER 1. INTRODUCTION

Figure 1-5: U-tube with resistance

Figure 1-6: U-tube with superimposed bond graph

1.4. ROADMAP 19

system. One of these regions is the horizontal portion of the U-tube, which gives rise

to the model of Figure 1-5, shown superimposed on the U-tube.

The analysis phase now determines that the model's order5 is too low to account

for the given behavior. Rules are activated which look for the presence of e�ects

that might raise the model's order. For the U-tube, the most important e�ect is

capacitance, a proportionality between an e�ort (e.g. pressure) and the integral of

a ow (e.g. position or height). Since choice of lumps is to some extent arbitrary,

MM simply looks for rectangles that could represent regions of the system exhibiting

capacitance. MM contains a rule for uid capacitance that says to look for rectangles

that contain uid in the presence of gravity. In the case of the U-tube, the relevant

rectangles are the sides of the U-tube. MM attempts to construct the largest viable

rectangle, so the entire sides of the rectilinear U-tube are treated as a capacitance

region. For the curved U-tube, MM's rectangles begin at the top and extend an

arbitrary amount along the tube. Figure 1-6 shows the resulting model. (The bond

graph notation will be demysti�ed in Chapter 2.) The equations for this model are

identical to those of Figure 1-3. MM also arrives at this model when presented with

the curved U-tube.

1.4 Roadmap

The goals of this introductory chapter were to present the problem MM is trying

to solve, and to provide a glimpse into its operation. The next chapter supplies a

compact but thorough introduction to energy-based modeling and to the bond graph

formalism used by MM. Chapter 3 covers the internals of the MM program, except for

the analysis phase, which is discussed in Chapter 4. Chapter 5 explores four example

systems, explaining in detail how MM models them. Chapter 6 reviews related work

and concludes. An appendix lists all of MM's rules.

5Section 4.1 de�nes \order" and explains how it is used by MM.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Energy-Based Modeling

This chapter explains energy-based modeling, the theoretical foundation underlying

MM's knowledge of physics. Energy-based modeling is a framework for modeling

physical systems. It is closely related to system dynamics, a modeling paradigm that

�rst became popular in the middle of this century and continues in popularity today.

The chapter also introduces the bond graph notation used throughout the thesis.

Modeling begins by drawing a boundary between a system and its environment.
Where the boundary is drawn depends on the needs and desires of the modeler. The

basic idea behind energy-based modeling is to track the ow of energy between a

system and its environment, and between the parts of a system. A physical system

can be viewed as a collection of processes that transform, store, supply or dissipate

energy. Any physical system can be described as a connected group of such processes.

Since the concept of energy, and its instantaneous rate of change power, unites all of

physics, energy-based modeling provides a uniform framework for describing a very

great variety of physical systems.

The �rst important observation of an energy-based approach to modeling is that

in any physical domain, power can be represented as the product of two real-valued

variables. In the electrical domain, these variables are commonly taken to be voltage

and current. In the domain of mechanical translational motion, the variables are force

and velocity. For any sort of energy domain, there are always two variables whose

product is power. And luckily, for most common domains, there is a familiar choice

of variables.

Since we are trying to capture a wide variety of physical domains in a single frame-

work, it will be necessary to use a terminology that is divorced from any particular

domain. We would not want to use \voltage" and \current" to name the two power

variables in general, because those terms connote the electrical domain. Instead, we

will call these variables e�ort and ow. The power variables for the energy domains

handled by MM are given in table 2.1. The mathematics is indi�erent to which vari-

able is called the e�ort and which the ow, but there are well-entrenched conventions

for all the listed domains and several others as well.

21

22 CHAPTER 2. ENERGY-BASED MODELING

Domain E�ort variable Flow Variable

Electrical voltage current

Mechanical Translation force velocity

Mechanical Rotation torque angular velocity

Hydraulic pressure ow rate

Table 2.1: E�ort and ow variables for energy domains

The next move is to assume that the energy of a system can be parceled up. First,

we distinguish between the energy contained within the system, and the energy of

the environment. We assume that the system and its environment exchange energy

through a �xed number of ports; we further assume that energy transactions within

the system can be localized to a �nite number of regions which are themselves con-

nected by a �nite set of ports. This is the lumping assumption. With this assumption

in place, we can now ask about the kinds of regions that exist, and the di�erent ways

they can be interconnected. Let us call both of these notions|the energy regions,

and their methods of interconnection|elements, for reasons that will soon become

clear.

2.1 The Elements of Modeling

A priori, one might imagine that the catalogue of elements is limitless. But in fact

there are very few distinct elements of any physical interest. Two elements su�ce

for describing system-environment interactions; three elements cover the kinds of

energy regions; two elements deal with transformation of energy; and two more ele-

ments are concerned with the partitioning of energy. These nine elements (and their

multi-variable generalizations) are su�cient for describing the dynamic behavior of

an enormous variety of physical systems, from U-tubes to jet airplanes. The phe-

nomena capable of description range from Newton's laws to the unusual behavior of

supercooled helium [3].

2.1.1 Resistors

Let us begin the list of elements with the resistor. A resistor element represents an

object or process that dissipates energy, i.e. that transfers energy from the system

to the environment. Typical examples are an electrical resistor and a mechanical

dashpot. All such dissipation processes relate an e�ort quantity to a ow quantity.

(The relationship established by an element is called the characteristic or constitutive

relation of the element.) For instance, an ordinary electrical resistor obeys Ohm's law:

voltage (e�ort) equals current (ow) times resistance. A dashpot obeys a similar law

2.1. THE ELEMENTS OF MODELING 23

for friction, in which force (e�ort) is proportional to velocity (ow).

An electrical resistor and a dashpot are both passive elements; they always dissi-

pate power. The characteristic of a passive resistor|its e�ort vs. ow plot|increases

monotonically and passes through the origin; it lies entirely in the �rst and third quad-

rants. Power, the product of e�ort and ow, is always positive, meaning the net power

ow is into the device|it is removing, not supplying, energy.

Some resistors, such as an ampli�er, appear to supply power when they are dis-

placed from equilibrium. Such a resistor is called locally active. Part of its character-

istic has negative slope.

MM assumes that all resistors are passive. MM does not assume that the resistor

is linear (i.e. that its characteristic is a linear function). For a physical justi�cation

of MM's assumptions, see [2].

2.1.2 Energy Storage

In many energy domains, energy is manifest in two forms: \potential" and \kinetic."

Usually, kinetic energy involves movement and potential some sort of location in a

potential �eld, but this need not always be the case. Two elements, one for each

energy form, represent the storage of energy.

A capacitor stores potential energy. A spring is a mechanical capacitor; when

compressed, it is storing an amount of energy related to its displacement (the di�er-

ence between its rest length and its current length). A linear spring obeys Hooke's

law, applying a force linearly proportional to its displacement. A typical nonlinear

spring will still exert a force that increases monotonically with the displacement from

its rest state, although non-monotonic springs can be constructed. In general, a ca-

pacitor relates an e�ort to a generalized displacement (the integral of a ow). In the

mechanical case, force is the e�ort and displacement is the ow integral. An electrical

capacitor is also, as you might guess, a capacitor; a linear capacitor obeys i = C
dv
dt
,

which is just the derivative of the conventional capacitor relation: current (ow) is

proportional to the change in voltage (derivative of e�ort). A capacitor is passive by

de�nition. MM makes the assumption that capacitors have monotonically increasing

characteristics.

If you were to interchange e�ort and ow in the relation for a capacitor|a process

known as dualizing|you would obtain the second energy storage element, the inertia.1

An inertia stores kinetic energy. It relates a ow to a generalized momentum (the

integral of an e�ort).

A typical inertia is an object undergoing translational motion. Such an object

obeys F = ma, Newton's third law.2 Armed with our energy-based modeling frame-

1I did not mention duality when talking about resistors because it isn't very interesting: the dual
of a resistor is a resistor.

2No great di�culty ensues in the theory if we add the relativistic correction to this formula, but
since it plays no role in the systems MM models (and in most engineered systems), I ignore it.

24 CHAPTER 2. ENERGY-BASED MODELING

work, we can now see this law for what it is: nothing more than the derivative of an

inertia relationship, relating the derivative of a ow (acceleration) to an e�ort (force).

An electrical inductor is also an inertia; it relates a voltage (e�ort) to a change in

current (ow derivative).

Because the relations we have been talking about|Newton's law and the laws for

electrical capacitors and inductors|are linear, we can switch freely between a relation

and its derivative and integral. In general, however, we cannot. It is important to

keep in mind that the de�ning relationships are between e�ort and ow integral (for

capacitors), and ow and e�ort integral (for inertias).

MM makes the same assumptions about the characteristics of inertias as it does

for capacitors: they are monotonically increasing and pass through the origin. A

justi�cation for the monotonicity assumption can be found in [2].

2.1.3 Sources

Two elements called sources represent the ow of energy into the system from the

environment. The e�ort source is used to model e�ort inputs, and the ow source

is for ow inputs. A battery could be modeled as an e�ort source, since it supplies

a voltage (e�ort) independent of current (up to some limit). Another familiar e�ort

source is gravity.

The characteristic of a source is not a relationship between e�ort and ow or their

derivatives; rather, it is a relationship between time (or another independent variable)

and a quantity. An e�ort source represents some function from time to e�ort, and

similarly for a ow source. A source asserts nothing about the other quantity. For

instance, nothing can be concluded about the ow into or out of an e�ort source

without looking at the rest of the model.

What if the actual input to the system is not an e�ort or ow? As long as the

input can be related to e�ort or ow by some function (possibly including integration

or di�erentiation), we can still use an e�ort or ow source, whose characteristic|

a plot of e�ort or ow over time|is the original input suitably transformed. For

instance, if the input is a linearly increasing displacement, then it can be modeled as

a constant ow (velocity) source.

2.1.4 Bond Graphs

We have seen enough elements to describe some simple systems, but we need a nota-

tion to do so. This section introduces bond graphs, a notation developed to support

energy-based modeling.

In bond graphs, elements are written as one- or two-letter symbols. The symbols

for the elements discussed so far are: R for resistor, C for capacitor, I for inertia,

Se for e�ort source and Sf for ow source. Bond-graph elements are connected by

bonds, drawn as lines. A bond represents two quantities, an e�ort and a ow. Each

2.1. THE ELEMENTS OF MODELING 25

RV

Figure 2-1: Circuit corresponding to bond graph Se|R

element can be connected to a certain number of bonds, much as chemical elements

have valences that limit their connectivity. In bond graphs, these connections are

called ports. All of the elements discussed so far are one-ports; they can be connected

to exactly one bond.

Here is a very simple bond graph:
Se R

It describes a system consisting of an e�ort source connected to a resistor. The

bond asserts two equalities. First, it says that the source's e�ort equals the resistor's

e�ort. Second, it says that the source's ow equals the resistor's ow, though this

isn't very interesting in this case, because an e�ort source's ow is arbitrary.

The e�ort along the bond is determined by the e�ort source; the ow depends on

the resistor's characteristic. Figure 2-1 shows an equivalent circuit schematic. Note

that the schematic symbol for a resistor has two connection points, but the bond

graph symbol has only one. That is because a single port or bond represents two

quantities, an e�ort (the voltage across the resistor) and a ow (the current through

the resistor).

In order to turn the bond graph into a set of equations, we need one more piece

of information: a sign convention. Which direction of power ow should be positive?

Since resistors in general dissipate energy, the convention is to take positive power as

owing into the resistor. (The same convention applies to C and I elements.) The

sign convention is indicated by adding a half-arrow to the bond, like so:
Se R

Now we can turn this bond graph into an equation. Use Se(t) for the function of

time represented by the e�ort source, and assume a linear resistor with characteristic

e = Rf , where e is e�ort and f ow. Then we can write the equation for the ow

along the bond as

f = Se(t)=R

We get this by equating the e of the resistor's characteristic with the e�ort source's

function, since they share the same bond.

With only one-ports at our disposal, we cannot create very complex systems. We

need a way to connect several bonds together. Junctions provide this ability.

26 CHAPTER 2. ENERGY-BASED MODELING

2.1.5 Junctions

Two elements, called junctions, exist solely to provide ways to connect bonds together.

The junctions are power-continuous: the total power into a junction is always zero.

Each junction relates the bonds connected to it in two ways, one for the bonds' e�orts

and one for their ows. The 1-junction asserts that all bonds connected to it have

the same ow, and that the bonds' e�orts sum to zero. Its dual is the 0-junction,

which asserts a common e�ort and zero total ow. When summing a bond's e�ort or

ow, the value is negated if the bond's sign arrow points away from the junction.

As a simple example, consider the bond graph

Se

R

C

1

This bond graph is equivalent to the schematic of Figure 1-1 in Chapter 1. The

1-junction here says two things: �rst, the ows for the three one-ports are identical

(the sign arrows don't matter); second, the e�orts along the three bonds sum to zero.

Using Se for the source's e�ort, eC for the capacitor's and eR for the resistor's, and

observing the sign convention,

Se+�eC +�eR = 0;

or

Se = eC + eR

The other equations for this bond graph, assuming a linear capacitor and resistor,

are

fC = C _eC

fR = ReR

From these equations we can derive the expression for a typical �rst-order linear

system with damping,

Se = eC +
1

RC

_eC

It should be evident from the above that a bond graph corresponds straightfor-

wardly to a set of equations|the equations obtained by writing down the relation or

relations asserted by each element and bond. However, solving this set of equations,

or even manipulating them into a useful form|say, a form suitable for computer

simulation|is another matter. This process may involve considerable di�culties,

even open research issues. But that is not the concern of modeling. The output of

the modeling process is just a set of equations describing a system, and you should

be convinced that a bond graph is essentially equivalent to such an equation set.

2.1. THE ELEMENTS OF MODELING 27

Junctions tend to be the sticking point in most people's mastery of bond graphs.

Unfortunately they are not well-named, but the following mnemonic may help: a 1-

junction asserts common ow, and both one and ow have one syllable; a 0-junction

asserts common e�ort, and both zero and e�ort have two syllables. Another useful

rule, for simple cases at least, is that 0-junctions correspond to parallel connections

and 1-junctions correspond to series connections when the bond graph is translated

to a schematic.

Readers familiar with the idea of a constraint network might �nd the following

observation helpful. Take a circuit schematic and turn it into a constraint network,

where the constraint boxes are the components' characteristics and Kircho�'s voltage

and current laws (KVL and KCL). The resulting network will be isomorphic to a

bond graph, where the component boxes correspond to one-ports, the KVL boxes are

0-junctions and the KCL boxes are 1-junctions.

Since a 1-junction asserts a common ow along all its bonds, the junction element

itself can be used to represent a point where ow is measured. Similarly, a 0-junction

can be used as a point where e�ort is measured. MM uses junctions in these ways to

interpret input-output variables. The details are given in Chapter 5.

2.1.6 Transformers and Gyrators

Two other elements round out the energy-based modeling collection. They are typi-

cally used to represent the conversion of energy from one form or domain to another.

Consider a hydraulic piston. The piston converts energy between the mechanical

and hydraulic energy domains: When a force is applied to the shaft, a pressure is

exerted at the uid aperture, and vice versa. Similarly, the velocity of the shaft is

proportional to the ow rate of the uid.

Since the piston relates one e�ort (force) to another e�ort (pressure), and one ow

(velocity) to another ow (uid ow rate), it can be modeled by a transformer. The
transformer represents a lossless energy conversion where e�orts and ows are each

proportional. It is written as TF in bond graphs, and it has two ports.

A gyrator is just like a transformer, except that the e�ort in one domain is pro-

portional to the ow in the other, and vice versa. A good example is an ordinary DC

motor: the voltage (e�ort) is proportional to the motor shaft angular velocity (ow),

and the current (ow) is proportional to the torque (e�ort).

You might be wondering whether there are any transformer-like elements in which,

say, e�orts are proportional to each other but ows are identical, or some such com-

bination. The answer is that there are not. The transformer and the gyrator exhaust

the possibilities for lossless, storage-free energy transfer. This is easy to show. We

consider only the transformer, since the gyrator is similar. Since a transformer is loss-

less and storage-free, the instantaneous power at one of its ports equals that at the

other. We can write the power at one port as e1f1 and at the other as e2f2. (Recall

that power is just the product of e�ort and ow.) We wish to equate these. Say the

28 CHAPTER 2. ENERGY-BASED MODELING

constant of proportionality between e�orts is m (assuming a linear transformer for

simplicity). That is, e2 = me1. So we have

e1f1 = e2f2 = (me1)f2;

or

f1 = mf2

So not only are the ows proportional as well, but the constant of proportionality is

1=m.

Of course, no real-world transformer or gyrator is perfect. The transformer and

gyrator elements, like the other elements, isolate one aspect of energy behavior. The

elements can be combined to produce more realistic behavior. For instance, if one

wanted to model a hydraulic piston with power losses on both the mechanical and

uid sides, the following bond graph fragment would be appropriate:

R

1 TF 1

R

mechanical fluid

(The dotted line and energy-domain labels are merely for exposition.) The re-

sistors model the losses. They are connected to the central \spine" of the model by

1-junctions because we are assuming there is no leakage, so the entire ow is subject

to resistance.

2.2 Pros and Cons of Energy-based Modeling

This chapter has provided an overview of energy-based modeling, the modeling frame-

work used by MM. In this �nal section, I consider the advantages and disadvantages

of the approach for automated modeling.

The chief disadvantage of energy-based modeling is that it puts constraints on the

kinds of systems that can be modeled easily. Non-physical systems, like an economy,

may have parts that do not conform to any element or collection of elements, because

such systems do not have to obey any of the energy laws dictated by thermodynamics.

Limiting models to the basics of energy-based modeling which I have described here

further limits the set of modelable systems. For example, I have not mentioned

the possibility of a resistor's characteristic varying over time, although such resistors

do exist and can be accommodated in the energy-based modeling framework. Also

omitted from the above discussion, and from MM's repertoire of modeling techniques,

are such concepts as energy �elds and information-only connections (so-called \active

bonds"). The curious should consult [18] to learn about these topics, but they are not

necessary for understanding the systems in this thesis. Their omission does, however,

2.2. PROS AND CONS OF ENERGY-BASED MODELING 29

limit MM's scope.

The other side of this lack of expressiveness is a reduction in the search space. This

is just the classic tradeo� between expressiveness and speed: by using a restricted

representation, MM needs to examine fewer model candidates to �nd a successful

model for those systems within its purview. But the advantage is more than just

mathematical; we are not merely throwing out some scope to gain pruning power. The

energy-based modeling representation embodies constraints that all physical systems

must observe, and we can make use of these constraints to provide an additional

boost to the search process. MM's analysis phase in particular makes use of these

constraints.

Another disadvantage of the energy-based approach is that it can be di�cult to

express some models, even when they are models of physical systems. If we were

to allow our elements to implement arbitrary functions between arbitrary quantities,

then some modeling jobs might be easier. For example, say that part of the system

being modeled is a \black box" whose behavior we have observed empirically. We

have determined that the black box implements a relationship between the integral

of a force and a displacement. If we were using energy-based modeling, we would be

forced to construct some multi-element model for this black box, because no single

element implements a relation between those variables. But if we were using an ad-

hoc technique, we could simply use the empirical relationship directly in the model,

without analyzing it further.

Again, there is another side to this disadvantage. All of the energy-based modeling

elements are physically realizable, and a syntactically valid bond graph is guaranteed
to meet the constraints of thermodynamics. For example, if a bond graph is con-

structed from the elements described here (namely, passive ones), then it can never

put more energy into the environment than it removes. If an ad-hoc approach is

used, no guarantees can be made about the energy behavior of the model, and op-

portunities for error are rife. The point about physical constraint made above can be

made here as well: energy-based modeling elements force the constraints of physics

to be observed, ensuring models that are at least physically plausible and aiding their

analysis.

There are additional advantages to the energy-based modeling approach. By con-

�ning our vocabulary to a small set of primitive elements, we can simplify the model-

ing process. MM works by looking for features that suggest the presence of elements;

fewer elements mean fewer feature-detectors. And since the elements' behaviors are

independent of energy domain, the analysis phase is greatly simpli�ed: the same anal-

ysis can apply to a resistor-capacitor circuit and a mass-spring system. Finally, carv-

ing up the world into energy domains allows us to organize our knowledge of physics

concisely, and without redundancy. The methods and elements of energy-based mod-

eling form a principled middle-ground between so-called �rst-principles reasoning and

purely domain-dependent reasoning. They provide a physically motivated framework

in which to place domain-dependent information.

30 CHAPTER 2. ENERGY-BASED MODELING

Chapter 3

The MM Program

This chapter and the next describe the essential workings of the MM program. This

chapter discusses most of the program, including input and output representations,

the main loop and the rule interpreter. The following chapter covers the analysis

phase. Descriptions of speci�c rules and of some other parts of the program, such as

the experiment design facility, are omitted; they are best understood in context, and

will be covered as they come up in the discussion of examples in Chapter 5.

3.1 Input Representations

One of the thorniest problems for research in automated modeling is choosing appro-

priate inputs for the modeling program. There are two di�culties here. First, if the

work is intended (as is this thesis) to demonstrate the computer's ability to do mod-

eling, then the program's input should not prejudge any modeling issues. We could

come closest to this ideal if we hooked up a vision system to the program and pointed

the camera at the system of interest, but this is not feasible at present. However,

we must avoid erring in the other direction, in which we give the program a circuit

schematic and it produces a set of equations; as I argued in the introduction, this

process is not modeling.

The second di�culty involved in choosing appropriate inputs for the automated

modeler is how to provide su�cient constraints on the modeling process to make

modeling feasible. An in�nite number of models can be constructed from the physical

structure of the system; some information must be provided to enable a choice among

them.

I have solutions for both of these problems, though admittedly neither is fully

satisfactory. In order to avoid begging at least some crucial modeling decisions,

namely those involved in lumping,MM accepts a description of the system's structure

in the form of a two-dimensional annotated geometric sketch. (One can also describe

a structure to MM using the traditional topological, or component-and-connection,

representation.) To provide a constraint on modeling, the structural input must be

31

32 CHAPTER 3. THE MM PROGRAM

accompanied by a qualitative trace of behavior which both identi�es the system's

input/output variables and provides an example of the system's dynamic behavior.

It is up to the user to identify which variables are inputs and which are outputs.

3.1.1 Geometric Structure Representation

MM's geometric representation consists of two-dimensional polygons, each of which

is annotated with information that cannot be conveyed by a simple line drawing.

The decision to con�ne the representation to two dimensions was a pragmatic one:

reasoning about three-dimensional space is vastly more complicated, and it was felt

that the added complexity would not contribute signi�cantly to the goals of this work.

To describe the structure of a system to MM, the user must divide it into a set

of parts. The shape of a part is described by a polygon. In addition, each part must

have a single composition, which must be one of the following:

rigid A solid, rigid object.

exible A solid, non-rigid object that can deform and has elastic properties.

uid A region �lled with uid.

Aside from being physically connected, describable by a single polygon, and having

a single composition, there are no restrictions on what can be a part. The term

\part" is something of a misnomer, since an MM part can consist of a portion of an

o�-the-shelf component, or several components.

It is crucial to note that the user's division of the system into parts does not in
and of itself usurp modeling decisions. The part division of a structure is an input

convenience only; it is ignored by the program. Internally, MM converts the part

descriptions into a set of convex polygons of uniform composition called segments.

Part boundaries play no role in MM's processing.

Unlike the choice of parts, the choice of composition for each part is a modeling

decision that must be made by the user. Whether an object is best described as rigid,

exible or uid depends on many factors, such as the temperature, the magnitude of

the forces involved, and the time scale of interest. Depending on the conditions, a

steel beam can be any of the three. SinceMM knows about none of these quantitative

factors, the user must make the choice.

In addition to its shape and composition, a part can be marked as �xed. A �xed

part is immobile; it is not subject to any forces. Fluid parts cannot be �xed. One

would mark a part �xed if, for example, it rests on a table and so is not subject to

gravity.

A �nal annotation for parts is designed to overcome in some measure the limi-

tations of a two-dimensional representation. Each part may have a list of parts to

which it is connected. The connection is assumed to be in a plane other than that of

the drawing, and is assumed to be rigid.

3.1. INPUT REPRESENTATIONS 33

Figure 3-1 shows the structural description for the U-tube. This is the actual,

unedited input to MM. (Section 5.1 describes how MM processes this input.) The

�rst part of the description is a list of variables whose sole purpose is to facilitate

cosmetic changes to the structure, so that it looks nicer on the screen. The second

component of the description is a list of parts. Notice that in the U-tube structure,

the outer wall of the U-tube is marked as being �xed, and the inner wall is connected

to the outer wall. These two assertions ensure that the walls of the U-tube will not

move when subject to gravity.

In addition to a list of parts, a structure representation can specify two other

aspects of the system, both of which are present in the U-tube. A list of position

quantities is used to relate the system's inputs and outputs, as described in the

behavior, to the structure. Each position quantity has a name, which must agree

with the name of some variable in the behavior. To indicate what the quantity

represents, a vector and a line segment are given. (For height-1, the line segment is

the �rst one of the part named water; for height-2, it is water's fourth.) A change

in the line segment along the direction of the vector is a change of the quantity. The

text-location of a position quantity is solely cosmetic.

Finally, a structural description may specify a set of external forces. These act as

(possibly implicit) inputs to the system. For the U-tube, gravity is the only external

force. The vector speci�es its direction, and the acting-on�eld lists the parts subject

to the force, or contains the special symbol :all if the entire system is subject to the

force, as is the case with gravity.

Most of the information in a structural description can be rendered on the screen.

Figure 3-2 is a display of the U-tube's structural description. A part's composition is

indicated by �lling the polygon with a particular pattern.

3.1.2 Component Representation

It is not always desirable to describe a system in purely geometric terms. Providing

the modeler, automated or otherwise, with descriptive labels for parts of the system

is often a very useful expedient. An experienced person encountering a motor will

quickly recognize it as a motor, either from geometric cues that are too complex for

researchers in modeling to worry about programming (such recognition is a research

problem in machine vision), or by reading the text engraved on the device. In this

case it seems reasonable simply to tell the automated modeling program that the

device is a motor.

MM has a component-based representation in which the user can describe a system

as a set of components, each of which has a type hinting at its function and a set of

ports through which it can be connected to other components.

Component types are �rst declared with a defcomponent form. Here is the de-

scription of an ordinary DC motor:

(defcomponent motor

34 CHAPTER 3. THE MM PROGRAM

(defstructure U-tube

(vars (wall-width 10) (start-x 120)

(start-y 40) (grav-x 360)

(water-width 40) (outer-wall-height 110))

(parts

(outer-tube-wall (composition rigid)

(shape (begin-polygon start-x start-y)

(go-right wall-width) (go-down outer-wall-height)

(go-right 160) (go-up outer-wall-height)

(go-right wall-width)

(go-down (+ outer-wall-height wall-width)) (go-left 180)

(go-up (+ outer-wall-height wall-width)) (end-polygon))

(fixed))

(water (composition fluid)

(shape (begin-polygon (+ start-x wall-width) (+ start-y 20))

(go-right 30) (go-down 60) (go-right 100)

(go-up 40) (go-right 30) (go-down 70)

(go-left 160) (go-up 90) (end-polygon)))

(inner-tube-wall (composition rigid)

(shape (begin-polygon (+ start-x wall-width water-width) start-y)

(go-down 70) (go-right 80) (go-up 70)

(go-right wall-width) (go-down 80) (go-left 100)

(go-up 80) (go-right wall-width) (end-polygon))

(connected-to outer-tube-wall)))

(position-quantities

(height-1 (fixed-point 100 (+ start-y outer-wall-height))

(changing-point 100 (+ start-y 20))

(linked-to water 0)

(text-location :left))

(height-2 (fixed-point 320 (+ start-y outer-wall-height))

(changing-point 320 (+ start-y 40))

(linked-to water 4)))

(external-forces

(gravity (vector grav-x start-y grav-x (+ start-y 100))

(acting-on :all))))

Figure 3-1: U-tube structure

3.1. INPUT REPRESENTATIONS 35

Figure 3-2: Rendering of the U-tube structural description

(ports (leads electrical)

(shaft rotational))

(bare-model

(GY leads shaft)))

Each port form contains a name and the energy domain for the port. The name is

used to describe connections, and the energy domain is used both to type-check a sys-

tem representation (connected ports must have the same domain) and as information

for recognition rules.

The bare model of a component is the simplest model that still implements the

basic functionality of the component. The bare model is expressed as a list whose

�rst element is a bond graph element and whose remaining elements are either port

names or other lists of the same form. This simple notation allows the description

of any bond graph that is a tree, which su�ces for most components, including all

components considered in this thesis. The form in the motor example corresponds to

the partial bond graph

leads | GY | shaft

which, as I discussed in Chapter 2, captures the essential behavior of a DC motor:

voltage is proportional to shaft velocity, and current is proportional to torque. A

more accurate model of a motor can be obtained by adding resistive and dynamic

e�ects; MM's rules add resistors, capacitors and inertias to components' bare models

in order to construct a model satisfying the given system behavior.

Figure 3-3 shows the actual input to MM for a system consisting of a DC motor

attached to a ywheel. (The system is discussed further in Section 5.3.) The ywheel's

component description is

36 CHAPTER 3. THE MM PROGRAM

(defstructure motor-flywheel

(vars (motor-x 300) (motor-y 200)

(motor-len 90) (fly-len 60)

(battery-len 60) (horiz-space 50))

(components

(Motor motor

(shape (begin-polygon motor-x motor-y)

(go-right motor-len)

(go-down motor-len)

(go-left motor-len)

(go-up motor-len)

(end-polygon)))

(Flywheel flywheel

(shape (begin-polygon (+ motor-x motor-len horiz-space) motor-y)

(go-right fly-len)

(go-down motor-len)

(go-left fly-len)

(go-up motor-len)

(end-polygon)))

(Battery battery

(shape (begin-polygon (- motor-x battery-len horiz-space) motor-y)

(go-right battery-len)

(go-down motor-len)

(go-left battery-len)

(go-up motor-len)

(end-polygon))))

(connections

((Motor shaft) (Flywheel shaft))

((Battery leads) (Motor leads))))

Figure 3-3: Motor-Flywheel structure

3.1. INPUT REPRESENTATIONS 37

(defcomponent flywheel

(ports (shaft rotational))

(bare-model

(I shaft)))

which states that the ywheel has one port, its shaft, and is an inertance. The

components part of the structure description provides the name of each component,

its type, and its shape, which is given only so that the program can produce a nice

drawing of the system. The connections specify which ports are connected.

The component representation obviously usurps some modeling decisions, forcing

the user rather than the program to decide that a particular piece of the system

exhibits a certain kind of behavior. This problem is mitigated somewhat by the fact

that bare models are extremely simpli�ed; the more interesting decisions about how

to realistically augment the bare models are still left to the program.

One of MM's novel features is the ability to combine both types of structure rep-

resentation, the geometric and the component. One or more contiguous line segments

of a geometric part can be declared a port, and any port so declared can be connected

to other ports, either of components or of other geometric parts. This allows di�erent

pieces of a complex system to be described in whichever way is most convenient. The

table-bed system in Section 5.4 provides an example.

3.1.3 Behavior Representation

In addition to a description of the system's structure, input to MM must include a

qualitative trace of the system's behavior. The behavior trace declares which variables

of the system are to be taken as inputs and outputs, and describes in qualitative terms

one possible dynamic behavior of these variables. Figure 3-4 shows the input to MM

for one behavior of the U-tube. The behavior represents the situation where initially

the uid in one side is higher than the other, and over time the uid level in one side

decreases and the other increases, until eventually both sides reach the same height.

The behavior of each variable is a function from time to a magnitude. In a

typical quantitative plot, the times and magnitudes would be real numbers. MM

uses a qualitative description in which both time and magnitude are discretized. The

representation is common in the Qualitative Reasoning community and is closest to,

in fact nearly identical to, that of QSIM [19]. Time is represented as an ordered list

of points, beginning with 0 and ending with the special time \point" inf. It is not

implied that the time points are equally spaced. Magnitude is also represented using

an ordered list of symbolic values called a quantity space. The quantity space for the
U-tube behavior is given by the qspace form. It ranges from minf (negative in�nity)

to inf (positive in�nity). These two values, and the value 0, are recognized specially

by the program, but other symbols in the quantity space have no intrinsic meaning.

In particular, it cannot be concluded from the quantity space alone that the value -x

is the negative of the value x; all that the quantity space implies is that the �rst is

38 CHAPTER 3. THE MM PROGRAM

(behavior

(qspace minf bottom -x 0 x inf)

(input nil)

(output height-1 position ((fixed bottom))

(0 x)

((0 inf) (0 x) dec)

(inf 0))

(output height-2 position ((fixed bottom))

(0 -x)

((0 inf) (-x 0) inc)

(inf 0))))

Figure 3-4: Non-oscillating behavior of the U-tube

�nite, negative, and greater than bottom, and the second is �nite and positive. The

quantity space symbols are called landmarks.
The remaining parts of the behavior describe the variables involved and give their

individual behaviors. There are no explicit inputs to the system (the e�ect of gravity

is handled automatically by the program, so there is no need to make it an input) but

there are two outputs, the heights of the uid in each side of the tube. Each output is

named; note that the names correspond to the names of the position quantities in the

structural description, allowing MM to associate the two. The type of each output

variable is given as well. Here both variables represent positions (displacements), but

MM supports many other types; essentially all the common names for e�ort, ow and

their integrals and derivatives in the four energy domains listed in Table 2.1. The

complete list is given in Table 3.1.

Specifying the outputs of the system is, of course, a signi�cant modeling decision.

However, it is one that the user must make; the program cannot determine which

quantities are of interest from the structure alone. For all the program knows, the

user may be planning to drop the U-tube from a tall building. A good model for this

purpose would be rather di�erent from the \obvious" model.

Forcing the user to specify the inputs to the system is somewhat more suspect.

Ideally, the program should be able to determine the relevant inputs itself.

A more subtle modeling decision is also being foisted on the user, however: the

type of the variable. Although it might seem innocuous to interpret a height as

a position, it is often a complicated matter to determine the type of certain inputs.

Some sources of power, for instance, can be viewed as either e�ort or ow sources when

the loads they are subject to are well within their operating range. The distinction is

important, but di�cult to determine a priori; typically the best answer can only be

determined by seeing which choice makes the most sense in a model. MM does not

attempt to do this sort of reasoning, leaving the decision to the user.

3.1. INPUT REPRESENTATIONS 39

Name E�ort/Flow Relationship Energy Domain

acceleration ow derivative translational, hydraulic

velocity ow translational, hydraulic

speed ow translational, hydraulic

position ow integral translational, hydraulic

pressure e�ort hydraulic

ow-rate ow hydraulic

volume ow integral hydraulic

momentum e�ort integral translational, hydraulic

force e�ort translational

voltage e�ort electrical

current ow electrical

torque e�ort rotational

angle ow integral rotational

angular-velocity ow rotational

angular-acceleration ow derivative rotational

angular-momentum e�ort integral rotational

Table 3.1: Variable types supported by MM

To continue with the format of the behavior representation: the next part of each

variable description is used to associate values in the quantity space with points in the

structural description. For the U-tube the form is ((fixed bottom)), which asserts

that the value bottom is associated with the �xed point of the position quantity as

given in the structural description. This is the top edge of the U-tube's outer wall.

In other words, it states that bottom is the value used to describe the situation where

no uid is left in the side of the U-tube.

The last part of each variable's description is the behavior trace itself. Each

part of the trace speci�es the time, the magnitude of the variable at that time, and

optionally the sign of the variable's derivative. Intervals of time or magnitude are

indicated by enclosing in parentheses two adjacent times, or two landmark values

that are adjacent in the quantity space. Derivative signs are written as inc, dec and

const, for positive, negative and zero.

Here is an interpretation for each of the three forms in height-1's behavior. The

behavior of height-2 is similar.

40 CHAPTER 3. THE MM PROGRAM

(0 -x) At time 0, The uid height is at the value

-x. No information about its direction

of change is given.

((0 inf) (-x 0) inc) Between times 0 and in�nity, the height

rises from -x to 0.

(inf 0) At time in�nity, the height is at zero.

Qualitative vs. Quantitative

The behavior trace is an important part of MM's input, because it is essentially the

only test for whether a model is an acceptable representation of a system. It is di�cult

to see how it can be omitted from an automated modeler of the sort I am describing,

one concerned with the dynamics of physical systems. However, the decision to use

a qualitative instead of a quantitative representation does require some justi�cation.

A quantitative behavior trace|a numerical plot of a variable's value over time|

carries considerably more information than a qualitative plot, and thus would con-

strain the choice of model more strongly. Not only the approximate shape, but also

the actual magnitude of the model's predicated behavior would have to match the

supplied behavior in order for the model to be considered acceptable. But this addi-

tional pruning power comes at a cost in complexity. First, there is the issue of noise.

A simulation would be noise-free, but a series of measurements would certainly be

noisy. One would have to tackle the di�cult issue of determining when simulation

and measurement match. The second burden on the automated modeler is the need

to do parameter �tting. MM is good at determining the overall structure of a model,

but does not attempt to determine numerical values for the model's parameters, or

even the precise functional form of the elements' constitutive relations. (The next

section de�nes MM's output more precisely.) Adding such a component to MM would

be a signi�cant undertaking with little research payo�, since the areas of function-

and parameter-�tting have been and are being studied extensively in AI (e.g. BA-

CON [20] and its ilk), statistics, and system identi�cation [21]. MM can be viewed

as a �rst pass. Its output, a set of reasonable model structures, can be used by

parameter-�tting techniques.

An intermediate tack would be to accept a quantitative description of behavior,

but mechanically convert it to a qualitative one. I also rejected this approach, on

similar grounds: it would raise a host of di�culties, the problem of noise preeminent

among them, which have only an indirect connection to the central research issues of

this work.

3.2 Output Representation

As stated in Chapter 2, MM uses bond graphs to represent the models it generates.

This section explains more precisely the actual content of the bond graphs generated

3.2. OUTPUT REPRESENTATION 41

by MM.

MM-generated bond graphs are qualitative, in the sense that no values are given

for any of the parameters of the model; furthermore, the constitutive relations of all

one-ports (resistances, capacitances and inertances) are not speci�ed except for the

assertions that they are monotonically increasing and pass through the origin.

To be more precise about the last point, let me de�ne the relation M+
0 (f; g). Two

di�erentiable functions f(x) and g(x) are M+
0 i� they intersect at the origin and

there is some continuous function H(x) such that H 0(x) > 0 and f(x) = H(g(x)).

It follows from this de�nition that the derivatives of f and g always have the same

sign. The intuition is that f and g are monotonically related: whenever one increases

or decreases, the other moves in the same direction. Note that the M+
0 relation is

reexive, symmetric and transitive.

In this thesis, the functions are always functions of time, and we use just the

function name, writing eR, say, for eR(t), the function from time to resistance R's

e�ort. Since a resistance relates e�ort and ow, we can express the fact that the

resistance R's constitutive relation is monotonically increasing by saying M+
0 (eR; fR).

Since the derivatives of eR and fR always have the same sign, whenever eR increases

so does fR, and this implies a monotonically increasing e�ort-ow graph. M+
0 (eR; fR)

also states that there is zero ow at zero e�ort.

The assertions for the other two one-ports are similar. A capacitance relates an

e�ort to the integral of a ow, for which the letter q is used by convention, so for

each capacitance C in a bond graph MM asserts M+
0 (eC; qC). Dually, MM asserts

M+
0 (fI ; pI) for each inertance I, where p is the variable used to signify the integral of

e�ort.

As an example, consider the bond graph

Se

R

C

1

which we saw in Chapter 2. According to MM, this bond graph is equivalent to

the following set of relations:

Se = eC + eR

fR = fC

M+
0 (eC; qC)

M+
0 (eR; fR)

fC = _qC

The �rst two equations come from the meaning of the 1-junction; the next two are

the constitutive relations of the one-ports; and the last states that fC is the time

derivative of qC.

42 CHAPTER 3. THE MM PROGRAM

Readers familiar with the Qualitative Reasoning literature may recognize that

the above is a set of qualitative di�erential equations. In fact, the equations are

already in the form required by the qualitative simulation program QSIM [19]. This

is no accident; MM uses QSIM to help analyze its models. An important fact is that

a bond graph using the features discussed in Chapter 2 can always be represented

as a set of qualitative di�erential equations suitable for QSIM when the one-ports'

constitutive relations are M+
0 . The only additional information necessary to perform a

QSIM simulation on the above equations is the value of Se. Since sources correspond

to inputs, this value must be supplied by the user in the description of the system's

behavior. MM's use of QSIM is discussed in greater depth in Section 4.3.1.

3.3 The Main Loop

At its highest level, MM performs generate-and-test. It repeatedly proposes a can-

didate model, analyzes it by comparing its predicted behavior against the system

behavior given as input by the user, and rejects it if the behaviors fail to match.

Model proposal is done by a set of rules that key o� the information given in the

structural description. After a rule �res, adding one or more elements to a model,

the model is passed to the analysis phase, which either declares that it matches the

system behavior and thus is adequate, or tries to classify its inadequacies into one of

several problem categories. An inadequate model is not rejected outright; instead, it

is put on a queue of potential models for later consideration. The rules are divided

into groups based on the categories used in the analysis, so when the model is de-

queued for subsequent processing, only those rules relevant to its inadequacies are

given a chance to run.

Figure 3-5 presents the algorithm more formally. Initially, the model queue con-

tains only one model. If the system's structure description is entirely geometric, this

initial model is empty. If the structure description is expressed using the component

representation, then the bare models of the speci�ed components are composed, and

the resulting bond graph becomes the initial model. The initial model is given the

problem uninterpreted, meaning that the inputs and outputs of the system's behav-

ior have not yet been mapped to parts of the model (this is the �rst step in modeling).

Each time through the loop, a model is dequeued, and each rule that is eligible to

�re is invoked on a fresh copy of the model, one rule �ring per copy. A rule typically

modi�es the copy by adding elements. Each resulting model is analyzed, and if it is

faulty its problems are classi�ed and it is enqueued at the end of the model queue. By

placing the rejected model at the end of the queue, MM implements a breadth-�rst

search through the space of models. This practically ensures that MM will always �nd

the simplest adequate model, i.e. the model with the fewest elements. A depth-�rst

search would run the risk of developing an elaborate, clumsy but adequate model

when a simpler one would have done as well.

Rejected models are not enqueued if they are equivalent to a model already on

3.4. THE RULE INTERPRETER 43

Construct initial model and place on queue

While queue is not empty

Dequeue �rst model on queue

If it has no problems, output it and stop

else if no rule applies to the model, discard it

else for each rule that applies,

Run the rule on a copy of the model

Analyze the resulting model

Enqueue the model

Figure 3-5: Top-level Algorithm for MM

the queue. Two models are equivalent if they have the same elements in the same

positions. This is a stronger notion than bond graph isomorphism, which is essentially

graph isomorphism. The di�erence comes from the fact that the model elements

must be in the same position in the structure to count as matching. For instance,

consider two models for the U-tube, one of which consists solely of a capacitance

in the right side of the tube, the other of which contains only a capacitance on

the left side. The bond graphs are isomorphic, but the models are not equivalent

because the capacitances are in di�erent places. The check for model equivalence is

not expensive, and can save considerable wasted e�ort on those occasions when MM

generates equivalent models in di�erent ways.

The size of MM's model search space is di�cult to measure as a function of the

input size, which corresponds roughly to the total number of line-segments in the

structural description. The di�culty arises because MM is exible about how it

lumps regions of space. However, it is easy to show that the number of bond graph

models with k elements is exponential in k, and if we make the plausible assumption

that MM will generate a number of elements that is polynomial in the size of the

input, we can place the size of the search space at O(2p(n)). The important point is

that it is exponential: there are a lot of models.

3.4 The Rule Interpreter

Each rule consists of two parts: a test and an action. When a rule is applied, the

test is evaluated and if it succeeds, the action is evaluated. Here is a typical rule,

expressed in a format that I will use throughout the thesis:

44 CHAPTER 3. THE MM PROGRAM

position!ow-integ/uid (a position is the integral of a ow)
IF there is a position quantity whose changing point is linked to

a uid segment

THEN associate a 1-junction with that segment

AND consider the quantity to be the integral of the junction's

ow.

The actual Lisp code for the rule looks like this:

(defrule position->flow-integ/fluid (uninterpreted)

(test (and (position-quantity ?pq)

(let ?edge (pq-link-edge ?pq))

(let ?seg (segment-containing ?edge))

(eq (composition ?seg) 'fluid)))

(action

(interpret-position-quantity/fluid ?pq ?edge)))

The rule's name is followed by a list of problem categories for which it may be use-

ful; in this case, the rule is used to propose interpretations in the model for variables

in the given system behavior. The test speci�es that the rule can be used on a position

quantity (recall that position quantities are speci�ed in the structural description).

The remaining forms in the test extract the edge and segment corresponding to the

position quantity and ensure that the segment is composed of uid. The action part

of the rule is a call to a Lisp function that implements the actions described in the

above English paraphrase of the rule.

A rule's action is Lisp code that is evaluated normally, but its test is treated

specially by MM. A test form is actually a pattern for a special interpreter called the

rule interpreter. Rather than returning a single value, as the Lisp interpreter would,

the rule interpreter returns a list of values for the variables (symbols beginning with

a question mark) in the form. In the example, position-quantity returns a list of

bindings of ?pq to each of the external forces given in the structural description. (A

binding is a pairing-up of a variable, in this case ?pq, to something else, in this case

a data structure representing a position quantity.) Other parts of the pattern may

add new variables to this list, or prune some values. For instance, the fourth form in

the test, beginning with eq, is a piece of Lisp code that retains only those values of

?seg that have a composition of uid. In the event that the list of values is empty,

the test part fails and the rule's action is not executed.

Each time a rule is invoked, it is run on only one of its set of possible bindings.

Each subsequent invocation uses the next binding in the list. The e�ect is that all

of the rule's possible invocations actually occur, each one with a fresh copy of the

current model. Each of the other rules that can run on a model are also invoked on

copies of that model. Thus the overall result of running all rules on a model is a set

of copies of that model, each modi�ed by exactly one rule with one binding for that

rule's variables. Each of these new models, if it is faulty, is later processed again by

3.4. THE RULE INTERPRETER 45

the rules and further augmented. Bookkeeping code assures that a rule will be run

at most once on a model with a given set of bindings.

As an example, say that a rule for adding resistance to a model identi�ed three

distinct places in the given system structure where a resistance might be added. Each

place would be the value of a variable in the rule's test part. (MM represents places

with geometric constructs like points or polygons). The �rst time the rule was invoked

on a model M, it would create three new models, each one having a single resistance

in one of the three places. Let us call these models M.1, M.2 and M.3. If M.1 does

not pass the analysis phase, it will eventually be dequeued again, and if the same

rule applies, then copies of M.1 which we can call M.1.2 and M.1.3 will be generated.

(The rule interpreter ensures that M.1.1 cannot happen.) After another trip through

the queue, M.1.2.3, a model with all three resistances, will have been created.

This mechanism can lead to the same model being created multiple times: M.1.2

and M1.3 will both lead to the creation of M.1.2.3. This wasteful duplication is

mitigated somewhat by the check for model equivalence before enqueuing, discussed

above.

46 CHAPTER 3. THE MM PROGRAM

Chapter 4

Analysis

The purpose of MM's analysis phase is to compare candidate models against the user-

supplied information about the system begin modeled. The analysis phase determines

whether or not the model's predicted behavior matches the system behavior trace

given as input.

The simplest and most straightforward way to accomplish this would be to simu-

late the model and compare the result with the given behavior. MM's analysis phase is

interesting because it can do better than that: by using theorems and heuristics about

the behavior of physical systems, it can weed out many models without performing a

simulation, and more importantly can provide speci�c suggestions for modifying the

model to remedy its aws.

MM classi�es model problems into one of four categories, each of which triggers a

di�erent set of rules.

uninterpreted The model does not contain analogues for one or more of the input-

output variables speci�ed in the behavior description of the system to be mod-

eled. This triggers rules designed to interpret quantities.

resistor-needed The model lacks a resistor, but the behavior trace suggests that

one must be present. As you might guess, this triggers rules that add resistors.

order-too-low The model's order (de�ned below) is lower than the given behavior

trace warrants. This triggers rules that add energy-storage elements (capacitors

and inertias) to the model.

wrong-behavior The model's predicted behavior disagrees with the given behavior

trace. A catch-all used when none of the other categories can be shown to apply.

All rules except those used for uninterpreted are triggered.

The analysis involves the following tests, performed in the order given, on the

candidate model and the given behavior trace of the system to be modeled.

47

48 CHAPTER 4. ANALYSIS

Check for uninterpreted variables. If there are variables in the given behavior

trace that have not been interpreted in the model, the model is labeled

uninterpreted. This step is straightforward and is not described in more

detail.

Determine whether resistance is necessary. If the model contains no resistors, and if

the behavior trace suggests that a resistor is necessary, the model is labeled

resistor-needed. See Section 4.2 for more detail.

Determine order. The model's order is determined and the minimum order needed

to produce the behavior trace is estimated. If the model's order is too low, it is

labeled order-too-low. This step is explained more fully in Section 4.1.

Simulate. If the model passes all of the previous tests, a qualitative simulation of the

model is carried out and the results compared to the behavior trace. If they

disagree, the model is labeled with wrong-behavior. See Section 4.3.

Simulation is a last resort for two reasons. First, the other tests allow a more

speci�c determination of the model's problems. Second, the tests are in some ways

more powerful than simulation; they can reject models that would pass the simulation

test. An example of this second point can be found in Section 5.1.

4.1 Order Determination

A fundamental assumption of the kind of models used in this thesis is that at any

point in time, a state|a �nite set of values|su�ces to describe all that is relevant

about the model. The entire future and past of the model's behavior can be predicted

from its state.

The order of a model is the number of values needed to describe its state. Order

is a natural measure of the complexity of a model. It is also closely connected with

the makeup of the model itself, when the model is expressed in an energy-based

modeling framework. It turns out that the order of a model is equal to the number of

independent energy-storage elements (capacitors and inertias) it contains. An element

is independent if its behavior is not completely determined by other elements in the

model.

Determining a model's order is not di�cult, and is described in the next section.

A more interesting computation is determining from a behavior what the minimum

possible order of a model generating that behavior could be. If the behavior trace is

quantitative and the model is assumed linear, then there is a suite of techniques for

determining the order in general [21]. For qualitative plots and qualitative models,

I have been able to make a precise determination only for low-order systems. Given

a qualitative behavior trace, it is usually possible to determine whether the model

could be zeroth-order (that is, containing only algebraic, not di�erential, equations),

4.1. ORDER DETERMINATION 49

�rst-order, or of second or higher order. The distinctions are crude, but crucial. For

the purposes of naive physical reasoning about dynamics, they are probably all that

is required; all the lay concepts of dynamic behavior, such as delay, oscillation and

overshoot, are exhibited by second-order systems. Zeroth-order systems can be viewed

as fundamentally di�erent from dynamic systems|they are in general much simpler

to understand and analyze, requiring only algebra, not calculus|so it is advantageous

to use them when possible. It is probably impossible to extract information about

higher-order behavior from a purely qualitative plot of a system's time behavior, so

modeling programs like MM that reason from qualitative data alone may be con�ned

to low-order models. Finally, models of order two or less are thoroughly understood

by both mathematicians and engineers, so a modeling program that interacts with

humans should place a premium on constructing such models.

The next sections explain how to determine the order of a bond graph model and

of a qualitative behavior trace.

4.1.1 Causality Assignment

Only the energy-storage elements|capacitors and inertias|contribute to the order

of a model. In general, each energy-storage element contributes one state variable.

However, it is possible (and not uncommon) to have an energy-storage element that

is dependent on other parts of the model. In other words, the putative state variable

of the element can be rewritten in terms of the other state variables.

The order of a bond graph|the minimum number of state variables needed to

capture the model's behavior|is the number of independent energy storage elements.

The method for determining the order is called causality assignment and is well-known
in the bond graph literature (see, e.g. [18]). It involves labeling each bond in the

bond graph with a causal stroke which describes from which direction e�ort and ow

are imposed on the bond. A bond with a causal stroke looks like this:

The stroke on the right side of the bond indicates that e�ort is imposed from the

left, ow from the right. The idea is best explained by example. Consider the bond

graph fragment
Se

Since an e�ort source determines the e�ort along its bond, the causal stroke is

placed to reect that fact. A ow source, which determines the ow along its bond,

always has the causal stroke placed near it:
Sf

Now consider the junctions. In a 1-junction (common ow), ow along any one

bond determines the ow along all bonds, and at least one bond must determine the

junction's ow. It follows that exactly one of the bonds impinging on a 1-junction

imposes ow on the junction, i.e. has its causal stroke on the side away from the

junction. All other bonds have causal strokes facing the junction. The 0-junction is,

50 CHAPTER 4. ANALYSIS

R

C

I

Se Sf

TF

GY

TF

1 0

or R

or

(independent)

(independent)

or GY

.

.. .
..

Figure 4-1: Constraints on causal strokes

as always, the dual: all but one bond must have its causal stroke facing away from

the junction.

The transformer and gyrator also place constraints on causal strokes, which follow

from their constitutive relations. For example, the e�ort on one side of the transformer

determines the e�ort on the other side, so if one of a transformer's bond has its causal

stroke adjacent to the transformer, the other bond must have its stroke facing away

from the transformer. Analysis of the gyrator is similar.

The case of energy-storage elements is a little di�erent. A capacitor can either

impose e�ort (causal stroke away from the element) or have e�ort imposed upon it;

but the two situations are not symmetric. A capacitor with e�ort imposed on it is

dependent and its state variable can be rewritten in terms of the other state variables

of the model. The inertia, as usual, is dual: it is dependent when ow is imposed on

it.

These causal constraints are summarized graphically in Figure 4-1. A resistor

with a strictly monotonic e�ort-ow relation imposes no constraints.

To determine the order of a bond graph model, it is �rst necessary to label every

bond with a causal stroke. This can be done by a straightforward algorithm that

repeatedly propagates all causality constraints imposed by the elements, then assigns

causality to some remaining bond arbitrarily, backtracking when contradictions are

encountered. Initially all energy-storage elements are made to appear independent,

and this is changed only when forced by a contradiction. When all bonds have been

consistently labeled, the number of independent energy storage elements provides an

upper bound on the model order. Additional causality-assignment steps (described in

[28], but not implemented in MM) can be used to ferret out additional dependencies.

4.1. ORDER DETERMINATION 51

4.1.2 Order from Behavior

Two tests are done on the qualitative behavior trace given to MM to see if it could be

generated by a low-order model. The �rst determines whether di�erential equations

are required to produce the behavior; that is, whether a zeroth-order model will

su�ce. The second test is a heuristic that can often determine whether the behavior

can be captured by a �rst-order model.

Zero-order Models

Before discussing the zeroth-order test, it is worth understanding just what it means

for a model to be zeroth-order. A zeroth-order model has no di�erential equations,

hence no state, hence no memory. Does this mean there is no change? The question

is subtler than it seems.

Of course, the system will change if its input is changing. If you rigidly move

a block of wood from place to place on a table top, then the position of the block

changes even though an accurate model of the system|a ow source connected to

an inertia|is zeroth-order.

But now consider a block at rest in the middle of a table, with no movement.

Is the system changing? No|unless you take as an output the time integral of the

block's distance from the table's edge. This output is a linearly increasing function

of time.

The moral of the story is that change is not a mathematical notion, but a physical

one. It is impossible to tell merely from the plots of a system's inputs and outputs

whether it exhibits change or state, that is, whether it can be described by a zeroth-

order model. A fundamental piece of information is missing: the types of the input-

output variables. This is one very important reason why these types must be given

by the user.

We are now in a position to de�ne zeroth-order more precisely. We will say that

adjusting a variable is integrating or di�erentiating it su�ciently to make it an e�ort

or ow. For example, to adjust a position, di�erentiate it once to make it a velocity,

which is a ow. Two variables exhibit a zeroth-order relationship if, when adjusted,

they are functionally related; in other words, a plot of the time behavior of one against

that of the other yields a function. The adjustment takes care of the problem raised

above, where variables of certain types can give rise to seeming change when there is

none.

A qualitative behavior trace|a set of input and output variables, their types, and

a qualitative time behavior for each variable|can be implemented by a zeroth-order

model if each pair of input and output variables is in a zeroth-order relationship.

The Zeroth-order Test

MM's zeroth-order test could mimic the above de�nitions, �rst di�erentiating or in-

52 CHAPTER 4. ANALYSIS

tegrating each input-output variable as necessary and then plotting the adjusted

variables against each other to see if the relationship is a function. (This was, in fact,

the original implementation.) But there are problems. Di�erentiating a qualitative

behavior trace loses a great deal of information about the function; taking a second

derivative is even worse. Treating qualitative di�erentiation as a function from be-

haviors to behaviors is thus unwise. A better approach is to treat it as a constraint

between two behaviors. The property of having a functional relationship can also be

represented as a constraint. The zeroth-order test can then be implemented as a test

to see if a set of constraints can be satis�ed.

Since MM's bond-graph elements all have M+
0 characteristics, as discussed in Sec-

tion 3.2, it is overwhelmingly likely that bond graphs constructed by MM will im-

plement functions are M+
0 or M�

0 . (The di�erence between two M+
0 functions can be

arbitrary, but MM is not likely to construct a model that contains such a di�erence.)

Hence the constraint that two variables x and y have a functional relationship can be

expressed as M+
0 (x; y) or M

�

0 (x; y). Say that the two variables that we wish to test

for having a zeroth-order relationship are a position p and a force F . The position

needs to be di�erentiated once to obtain a ow; the force is already adjusted, since

it is an e�ort. There are two sets of constraints:

dp

dt

= _p

M+
0 (_p; F)

and

dp

dt

= _p

M�

0 (_p; F)

In general, the constraint sets can always be written to contain only di�erentiation,

M+
0 and M�

0 constraints.

These constraints are suitable for use by QSIM, a qualitative simulation program.

MM e�ectively simulates each of the two sets of constraints and sees if any of the

simulated behaviors agree with the given behavior for the two variables in question.

Actually, MM does something more e�cient: during the simulation, it prunes be-

haviors that diverge from the given behavior. The modi�ed QSIM algorithm that

accomplishes this is detailed in Section 4.3.

MM performs the zeroth-order test for each pairing of an input with an output

variable. If all pairings are zeroth-order, then MM concludes that the entire behavior

trace could be generated by a zeroth-order model.

4.2. RESISTANCE ANALYSIS 53

The First-order Test

To determine whether a behavior trace could be captured by a �rst-order model

or whether it requires a model of order two or greater, MM employs the following

heuristic: The outputs of a �rst-order system with constant or monotonic inputs will

not oscillate (i.e. will not change direction). This includes the case of no input (a

constant zero input). As with the zeroth-order test, the inputs and outputs must be

adjusted to be e�orts or ows by integration or di�erentiation.

For a �rst-order model with no input or constant input, this is a fact. It can be

easily shown by considering the phase space of the model and recalling that phase-

space trajectories cannot intersect (except to form a cycle). The phase space of a

�rst-order model is one-dimensional, so no change in direction of the model's state

is possible without intersection. Hence the output variables must all be monotonic.

When we consider models with monotonic but not constant input, the principle is

merely a heuristic. It is justi�ed by the fact that many �rst-order models exhibit

tracking behavior: they follow their input. Thus a monotonic input will engender a

monotonic output.

While the zeroth-order test works for any input, the �rst-order test can only be

applied if all of the system's inputs are constant or monotonic. If this is the case, and

if all the outputs are constant or monotonic, then MM concludes that a �rst-order

model could be responsible for the given behavior trace.

As with the zeroth-order test, MM constructs sets of constraints and uses quali-

tative simulation to implement the test. DERIV constraints are used to adjust the

variables, and two new unary constraints, which I call NSM+ and NSM�, are used

to express the constraint on the adjusted output variable. A function is NSM+ if it

is Non-Strictly Monotonically increasing; that is, if its derivative is never negative.

Similarly, a function is NSM� if its derivative is never positive.

4.2 Resistance Analysis

MM also uses a heuristic to determine whether the behavior trace suggests that the

model requires a resistor. Of course, all real physical systems have resistance|that

is, all dissipate energy|but sometimes one can neglect losses and obtain a simpler

model.

MM decides that a behavior trace must be modeled with a resistor when the behav-

ior has unchanging inputs (after adjustment) and the system moves to an equilibrium

point; that is, when there is a time after which no (adjusted) outputs change.

The intuition behind MM's heuristic is that all systems with losses eventually

\wind down." The intuition is formalized and proved in Du�n's theorem [8], which

says (roughly) that if given no input or a constant input, any system consisting of

passive components and at least one resistor will have constant e�orts and ows in

the steady state. In other words, the system cannot oscillate inde�nitely.

54 CHAPTER 4. ANALYSIS

Du�n's theorem guarantees that if a system has resistance, it will reach a constant

steady state. The converse, unfortunately, is not true. It is possible for a lossless

system to move from some non-equilibrium state to an equilibrium point, a point

where none of the system's parameters are changing. But a more typical behavior for

a lossless system is to oscillate or move inde�nitely if perturbed. So MM's resistance

test, though a heuristic, is a reasonable one.

4.3 Simulation

When a model passes the above tests|when its order is high enough and it contains

a resistor if necessary|or when the tests are not applicable, MM resorts to compar-

ing the simulated behavior of the model with the given behavior. Before doing so,

however, MM conducts two preliminary tests.

First, MM compares the candidate model to the models it has previously created

to see if they are behaviorally equivalent. The test for behavioral equivalence is not

the same as the equivalence test discussed in Section 3.3. That test was stronger,

because it not only required bond graph isomorphism but also insisted that corre-

sponding elements be at the same place in the system structure. The test for behav-

ioral equivalence requires only bond graph isomorphism. If a behaviorally equivalent

model is found, its analysis result is used, saving a simulation. (The equivalence

test could be done right at the beginning of the analysis phase, but the order and

resistance tests are so fast that the time saved would be negligible.)

If no behaviorally equivalent model exists, MM con�rms that the model asserts

some relationship between the inputs and outputs. It does this by ensuring there is a

path in the interaction graph between each output and some input. The interaction

graph is simply the graph arising from the connectivity of the model's equations. Each

node in the graph is a variable, and an arc represents the fact that some equation

or constraint relates the variables. MM performs this step because the qualitative

simulator will happily simulate a model in which the outputs are unconstrained. Such

a model predicts every behavior, and so agrees with any given behavior. Ensuring

that each output is constrained eliminates this problem in practice.

Unlike quantitative simulation, qualitative simulation is inherently ambiguous: a

model can give rise to more than one behavior even when begun from the same initial

conditions. What is worse, some physically impossible behaviors may be generated by

the simulation, although every physically possible behavior will also be represented.

The �rst of these problems, ambiguity, can result in intractable computation. It

is possible to generate a very large number of behaviors from even a simple model.

Early attempts to simulate a model and then compare the result with the user-

supplied behavior trace often failed because the simulation could not proceed far

enough due to resource limitations. The problem was solved by modifying QSIM,

the qualitative simulation program, to interleave simulation and pruning of incorrect

behaviors. The modi�cation does not alter the inherent intractability of QSIM, but

4.3. SIMULATION 55

for practical purposes it makes it vastly more e�cient.

The second problem with qualitative simulation, the so-called spurious behavior

problem, is not so easy to solve. One partial solution is to use additional equations

which are mathematically redundant, but which nonetheless provide additional in-

formation to the simulator. For instance, a qualitative simulation of an undamped

harmonic oscillator will give rise to the behavior in which oscillations have the same

amplitude|the correct behavior|as well as behaviors where the amplitude increases,

decreases, or varies. By incorporating the equation asserting conservation of energy

into the model, only the correct behavior remains. This technique is not always suc-

cessful, however, and there is no general solution to the spurious behavior problem.

MM simply neglects the di�culty: if any of the model's simulated behaviors agrees

with the given behavior, the model is deemed correct.

In the remainder of this section, I explain the simulation test in more detail. First

I give an overview of the QSIM program. Then I describe QSIM-CHECK, a version

of QSIM incorporating modi�cations that improve its performance for the task of

checking a model against a given behavior.

4.3.1 QSIM

The input to QSIM is a set of qualitative constraints that hold between a set of pa-

rameters, which are functions of time. These constraints are summarized in Table 4.1.

QSIM also possesses constraints that are weaker than M+
0 and M�

0 in that they do

not assert that the variables agree at zero.

Section 3.2 explained briey how a bond graph model can be translated into a

set of these constraints. Table 4.2 lists the constraints generated for each bond-graph

element. The actual constraints for junctions depend on the orientation of power

half-arrows on the bonds; the examples in the table assume that bonds 1 and 2 point

into the junction and bond 3 points out. For junctions with more than three bonds,

MM creates additional parameters and uses multiple ADD constraints, and possibly

MINUS constraints as well.

Information about interpreted input-output variables is also turned into con-

straints. Input constraints are associated with e�ort and ow sources; output vari-

ables are generally associated with junctions. DERIV constraints may be associated

with the variables in order to do adjustment (see Section 4.1.2). Output variables are

not otherwise constrained. The INDEPENDENT constraint is used for constant in-

puts. The set of constraints is passed through an algebraic simpli�er which eliminates

equalities and redundant constraints.

In QSIM, each parameter has its own quantity space (MM simpli�es this, insisting

on a single quantity space for all parameters). As discussed in Section 3.1.3, a quantity

space is a linearly ordered set of symbolic values called landmarks. A qualitative
magnitude is either a landmark, representing a single (but unknown) numerical value,

or it is an ordered pair of landmarks, representing some numerical value between the

56 CHAPTER 4. ANALYSIS

DERIV(x, y) dx

dt
= y

ADD(x, y, z) x+ y = z

MULT(x, y, z) xy = z

MINUS(x, y) x = �y

INDEPENDENT(x) x is constant

M+
0 (x, y) see Section 3.2

M�

0 (x, y) see Section 3.2

Table 4.1: QSIM's constraints and their meanings

R M+
0 (e; f)

C DERIV(q, f), M+
0 (q, e)

I DERIV(p, e), M+
0 (p, f)

1 f1 = f2 = f3, ADD(e1, e2, e3)

0 e1 = e2 = e3, ADD(f1, f2, f3)

TF M+
0 (f1; f2), M+

0 (e1, e2)

GY M+
0 (f1; e2), M+

0 (e1, f2)

Table 4.2: QSIM constraints generated for bond-graph elements. The variables e, f ,

e1, f1, etc. refer to the e�ort and ow on the bond(s) of the element.

4.3. SIMULATION 57

two. A qualitative value for a parameter consists of a qualitative magnitude for that

parameter, and information about the sign of the parameter's derivative|whether the

parameter is increasing, decreasing, or constant. A parameter with a quantity space

consisting of three values a, b and c could take on any one of �fteen qualitative values:

each of the �ve qualitative magnitudes a, (a; b), b, (b; c) and c could be coupled with

any of the three derivative signs. Since derivatives are an integral (no pun intended)

part of the representation, it follows that QSIM assumes that all parameters are

di�erentiable, and hence continuous.

Just as the notion of state is crucial to numerical simulators, so the notion of

qualitative state is central to QSIM. In a numerical simulator, a state is a vector of

real numbers, one for each state variable of the model. A state of a QSIM model is a

vector of qualitative values, one for each parameter.

A QSIM simulation begins with an initial state, the state of the system at a point

in time arbitrarily called T0. Since QSIM has no numerical information, it cannot

determine the actual duration of events in the simulation, so it simply labels time with

consecutive integers. This does not imply that the durations between time-points are

equal.

QSIM now tries to determine what could happen \next"; in this case, \next"

means over the interval of time from T0 to T1. QSIM determines all the possible

successor states of the initial state; that is, all the states the model could be in

immediately after T0. To do this, QSIM �rst goes through each parameter, generating

all the possible qualitative values that might immediately follow the current one in

time, assuming that the parameter represents a continuous function. For instance,

imagine some parameter has the qualitative value ha; inci at T0, meaning that its

qualitative magnitude is a and it is increasing. Then its only possible value for the

interval between T0 and T1 is h(a; b); inci, because the positive derivative means the

parameter's value must increase.

QSIM is designed so that no parameter moves more than one position along its

quantity space in the course of any one time interval. If a parameter moves between

a and c, it will do so over two intervals; in the �rst it will move to b.

After it enumerates the possible successors of each parameter, QSIM combines

these values into a set of potential successor states by taking their cross-product, then

�lters these states using the constraints supplied with the model to arrive at a �nal

set of successor states. (Actually, it interleaves �ltering with state construction for

e�ciency.) For instance, if some potential state has a value of ha; inci for parameter

x and a value of hb; deci for parameter y, and one of the constraints is M+
0 (x; y), then

the state is not a possible successor state because the M+
0 constraint implies that the

parameters' derivatives must have the same sign.

After discarding states in this way, QSIM arrives at a set of successors of the initial

state. Ideally there is just one successor, but because of ambiguity there may be

several. The process is repeated for each of these states, but with a slight di�erence:

now QSIM tries to determine what will happen when moving from the interval of

58 CHAPTER 4. ANALYSIS

time between T0 and T1, to the time point T1. The transitions for the individual

parameters are slightly di�erent when moving from an interval to a point.

Readers familiar with QSIM will note that I have not described QSIM's \landmark

generation" feature. This feature is not used by MM.

QSIM can be viewed as conducting a breadth-�rst search through a graph whose

nodes are qualitative states and whose arcs are determined by the successor relation-

ship between states. QSIM maintains a queue of states which at the outset contains

only the initial state. It repeatedly removes the next state from the queue, �nds its

successors, and places them at the end of the queue. When it is �nished, QSIM has

constructed a tree, or more precisely a DAG (directed acyclic graph) of states, whose

root is the initial state. Every path from the initial state to a leaf state is a possible

behavior of the model (modulo the spurious behavior problem).

The simulation can terminate in one of two ways. First, QSIM checks each state it

generates to see if all its derivatives are zero (indicating that all successor states will

be identical to this one) or if the state is identical to one that occurred previously in

this behavior (indicating a cycle). In either case, QSIM no longer generates successors

for that state. If all states meet one of these conditions, the queue empties and the

simulation stops.

Because QSIM can take a great deal of time and generate a very large number of

states (exponential in the number of parameters and the size of the quantity spaces),

the algorithm can also be made to terminate after a �xed number of states have been

generated.

4.3.2 QSIM-CHECK

Although QSIM's most well-known limitation is the spurious behavior problem, it has

two others which are of concern to the implementation of MM. First is its exponential

behavior. If the threshold on the number of states generated is set to one hundred,

running QSIM on a fairly simple second-order model of an oscillator will take over a

minute and will result in twenty or so behaviors, none of which exhibit more than a

couple of oscillations. The program's performance degrades exponentially, so doubling

the state threshold will double the time taken but will not produce behaviors that

have signi�cantly more oscillations. If MM were to use QSIM directly, and the user

were to supply a system behavior that lasted for �ve oscillations, MM's time and

space requirements would be prohibitive.

QSIM's second problem is that it works only for models with constant or no input.

There is no easy way to specify a changing input to a QSIM model.

QSIM-CHECK solves both of these problems. It has proven to be an e�cient

method for testing a model against a behavior with arbitrary inputs.

The QSIM-CHECK algorithm is a modi�cation of QSIM that performs simulation

and comparison with a given behavior in tandem. Like QSIM, QSIM-CHECK takes

as input a set of parameters and constraints between them, and an initial state. It

4.3. SIMULATION 59

also takes a history as input. A history is just what I have been calling a behavior

throughout this thesis|it is a list of parameters and how they change qualitatively

over time|but the change in terminology will make this section clearer. The history

may include both input and output parameters. The parameters in the history should

include some, but need not include all, of the model's parameters.

QSIM-CHECK behaves much like QSIM. The crucial di�erence is that as each

successor state is generated, QSIM-CHECK determines if it matches the history. If

not, the state is discarded. QSIM-CHECK stops immediately and indicates success if

the state matches the end of the history. The result is a qualitative simulation where

the only behaviors being simulated are those that could ultimately fully match the

history.

QSIM-CHECK incorporates a second modi�cation to QSIM as well: it performs

best-�rst instead of breadth-�rst search. The goodness heuristic is explained following

the discussion of the behavior comparison step.

Pruning States Using Behavior

QSIM-CHECK compares each newly constructed state against the history and discards

it if it fails to match. This extra pruning step is not as straightforward as it might

appear at �rst glance. The di�culty is that there might be additional states in the

simulation that are not represented in the history.

Say that part of the history is the behavior of some parameter P, which begins at

zero and increases steadily until it reaches some value:
Behavior 1

T0 a const

(T0 T1) (a b) inc

T1 b const
A simulated behavior that is identical to this will of course match it. But the

following behavior should match as well:
Behavior 2

T0 a const

(T0 T1) (a b) inc

T1 (a b) inc

(T1 T2) (a b) inc

T2 b const
Here, parameter P is also beginning at zero and increasing; the only di�erence is

in the time scale. Such a behavior for P might result because other parameters of the

model changed between T0 and T2.

In the discussion of QSIM it was mentioned that no qualitative magnitude ever

spans more than two landmarks. However, the user who describes a behavior to MM

is not restricted by this. So Behavior 1 would also be a valid input if the quantity

space were a; a2; b. In that case, another matching behavior is

60 CHAPTER 4. ANALYSIS

Behavior 3

T0 a const

(T0 T1) (a a2) inc

T1 a2 inc

(T1 T2) (a2 b) inc

T2 b const
In this behavior, P is again rising from a to b, but the rise is shown in two stages.

So far, we have been assuming that Behavior 1 is the history and the others are the

simulation results. But the opposite is also possible: the history might be Behavior

2, for instance.

It should be clear from the examples that to compare behaviors, it does not su�ce

to check that magnitudes and derivatives are equal at equal times. Instead, QSIM-

CHECK distinguishes between the simulation time and the history time of a state.

Simulation time is the time that QSIM assigns to a state. A state's history time is

the time in the history in which the state belongs. For example, in Behaviors 2 and

3, all the states with derivative inc have a history time of (T0 T1), because they are

part of the single inc state in the history (Behavior 1).

Given a state, QSIM-CHECK has two jobs: �rst, determine the history time of the

state; then determine whether the state matches the history at that time. In fact, a

single state might match several times in the history, so each state has a set of history

times.

The sole history time for the �rst state is T0. To determine any other state S's

history times, QSIM-CHECK �rst looks at the history times of the S's predecessor, P.

Any one of those history times is potentially a history time of S, because it is possible

that two adjacent states share the same history time. The other potential history

times for S are the times immediately following P's history times, since the transition

from P to S might represent a transition in the history. For each potential history

time, S is compared with the history at that time, and only those history times for

which S matches the history are retained.

If a state represents an interval of time and one of its candidate history times is a

point, we can eliminate that history time from consideration, because an interval state

cannot represent a point in time. The other three combinations are possible, however;

in particular, a point state can be part of an interval history time. For these cases, it is

necessary to compare the values of the parameters in the state and the history. Both

the derivative and magnitude of the qualitative values are compared. The derivatives

must always agree exactly. If the time is a point, then equality of magnitudes is the

right comparison. But if the time is an interval and the history's magnitude is an

interval as well, then it is too strict to insist that the simulation's magnitude is the

same interval, because the simulation might not yet have traversed the entire interval.

Consider the third example above: there, the �rst simulation interval only reaches

the value a2, even though the corresponding history interval ranges from a to b. The

appropriate test is not equality, but subset: if the simulation's magnitude is a subset

4.3. SIMULATION 61

of the history's, then the state matches. The subset test is obviously necessary. It

is also su�cient, because all behaviors are continuous and all derivatives and time-

point magnitudes match exactly. Hence it is not possible for a sequence of simulation

states to cover only a portion of a history state's interval: the equality checks at the

interval's endpoints will ensure that the complete interval is traversed.

Best-First Search

QSIM-CHECK's second improvement on QSIM is to use best-�rst instead of depth-

�rst search. If a successor state was not pruned by the check against the history, it

will have been assigned one or more history times. Instead of placing the state at

the end of the queue, it is placed just before the �rst state on the queue whose latest

history time is less than its own latest history time. In other words, the queue is

kept sorted in history-time order, from latest to earliest. The e�ect is that QSIM-

CHECK follows the most promising, i.e. the most quickly advancing, behaviors �rst.

In practice, this is signi�cantly faster than breadth-�rst search. It is possible that the

best-�rst algorithm will get bogged down on a behavior that, though more advanced

than any other, does not make progress quickly, or at all. (That is, its history time

does not advance.) However, as long as QSIM's landmark-generation feature is turned

o�, there is no danger of an in�nite loop. This is prevented by QSIM's cycle check,

which discards a state if it is equivalent to an earlier one in the same behavior.

Since there are only a �nite number of landmarks, there are only a �nite number of

qualitative values, hence a �nite number of states, so eventually every behavior will

cycle if it is not discarded for some other reason. Thus QSIM-CHECK is guaranteed

to eventually either produce a matching behavior, or terminate with the conclusion

that no behaviors match the history.

Additional Improvements

Further improvements to QSIM-CHECK are possible. The �rst step of QSIM-CHECK,

as with QSIM, is the creation of all possible initial states consistent with the history's

parameters. This is at present the slowest part of the algorithm in cases where

the number of parameters in the history is a small subset of the total number of

parameters in the model. One improvement would involve creating one initial state

at a time and testing it before creating the next. Another, more far-reaching change

would be to implement a lazy evaluation scheme, where a state's parameters would

be determined only when necessary. This might in some cases avoid the creation of

very large numbers of states, which is the current bottleneck in the program.

Related Work

Behavior-constrained qualitative simulation is closely related to the problem of mea-

surement interpretation, in which one is given a set of measurements over time and a

62 CHAPTER 4. ANALYSIS

model and the goal is to determine what model states the measurements correspond

to. If there is no sequence of model states corresponding to the given measurements,

one can conclude that the model cannot predict the measurements. This is just the

test that QSIM-CHECK implements.

Ken Forbus �rst raised the measurement interpretation problem and provided a

solution for his Qualitative Process (QP) Theory representation [13]. Dennis DeCoste

extended and improved Forbus's work in his DATMI program [5]. DATMI deals with a

larger problem than QSIM-CHECK, that of interpreting possibly noisy or incomplete

numeric data. The early stages of the program are devoted to transforming this

data into a qualitative history like that used by QSIM-CHECK, and other parts of

the program try to deal with issues like sensor error that I have �nessed. At their

core, however, DATMI and QSIM-CHECK perform the same task: both attempt to

�nd paths of states that match a qualitative history. DATMI di�ers from QSIM-

CHECK in that it �rst constructs an envisionment of the model, a graph containing

all possible model states where an arc connects two states if one could be a successor

of the other. Once it has constructed the envisionment, DATMI is fairly e�cient

in �nding paths through it that correspond to interpretations of the measurements.

However, the number of envisionment states could be exponential in the number of

model parameters. QSIM-CHECK takes an incremental approach, creating states only

when necessary.

DATMI's approach makes sense if the same model will be used to interpret multiple

measurements, for then the cost of constructing the envisionment is amortized over

multiple runs. For the applications in this thesis, however, a model is tested only

once, so the incremental approach would seem to be preferable.

Another, somewhat more subtle point concerns the meaning of QSIM's M+ and

M� constraints (and the more speci�c M+
0 and M�

0 constraints used in this thesis),

versus the qualitative proportionalities used in QP theory and assumed in DATMI. A

QSIM \M" constraint asserts the existence of a function relating the two parameters;

a qualitative proportionality does not. This permits QSIM to draw an inference that

a QP reasoner cannot. Consider two parameters P and Q related by one of the \M'

constraints, and say that at some time point P takes on the value a and Q takes on

the value b. Now since they are functionally related, we can conclude that, at any

time, whenever P is a then Q must be b, and vice versa. The values a and b are called

corresponding values.

QSIM and QSIM-CHECK incorporate this inference by accumulating sets of corre-

sponding values as a simulation proceeds. If at time T1 a state S is generated where

P is a and Q is b, then S's successor's record this fact, and any states that arise from

S in which P is a but Q is not b, or Q is b but P is not a, can be pruned. Note that

this implies that the parameter values of a state do not completely determine the

information that state contains; it also matters which states have preceded it in the

simulation. DATMI does not seem to be equipped to deal with this extra information,

and it is not clear how much it would cost in e�ciency to add it. By contrast, QSIM-

4.3. SIMULATION 63

CHECK, because it is built on top of QSIM, automatically uses corresponding-values

information.

64 CHAPTER 4. ANALYSIS

Chapter 5

Examples

This chapter describes how MM processes four systems: a U-tube, a uid piston, an

electric motor attached to a ywheel, and a table-bed positioning system.

Recall thatMM processes models in breadth-�rst order in order to generate simpler

models �rst. However, because of this, it is sometimes confusing to watch its progress.

MM may modify a model in a way that brings it closer to being correct, but then

it defers the model, placing it on the back of its processing queue, and proceeds to

work on what may be a less satisfactory model. To spare the reader this confusion, I

present the examples in a more natural order, in which a model and its successor are

presented consecutively. It should be understood that wherever I have written \next,

MM does this: : :" I really mean \the next time MM processes this model."

5.1 The U-tube

Figure 3-1 presented the structural description of the U-tube system; Figure 5-1 shows

a rendering of that description. Figure 3-4 displayed a behavior trace for the system

in which the uid levels in the two sides of the tube begin at di�erent points, and

over time one increases and the other decreases until they are equal.

MM begins by constructing a model that contains no elements and is labeled with

the problem uninterpreted. MM's interpretation rules are triggered, one of which

is:

position!ow-integ/uid (a position is the integral of a ow)
IF there is a position quantity whose changing point is linked to

a uid segment

THEN associate a 1-junction with that segment

AND consider the quantity to be the integral of the junction's

ow.

AfterMM interprets both uid heights with this rule, the model looks like Figure 5-

2. The model no longer has the problem uninterpreted. In order to continue its

analysis, MM must form a connected bond graph from the two isolated 1-junctions

65

66 CHAPTER 5. EXAMPLES

Figure 5-1: Structure of U-tube

Figure 5-2: U-tube model with interpreted outputs

5.1. THE U-TUBE 67

Figure 5-3: The previous U-tube model, connected

Figure 5-4: Two conventions for uid ow

of the model. This connection process is not straightforward in general and will be

discussed fully in the context of a more interesting example, in Section 5.2. Roughly,

MM tries to �nd a path through the structural description from one group of connected

nodes to another, preferring to stay in segments of the same composition. In this case,

the obvious all-uid path is found.

However, there is an important twist, as Figure 5-3 shows: a 0-junction has been

inserted, inserting a negation into the equations for the model. A direct connection

between the two 1-junctions would result in the equation f1 = f2, where the fi are

the two ows. But the model of Figure 5-3 has the equation f1 = �f2. The reason is

that MM adopts a particular convention regarding the measurement of uid ow.

Consider a slug of uid in a pipe or container (see Figure 5-4). There are two

views of this slug, corresponding to two conventions for representing its velocity. In

one, we treat the slug as a unit, and we speak of the velocity of the entire slug. If we

decide that a rightward velocity is positive, then the velocity at each edge of the slug

is positive when to the right, as the solid arrows in the �gure indicate.

68 CHAPTER 5. EXAMPLES

However, when we are interested in the individual velocities of each edge of uid,

it is natural to represent a positive velocity as one that expands the uid region. This

is the U-tube case: the two outputs are the velocities of the uid edges, and we think

of positive as \up." For the slug in the �gure, the left edge would represent positive

as to the left, and the right edge, to the right. The dashed arrows show this case.

MM is aware of these two conventions and tries to pick the appropriate one. When

it creates a 1-junction that represents uid ow, it determines whether that junction

represents the changing velocity of a uid edge, or the ow of uid through a region

of space, and chooses the sign convention appropriately. In the U-tube case, MM

recognizes that the former convention applies, and so negates the sign of one of the

ows. The result is a model that, though inaccurate, at least gets the sign of ow

correct for the two sides of the U-tube.

5.1.1 Analysis

MM now analyzes the model. First, MM observes that the given behavior requires a

resistor, since the system moves to an equilibrium state; and because the model has

no resistor, it is labeled with the problem needs-resistor. MM also determines that

the given behavior cannot be zeroth-order, because the system has a constant zero

input (recall that a behavior with no input is translated to one with a constant zero

input), but a changing adjusted output: the uid velocity changes from its initial

value of zero to some non-zero value (positive on one side of the tube, negative on

the other). Since the model is zeroth-order (it has no energy-storage elements), it is

also labeled with the problem order-too-low.

The simulation step is not carried out, because the model failed the other tests.

However, it is worth observing what would have happened if there had been a simula-

tion. The model's only useful constraint is that f1 = �f2, that is, the uid velocities

in the two sides of the U-tube are opposite. The other constraint is that the input

is zero and constant, but this plays no role in the simulation, since the input is not

connected to any outputs. A QSIM-CHECK simulation would have con�rmed that

this constraint is consistent with the given behavior. Indeed, it would be consistent

with any behavior of the U-tube, given the assumption (implicit in our modeling

technique) that the uid is incompressible. For then any movement on one side of

the tube would be mirrored instantaneously and exactly by a movement on the other

side.

Although the model that asserts only f1 = �f2 is consistent with all behaviors,

our intuition is that it is not a good model. The reason is that it fails to account for

the reasons that the uid moved. If we were observing a chunk of matter traveling

through the void of space at a constant velocity, then we might not be able to say

anything much about its behavior. But in the case of the U-tube, it behooves us to

explain how the uid moves in the absence of any apparent input.

This explanation for the inadequacy of the f1 = �f2 model also explains why

5.1. THE U-TUBE 69

the order-determination heuristics are in a sense more powerful than the simulation

test: they take both input and output into account, regardless of any established

connection between the two. Hence the zeroth-order test recognizes that the input is

constant while the output is not, while the simulation e�ectively disregards the input

because the model fails to include it.

5.1.2 Adding Resistance

Having concluded that the model of Figure 5-3 is inadequate, MM next tries to im-

prove it. It begins by invoking rules that add resistors, since needs-resistor is one

of the model's problems.

Three rules are relevant. One looks for structural evidence of resistance, namely, a

narrowing of the walls enclosing the uid. Since the uid region in this is example is of

uniform thickness, this rule is not activated. Instead, two other rules are used which

simply insert resistors into the model, taking care not to introduce redundancies.

These rules are:

resistor-1j/uid (add a uid resistor to a 1-junction)
IF there is a 1-junction in the model with no resistors attached

THEN add a resistor to the 1-junction.

resistor-new/uid (add a uid resistor in a region with no 1-junction)
IF there is a contiguous region of uid with no 1-junction

THEN place a 1-junction in that region and note that

the 1-junction represents the region

AND add a resistor to the 1-junction.

The rules are distinguished only by whether they use an existing 1-junction or

create a new one. The second rule, applied to the horizontal portion of the U-tube,

yields the model of Figure 5-5.

5.1.3 Adding Capacitance

The model of Figure 5-5 no longer has the problem needs-resistor, but its order

is still too low. Therefore, MM next invokes rules that add energy-storage elements,

since doing so tends to increase the order of a model.

For the U-tube, the important energy-storage element is the capacitor. Each

side of the tube can be viewed as a uid capacitor, because there is a monotonic

relationship between a generalized displacement|the volume of uid in the side|

and an e�ort|the pressure at the bottom of the side.

The ideal rule for uid capacitors would be of the form \look for uid regions

whose volume changes correspond to pressure changes." However, such a rule cannot

be e�ectively implemented as it stands, because there would seem to be no general

way to determine the correspondence from the sort of geometric information MM has

70 CHAPTER 5. EXAMPLES

Figure 5-5: U-tube model with resistor

available. Instead, MM looks for geometric clues that point to the likely presence of

a uid capacitor.

MM uses two heuristic rules to look for uid capacitors. The �rst is:

capacitor-gravity/uid (Propose a capacitor in a partially contained uid region
that admits volume change and that is subject to gravity)
IF there is a gravitational force F

AND there is a region R containing uid,

AND R is partly bounded by solid on the bottom,

THEN add a capacitor to the model and set its region equal to R.

This rule captures a common sort of uid capacitor, in which gravity is responsible

for the monotonic relationship between volume and pressure. A uid-�lled tank is an

example, as is a side of the U-tube. The requirement that the uid region is bounded

by solid captures the fact that a capacitor exists in the presence of gravity only when

the uid is contained. The boundary on the bottom need not be horizontal (i.e.

perpendicular to the gravitational force) nor need it extend for the complete width

of the region. We will see this situation in Section 5.1.5.

MM's second uid capacitor rule is:

capacitor-movement/uid (Propose a capacitor in a partially contained uid re-
gion into which a solid can move)
IF there is a solid region S

AND S is free to move into and away from a uid region R

AND R is partly bounded by solid opposite and adjacent to S

THEN add a capacitor to the model and set its region equal to R.

This rule can recognize a variety of situations that tend to result in a uid ca-

5.1. THE U-TUBE 71

Figure 5-6: A uid bladder

pacitor. One example is the uid bladder of Figure 5-6, in which a contained uid is

bordered above by a exible cap, which can ex into the uid region (MM's algorithm

for determining the movement directions of parts of the system are discussed in Sec-

tion 5.2.1.) The exible cap exerts a force on the uid that increases when the volume

of uid increases, so the pressure at the base of the bladder is monotonically related

to the volume of uid. Another case of this sort of capacitor is a exible-walled pipe

or line; we will see this rule used for this situation in Section 5.4.

These two rules recognize many of the typical occurrences of uid capacitors in

mechanical-hydraulic systems, but I do not claim that they are exhaustive. For

instance, one reason for inserting a capacitor into a uid region is to model the

compressibility of the uid. The above rules do not recognize this case.

Nor are the rules foolproof: it is possible for them to suggest a capacitor in a uid

region that would not, in fact, exhibit capacitance. For instance, consider a solid,

un�xed plug resting in a hole in the side wall of a uid container. If the plug were

to be pushed towards the uid, the conditions for the second uid capacitance rule

would be satis�ed, even though this situation does not result in capacitance.

These rules, like MM's other rules, are intended merely as heuristics. They use

geometry to suggest spatial regions where e�ects might plausibly occur. No rule is

completely general, but each rule covers a signi�cant class of phenomena. Moreover,

adding a new rule to MM is relatively easy and does not require the modi�cation

of existing code, so when new situations are encountered MM can be modi�ed to

recognize them.

MM implements the uid capacitor rules in a similar way. For the gravity rule,

MM determines the direction of gravity in the structural description (if it is given),

and collects all line-segments of the structure that are not parallel to it. (These

line-segments are the boundaries of the convex polygons MM constructed when it

72 CHAPTER 5. EXAMPLES

Figure 5-7: U-tube model with resistor and capacitor

divided the structural description into segments.) The second capacitor rule uses the

movement directions of solid polygons (determined by the algorithm of Section 5.2.1)

to �nd sets of line-segments. After this point, both rules work as follows.

For each line-segment, the composition on each side of the line-segment is checked,

and the line-segment is retained if and only if the lower or farther side (as determined

by the direction of gravity, or the direction of movement into the uid) is uid, and

the other is not. Given such a line-segment, a polygon is formed by extending the

line-segment's endpoints through the uid until the edge of the uid region is reached,

and connecting the resulting points. Each of the candidate line-segments results in

one polygon, and each polygon represents a potential uid capacitor.

There is much that is arbitrary about this construction, but as I argued in Chap-

ter 1, some amount of arbitrariness is inevitable in lumping. I chose the above con-

struction because it is simple and it gives good results. Often, there is no more

complex construction that can do any better: as we saw in Chapter 1 and will see

again in Section 5.1.5, the curved U-tube admits of no principled choice for region of

uid capacitor.

When MM chooses a region to represent a capacitor, it does more than add a C

element. It actually adds four elements: in addition to the capacitor, it adds two

0-junctions to represent the pressures at each end of the rectangle, and a 1-junction

for the uid ow through the rectangle. The extra junctions facilitate the addition

of other elements to the model and the joining of model pieces into a single bond

graph. The model with a capacitor added to the left side of the U-tube is shown in

Figure 5-7.

This model is actually su�cient to yield the desired behavior; it turns out that the

other capacitor is not necessary for the �rst-order case. Normally MM would stop at

5.1. THE U-TUBE 73

Figure 5-8: Complete U-tube model

this point. If it is allowed to continue running, it will eventually arrive at the model

of Figure 5-8, which reects the \standard," intuitive model in which each side of the

U-tube is an independent capacitor.

5.1.4 Second-Order Behavior

In a more common U-tube behavior, the uid oscillates after being disturbed, and

eventually settles. The behavior of Figure 5-9 shows the behavior input given to MM

for this case. It describes an \overshoot" behavior, where the uid dips below its �nal

position and then returns to that position.

This behavior requires a model of at least second order, a fact MM determines

when the behavior fails both the zeroth-order and �rst-order tests. MM proceeds much

as before, except now the �rst-order models of Figures 5-7 and 5-8 are inadequate.

MM proceeds to add an inertia to the model of Figure 5-8 to arrive at Figure 5-10,

which does adequately capture the second-order behavior. (Adding an inertia is only

one of the modi�cations attempted by MM. It will also add capacitors in an attempt

to raise the model's order.)

5.1.5 The Curved U-tube

MM processes the curved U-tube of Figure 5-11 very much like the original U-tube.

The uid capacitor rule is robust enough to work even in the presence of the curved

sides. Figure 5-12 shows the �nal �rst-order model of the curved U-tube, with the

capacitors' regions outlined. As I have argued earlier, this choice of region is arbitrary,

74 CHAPTER 5. EXAMPLES

(behavior

(qspace minf bottom -x 0 x inf)

(output height-1 position ((fixed bottom))

(0 x)

((0 1) (-x x) dec)

(1 -x)

((1 inf) (-x 0) inc)

(inf 0))

(output height-2 position ((fixed bottom))

(0 -x)

((0 1) (-x x) inc)

(1 x)

((1 inf) (0 x) dec)

(inf 0)))

Figure 5-9: Second-order behavior for the U-tube

Figure 5-10: Model for U-tube with second-order behavior

5.1. THE U-TUBE 75

Figure 5-11: Curved U-tube

Figure 5-12: First-order model of curved U-tube with regions of capacitance

76 CHAPTER 5. EXAMPLES

Figure 5-13: A hydraulic piston

(behavior

(qspace minf 0 c f inf)

(input push force ()

((0 inf) f const))

(output cap-displacement position ((fixed 0))

((0 inf) c const)))

Figure 5-14: Zeroth-order behavior of the piston

but no worse than any other for the purposes of obtaining a qualitative model.

5.2 The Hydraulic Piston

Figure 5-13 shows a hydraulic piston acting on a uid inside a tube. The right end of

the tube is sealed with a exible cap. (As you can see from the �gure, MM renders

exible parts with a pattern that di�ers from those for rigid and uid parts.) The

piston walls and the cap are all �xed in place. When the piston is pushed as indicated

in the �gure, the cap bulges outward.

In addition to the presence of exible parts, which we have not seen before, this

system also presents a more interesting challenge for the problem of connecting sep-

arated pieces of bond graph into a single, complete model.

In the �rst behavior we will consider, the piston is depressed instantaneously and

held at a constant position, and the cap displacement occurs instantaneously. (See

Figure 5-14.) This behavior can be explained by a zeroth-order model, since there is

no lag in the cap's response to the piston.

As always, MM �rst attempts to interpret the input-output variables it is given.

Figure 5-15 shows this interpretation. The force on the piston is interpreted as an ef-

5.2. THE HYDRAULIC PISTON 77

Figure 5-15: Piston with interpreted I/O variables

fort source (connected to a 0-junction), and the displacement of the cap is interpreted

as the integral of a ow (the cap's velocity), indicated by a 1-junction.

5.2.1 Connecting Bond Graph Fragments

To analyze the model of Figure 5-15, MM must construct a connected bond graph

from the two fragments. In earlier discussions I have glossed over this step, but it is

not a mere detail. Here, I explain MM's connection algorithm in depth.

MM's structure recognition rules look for regions of interesting behavior in a model.

Once a set of interesting regions has been found, the rest of the structure is, by

implication, uninteresting. But this does not mean it is irrelevant. Though there

may be no dynamic behavior associated with uninteresting regions of the structure,

some of these regions might still be involved in the energy ow of the model: they

may serve as conduits of power that link the dynamically interesting parts of the

model. That is essentially what we are saying when we place a bond through a region

of space: we are asserting that power ows through the region.

The model connection problem, then, can be stated as follows: given two regions

in the structure|the interesting regions|determine the paths between them (if any)

through which power ows. The model can be completely connected by successively

connecting pairs of interesting regions.

My general approach to �nding these power paths uses the idea of ow. The direc-

tion of ow|whether it be mass ow, current ow, heat ow, etc.|is (by convention)

the direction in which power ows. Since MM deals only with translational and uid

systems, it deals only with mass ow.

The method requires that the system structure be divided into convex polygons

of uniform composition. This step is a by-product of MM's division of the structure

into segments, since segments are just groups of adjacent convex polygons of the same

composition.

The approach proceeds by determining, for each polygon, in which directions the

78 CHAPTER 5. EXAMPLES

polygon (or more precisely, the substance contained in it) can move. Here are the

rules MM uses to perform this step (recall that there are three compositions: rigid,

exible and uid).

1. If the polygon is rigid and �xed, it does not move.

2. If the polygon is solid (either rigid or exible) and is un�xed, it can move in

the direction(s) of any applied forces.

3. If the polygon is either exible, or rigid and un�xed, and an adjacent polygon

(of any composition) moves into it, then it moves in the same direction. This

applies to �xed exible polygons, where the movement is deformation.

4. If the polygon is exible and �xed, and moves in some direction, it also moves

in the opposite direction. This captures the elastic property of exible objects.

5. If the polygon is uid, ow can occur through any edge that does not border a

�xed, rigid object. Note that ow can occur through an edge bordering exible

material, even if it is �xed; this corresponds to a deformation of the exible

substance.

These rules embody a rather coarse and in some cases inaccurate view of ow. For

instance, without quantitative information rule 2 has no way to resolve the impinging

forces to determine a single, unique direction of motion. This rule, therefore, only

gives accurate results in the case of a single impinging force. The rules completely

ignore kinematic constraints; in general, MM does not handle kinematics. They also

ignore rotation.

The algorithm does perform acceptably in the domain for which MM is special-

ized: mechanical-hydraulic systems with trivial or no kinematics, where the parts are

in contact. Rule 5 accurately predicts possible uid ow directions, and the other

rules handle interactions of solid parts that correspond to one-dimensional translation

without rotation.

Once the movement or ow directions of each polygon have been determined, a

graph is constructed. The nodes of the graph are polygons, and an directed arc joins

two polygons if the �rst would move into the second. To determine whether one

polygon would move into another, MM translates the �rst polygon by a small amount

in its allowed movement directions and tests for overlap with the second. It is this

step of the algorithm that imposes the assumption that objects be touching, or nearly

touching.

When the graph is complete, determination of power paths has been reduced to

graph search: the power paths between two polygons are the paths in the graph

between the polygons. The graph for the piston is shown in Figure 5-16. The arrows

in the picture are the arcs of the graph.

This graph is derived as follows. The initial, external force (not shown) acts

against the piston shaft. Since the shaft is not �xed, it can potentially move in the

5.2. THE HYDRAULIC PISTON 79

shaft

plug

top wall*

bottom wall*

cap*

Figure 5-16: Flow graph for the piston. Starred polygons are �xed in place.

force's direction (rule 2). The movement of the shaft impinges on the plug, so the

plug also can move in the same direction (rule 2). The uid polygon can potentially

move either to the left, into the un�xed plug, or to the right, deforming the exible

cap (rule 5), which moves left into the uid (rule 4). The piston walls are �xed, so the

uid cannot move in those directions. The �xed polygons cannot move at all (rule

1).

Once it has constructed the ow graph, MM uses it to compute power paths

between polygons that contain bond graph pieces. If no path is found, MM does not

connect the pieces. When there is more than one path, MM �rst eliminates paths

with cycles, then connects the pieces along all remaining paths.

Avoiding cycles is a good idea, since they are generally artifacts resulting from the

overgeneral treatment of motion. For instance, in the piston ow graph of Figure 5-16,

there is a cycle between the plug and uid polygon which should rightly be ignored.

Sometimes, however, meaningful power paths will contain cycles. Consider a device

in which an object's horizontal movement results, through a series of interactions, in

that same object being moved vertically, perhaps interacting with some other object.

That series of motions appears as a cycle in the ow graph, but it is a useful one

because the object's directions of motion di�er. The ow graph is not re�ned enough

to capture this distinction.

Once a power path has been found, it is not su�cient to simply draw a bond

along the path that connects the polygons. If the power path crosses energy domains,

transformer or gyrator bond graph elements must be inserted at these junctions to

mark the fact. Currently, MM assumes that the transformer is the correct element to

insert. This assumption is often correct when dealing with the change frommechanical

to uid domains in which the uid is contained, for then a change in force on the

mechanical side will tend to cause a corresponding pressure change in the contained

80 CHAPTER 5. EXAMPLES

Figure 5-17: Interpreted piston model, connected

uid, and this is a transformer relationship. However, in other cases, even mechanical-

uid cases, a gyrator is the correct element (e.g. a turbine). MM currently does not

have su�cient geometrical or physical knowledge to distinguish these cases. This is

an area for future work.

Note that a transformer has no qualitative e�ect on the model, since it says only

that one e�ort is proportional to another, and likewise for ows. However,MM would

be remiss if it did not include them in the model, for they do describe a crucial piece

of the model, namely a change in energy domain.

Figure 5-17 shows the connected version of the model in Figure 5-15, with trans-

formers. This model is zeroth-order, but is rejected because MM observes that there

is no relationship between the input e�ort and the output ow. The mere presence

of a bond does not guarantee such a relationship. Recall that a bond represents two

variables, an e�ort and ow, but does not place any constraint between them. The

bond graph of Figure 5-17 contains no elements which relate the e�ort and ow, and

MM checks for this before performing a qualitative simulation. If it did not, the qual-

itative simulation would say that the model agrees with the given behavior; because

the model's output is unconstrained, it will agree with any behavior.

5.2.2 The Zeroth-order Model

One of next models that MM constructs, shown in Figure 5-18, is a correct one. MM

constructs it using the following structure recognition rule:

capacitor-force/trans (Propose a capacitor in a exible region that can move in
opposition to a force)
IF there is a force F

AND there is a rectangle R containing exible material such that the

material can expand or contract in the direction of F,

THEN add a capacitor to the model and set its region equal to the

exible portion of R.

5.3. THE MOTOR AND FLYWHEEL 81

Figure 5-18: Zeroth-order piston model with capacitor

(behavior

(qspace minf 0 c f inf)

(input push force ()

((0 inf) f const))

(output cap-displacement position ((fixed 0))

(0 0)

((0 inf) (0 c) inc)

(inf c const)))

Figure 5-19: First-order behavior of the piston

Essentially, the rule recognizes the potential for spring-like behavior.

The resulting model is zeroth-order despite the presence of a capacitor, because

the capacitor is dependent. The model asserts that the cap position is a function of

the force in the piston, which is consistent with the behavior.

5.2.3 The First-order Model

When MM is given the behavior of Figure 5-19, in which there is a delay before

the cap displacement reaches its maximum value, MM proceeds as before except that

now a �rst-order model is required. To obtain this model from Figure 5-18, it is only

necessary to add a resistor. One such model, in which the resistance is attributed to

the uid, is shown in Figure 5-20.

5.3 The Motor and Flywheel

The motor-ywheel system serves two purposes. It is our �rst example of a system

that uses a component, rather than geometric, representation for structure. It also

82 CHAPTER 5. EXAMPLES

Figure 5-20: First-order piston model

(defstructure motor-flywheel

(components

(Motor motor)

(Flywheel flywheel)

(Battery battery))

(connections

((Motor shaft) (Flywheel shaft))

((Battery leads) (Motor leads))))

Figure 5-21: Motor-ywheel structure (shape information elided)

provides a good example for a discussion of MM's experiment generation facility.

The motor-ywheel system is quite simple: it consists of an ordinary motor whose

shaft has a ywheel at its end, connected to an electrical power source. The input

to MM for this system consists solely of component information and is shown in

Figure 5-21.

MM's component descriptions for the three components used in the system are

given in Figure 5-22. A motor has two ports, an electrical (leads) and a rotational

(shaft). It is modeled initially as a gyrator. A ywheel is initially modeled as a rotary

inertia, and a battery as an e�ort source.

When it processes a system described with components, MM begins by composing

the bare models of the components to form an initial model. For the motor-ywheel

system, this initial bond graph is shown in Figure 5-23. Recall that the shapes in the

�gure are speci�ed by the user for cosmetic purposes only.

A �rst-order behavior for the motor-ywheel is shown in Figure 5-24. A constant

battery voltage causes the ywheel's angular velocity to ramp up from zero to some

constant. The initial model, however, predicts that the ywheel's velocity will increase

forever, so the model must be modi�ed. The problems with the initial model are both

5.3. THE MOTOR AND FLYWHEEL 83

(defcomponent motor

(ports (leads electrical)

(shaft rotational))

(bare-model

(GY leads shaft)))

(defcomponent flywheel

(ports (shaft rotational))

(bare-model

(I shaft)))

(defcomponent battery

(ports (leads electrical))

(bare-model

(Se leads)))

Figure 5-22: Component descriptions used in the motor-ywheel system

Figure 5-23: Initial model for motor-ywheel system

84 CHAPTER 5. EXAMPLES

(behavior

(qspace minf 0 +12v c inf)

(input (Battery volts) voltage ()

((0 inf) +12v const))

(output (Flywheel speed) angular-velocity ()

(0 0)

((0 inf) (0 c) inc)

(inf c const))))

Figure 5-24: First-order behavior of the motor-ywheel

that its order is too low (the single inertia is dependent) and that it needs a resistor.

Once the initial model is constructed, MM follows the same procedure with a

component system as it does with a geometric system. However, the rules it uses to

add bond graph elements to component models di�er from the structure recognition

rules employed for a system described geometrically. Since there is no information

available about the system aside from the component types and their connections,

MM's component rules simply add bond graph elements to component bare models,

taking care not to create trivially redundant models. For instance, a resistor will

not be added to a 1-junction if there is already a resistor attached to the junction,

because two resistors with monotonic characteristics that are attached to the same

1-junction are equivalent to a single monotonic resistor. Facts like this one are built

in to the procedure for generating non-redundant models. The procedure takes into

account the possibility that more than one element of a given type may be added to

a component model without creating redundancies. For instance, the motor model

can have a resistor on either or both sides of the gyrator.

There are four rules for elaborating component models. One adds a resistor at a

1-junction (and if necessary, adds the 1-junction as well). A second does the same for

inertias. The third rule, for capacitors, is identical except for the use of 0-junctions

instead of 1-junctions. Capacitors typically occur on 0-junctions because they involve

a split in ow. For instance, in a uid capacitor such as a tank with a hole at the

bottom, some of uid ow passes through the tank while the rest remains inside the

tank. The fourth rule adds a resistor at a 0-junction, which models leakage.

These four rules do not by any means capture all the possibilities. While it would

be easy to add other component-elaboration rules to MM, some additions would be

unwise and others superuous. Adding source elements would e�ectively sanction

hidden inputs to the system, enormously reducing the constraints on possible model

behaviors and making analysis all but impossible. Adding transformers is superuous

because they contribute nothing to the qualitative behavior of the model. Gyrators

are also superuous if the bond graph is a tree, because a gyrator can be eliminated

by dualization of the bond graph on one side of the gyrator. All the bond graphs

5.3. THE MOTOR AND FLYWHEEL 85

Figure 5-25: One model for the motor-ywheel system

Figure 5-26: A second model for the motor-ywheel system

constructed by MM's component elaboration rules are trees, because the rules always

add new elements to a single element on the existing graph. 0|I and 1|C rules

are also plausible. Adding these rules would not prevent MM from discovering any

models it presently discovers; it would simply increase the time MM takes to do so.

Rather than provide MM with new component-elaboration rules, future work

should be directed towards adding information to the built-in component models

in order to allow MM to intelligently choose how to elaborate each component model.

Since one problem of the initial motor-ywheel model is that it needs a resistor,

MM invokes its resistor-adding rule. There are four potential locations for a resistor:

in the battery, in the ywheel, and on either side of the motor's gyrator. Resistors to

the right of the gyrator (the mechanical part of the system) still leave a zeroth-order

model,1 but resistors to the left result in a �rst-order model that does in fact predict

1The alert reader may �nd this counterintuitive. It implies, for instance, that the friction between
the motor shaft and housing cannot by itself result in the gradual increase and tapering o� of the
ywheel's velocity, no matter how great that friction is. The problem is that by modeling the battery

86 CHAPTER 5. EXAMPLES

the desired behavior. There are two such correct models, one with the resistor in the

battery and one in the motor. They are shown in Figures 5-25 and 5-26. MM cannot

distinguish between them with the information it has, but it can do so by obtaining

additional measurements. That is the topic of the next section.

5.3.1 Experiment Design

If we have multiple models for a system, all of which correctly predict the behavior

of the system, and we wish to distinguish the candidate models, one choice would

be to esh them out fully by assigning quantitative values to the model parameters,

based on material properties or component speci�cations, and to compare the models'

predictions with the behavior quantitatively. The other choice, and the one I will

pursue here, is to obtain additional measurements of the system and use them to

distinguish among the models. The aim, then, is to design experiments to distinguish

among competing models.

Since measurements tend to be expensive or time-consuming compared to calcula-

tion, the goal of experiment design is to choose those measurements that will provide

the most bene�t for the least cost. I assume, for simplicity, that all measurements are

equally costly. The notion of bene�t I will use favors those measurements whose out-

comes can eliminate the greatest number of models. My experiment design method

chooses the measurement that maximizes the expected number of eliminated models.

More formally, say we have a set of modelsM and a set of measurable variables V ,

both �nite. Each model m predicts a certain outcome or outcomes for each variable

v; we write this set of outcomes as m(v). We will assume this set is �nite. Each

variable v, then, has a �nite set of possible outcomes o1; o2; : : : ; onv . We will write

the probability of an outcome's occurrence as P (v; oi).

For each outcome, some of the models in M agree with the outcome and some do

not; the latter are the ones that would be eliminated if the variable exhibited that

outcome. That is, given a variable v, an outcome o and a model m, m is eliminated

if

o 62 m(v)

Let E(v; o) be the number of models eliminated when variable v has outcome o. Then

the expected number of eliminated models for a variable v is

EE(v) =
nvX

i=1

P (v; oi)E(v; oi)

as an e�ort source, we are assuming that it can supply enough current to overcome any mechanical
friction. Only by modeling the inherent electrical resistance can the proper e�ects of mechanical
resistance be taken into account.

5.4. THE TABLE BED SYSTEM 87

If we assume that the outcomes are equiprobable, this reduces to

EE(v) =

Pnv
i=1E(v; oi)

nv

The best variable to measure is the one with the largest value of EE.

This measure of variable quality is simpler than, but similar to, the expected

information gain of the variable. The information-theoretic approach would allow

for incorporation of prior probabilities on the models. Both approaches have the

property that they will prefer variables that tend eliminate all candidate models.

This is desirable if one is willing to go back to the drawing board and obtain better

models; it is a drawback if one wants the best of the current set of models.

I implement this theory of experiment design in MM as follows. First, I assume

that the only measurable quantities are the e�orts and ows between components.

In other words, you cannot open up a component and take a measurement inside

it; nor can you measure anything but an e�ort or ow. To compute E(v; o), MM

simulates each model in M|the candidate models|and keeps track of the values

of these measurable variables. It is not necessary to perform multiple simulations

per model, because the simulator keeps track of all variables \in parallel," as it were.

Furthermore, since we are only interested in model behaviors that conform to our orig-

inal given behavior, MM can use QSIM-CHECK to perform the simulation. The only

change to the QSIM-CHECK algorithm described in Section 4.3.2 is that the simula-

tion proceeds even if a matching behavior is found, rather than halting immediately

with success.

Once all simulations have been completed, it is a simple matter to compute EE(v)

for each variable. nv is determined by counting the number of distinct behaviors of

the variable over all simulations, and E(v; o) is determined by counting the models

that don't include o in their simulation.

After MM conducts the above analysis, it selects the best variables and prints a

summary of its results. The output for the motor-ywheel case is given in Figure 5-27.

Note that in addition to listing the best variables to measure,MM also lists those that

are useless. The output suggests measuring the voltage between the battery and mo-

tor. In the case where the resistor is inside the battery (model BG-450, corresponding

to Figure 5-25), this voltage will \ramp up" to a constant value. When the battery

is a pure e�ort source (model BG-447, corresponding to Figure 5-26), the voltage is

constant throughout.

5.4 The Table Bed System

Figure 5-28 shows a table-bed positioning system, such as might be used in a man-

ufacturing plant. It consists of an electric motor coupled to a rack-and-pinion via a

hydraulic linkage that includes a positive-displacement pump, a valve, a �lter, and a

88 CHAPTER 5. EXAMPLES

There are 4 measurable variables.

3 of these provide no information. They are:

The current between the leads of motor and the leads of battery

The torque between the shaft of motor and the shaft of flywheel

The angular-velocity between the shaft of motor and the shaft of

flywheel

The best variables to measure are the following:

The voltage between the leads of motor and the leads of battery:

Behavior Possible Models

((T0 0 INC) ((T0 T1) (0 C) INC) (T1 C STD)) BG-450

((T0 +12V STD) ((T0 T1) +12V STD) (T1 +12V STD)) BG-447

Figure 5-27: Output of MM's experiment design facility

hydraulic motor.

This is the largest example that MM runs on. It demonstrates that MM can be

used successfully on systems of moderate complexity, and it also illustrates how mixed

component-geometric structural descriptions are handled.

Figure 5-29 shows MM's rendering of its input for this system. Note that a part

that was implicit in the sketch of Figure 5-28, namely the exible hydraulic line that

connects the pump to the valve, is represented explicitly as an object which consists

of three geometric parts: the top and bottom walls, which are of exible composition

and are �xed in place, and the central uid region. The left and right line-segments

of the uid region are designated as hydraulic ports, and connections are speci�ed

which join the pump's outlet to the left port and the right port to the valve's inlet.

The initial bond graph for the table-bed system is shown in Figure 5-30. Expla-

nations for some of the bare models follow:

� The power source is modeled as a constant electrical e�ort (i.e. voltage) source.

� The pump transforms rotational to hydraulic energy. In a positive-displacement

pump, the kind modeled, the angular velocity of the shaft is proportional to the

velocity of uid through the pump; hence a transformer is used.

� The bare model for the valve speci�es only that it divides the uid ow into

two parts, one that delivers power to the motor, and one that serves as a shunt.

The adjustable nature of the valve is not captured.

� The �lter is modeled only as a connection between its inlet and outlet (a 1-

junction with two bonds has no e�ect whatever; it is present only to simplify

the component-model composition process). The 0-junction to the right of the

�lter is inserted by MM to indicate that two paths are joining at that point.

5.4. THE TABLE BED SYSTEM 89

Motor Pump Filter Hydraulic
 motor

Rack and
 pinion

Table bed

Valve

Figure 5-28: A table-bed positioning system (after [18])

Figure 5-29: MM's version of the table bed system

Figure 5-30: Initial bond graph for the table-bed system

90 CHAPTER 5. EXAMPLES

(behavior

(qspace minf 0 c1 c2 c3 inf)

(input (Power volts) voltage ()

(0 c1 const)

((0 inf) c1 const)

(inf c1 const))

(output (Table-Bed speed) velocity ()

(0 0)

((0 1) (0 c3) inc)

(1 c3 const)

((1 inf) (c2 c3) dec)

(inf c2 const))))

Figure 5-31: Second-order behavior of the table-bed

� The hydraulic motor is the opposite of the pump: it transforms uid ow into

the rotation of a shaft.

� The rack-and-pinion transforms rotational motion to translational motion.

� The table-bed, like the ywheel, is simply an inertia.

� Geometric parts have no associated bare models. When geometric parts are

mixed with components, MM simply connects the ports of the part to each

other (inserting 0-junctions where necessary to indicate split ow, as with the

�lter). The 1-junctions at the port boundaries are useful markers and, like the

�lter's 1-junction, have no other e�ect.

This model is zeroth-order. When presented with a zeroth-order behavior, MM

need do no additional work. When presented with a second-order behavior like that

shown in Figure 5-31, which shows the table-bed's velocity overshooting before settling

down to match the constant input voltage, MM determines that the initial model has

two problems: it requires a resistor, and it must be at least second-order.

MM begins by adding a resistor. MM tries all possible locations for adding a

resistor, of which there are many, but we will consider the case where the resistor is

associated with the power source.

To raise the order of the model, MM must insert an energy-storage element. Be-

cause a geometric description provides some clues about what behavior a part may

exhibit over and above the bare-model behavior, whereas component descriptions do

not, MM's geometric rules take precedence over its component rules. Thus one of

the �rst models MM constructs is that of Figure 5-32. The capacitor-movement/uid

rule we have seen before in Section 5.1.3 is responsible for inserting the capacitor into

5.4. THE TABLE BED SYSTEM 91

Figure 5-32: Table-bed model with resistor and uid capacitor

Figure 5-33: Correct table-bed model

the hydraulic line. The rule �res because MM determines, from the movement rules

detailed in Section 5.2.1, that the exible upper wall can move into the uid.

Although this model contains a resistance and is second-order, it does not correctly

predict the given behavior. A correct model is shown in Figure 5-33. A second

resistance is necessary to avoid a hydraulic short circuit; this resistance corresponds

to positioning the valve so that some of the uid ows into the hydraulic motor.

Without the resistance, all the uid would ow through the valve shunt. The second

capacitor is necessary because the volume of uid in the hydraulic part of the system

is constant, so when the �rst capacitor (the uid line) expands or contracts, some

other part of the hydraulic system must take up the slack. There are several possible

locations for the second capacitor besides the one shown. Adding a resistor to a

0-junction, to model leakage of hydraulic uid, would also have been possible.

Although MM can generate models through Figure 5-32 on its own, the remainder

of the example proved too much for it. In order to complete the run in a reasonable

amount of time, it was necessary to hand-guide MM towards the model of Figure 5-

33 by pruning models I knew would not lead to the solution. This interference did

not and could not result in MM creating any models that it would not have created

automatically; it simply prevented MM from wasting its (and my) time.

92 CHAPTER 5. EXAMPLES

The table-bed system is a dramatic illustration of the utility of MM's analysis

heuristics in avoiding expensive simulation. The order and resistance heuristics take

a few seconds on the table-bed models, but simulation, even with QSIM-CHECK, takes

many minutes. Most of the time is in constructing the many initial states that can

result from the partial description of the initial state given by the input and output

variables. For models as complex as that of Figure 5-33, the number of initial states

proved to great for my computer, and I was forced to verify the correctness of the

model by hand.

What has been gained by representing a hydraulic line geometrically? First, we

have been compelled to represent it in some fashion. Note that if we drew up a

component model directly fromFigure 5-28, it would have been all too easy to omit the

lines and simply assert that the pump and valve were connected. (Indeed, representing

one line geometrically does not grant us immunity from this problem: there are

other hydraulic lines that we have neglected.) The second advantage of providing a

geometric model for the line is that we have helped focus MM's search. Geometric

descriptions are richer in behavioral clues than component ones, so MM uses geometry

�rst before resorting to the relatively blind strategy of adding elements wherever one

is possible. Of course, this does not imply that the behaviors of geometric parts are

always more important than those of components. It may be, for instance, that the

springiness of the exible hydraulic line is not the major contributor to the system's

capacitance. But at least behaviors derived from geometry have a more palpable

justi�cation than those derived from elaborating component bare models.

Chapter 6

Conclusion

This �nal chapter includes a review of the automated modeling literature, a summary

of MM's contributions, and a discussion of directions for future work.

6.1 Related Work

Automated modeling has only recently gained the momentum needed to make it an

acknowledged sub�eld of Arti�cial Intelligence. However, work akin to automated

modeling has been going on in several related �elds, and I �rst present a brief survey

of this work. The second part of this literature review focuses on the more recent

collection of papers which are closest to this thesis in goals and approach.

6.1.1 Other Fields

The origins of work in automated modeling can be traced to work in solving textbook

physics problems (e.g. [25, 6, 4, 15]). Modeling the problem is a vital part of solving

it, as emphasized particularly in [15]. The textbook domain has three properties that

make it quite di�erent from the sort of work I have described in this thesis. First,

there is often a natural-language component to textbook problem-solving programs.

Second, such programs have access only to the information given in the problem;

there is no behavioral data against which models can be checked. Third, because

there is no other information about the system, special conventions are involved in

understanding textbook problems. For instance, the problem is expected to have all

the information needed to solve it.

Work in automated scienti�c discovery (e.g. [20]) is akin to automated modeling

in that the goal is to come up with a useful, accurate description of some aspect

of the world. The di�erence is that work in scienti�c discovery has generally as-

sumed a minimal background theory which cannot, of itself, explain the phenomena

presented to the program, whereas in automated modeling it is assumed that the

available knowledge su�ces for constructing a correct model. In other words, a scien-

93

94 CHAPTER 6. CONCLUSION

ti�c discovery program is supposed to develop a scienti�c theory (or a piece of one),

while an automated modeler is supposed to apply established scienti�c theories to

the understanding of systems whose physical interactions are unexceptional.

The techniques of system identi�cation [21] are designed to solve a particular,

mathematically tractable piece of the automated modeling problem. System identi-

�cation uses a system's behavior to determine the numerical parameters for a given

model. When the model is linear, this problem is well-understood and many good

techniques are available, but there are few general purpose methods for non-linear

systems. MM's task can be viewed as complementary to system identi�cation: af-

ter MM constructs a qualitatively accurate model for a system, system identi�cation

techniques can be used to determine the model's parameters.

6.1.2 Automated Modeling

It is only in the past �ve years that work on the problem of automating model

construction for physical systems has begun in earnest. Here I discuss some of the

key examples of this work.

There has been some important work on building kinematic models of systems

[11, 14, 17]. In the latter two cases, this has been combined with some dynamics. I

do not discuss this work in detail because the issues involved in kinematic modeling

are quite di�erent from those for dynamics.

Richard Doyle's JACK program [7] took a qualitative behavioral trace of a sys-

tem as input, along with limited structural information, and hypothesized models

for the internals of the system. Doyle's work di�ers from mine in several ways. I

assume that more structural information is given about the system; Doyle viewed

his system largely as a \black box." The qualitative properties of the input that

we use also di�er considerably: in my case, they are based on theorems of system

theory, which are physically accurate; Doyle used di�erent properties, motivated by

his representation. Doyle's representation of devices is richer than mine in that it

considers discontinuities and certain energy domains (e.g. light) which mine omits;

on the other hand, Doyle's representations of many components are physically inac-

curate. JACK's representation is weakened considerably by this fact. For instance,

JACK cannot represent acceleration. Many important physical e�ects, like the os-

cillation caused by the presence of capacitance and inertance in a system, cannot be

represented in Doyle's framework.

Ulrich's program [30] produces models that satisfy a given relationship between

input and output. For instance, his systemmay be asked to produce an accelerometer,

i.e. a device that takes acceleration to displacement. The �rst part of Ulrich's program

enumerates bond graphs that satisfy the behavior; the second part instantiates these

bond graphs in a crude way, using one component per bond graph element, and then

performs function sharing to simplify the system by combining multiple functions

into a single component.

6.1. RELATED WORK 95

In a way, Ulrich's function-sharing technique is the inverse of what MM does in the

case when a component description is given as input. My program begins with very

simple models of individual components, then adds functions to these components

in order to match the input behavior; Ulrich begins with the diverse functions and

tries to make a single component from them. For instance, MM begins with a model

of a pipe that has no functions except to transmit uid, and then adds resistance

and capacitance e�ects to match the data. Ulrich's function-sharing method would

begin with resistance and capacitance functions, and perhaps come up with a exible,

rough-walled pipe to embody those functions.

Bruce Wilson and Je�rey Stein [35] have recently written a program that gen-

erates low-order linear models for a class of mechanical systems. Wilson and Stein

consider speci�cally the problem of when to treat a shaft or other rigid part as having

compliance (mechanical capacitance). Wilson and Stein's inputs are a component-

like structural description of the system, and a Frequency Range of Interest (FROI).

The program attempts to construct the lowest-order model it can (that is, to add the

fewest compliances it can) while including all frequency modes in the FROI. (Wilson

and Stein do not consider adding inertias because part of their problem requirement

is that all the inertias of the system be modeled at the outset.) For each type of

part, Wilson and Stein have written a model generator that enumerates ever more

complex models for the part. A shaft, for instance, may consist solely of an inertia,

or it may consist of a single compliance with an inertia, or it may consist of several

repeated compliance-inertia groups. The generative nature of this model construction

process makes it quite similar to MM. Wilson and Stein are also the only researchers

mentioned here who take into account the fact that a single component may have an

unbounded number of models. One problem with this work is that it applies only

to linear systems, because only with linear systems is the issue of frequency response

well-understood.

In Brian Williams' work on interaction-based invention [32, 33, 34] models which

meet a behavior speci�cation are constructed by generating paths through the graph

of possible component interactions (i.e. equations) that connect the input and output

variables. (Actually, Williams seems to use something closer to causal ordering (see

below) to relate variables.) Williams' association between components and models is

one-to-one: for each component in the hydraulic domain he explored|pipes, tanks,

valves, etc.|there is a single model. For instance, Williamsmodels a pipe with Ohm's

law, i.e. as having a �xed, linear resistance. In [34] he shows how to construct an

abstracted model that has only those interactions relevant for answering a particular

query. In a sense, then, Williams' model-construction procedure begins with a \most

complex" system model and simpli�es it, as opposed to MM's approach of building

up from simpler models. The di�culty with Williams' approach is that there may

not be a most complex model of a component or device. As we saw above in the

discussion of Wilson and Stein's work, a shaft can be modeled by an in�nite set of

ever more complex models.

96 CHAPTER 6. CONCLUSION

One recently inuential idea in automated modeling has been the graph of models.

Penberthy [26] developed the idea in the context of modeling for design. The graph

of models has been used in the PROMPT program [22, 1]. The graph of models is a

graph whose nodes are models and whose arcs are labeled with the assumptions that

must be added or removed to switch from one model to another.

The idea behind the graph of models is to use the simplest possible model until

it proves inadequate. MM follows the same maxim: I begin with a simple model and

elaborate it until it is adequate. The di�erence is that MM uses a generative theory of

models|energy-based modeling|to construct the graphs of models dynamically. As

an example, consider Figure 6-1, which shows a graph of models for a pipe. There are

eight possible models, corresponding to every subset of the three elements of resistor,

capacitor and inertia. A program using the graph of models approach would explicitly

represent all eight models for the pipe, but in MM all but the simplest model for each

component is implicit. The program may end up with any model in any graph, but

it does this by composing individual elements in response to experimental results or

to geometrical clues.

Dan Weld's work on automated model-switching [31], uses a graph-of-models ap-

proach. Given a system and a model of that system, Weld uses discrepancies between

predicted and observed behavior to suggest a better model. Weld does not create the

new model dynamically; instead, all models are stored in a graph of models. Each

model in Weld's graph is a model of the entire system. It seems that it would be

possible, however, to use Weld's technique on component models as well.

It was realized that having a graph of models for an entire system would re-

quire a prohibitive amount of space, and even a graph-of-models approach applied

to each component would be ine�cient and redundant. More sophisticated model-

ing representations were developed, notably the Compositional Modeling approach of

Falkenhainer and Forbus [9, 10].

Falkenhainer and Forbus address the problem of how to construct a model that is

adequate for answering a particular query without being overly detailed or expensive

to use. The program is given a query (typically asking how, or whether, one quantity

inuences another) as input, as well as a component-like representation of the system

structure. It has access to a large library of model fragments, each of which describes

the behavior of a particular device or process (used in the sense of QP theory [12]).

The quantities mentioned in the query are used to help select a set of model fragments.

Falkenhainer and Forbus' model fragments are carefully designed to be as modu-

lar and reusable as possible. It is possible to instantiate multiple models for a single

object, so that both the resistance and inertance of a pipe could be considered to-

gether. Unlike a graph-of-models approach, the resistance and inertance e�ects would

be described by separate model fragments, so all eight pipe models could be expressed

with only three model fragments.

Falkenhainer and Forbus pay particular attention to the variety of assumptions

and conditions on the modeling task, using them as constraints to ignore irrelevant

6.1. RELATED WORK 97

A1: Flexible walls
A2: Long and narrow
A3: Viscous fluid/rough walls

A1 A2 A3

A1, A2 A2, A3 A1, A3

A1, A2, A3

O

O

C

1

I

I

1

R

1

I C

O1

CR

O1

C

1

R

IR

Figure 6-1: Graph of Models for a pipe

98 CHAPTER 6. CONCLUSION

parts of their model fragment library and as guides to providing adequate models.

For instance, each model fragment contains its operating conditions|the scope of

its valid behavior. One important notion is that of the assumption class, an ordered

list of exclusive modeling choices for a single dimension. For instance, the uid-

viscosity assumption class includes inviscid, viscous and non-newtonian assumptions,

in that order. Model construction will begin with the simplest assumption|inviscid

ow (no resistance)|and switch to others only when required by some other aspect

of the modeling process, or when simulation of a completed model shows that an

assumption is violated. These modeling assumptions are not global; di�erent objects

in the system can be subject to di�erent assumptions.

The attention to explicit representation of assumptions points up a weakness in

MM: most of its assumptions are implicit, in the sense that they are nowhere repre-

sented in the program itself.

Although it is an improvement over a graph-of-models approach, the model frag-

ment library still has two weaknesses. First, it fails to capture some commonality in

the behavior of physical systems. There is no single model fragment for capacitance

across energy domains, as there is a single capacitor element in the energy-based

modeling approach. And second, there is no way to represent the potentially in�nite

number of models that some devices possess, like the shaft discussed earlier.

Although Falkenhainer and Forbus use geometric information in the construction

of their models (e.g. some models allude to the diameter of objects), their input is

de�nitely component-like, not geometric. Hence they beg some modeling issues that

MM does not.

Je� Rickel [27] is in the process of extending the compositional modeling approach

to the domain of plant physiology. Some of Rickel's improvements include paying

attention to the time scales at which model fragments are valid in order to produce

smaller and simpler models, and relaxing a restriction which required that all model

fragments �t into a single partonomic hierarchy. In addition, Rickel uses Williams'

idea of interaction to help determine which model fragments are relevant to a query.

Like Williams, he looks for a connected path of interactions between input and output

quantities.

MM does not use interaction paths to construct models, but it does use a simi-

lar idea during the analysis phase, when it veri�es that paths through the model's

equations exist for all pairs of input/output variables. Those paths are identical to

interaction paths.

One problem with using interaction paths for model construction is that they

provide no guide to choosing dynamic e�ects and thus will tend to give rise to zeroth-

order models. Consider the motor-ywheel system of Section 5.3. The bare model

for that system includes an interaction path between the input and output, but it

cannot account for the system's �rst-order behavior, or for the fact that that behavior

requires a resistor.

In general, techniques that are insensitive to dynamic behavior, like interaction

6.1. RELATED WORK 99

paths, will tend to produce models with overly simple dynamic behavior, if the model

fragment library includes simple model fragments. One can avoid the problem by

omitting simple models from the library, but then one is caught on the other horn of

the dilemma: the generated models will tend to be too complex. The solution is to

include simple models, but to augment an interaction-path approach with one that

is sensitive to dynamic behavior. MM's method is to augment the simplest model

until it matches a given behavior. Rickel's time-scale technique, and Falkenhainer

and Forbus' idea of remodeling when a simulation reveals that previous modeling

assumptions have been violated, are two other methods sensitive to dynamic behavior.

The work of Pandurang Nayak [24, 23] also �ts into a compositional modeling

framework. Nayak's model fragments (which he calls context-dependent behaviors)

are similar to those of Falkenhainer and Forbus. Model fragments are related by an

approximation relation, which is domain-dependent (in general, the equations do not

determine whether one model fragment approximates another). The model fragment

library must contain approximation assertions.

The goal of Nayak's modeling procedure is to construct the simplest model that

relates an input to an output variable, where \simpler" means, roughly, more approx-

imate. To determine whether a model relates two quantities, Nayak computes the

causal ordering of the model's parameters. Causal ordering is a method developed

by Simon and extended by Iwasaki [16] that extracts causal relationships from in-

herently acausal equations. It treats exogenous parameters as uncaused, and asserts

that one parameter causes another if the �rst determines the value of the second.

The causal ordering of a model's parameters is a directed graph where the nodes are

parameters and the links represent causation. To determine whether one parameter

causes another, it su�ces to �nd a path in graph connecting the two parameters.

The causal ordering graph is similar to, but not the same as, the interaction graph,

because interactions are undirected. The causal ordering process essentially imposes

a direction on each arc of the interaction graph.

Causal ordering is probably a better choice for answering the question of whether

one quantity can inuence another, but only under the additional assumption that

exogenous variables cannot be changed by the system. Consider two quantities that

are both inuenced by a single exogenous variable; e.g., the ows in two pipes that are

regulated by the same valve, whose position is exogenous. Neither ow can inuence

the other, since both are determined by the valve. The two ows are connected in

the undirected interaction graph, but not in the directed causal ordering graph.

The input to Nayak's program is a component-like description of a device and a

pair of input-output variables. Nayak shows that the decision version of this problem

(is there a model of the device that can relate the variables?) is NP-complete, so it is

likely that any algorithm that attempts to construct a simplest model is intractable.

Nayak goes on to de�ne a special kind of approximation, called a causal approxi-

mation. If one model fragment is a causal approximation of another, then replacing

the less detailed with the more detailed fragment in a model will only add paths to

100 CHAPTER 6. CONCLUSION

the causal ordering graph. Thus if all approximations in the model fragment library

are causal approximations, the causal ordering graph for a simpler model is always

a subset of that for a more complex model. This monotonicity property enables a

polynomial-time algorithm for �nding the simplest model. Nayak's algorithm com-

poses the most detailed model fragments for each component of the device in question,

then walks down the approximation lattice step by step, ensuring at each step that

the resulting model satis�es the query and stopping as soon as it fails to do so.

The full de�nition of causal approximation is complicated, but one special case

is when the approximation can be derived by setting an exogenous parameter of an

equation to zero or in�nity; these are what Dan Weld [31] calls �tting approxima-

tions. All of the approximation relationships between my models are of this form;

e.g. removing a resistor element from a model is equivalent to setting the resistance

to zero. Thus it should be possible to modify Nayak's polynomial-time algorithm to

work with a system-dynamics representation.

The essential di�erences between Nayak's work and this thesis have all been con-

sidered above, in the discussions of the work of Williams, Falkenhainer and Forbus,

and Rickel. These di�erences are: use of a component representation for input, in-

stead of a geometric or mixed representation; redundancy and inexpressiveness of the

model fragment representation; concentration on input-output connectedness rather

than dynamic behavior; and the assumption that there is a most complex model for

a device. These last two points are related: arbitrarily complex models of the sort

described above for a shaft do not change the interaction graph for a model; they

a�ect only transient dynamic behavior.

6.2 MM's Contributions

MM di�ers from previous work in automated modeling along several dimensions. In

each of these dimensions, MM's success marks an important contribution to the �eld

of automated modeling. In this section, I discuss MM's contributions; in the following

section, I bound these contributions by discussing its limitations.

� Use of geometry. Although geometry has been used as an input representa-

tion for kinematics modeling programs, it has not been used for dynamics.

MM is able to construct models for many uid-mechanical systems from two-

dimensional geometric information, along with minimal additional structural

information such as general material composition. MM is able to perform this

task because in many cases, geometric features strongly suggest the presence of

certain phenomena.

� Combining geometrical and component system descriptions. MM is unique in

that it can represent the structure system using a mixture of component and

geometrical representations. This allows the user to present each piece of the

6.2. MM'S CONTRIBUTIONS 101

system to the program in the clearest, most natural and least question-begging

way.

� Concern with dynamic behavior. MM is unique among current automated mod-

eling programs in that it attempts to match, at least qualitatively, the dynamic

(time-varying) behavior of the systems it models. Current work focuses on the

problem of ensuring merely that the model relates the desired inputs and out-

puts. As I argued above, the techniques used for this, such as interaction paths

and the causal ordering, tend to produce zeroth-order models.

� Generative model construction. MM is almost unique ([35] is an exception)

in that it does not have a �xed, �nite set of models for each component in

its library. Instead, MM generates models dynamically, and can generate an

in�nite number of models for a single component.

� Use of system dynamics. Despite the fact that system dynamics has been an

important modeling framework for over forty years, and bond graphs have been

used extensively for more than half that time, few workers in automated model-

ing have used these methods. To my knowledge, this is the �rst attempt at fully

integrating the system dynamics perspective with AI techniques like qualitative

reasoning, for the purpose of doing automated modeling. The energy-based

modeling approach promoted by system dynamics isolates a small set of prim-

itive elements that apply across energy domains, and restricts the form that

models can take. This facilitated the writing of MM's rules and made it possi-

ble to deploy powerful analysis techniques like order determination.

Moreover, because it is an implemented and cleanly structured program that

builds models using a system dynamics approach, MM can be viewed as a precise

codi�cation of a portion of that approach.

� Determining model problems without simulation. Though many techniques for

revising a model based on its predictions have been proposed in the automated

modeling community [31, 29, 10], these techniques all involve simulation. MM

is unique in that it can analyze a behavior and a model and, in some cases,

determine that the model is awed without conducting a simulation. It can

determine that the model's order is too low to account for the given behavior,

or that the model requires a resistor. Moreover, these two problems map well

to the addition of particular modeling elements. Both MM's ability to make

these judgments about model suitability, and the correspondence betweenmodel

problems and their repairs, are bene�ts of the system dynamics approach.

� Behavior-constrained qualitative simulation. When simulation is necessary, MM

uses a new and e�cient qualitative simulation technique, embodied in the QSIM-

CHECK program, that constrains a simulation to match a given behavior.

102 CHAPTER 6. CONCLUSION

6.3 Limitations and Future Work

Despite its abilities, MM has a number of limitations. Some of these are relatively

minor and could be removed without serious damage to the overall framework of the

program. Other limitations are more profound.

6.3.1 Expressiveness of the Modeling Language

MM is limited in the kind of models it can create. It assumes that the systems are

lumpable, i.e. that they do not require partial di�erential equations to be adequately

modeled. MM works only in the uid, mechanical translation, and mechanical rota-

tional energy domains. MM also assumes its systems are passive, continuous, have

no relevant kinematic behavior and have only one-dimensional dynamics. Fluids are

assumed incompressible. Leakage is assumed not to occur. The modeling elements

MM uses cannot have time-varying characteristics, and cannot be modulated by ex-

ternal signals (this problem showed up in the poor representation of the bare model

for the hydraulic valve, which should contain modulated elements). Furthermore,

MM assumes that the equations of the model do not change over time, or to put it

another way, that the structure of the system does not change.

Some of these limitations could be removed without great di�culty. MM could

be extended to include thermal, electric and electromagnetic domains. MM could be

incorporated into a program that determined structural changes and re-invoked MM

for each distinct system structure. The incompressibility and no-leakage assumptions

could be removed by the addition of suitable rules.

Some of these built-in assumptions, while they could be removed in principle,

enormously expand the search space of models. For instance, allowing modulated

elements, i.e. signals, into the class of models means that a resistor's characteristic

could vary arbitrarily over time in response to other quantities in the system or to

exogenous factors. This fact would make model analysis extremely di�cult.

6.3.2 Quantitative Information

My decision to focus on qualitative behavior and qualitative properties of systems

had the advantage of keeping the research scope tractable, and it does provide a

considerable generality: when MMmodels a U-tube, for instance, it is really modeling

an in�nite set of systems of di�erent shapes and sizes. However, I now consider the

use of qualitative information alone unacceptably restrictive.

Adding quantitative information would have a number of bene�ts. If the input

behavior to MM were an actual (or imagined) quantitative trace of the system's

behavior, then it would contain much richer clues as to the nature of the model

needed to represent it. We might be able to glean information about the model order

for orders higher than two, for instance. If the system were excited with a periodic

6.3. LIMITATIONS AND FUTURE WORK 103

input and the input were of a di�erent frequency, we could conclude that a linear

model would be inadequate. (A linear model has the property that its output has

the same frequency as its input.) We could also get a sense of which aspects of the

behavior were signi�cant and which were not. If the user supplied a range of times of

interest to the program (e.g. from one millisecond to 10 seconds), then behavior that

fell outside these bounds (like a rapid, initial overshoot) could be ignored, enabling

a simpler model to be constructed. Currently, the user must e�ectively make a

modeling decision when encoding the behavior of the system qualitatively. The great

challenge in using a quantitative behavior representation is noise: it can be di�cult

to distinguish noise from actual system behavior.

Another use for quantitative information lies in providing MM with material prop-

erties of the objects in the system. If MM knew the materials and dimensions of the

U-tube, it would have better information for making decisions about whether to model

a wall as rigid or exible, or a uid as having resistance. Replacing the three com-

position types solid, flexible and fluid with quantitative information would also

cut down on the modeling decisions the user must make.

MM's analysis phase would be facilitated by quantitative models. Quantitative

models, though less general than qualitative ones, are easier and faster to simu-

late. They are also deterministic. In addition to making simulation intractable,

non-determinism also gives rise to the fact that qualitative simulation produces phys-

ically impossible behaviors. This is a fundamental aw in MM's analysis phase: MM

has no way of knowing whether a model predicts a given behavior because it truly

gives rise to that behavior, or because the qualitative simulator generated a spurious

prediction. Another, related weakness is that an overly general model may be created:

for instance, a model that predicts every behavior will certainly predict the given one.

This problem is largely mitigated in MM because its most common cause, lack of in-

teraction between the input and output, is checked for explicitly before simulation.

However, other, more subtle cases of overgeneral models can arise, and deterministic

models would completely eliminate the problem.

The presence of quantitative information opens the door to an important line

of work that has been neglected in the qualitative reasoning literature: determining

when linearity is a valid assumption. The advantages of working with a linear model

cannot be overestimated: the potential behaviors are few and easy to predict, the

rich and powerful mathematical theory of the frequency domain becomes available,

system identi�cation is greatly facilitated, and high-quality control systems are easy

to design. But linear models are not always appropriate. One exciting area for future

work is developing techniques for recognizing, from the system and the goals of the

model, whether a linear model will do the job.

6.3.3 Geometry

MM uses only 2D geometry. This was a decision made to facilitate research and is not

104 CHAPTER 6. CONCLUSION

an inherent limitation of the ideas. Since reasoning in three dimensions tends to get

complex quickly, a reasonable intermediate approach is to use a 21
2
representation,

in which each part is described as a set of 2D slices. Increasing the dimension of

the representation should probably go hand-in-hand with increasing the expressible

dimensions of the modeling language. For instance, 3D reasoning about rotational

motion would require MM to treat rotational inertia as a 3-by-3 matrix rather than

a scalar.

Another improvement to MM's geometric reasoning abilities would be to incor-

porate some basic kinematic analysis, for instance, determining the axes of motion

of parts directly from the geometry. Joskowicz and Sacks perform this computation

[17].

6.3.4 Explicit Assumptions

One severe de�ciency of MM, in comparison with other recent work in automated

modeling, is its inability to reason about its own assumptions and retract them when

necessary. MM already carries out the retraction process in a sense: whenever it adds,

say, capacitance to a solid object, it is retracting the assumption of rigidity; or when

it adds resistance to a uid region, it can be viewed as retracting the assumption

of inviscid ow. But not all assumptions correspond to the addition or removal of

a single bond graph element. For instance, if uid density varies greatly then the

simple treatment of uid used by MM is inadequate and a more detailed approach

that takes density into account is required. One challenge is to give MM the means

to reason about when these shifts in modeling detail are required.

6.3.5 Component Models

MM's generative notion of component models can pro�tably be combined with the

compositional modeling framework. The organizing principles of system dynamics

can lead to a highly factored and modular model library. For those components that

have an unbounded number of models, the models all have a common form, so it

should be possible to generate them automatically from a single, concise description.

6.3.6 Control Structure

MM's simple control structure is a weak point. Breadth-�rst search will indeed pro-

duce simpler models before more complex ones, but will do so very slowly. A more

aggressive strategy, coupled perhaps with a mechanism for removing elements from

a model, could perhaps produce the same results more quickly. One such aggressive

search strategy is suggested by MM's two-part analysis phase. A single model could

be elaborated until it successfully passed the low-order and needs-resistor tests, and

only after it failed in simulation would it be put aside temporarily to consider another

6.3. LIMITATIONS AND FUTURE WORK 105

model. Because the special-case tests are fairly quick, this control structure would

provide rapid solutions for simple problems. A similar strategy would use best-�rst

search and order models by the type of problems they have, preferring those that

did not have the wrong-behavior problem. Another search strategy would pursue

a single model for some number of modi�cations, giving up on it when it exceeded

some complexity threshold.

As the search strategy becomes more aggressive, a problem we could call \garden-

pathing" becomes more acute. It is possible that a model is generated which is

adequate, but is more complex than necessary; the search procedure has been led

down a garden path. To cope with the di�culty, an element-removal phase could be

added to the modeling process. After a model is deemed successful, elements would

be removed from it and the resulting, simpler model would be retested to see if it,

too, was adequate. This two-part strategy might be able to generate complex models

more quickly than MM's plodding, breadth-�rst approach.

6.3.7 Knowledge

MM could incorporate a great deal more knowledge about physics, engineering and

the modeling process. I have already discussed the advantages that would accrue to

providing quantitative information. Here I want to consider some other possibilities.

Exploiting the Bond Graph

MM could more e�ectively exploit the information contained in a model's bond graph.

Instead of using the overall model order in its low-order tests, MM should pay more

attention to the particular variables designated as outputs. It may be, for instance,

that a variable's behavior is zeroth-order|directly constrained by the inputs|even

though the model containing it is second-order. It should be possible to use bond

graph causality techniques to make this more �ne-grained order determination.

Causality can also help in determining how to modify a model to correct its faults.

For instance, if a model's order is too low because one or more of its energy-storage

elements is dependent, the bond graph causality assignment can be used to isolate

parts of the model that can be augmented in order to break the dependency. If the

order is too low because of a lack of energy-storage elements, causality information

can again be used to isolate parts of the bond graph where inserting an element would

result in its being dependent.

One rather simple idea that could be used to cut down on MM's search space

is that of equivalence regions of a bond graph. Consider a 1-junction J and all its

bonds. The junction and bonds form a 1-equivalence region, meaning that an element

connected to a 1-junction would result in the same overall behavior regardless of

where in the equivalence region it were connected. For instance, adding a resistor

directly to J results in the same model as splitting one of J's bonds and adding a

new 1-junction with a resistor attached. Thus only one of the possibilities needs to

106 CHAPTER 6. CONCLUSION

be tried. MM does something like this in its analysis phase when it tests whether

the candidate model is behaviorally equivalent to previous models by testing for

bond graph isomorphism: the isomorphism routine performs graph simpli�cations

that exploit equivalence regions. But MM would do better to never construct the

equivalent models in the �rst place.

Teleological Information

Currently,MM will hypothesize leakage at each possible point in the table-bed model.

If MM could realize, or be informed, that the hydraulics were designed to avoid or

minimize leakage, it could avoid generating a great many models. (Of course, if

one were using MM for diagnosing a faulty system, one would not want to do this,

since hydraulic leakage might well be the fault.) More generally, MM incorporates no

knowledge about the purpose of the systems it is modeling, and therefore can make

no assumptions about what sorts of phenomena might plausibly be excluded. Note

that MM already possesses teleological information about component types, in that a

component's bare model provides the ideal behavior of the component. For instance,

an ideal DC motor is simply a gyrator. However, MM lacks information about the

system being modeled, whether that is speci�c information about a part of the system

(e.g. \this particular DC motor is so good that you can ignore power loss") or global

information about the whole system (e.g. \no leakage"). Representing and using this

information is not di�cult when it corresponds directly to particular rules or classes

of rules, as do the examples I have given here. But how to deal with other sorts of

teleological information (e.g. \this system was designed to respond rapidly") is an

open research issue.

Appendix A

Rules

A.1 Interpretation Rules

Interpretation rules were written only when needed by the examples. It is quite easy

to add new interpretation rules.

position!ow-integ/uid (A position is the integral of a ow)
IF there is a position quantity whose changing point is linked to

a uid segment

THEN associate a 1-junction with that segment

AND consider the quantity to be the integral of the junction's ow.

position!ow-integ/trans (A position is the integral of a ow)
IF there is a position quantity whose changing point is linked to

a rigid or exible segment

THEN associate a 1-junction with that segment

AND consider the quantity to be the integral of the junction's ow.

position!ow-integ/trans (An applied force is an e�ort source)
IF there is an external force that acts on a segment

THEN associate a 0-junction with that segment

AND consider the force's magnitude to be the junction's e�ort.

A.2 Geometric Rules

These rules examine the geometric parts of the structural description.

107

108 APPENDIX A. RULES

A.2.1 Resistors

resistance-narrow/uid (Add a uid resistor to a narrow uid region)
IF there is a uid segment S

AND the average width of S is signi�cantly less than

that of the adjacent uid segments

THEN add a resistor to the model and set its region equal to S.

resistor-1j/uid (Add a uid resistor to a 1-junction)
IF there is a 1-junction in the model with no resistors attached

THEN add a resistor to the 1-junction.

resistor-new/uid (Add a uid resistor in a region with no 1-junction)
IF there is a contiguous region of uid with no 1-junction

THEN place a 1-junction in that region and note that the 1-junction

represents the region

AND add a resistor to the 1-junction.

A.2.2 Capacitors

capacitor-gravity/uid (Propose a capacitor in a partially contained uid region
that admits volume change and that is subject to gravity)
IF there is a gravitational force F

AND there is a region R containing uid,

AND R is partly bounded by solid on the bottom,

THEN add a capacitor to the model and set its region equal to R.

capacitor-movement/uid (Propose a capacitor in a partially contained uid re-
gion into which a solid can move)
IF there is a solid region S

AND S is free to move into and away from a uid region R

AND R is partly bounded by solid opposite and adjacent to S

THEN add a capacitor to the model and set its region equal to R.

capacitor-force/trans (Propose a capacitor in a exible region that can move in
opposition to a force)
IF there is a force F

AND there is a rectangle R containing exible material such that the

material can expand or contract in the direction of F,

THEN add a capacitor to the model and set its region equal to the

exible portion of R.

A.3. COMPONENT RULES 109

A.2.3 Inertias

inertia-1j/uid (Add a uid inertia at a 1-junction)
IF there is a 1-junction in the model with no inertias attached

THEN add an inertia to the 1-junction.

inertia-new/uid (Add a uid inertia in a region with no 1-junction)
IF there is a contiguous region of uid with no 1-junction

THEN place a 1-junction in that region and note that

the 1-junction represents the region

AND add an inertia to the 1-junction.

inertia/trans (Propose an inertia in a solid object in response to a force.)
IF there is a rigid or exible segment S

AND S is not �xed

AND S contains no inertias

AND there is a force acting on S

THEN add an inertia to S.

A.3 Component Rules

MM's component rules are all extremely simple. There is a single rule for interpreting

component quantities, which determines the interpretation from the component def-

initions. Four other rules add components and junctions to an existing bond graph

by looking for element addition points, places in the bond graph where new elements

could be placed irredundantly. (E.g. placing an element on a junction that already

contains an element of that type is redundant.) One of the four component addition

rules is given below; the other three are similar.

component-add-resistance (Add a resistance to a component model)
IF there is a component C

AND there is an element addition point for a 1-junction and a resistor

THEN add the resistor at the element addition point.

110 APPENDIX A. RULES

Bibliography

[1] Sanjaya Addanki, Roberto Cremonini, and J. Scott Penberthy. Reasoning about

assumptions in graphs of models. In Proceedings of the IJCAI, 1989.

[2] J. J. Beaman and R. C. Rosenberg. Constitutive and modulation structure in

bond graph modeling. Journal of Dynamic Systems, Measurement, and Control,
110:395{402, 1988.

[3] Peter C. Breedveld. Physical Systems Theory in terms of Bond Graphs. PhD

thesis, Twente University, 1984.

[4] Alan Bundy. Will it reach the top? Prediction in the mechanics world. Arti�cial
Intelligence, 10:111{122, 1978.

[5] Dennis DeCoste. Dynamic across-time measurement interpretation. Arti�cial
Intelligence, 51:273{341, 1991.

[6] Johan deKleer. Qualitative and quantitative knowledge in classical mechanics.

Technical Report 352, MIT AI Lab, 1975.

[7] Richard Doyle. Hypothesizing device mechanisms: Opening up the black box.

Technical Report 1047, MIT AI Lab, June 1988.

[8] R. J. Du�n. Impossible behavior of nonlinear networks. Journal of Applied
Physics, 26(5):603{605, May 1955.

[9] Brian Falkenhainer and Kenneth D. Forbus. Setting up large-scale qualitative

models. In Proceedings of the AAAI, 1988.

[10] Brian Falkenhainer and Kenneth D. Forbus. Compositional modeling: Finding

the right model for the job. Arti�cial Intelligence, 51:95{143, 1991.

[11] Boi Faltings. Qualitative kinematics in mechanisms. In Daniel S. Weld and Johan

de Kleer, editors, Readings in Qualitative Reasoning about Physical Systems.
Morgan Kaufmann, San Mateo, CA, 1990.

[12] Ken Forbus. Qualitative process theory. Arti�cial Intelligence, 24, 1984.

111

112 BIBLIOGRAPHY

[13] Kenneth D. Forbus. Interpreting observations of physical systems. In Daniel S.

Weld and Johan de Kleer, editors, Readings in Qualitative Reasoning about Phys-
ical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

[14] Andrew Gelsey. Automated reasoning about machine geometry and kinematics.

In Daniel S. Weld and Johan de Kleer, editors, Readings in Qualitative Reasoning

about Physical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

[15] Choon P. Goh. Model selection for solving kinematic problems. Technical Report

1257, MIT AI Lab, August 1990.

[16] Yumi Iwasaki and Herbert A. Simon. Causality in device behavior. Arti�cial
Intelligence, 29, 1986.

[17] Leo Joskowicz and Elisha Sacks. Computational kinematics. Arti�cial Intelli-
gence, 51:381{416, 1986.

[18] Dean Karnopp and Ronald Rosenberg. System Dynamics: A Uni�ed Approach.
John Wiley & Sons, New York, 1975.

[19] BenjaminKuipers. Qualitative simulation. In Daniel S. Weld and Johan de Kleer,

editors, Readings in Qualitative Reasoning about Physical Systems. Morgan Kauf-

mann, San Mateo, CA, 1990.

[20] Pat Langley, Herbert A. Simon, Gary L. Bradshaw, and Jan M. Zytkow. Scien-
ti�c Discovery: Computational explorations of the creative processes. MIT Press,

Cambridge, MA, 1987.

[21] Lennart Ljung. System Identi�cation: Theory for the User. Prentice-Hall, En-

glewood Cli�s, N.J., 1987.

[22] Seshashayee S. Murthy and Sanjaya Addanki. Prompt: An innovative design

tool. In Proceedings of the AAAI, 1987.

[23] P. Pandurang Nayak. Causal aprroximations. In Proceedings of the AAAI, 1992.

[24] P. Pandurang Nayak, Leo Joskowicz, and Sanjaya Addanki. Automatedmodel se-

lection using context-dependent behaviors. In BenjaminKuipers, editor, Fifth In-

ternational Workshop on Qualitative Reasoning about Physical Systems, Austin,
Texas, 1991.

[25] Gordon Novak. Representations of knowledge in a program for solving physics

problems. In Proceedings of the IJCAI, 1977.

[26] J. Scott Penberthy. Incremental analysis and the graph of models: A �rst step

towards analysis in the plumber's world. Master's thesis, MIT, 1985.

BIBLIOGRAPHY 113

[27] Je� Rickel. Automated modeling for answering prediction questions: Exploiting

interaction paths. Technical Report AI92-178, University of Texas at Austin,

1992.

[28] R. C. Rosenberg and J. Beaman. Clarifying energy storage �eld structure in

dynamic systems. In Proceedings of the American Control Conference, 1987.

[29] Mark Shirley and Brian Falkenhainer. Explicit reasoning about accuracy for

approximating physical systems. In Workshop on the Automatic Generation of
Approximations and Abstractions, 1990.

[30] Karl Ulrich. Computation and pre-parametric design. Technical Report 1043,

MIT AI Lab, September 1988.

[31] Daniel S. Weld. Automated model switching: Discrepancy driven selection of

approximation reformulations. Technical Report 89-08-01, University of Wash-

ington, Seattle, October 1989.

[32] Brian Williams. Interaction-based Invention. PhD thesis, MIT, 1990.

[33] Brian Williams. Interaction-based invention: Designing novel devices from �rst

principles. In Proceedings of the AAAI, 1990.

[34] Brian C. Williams. Capturing how things work: Constructing critical abstrac-

tions of local interactions. InWorkshop on the Automatic Generation of Approx-
imations and Abstractions, 1990.

[35] Bruce H. Wilson and Je�rey L. Stein. An algorithm for obtaining minimum-order

models of distributed and discrete systems. In Brian Falkenhainer and Je�rey L.

Stein, editors, Automated Modeling Workshop of the Winter Annual Meeting of

the American Society of Mechanical Engineers (ASME WAM), DSC-Vol. 41,

1992.

