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Abstract

A register file is a critical resource of modern processors. Most hardware and software
mechanisms to manage registers across procedure calls do not efficiently support
multithreaded programs. To switch between parallel threads, a conventional processor
must spill and reload thread contexts from registers to memory. If context switches are
frequent and unpredictable, a large fraction of execution time is spent saving and
restoring registers.

This thesis introduces the Named-State Register File, a fine-grain, fully-associative
register organization. The NSF uses hardware and software mechanisms to manage
registers among many concurrent activations. The NSF enables both fast context
switching and efficient sequential program performance. The NSF holds more live
data than conventional register files, and requires much less spill and reload traffic to
switch between concurrent active contexts. The NSF speeds execution of some
sequential and parallel programs by 9% to 17% over alternative register file organiza-
tions. The access time of the NSF is only 6% greater than a conventional register file.
The NSF adds less than 5% to the area of a typical processor chip.

This thesis describes the structure of the Named-State Register File, evaluates the cost
of its implementation and its benefits for efficient context switching. The thesis
demonstrates a prototype implementation of the NSF and estimates the access time
and chip area required for different NSF organizations. Detailed architectural simula-
tions running large sequential and parallel application programs were used to evaluate
the effect of the NSF on register usage, register traffic, and execution time.

Keywords: multithreaded, register, thread, context switch, fully-associative,
parallel processor.
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CHAPTER 1

Introduction

1.1  Overview

1.1.1  Problem Statement

Most sequential and parallel programming models divide an application into procedures
that invoke other procedures in a data dependent manner. Each procedure activation
requires a small amount of run-time state for local variables. While some of this local state
may reside in memory, the rest occupies the processor’s register file. The register file is a
critical resource in most modern processors [34,66]. Operating on local data in registers
rather than memory speeds access to that data, and allows a short instruction to access
several operands [75,28].

There have been many proposals for hardware and software mechanisms to manage the
register file and to efficiently switch between activations [67,86]. These techniques work
well when the activation sequence is known, but behave poorly if the order of activations
is unpredictable [42]. Dynamic parallel programs [60,21,39,52], in which a processor may
switch between many concurrent activations, or threads, run particularly inefficiently on
conventional processors. To switch between parallel threads, conventional processors
must spill a thread’s context from the processor registers to memory, then load a new
context. This may take hundreds of cycles [36]. If context switches are frequent and
unpredictable, a large fraction of execution time is spent saving and restoring registers.

1.1.2  Proposal

The thesis introduces the Named-State Register File, a register file organization that
permits fast switching among many concurrent activations while making efficient use of
register space. It does this without sacrificing sequential thread performance, and can
often run sequential programs more efficiently than conventional register files.

The NSF does not significantly increase register file access time. While the NSF requires
more chip area per bit than conventional register files, that storage is used more effec-
tively, leading to significant performance improvements over alternative register files.

The goals of this research are:

• To reduce the cost of context switching by reducing the frequency and number of regis-
ters which must be saved and restored from memory.
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• To make more effective use of processor registers, which are the most critical memory
in a computer system.

• To run both sequential and parallel code efficiently.

1.1.3  Methodology

This thesis describes the structure of the Named-State Register File, evaluates the cost of
its implementation, and its benefits for efficient context switching. A prototype chip was
built to estimate the access time and VLSI chip area required for several different NSF
organizations. Detailed architectural simulations running large sequential and parallel
application programs are used to evaluate the effect of the NSF on register usage, register
traffic, and execution time.

1.1.4  Research Results

• The NSF holds more active data than a conventional register file with the same number
of registers. For the large sequential and parallel applications tested, the NSF holds
30% to 200% more active data than an equivalent register file.

• The NSF holds more concurrent active contexts than conventional files of the same
size. The NSF holds 20% more contexts while running parallel applications. For
sequential programs, the NSF holds twice as many procedure call frames as a conven-
tional file.

• The NSF is able to support more resident contexts with less register spill and reload
traffic. The NSF can hold the entire call chain of a large sequential application, spilling
registers at 10-4 the rate of a conventional file. On parallel applications, the NSF
reloads 10% as many registers as a conventional file.

• The NSF speeds execution of sequential applications by 9% to 18%, and parallel appli-
cations by 17% to 35%, by eliminating register spills and reloads.

• The NSF’s access time is only 5% greater than conventional register file designs. This
should have no effect on processor cycle time.

• The NSF requires 30% to 50% more chip area to build than a conventional file. This
amounts to less than 5% of a typical processor’s chip area.

1.2  Justification

This thesis makes several assumptions about the behavior of parallel programs:

• Parallel threads are spawned dynamically by the program.

• Parallel programs contain phases of high parallelism and of sequential critical paths.
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• Parallel processors must frequently switch threads to avoid idling during long commu-
nication and synchronization delays.

• Parallel thread schedulers must balance parallelism and locality.

The next few sections illustrate these assumptions and the effect they have on processor
architecture.

1.2.1  Parallel and Sequential Programs

The NSF is designed to execute both parallel and sequential programs efficiently. Figure
1-1 shows example call graphs of sequential and parallel applications. Both are dynamic
models of computation, in which a procedure may invoke one of several other procedures,
depending on program data. In the sequential program, only one sequential procedure may
be running at a time, and the call chain can be allocated on a stack.

The parallel program, on the other hand, may dynamically spawn parallel procedure invo-
cations, or threads1. A parent may be able to spawn a number of child threads before
having to wait for a result to be returned [60]. Since several threads may be able to run at
the same time, the activation tree is heap allocated. Threads may also interact through
shared variables [9] or message passing [39].

Since parallel threads are spawned dynamically in this model, and threads may synchro-
nize with other processors in a data-dependent manner, the order in which threads are

1.  Contrast with other models of parallelism, in which the number of parallel tasks is fixed at compile
time [29].

Sequential call chain. Parallel activation tree.

FIGURE 1-1. Call graphs of sequential and parallel programs.
Shaded activations are waiting at synchronization points, and cannot proceed. Cross-hatched
activations are running on some processor. Only one sequential procedure activation can run at a
time. Many parallel threads may be ready to run at a time, and a processor may interleave
execution of several threads.
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executed on a single processor of a parallel computer cannot be determined in advance. A
compiler may be able to schedule the execution order of a local group of threads [42], but
in general will not be able to determine a total ordering of threads across all processors.

1.2.2  Parallel Program Behavior

While most dynamic parallel programs generate significant numbers of parallel tasks, that
parallelism is not sustained during the entire lifetime of the program. Figure 1-2 shows the
parallelism profile [45] for a timestep of Simple(50), a typical Dataflow application [60].
The initial phase of the program produces an extremely large number of parallel tasks, but
the program ends in a long tail with low parallelism, to merge the results of the computa-
tion. Speeding up that sequential critical path is as important as exploiting the total paral-
lelism of the application. For this reason, processors for parallel computers must be able to
efficiently run both parallel and sequential code.

1.2.3  Context Switching

In spite of the large amount of parallelism available in many applications, there are several
problems in running programs on large scale multicomputer systems [8].

The first problem is that most applications must pass data between physically separate
components of a parallel computer system. As ever larger systems are built, the time
required to communicate across the computer network increases. This communication
latency has not kept pace with decreasing processor cycle times. Even very low-latency
networks [62,83] have round trip message latencies greater than 100 instruction cycles.
Fine grain programs send messages every 75 to 100 instructions [38,15]. If processors

FIGURE 1-2. Parallelism profile of a Simple(50), a typical dataflow application.
The program consists of phases of very high parallelism, as well as long sequential tails.
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must wait for each message to complete, they will spend an ever increasing amount of
time idle.

Another problem is synchronization between threads, since highly parallel programs
consist of short threads that frequently exchange data. The average run length of such a
thread between synchronization points may be 20 to 80 instructions [21]. Each
synchonization point may require an unbounded amount of time to resolve [55]. Stalling
at every synchronization point would waste a large fraction of the processor’s perfor-
mance.

Figure 1-3 illustrates one alternative to idling a processor on communication and synchro-
nization points. Efficient context switching allows a processor to very quickly switch to
another thread and continue running.

The less time spent context switching, the greater a processor’s utilization [1]. Equation 1-
1 shows the utilization of a processor as a function of average context switch time Tswitch,
and average run length of threads, Trun, assuming enough concurrent threads.

(EQ 1-1)

1.2.4 Thread Scheduling

Scheduling threads to run in parallel computer systems is an active area of research. This
thesis makes no specific assumptions about the order in which threads are run. However,
most dynamic thread scheduling algorithms must balance parallelism against resources.

FIGURE 1-3. Advantage of fast context switching.
A processor idling on remote accesses or synchronization points (top), compared with rapid
context switching between threads (bottom).

Thread1 Thread1

Remote
Access

Thread1 Thread1Thread2 Thread3

Mthread

Trun

Trun Tswitch+
---------------------------------=
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As illustrated by Figure 1-2, dynamic parallel programs may generate excessive paral-
lelism. Since each active thread consumes memory, many thread scheduling policies must
limit the number of concurrent active threads [20,38,48]. The goal is to spawn enough
parallelism to keep processors busy without completely swamping the system.

A second goal of thread scheduling is to exploit temporal locality among threads. An effi-
cient algorithm [55] for switching threads in response to synchronization delays is to
switch between a small number of active threads. If a thread halts on a synchronization
point, the processor switches to another thread in the active set. A thread is only swapped
out of the active set if it has been stalled for a long time. Then another thread from outside
the active set is loaded in it place. This helps ensure temporal locality in the execution of
the active threads. This scheduling policy can be extended to several more levels, such
that the processor gives preference to threads in the inner set, but must occasionally load a
thread from outer sets in order to make progress [61].

The sections that follow outline different solutions to the problem of efficient context
switching. The Named-State Register File is proposed as an alternative register file organi-
zation that meets the goals of fast context switching, good sequential performance, and
efficient use of processor resources.

1.3  Multithreaded Processors

Multithreaded processors [19,76,82,29] reduce context switch time by holding the state of
several threads in the processor’s high speed memory. Typically, a multithreaded
processor divides its local registers among several concurrent threads. This allows the
processor to quickly switch among those threads, although switching outside of that small
set is no faster than on a conventional processor.

Multithreaded processors may interleave successive instructions from different threads on
a cycle-by-cycle basis [76,47,65,54]. This prevents pipeline bubbles due to data depen-
dencies between instructions, or long memory latencies. Other processors interleave
blocks of instructions from each concurrent thread [29,4,23]. This exploits conventional
processor pipelines, and performs well when there is insufficient parallelism. While the
techniques introduced in this research are equally applicable to both forms of multi-
threading, we will usually discuss them in terms of block interleaving.

1.3.1  Segmented Register Files

Figure 1-4 describes a typical implementation of a multithreaded processor [76, 47,4,5].
This processor partitions a large register set among a small set of concurrent threads. Each
register frame holds the registers of a different thread. A frame pointer selects the current
active frame. Instructions from the current thread refer to registers using short offsets from
the frame pointer.
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Switching between the resident threads is very fast, since it only requires setting the frame
pointer. However, often none of these resident threads will be able to make progress, and
the processor must switch to a thread outside of this small set. To switch to a non-resident
thread, the processor must spill the contents of a register frame out to memory, and load
the registers of a new thread in its place.

This static partitioning of the register file is an inefficient use of processor resources. In
order to load a new context, the processor must spill and reload an entire register frame.
Some threads may not use all the registers in a frame. Also, if the processor switches
contexts frequently, it may not access all the registers in a context before it must spill them
out to memory again. In both cases, the processor will waste memory bandwidth loading
and storing registers that are not needed.

Dividing the register file into large, fixed sized frames also wastes space in the register file.
At any time, some fraction of each register frame holds live variables, data that will soon
be accessed by an instruction. The remainder of the frame’s registers are not used. Since
each thread is allocated the same fixed sized frame, many registers in the register file will
contain dead or unused variables. This is a serious inefficiency, since the register file, as
the memory nearest to the processor’s ALU, is the most precious real-estate in the
machine. A more efficient scheme would hold only current, live data in the register file.

As noted in Section 1.2, communication latencies in parallel computers may be long and
variable, and synchronization delays may be frequent and unbounded. As larger parallel
computers are built, processors require more active threads to stay busy. A processor for
such a system will spend considerable time spilling and reloading threads.

FIGURE 1-4. A multithreaded processor using a segmented register file.
The register file is segmented into equal sized frames, one for each concurrent thread. The
processor spills and restores thread contexts from register frames into main memory.

T1

T2

T4 T3

T5

Frame
Pointer

Frame 0
Frame 1

Thread contexts in memoryMultithreaded processor
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However, since all parallel programs contain sequential critical paths, a processor must
also be able to run sequential code efficiently. Devoting large amounts of chip area to
holding many active frames may be an inefficient use of the processor chip. And many
highly multithreaded machines cannot run sequential code efficiently [76,47].

The fundamental problem with this segmented register file organization is the same as
with conventional register files. The processor is binding a set of variable names (for a
thread) to an entire block of registers (a frame). A more efficient organization would bind
variable names to registers at a finer granularity.

1.4  The Named-State Register File

The Named-State Register File (NSF) is an alternative register file organization. It is not
divided into large frames for each thread. Instead, a thread’s registers may be distributed
anywhere in the register array, not necessarily in one continuous block. An active thread
may have all of its registers resident in the array, or none. The NSF dynamically allocates
the register set among the active threads.

As shown in Figure 1-5, the NSF may hold data from a large number of contexts resident
simultaneously. The NSF does not explicitly flush and reload contexts after a thread
switch. Registers are loaded on demand by the new thread. Registers are only spilled out
of the NSF as needed to clear space in the register file.

FIGURE 1-5. A multithreaded processor using a Named-State Register File.
The NSF may hold registers from a number of different contexts resident simultaneously. The
processor spills and restores individual registers to main memory as needed by the active threads.
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The NSF allows a processor to interleave many more threads than segmented files, since it
sets no fixed limit on the number of resident threads. The NSF keeps more active data resi-
dent than segmented files, since it is not coarsely fragmented among threads. It spills and
reloads far fewer registers than segmented files, since it only loads registers as they are
needed.

Instructions refer to registers in the NSF using a short offset, just as in conventional
register files. However, rather than using a frame pointer to distinguish between thread
registers, the NSF assigns a unique Context ID to each concurrently running thread. Indi-
vidual registers in the NSF are addressed using both Context ID and register offset. This
allows registers from different threads mix freely in the register file.

The NSF uses hardware and software mechanisms to dynamically bind registers in the
register file. The NSF is a fully-associative structure, with very small lines. In this way, the
NSF binds variable names to individual registers.

Chapter 2 describes the structure and operation of the Named-State Register File in more
detail. It compares the NSF to conventional register files, and discusses the advantages of
different memory structures.

1.5  Related Work

1.5.1  Memory to Memory Architectures

Much of the motivation for this research originated with Iannucci’s work on Hybrid
Dataflow [42]. The compilation techniques he introduced for grouping dataflow instruc-
tions into sequential threads for execution on conventional processors were also adopted
by the Berkeley TAM project [21]. But while Hybrid Dataflow used a processor’s registers
for temporary variables, it was unable to keep any register state across context switch
boundaries. Even potential context switch points forced registers to be flushed to memory.
Given the short thread run lengths involved, this was clearly an inefficient use of processor
resources.

The Monsoon processor [65], on the other hand, explicitly switched contexts in response
to each Dataflow token, potentially on every instruction. Monsoon used no general regis-
ters, but fetched operands from a large, high speed local storage. Monsoon compensated
for the slower operand access time by using a very deep processor pipeline.

Omondi [63] has proposed a memory-accumulator processor to support multiple concur-
rent tasks. The machine fetched operands directly from the data cache. This organization
also used a very deep processor pipeline to cope with long operand fetch latencies.
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Each of these machines avoided storing operands in registers as a way of speeding up
context switching. Yet, as noted by Sites [75], and Goodman [28], registers are a more
effective use of on-chip area than data caches. Register files are faster and easier to multi-
port than caches. Instructions can directly address a register set, but not the entire memory
space mapped into a data cache. And finally, compilers are able to use register allocation
techniques [16] to effectively use that precious real-estate. Chapter 2 revisits these issues
in more detail.

1.5.2  Preloading

Arvind [59] and Agarwal [77] have proposed register file organizations that either pre-
load contexts before a task switch, or spill contexts in the background. Usually this
requires extra register file ports, and some control logic. While these techniques speed
context switching, since the target context has already been preloaded, they do not make
efficient use of processor resources. Neither technique reduces the register spill and reload
traffic of conventional multithreaded register files, but only re-schedules it. These tech-
niques also use processor space inefficiently, since only a fraction of the register file
contains live data.

1.5.3  Software Techniques

Several software techniques have been proposed to run multithreaded programs more effi-
ciently on existing hardware. Keppel [49] and Hidaka [36] both proposed different ways
of running multiple concurrent threads in the register windows of a Sparc [14] processor.
Both propose variations on standard Sparc window overflow traps. The Sparcle chip built
by Agarwal [4] modifies a Sparc chip by adding trap hardware. Sparcle also uses tuned
trap handlers to speed context switching. At best, register windows when used in this way
are very similar to the segmented register file described in Section 1.3.1, and have the
same disadvantages. This large, fixed partitioning leads to poor utilization of the register
file, and high register spill traffic.

Waldspurger [85] has proposed small modifications to a processor pipeline, and compiler
and runtime software to allow different threads on a multithreaded processor to share the
register set. This technique allows each thread to declare the number of registers it will
use, so that different threads have different frame sizes in the register file. Runtime soft-
ware is responsible for dynamically packing these different frame sizes into the register
file. Such small register frames can improve the utilization of the register file at the cost of
more register to memory traffic. It remains to be seen how well compilers can determine
the optimum frame size for a thread, and how well runtime software can allocate those
frames. In contrast, the NSF allows a much more dynamic binding of registers to contexts,
so that an active thread can use a larger proportion of the register file.
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The TAM [21] project takes a different approach in compiling fine-grain parallel Dataflow
applications. The TAM compiler groups parallel threads into activations, in order to
reduce the number of context switches by running a longer instruction stream between
synchronization points. This is a useful technique regardless of the underlying hardware.
This thesis uses the TAM compiler to produce parallel code for NSF simulations.

1.5.4  Alternative Register Organizations

There have been many proposals for alternative register file structures to run sequential
code. Most of these approaches attempt to minimize register spills and reloads by
supporting variable sized procedure activation frames. None are well designed to handle
arbitrary switching between multiple concurrent threads, but instead assume that register
frames will be allocated and released in strict FIFO order.

Ditzel and McLelland proposed the C-machine [25,11] as a register-less, stack based
architecture. The C-machine stores the top of stack in a multiported stack buffer on chip.
The processor maps references to the stack into offsets in the stack buffer. Russell and
Shaw [70] propose a stack as a register set, using pointers to index into the buffer. These
structures might improve performance on sequential code, but are very slow to context
switch, because of the implicit FIFO ordering.

Huguet and Lang [40], Miller and Quammen [56], and Kiyohara [51] have each proposed
other register file designs that use complex indirection to add additional register blocks to
a basic register set. It is not clear if any of these designs are technically feasible. They do
not make good use of register area, and may significantly slow down sequential execution.

1.6  Thesis Outline

Chapter 2 describes the structure of the Named-State Register File in more detail. The
chapter reviews NSF operation as well as some design alternatives. The chapter compares
different memory structures and discusses the benefits of register files for sequential and
parallel programs. It concludes with an analysis of the NSF and conventional register files
running multiple concurrent threads.

Chapter 3 describes how to build the NSF, and the logic and circuitry required to make it
efficient. It outlines circuit simulations that compare the access time of the NSF to conven-
tional register files. It also uses the layout of a prototype chip to determine the area
required to build an NSF, relative to a conventional register file.

Chapter 4 outlines the strategy used for simulating the NSF in running real sequential and
parallel programs. It describes the software environment, and decisions that were made in
modelling performance on the benchmarks.
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Chapter 5 describes the results of these software simulations. It compares the utilization
and register traffic of NSF and conventional register files. It reveals how this performance
scales with the size of the register file. It investigates which factors contribute most to
performance. And it computes the overall effect of Named-State on program execution
time.

Chapter 6 concludes with a discussion of the costs and benefits of the NSF, and some
directions for future research.
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CHAPTER 2

The Named-State Register File

This chapter describes the organization and operation of the Named-State Register File. It
compares the NSF to other memory structures, and shows that the NSF is effective for
managing processor local data. The chapter describes some issues in managing contexts,
and alternatives in the design of the NSF. The chapter ends with an analysis comparing the
NSF to a conventional register file in running multiple concurrent threads.

2.1  NSF Operation

2.1.1  Structure

Figure 2-1 outlines the structure of the Named-State Register File. The NSF is composed
of two components: the register array itself, and a fully-associative address decoder. The
NSF is multi-ported, as are conventional register files, to allow simultaneous read and
write operations. Figure 2-1 shows a three ported register file, that supports two register
reads and a write per cycle. While the NSF could be built with more ports, to allow many
simultaneous accesses, the remainder of this chapter will concentrate on three ported
register files.

Recall that a segmented register file, as described in Section 1.3.1, is composed of several
distinct register frames. The Named State Register File is instead divided into many short
register lines. Depending on the design, an NSF line may consist of a single register, or a
small set of consecutive registers. Typical register organizations may have line sizes
between one and four registers wide.

A conventional register file is a non-associative, indexed memory, in that a register
address is a physical location, a line number in the register array. Once a register variable
has been written to a location in the register file, it does not move until the context is
swapped out. Multithreaded register files use frame pointers to cycle through the available
frames in the array. The block size of this register file is an entire frame, since a range of
register indices is bound to a frame as a single unit.

The Named-State Register File, on the other hand, is fully-associative, since a register
address may be assigned to any line of the register file. During the lifetime of a context, a
register variable may occupy a number of different locations within the register array. The
unit of associativity of the NSF (its block size) is a single line. Each line is allocated or
deallocated as a unit from the NSF.
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The NSF uses an associative address decoder to achieve this flexibility. The address
decoder translates each register address to the line of the array that contains that register.
The NSF binds a register name to a location in the register file by programming the
address decoder with the register’s address. Subsequent reads and writes of that register
match the register address against each address programmed into the decoder. Chapter 3
describes the how such an address decoder can be built.

2.1.2  Register addressing

As in any general register architecture, instructions refer to registers in the NSF using a
short register offset. This identifies the register within the current procedure or thread acti-
vation. However, instead of using a Frame pointer to identify the current context, the
processor tags each context with a Context ID. This is a short integer that uniquely identi-
fies the current context from among those resident in the register file.

The NSF does not impose any restrictions on how Context IDs are used by different
programming models. In the NSF, each Context ID simply defines a separate, fixed size
set of registers. The width of the offset field determines the size of the register set (typi-
cally 32 registers). In some programming models, a context may be the state of a proce-
dure activation, or the local state of a single parallel thread. Section 2.3 describes some
issues related to the management of Context IDs.

FIGURE 2-1. Structure of the Named-State Register File.
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A register address in the NSF is the concatenation of its Context ID and offset. The current
instruction specifies the register offset, and a processor status word supplies the current
CID. In effect, the CID increases the size of the register name space. While a segmented
register file may refer to a few (say 4) register frames, the NSF may address the registers
of many contexts (say 32 or 64) simultaneously.

While most instructions only refer to registers in the current context, some load and store
instructions can copy values from one context to another. A load_from_context instruc-
tion treats its source operands as the Context ID and offset of a register from another
context. The instruction fetches that register and writes it to a register in the current
context. A store_to_context instruction behaves in a similar manner. This allows a
procedure to load arguments from its caller’s context, or to return the result of that proce-
dure invocation.

2.1.3  Read, write, allocate and deallocate

Binding an address to a line of the register file is known as allocating a register. The first
write to a new register allocates that register in the array. Once a register is resident in the
array, subsequent reads and writes of that register simply access the appropriate line of the
register file.

An instruction may explicitly allocate a register on a write operation. This is a hint from
the compiler that the line containing that register has not yet been allocated in the file.
Setting this bit in the register address can speed up register allocation, since the NSF does
not need to search for that address in the register file before writing the data.

In a similar manner, the NSF can deallocate a register after it is no longer needed by the
program. A bit in the register read address informs the NSF to read and simultaneously
deallocate the register. When all registers in the line have been deallocated, the line is free
to be allocated to a new set of register variables.

The NSF can also deallocate all registers associated with a particular context. The deal-
loc_CID instruction will delete any registers from the current context that are resident in
the register file. It handles the case where a compiler is unable to determine the last usage
of a register in a context. Thus deallocating a register after its last use is not necessary for
correct operation of the NSF. It merely makes more efficient use of the register file.

2.1.4  Reloading and spilling

The NSF holds a fixed number of registers. After a register write operation has allocated
the last available register line in the register file, the NSF must spill a line out of the
register file and into memory. The NSF could pick this victim to spill based on a number of
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different strategies. This study simulates a Least Recently Used (LRU) strategy, in which
the NSF spills from the file the line that has least recently been accessed.

If an instruction attempts to read a register that has already been spilled out of the register
file, that read operation will miss on that register. The NSF signals a miss to the processor
pipeline, stalling the instruction that issued the read. Then the register file reloads that
register from memory. Depending on the organization of the NSF, it may reload only the
register that missed, or the entire line containing that register.

Writes may also miss in the register file. A write miss may cause a line to be reloaded into
the file (fetch on write), or may simply allocate a line for that register in the file (write-
allocate). Section 2.4 discusses the alternatives in more detail.

This implicit register spilling and reloading is the most significant difference between the
NSF and conventional register files. Any instruction may miss in the register file, and
require a line to be reloaded. However, the NSF will only reload the line that caused that
miss, and not the entire register context. While this strategy may cause several instructions
to stall during the lifetime of a context, it ensures that the register file never loads registers
that are not needed. As shown in Chapter 5, better utilization of the NSF register file more
than compensates for the additional misses on register fetches.

2.1.5  Context switching

Context switching is very fast with the NSF, since no registers must be saved or restored.
There is no need to explicitly flush a context out of the register file after a switch. Regis-
ters are only spilled or reloaded on demand. After a context switch, the processor simply
issues instructions from the new context. These instructions may miss in the register file
and reload registers as needed by the new context.

While register allocation and deallocation in the NSF use explicit addressing modes,
spilling and reloading are implicit. The instruction stream creates and destroys contexts
and local variables, which are known at compile time. The NSF hardware manages
register spilling and reloading in response to run-time events. In particular, there are no
instructions to flush a register or a context from the register file.

The only concession to thread scheduling routines is the probe instruction. This is similar
to the load_from_context instruction described in Section 2.1.2, but rather than loading
the value of a register, it only checks that the register is resident. A probe instruction will
never cause a line to be reloaded into the register file, nor another line spilled. This allows
run-time software to check the status of lines in another context, without disturbing the
other contents of the register file. A thread scheduling routine might use probe instruc-
tions to check if a context has been spilled out of the NSF.
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2.2  Justification

The Named-State Register File is an unusual memory structure. This section describes the
aspects of the NSF that differentiate it from other memory structures, and how the NSF
design allows it to run parallel and sequential code efficiently.

2.2.1  Registers and memory

In papers on the optimal use of processor chip area for local memory, Sites [75] and
Patel [27] cite several advantages to allocating that space as registers rather than a cache:

• Registers are typically multi-ported, whereas caches are not.

• Register files are usually small and very fast to access.

• Registers can be identified using short indices in an instruction word.
A single instruction may refer to several register operands.

• Registers can be managed by the compiler, which assigns variables to registers based
on lifetime analysis within subroutines.

Some of these issues are implementation dependent:

• It is possible to build multi-ported data caches [30].

• The access time of both caches and register files depends on the size and organization.

•  Some register-less architectures refer to operands as fixed offsets from a stack
pointer [11].

This thesis argues that a critical distinction between caches and register files is in how
registers are managed. This results from the difference between register and memory
address spaces.

Figure 2-2 illustrates the memory structures used by most modern processors. Note that
programs refer to data stored in memory using virtual memory addresses. A data or
instruction cache transparently captures frequently used data from this virtual address
space1. In a similar manner, the processor’s physical memory stores portions of that
virtual address space under control of the operating system.

It is often very difficult for a compiler to manage the virtual address space used for local
data [53]. Programs may create aliases to memory locations, index through large struc-
tures in a data dependent manner, and dynamically allocate and deallocate memory.
Depending on the data set, a particular program may have good or very poor paging and
caching performance.

1.  The cache may be virtually or physically addressed. A virtual cache is shown here for simplicity.
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The processor’s register file, on the other hand, is not part of this virtual address space. In
effect, the register file defines a new name space, addressed only by register number. Since
the register set is separate from the rest of memory, a compiler may efficiently manage this
space [16], without regard to the data references being made by the program.

Note that a program typically spills and reloads variables from the register set into main
memory. This movement from register space to virtual address space is under program
control, and a compiler may use local knowledge about variable usage to optimize this
movement [78]. A program may use a number of different strategies to hold spilled regis-
ters, such as stack and heap frames. When the program determines that a set of variables in
the registers are no longer needed, it may overwrite them.

In contrast, a data cache uses a fixed, hardware strategy to capture data from main
memory. Both cache and main memory refer to data using the same virtual address. The
cache is not the primary home for this data, but must ensure that data is always saved out
to memory to avoid inconsistency. Although some caches allow programs to avoid
caching some data, or to explicitly allocate data in the cache [68], the program typically
has no control over how memory operands are mapped into the cache.

2.2.2  NSF and memory hierarchy

Figure 2-3 illustrates how the Named-State Register File fits into the memory hierarchy.
As with conventional register files, the NSF defines a register name space separate from

FIGURE 2-2. Memory hierarchy of a modern processor.
The register file is a fast local memory for the processor.
It also defines a register name space distinct from the virtual address space of main memory.
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that of main memory. But now the name space consists of a <Context ID: Offset> pair. In
effect, the use of Context IDs significantly increases the size of the register name space.
Since the NSF is an associative structure, it can hold any registers from this large address
space in a small, efficient memory.

The NSF can use the same compiler techniques as conventional register files to effectively
manage the register name space. A program may explicitly copy registers to and from the
virtual memory space (or backing store) as with conventional register files. But the NSF
provides additional hardware to help manage the register file under very dynamic
programming models, where compiler management may be less effective [41].

As described in Section 2.1.4, the NSF spills registers to memory when it becomes full. It
also reloads registers on demand, as required by instructions from a running program.
Figure 2-3 shows how the NSF hardware maps registers into the virtual address space to
support spills and reloads. The block labelled Ctable is a simple indexed table that trans-
lates Context IDs to virtual addresses. This allows the NSF to spill registers directly into
the data cache. A user program or thread scheduler may use any strategy for mapping
register contexts to structures in memory, simply by writing the translation into the Ctable.
This mechanism permits dynamic register spilling by the NSF hardware, under program
control.

Note that since CID is a short field, the Ctable can be a short table indexed by CID, rather
than an associative lookup. Both read and write operand CIDs are translated through the
Ctable in the pipeline stage before operand fetch, in case either operand misses in the NSF.

FIGURE 2-3. The Named-State Register File and memory hierarchy.
The NSF addresses registers using a <Context ID: Offset> pair. This defines a large register name
space for the NSF. The Ctable is a short indexed table to translate Context IDs to virtual
addresses.
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If a register must be spilled out of the NSF, its CID is translated through the Ctable so that
the register line can be written directly into the data cache.

2.2.3  Properties of memory structures

Table 2-1 enumerates different properties of data caches, conventional register files, and
the Named-State Register File. A processor architect may use one of these alternatives as
fast local memory for temporary data.

Some of the properties, such as latency and bandwidth, are implementation dependent. It
is relatively easy to build fast, multiported register files, but it is also possible to build fast,
multiported caches. The method used by the hardware to select lines within each memory
is also implementation dependent. Data caches typically use direct-mapped or set-associa-
tive lookup, while register files directly select lines in the file. The Named-State Register
File described here uses a fully-associative lookup to associate names with register lines.

An important distinction between data caches and register files is that registers occupy a
separate address space from the rest of the memory hierarchy. A data cache is addressed
using a virtual or physical memory address, and may cache any program data. Conven-
tional register files use a short index to select a register, while the NSF uses an expanded
name space consisting of Context ID and offset.

Cache lines are typically allocated and managed using a fixed hardware algorithm. Some
data caches allow the program to explicitly allocate cache lines [68]. This allocation is
only useful in writing new data spaces, since the compiler must guarantee that the entire
cache line will be written, to avoid incorrectly allocating partial lines [46].

Property Determines Data Cache Register File Named-State File

Latency Performance ≥1 cycle < 1 cycle < 1 cycle

Bandwidth Performance 1-2 words/cycle ≥ 3 words/cycle ≥ 3 words/cycle

Selection Performance Associative Direct select Fully-associative

Contents Program All program data Register variables Register variables

Name Space ISA Virtual Address Register name Register name

Addressing ISA VM/PM address Short index CID + index

Sequential
Allocation

ISA Hardware /
Compiled

Compiled Compiled/
Hardware

Sequential
Management

Program Hardware Compiled preload Hardware/
Compiled

Parallel
Management

Program Hardware Runtime software Hardware/
Runtime software

TABLE 2-1. A comparison of several fast local processor memory alternatives.
Conventional and Named-State register files define a register name space separate from the virtual
address space used by the rest of the memory hierarchy.
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A conventional register file allocates registers for sequential code blocks under compiler
control [16]. In cases where the sequential call sequence is well known, the compiler can
also manage registers across sequential procedure calls. For very dynamic or parallel
programs, a conventional file must use runtime software routines to share the register file
among many concurrent contexts [85].

The Named-State Register File may use the same compiler techniques to allocate registers
for sequential code. A program could manage those registers in the same way as conven-
tional register files for code where the activation order is known. But for dynamic and
parallel programs, the NSF can dynamically manage registers in hardware, spilling and
restoring variables as needed. This added flexibility can significantly improve the perfor-
mance of many sequential and parallel programs.

Table 2-2 shows a similar comparison between a conventional register file, the Named-
State Register File, register windows [31,66], and the C-machine stack cache [25,11].

A windowed register file selects registers within the current active window, much like a
segmented register file. It also manages register window frames for sequential programs
with a combination of hardware support and runtime trap handlers [14]. Several
researchers have proposed ways of multithreading between several concurrent threads
using register windows [36,49,4]. All of these schemes use some form of runtime trap
handler to switch between threads, and to swap threads into and out of the register file.

The C-machine stack cache is a variant of a traditional top of stack buffer. The C-machine
pre-decodes instructions to turn stack references into offsets in the stack buffer. Since the
stack buffer caches a region of virtual memory, locations in the stack are addressable as
memory locations. A program may generate pointers to locations in the stack or the stack

Property Register File Named-State File
Windowed
Register File

CRISP
Stack Cache

Latency < 1 cycle < 1 cycle < 1 cycle 1 cycle

Bandwidth ≥ 3 words/cycle ≥ 3 words/cycle ≥ 3 words/cycle 3 words/cycle

Selection Direct select Fully-associative Direct select Direct select

Contents Register variables Register variables Register variables Stack Frames

Name Space Register name Register name Register name Virtual Address

Addressing Short index CID + index Window + index Short index

Sequential
Allocation

Compiled Compiled/
Hardware

Compiled Compiled

Sequential
Management

Compiled preload Hardware/
Compiled

Runtime preload Runtime preload

Parallel
Management

Runtime software Hardware Runtime software Runtime software

TABLE 2-2. A comparison of different register file structures.
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cache, and the processor must detect references to cached regions of the stack. The C-
machine is slow to switch contexts between concurrent threads, since the entire stack
cache must be flushed to memory, and a new stack must be reloaded for the new thread.

2.2.4  Advantages of the NSF

The Named-State Register File uses a combination of hardware and software to dynami-
cally map a large register name space into a small, fast register file. In effect, it acts as a
cache for the register name space. It has several advantages for running sequential and
parallel applications:

• The NSF has low access latency, and high bandwidth.

• Instructions refer to registers in the NSF using short compiled register offsets, and may
access several register operands in a single instruction.

• The NSF can use traditional compiler analysis [16] to allocate registers in sequential
code, and to manage registers across code blocks [78, 86].

• The NSF expands the size of the register name space, without increasing the size of the
register file.

• The register name space is separate from the virtual address space, and mapping
between the two is under program control.

• The NSF uses an associative decoder, small register lines, and hardware support for
register spill and reload to dynamically manage registers from many concurrent con-
texts.

• The NSF uses registers more effectively than conventional files, and requires less regis-
ter traffic to support a large number of concurrent active contexts.

2.3  NSF System Issues

This section discusses some issues involved in managing the register name space and
Context IDs, and the impact of data caches on NSF performance.

2.3.1 Context Identifiers

The NSF addresses registers using the concatenation of two short fields: a Context ID and
register offset. The Context ID serves several purposes:

• Each Context ID uniquely identifies one of many concurrent activations.
The processor can switch activations by switching to a new CID.

• Context IDs expand the size of the register name space.
The NSF reserves a contiguous set of registers in that name space for each CID.
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• The processor can manipulate registers associated with a CID as a unit.
For instance, the dealloc_CID instruction deallocates all registers from a particular
activation.

• CIDs decouple the register name space from the virtual address space.
A programming model can enforce any mapping of CIDs to addresses by setting up
entries in the Ctable.

• CIDs decouple the register name space from a potentially large context name space.
Context IDs do not identify all contexts in existence on the processor, but only a small
subset of those contexts that may have registers in the NSF. It is the responsibility of
the program or the thread scheduler to allocate CIDs to procedure or thread activations.
In this way, a choice of CID size in the NSF does not constrain the number of contexts
that a program can spawn, nor the scheduling of those contexts.

• Context IDs and offsets are both short fields, which simplifies and speeds up the NSF
decoder and Ctable hardware. A typical <CID:Offset> pair might be 10 bits wide.

The NSF provides a mechanism to handle multiple activations, but does not enforce any
particular strategy. Since Context IDs are neither virtual addresses, nor global thread iden-
tifiers, they can be assigned to contexts in any way needed by the programming model.
NSF design decisions should have no effect on the procedure and thread scheduling that
the NSF can support.

The penalty for all this flexibility is that the set of Context IDs are yet one more limited
resource that a program or thread scheduler must handle. The scheduler must map a poten-
tially unbounded set of activations into a very few CIDs. The section that follows will
argue that this should not be a serious problem for most practical programming models.

2.3.2  Managing Context IDs

The NSF does not constrain how Context IDs are assigned. While details of CID mapping
and thread scheduling are beyond the scope of this thesis, this section suggests some
examples of how programming models might use CIDs.

Sequential programs:

The compiler may allocate a new CID for each procedure invocation. Calling routines can
create a register context for a callee routine, then pass arguments directly into the callee’s
registers. This is the model used by sequential programs in this study. Each called proce-
dure is assigned a CID one greater than its caller. If the call chain is very deep, such that
all CIDs are already in use, the program must reclaim some CIDs from the start of the
chain. In order to reuse a CID, an activation must ensure that no registers belonging to that
CID are still resident in the NSF.
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A sequential program would normally spill registers from the NSF into stack-allocated,
fixed-sized frames in memory. Each new procedure invocation simply increments the
stack pointer, and writes that address into the Ctable entry for its CID. This is very similar
to the way that register windows [31,67] are used on some RISC processors.

If all CIDs are in use, the run-time software must reuse a CID in order to allocate a new
context. A CID that is no longer resident in the register file can be reused simply by
updating its entry in the Ctable. But if a CID still has some lines resident in the register
file, they must be explicitly copied out to memory and the CID deallocated from the
register file before it can be reused. Even with the probe instruction of Section 2.1.5, this
is still an expensive operation. Using a wide Context ID field can reduce the frequency at
which context management software re-uses active CIDs. Certain software conventions
can also reduce this burden.

However, typical sequential applications spend considerable time within a range of proce-
dure nesting depth [35]. While call chains may become quite deep, the calling depth may
not change at a rapid rate. This is the principle that allows register windows to capture a
significant fraction of the procedure call frames without excessive window traps. A
windowed register file with 10 register banks may overflow on less than 5% of calls for
many simple applications [35]. By analogy, a NSF with a 4 bit wide CID field may only
need to re-use a CID every 30 procedure calls. This is borne out by the simulations in
Chapter 5, in which a 5 bit CID field holds most of the call chain of large sequential appli-
cations.

Fine-grained parallel programs:

A parallel language might allocate a new context for every thread activation. As discussed
in Section 1.2, dynamic parallel programs may spawn many parallel threads. Many
threads are able to run simultaneously, and a processor may rapidly switch among a small
active set of threads in order to avoid idling. This is the model used by the parallel
programs in this study [21].

Since threads in dynamic parallel models may be halted and then restarted, the thread
scheduler must allocate room to store the thread’s state in memory. These thread activa-
tions are usually heap allocated in a wide activation tree. In order to spill registers from the
NSF file, the scheduler need only write the activation address for each new Context ID
into the Ctable. This adds very little cost to the thread setup time.

Managing Context IDs for parallel code is more difficult than for sequential code, since an
entire tree of contexts may be active simultaneously, rather than simply a sequential call
chain. For most dynamic parallel programs, the scheduling of threads is data dependent
and cannot be predicted at compile time. As in the sequential case, a thread scheduler may
occasionally need to reuse Context IDs.
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However, as noted in Section 1.2, any realistic thread scheduler must exploit locality in
spawning threads and in running them. Since each thread consumes resources, the sched-
uler must often limit parallelism after a number of threads have been spawned [20,48]. In
addition, efficient schedulers may exploit temporal locality by giving preference to a small
active set of threads, before allowing any thread from outside that active set to be sched-
uled to run. This matches the model used in the NSF: a small number of contexts are resi-
dent and running in the register file, and a somewhat larger set of potentially active threads
can be swapped in if all resident threads halt on synchronization points. A relatively small
CID field should still allow an efficient thread scheduler to pick threads to run.

Large-grain parallel programs:

A programming model may support a mix of parallel tasks and sequential procedures.
This may require a mixture of the two approaches discussed above. A large parallel task
may run many procedures, and maintain its own stack. A processor could run that large
task for some time, allocating contexts for each procedure activation. Then, if the task
blocks, the processor could switch to another task, and run its procedures. This is the
model used by Mul-T [52].

One way of allocating CIDs to large tasks is to devote a range of CIDs to each task, so that
it can use that range of contexts for procedure calling. A trivial case is when a parallel
program has been statically divided into a fixed number of large tasks. The compiler or
linker may divide the CIDs on a single processor by the number of static tasks allocated to
that processor. Thereafter, each task would behave much like a sequential program.

An alternative is to dynamically allocate CIDs to tasks and procedures, without any fixed
division among the tasks. The choice of approach depends upon the number and average
run length of tasks, and the frequency of task switches. The NSF itself does not limit the
task scheduling options, but merely provides mechanisms to exploit them.

Other scheduling options:

The NSF is not limited to the programming models and scheduling strategies presented
above. Many other strategies are possible. A programming model may allocate two
Context IDs to a single procedure or thread activation. This would be useful if a compiler
could not determine an execution order for basic blocks within that activation, and could
not efficiently allocate registers among those basic blocks. (Such is the case for TAM [72]
programs). Devoting two CIDs to the procedure would make register allocation easier, yet
still allow basic blocks to pass data within the register file.

It would be inefficient to dedicate several frames of a segmented register file to a single
procedure activation, and only use a few registers per frame. But in the NSF, since regis-
ters are only allocated as they are used by a program, there is relatively little cost to giving
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a small set of registers a unique CID. Only the active registers of that context will
consume space in the NSF.

Task scheduling for parallel programs is an active area of research. Managing a set of
Context IDs should not add much to the cost of thread scheduling and context
allocation [55,85,61]. In many cases, CID handling should only require reading and
writing entries in the NSF Ctable. The short time spent in this run-time software must be
balanced against the cost of larger CID fields, which reduce the frequency of Context ID
reuse.

2.3.3  Data Cache Performance

A processor’s data cache affects the performance of the Named-State Register File in
several ways. Because of cache interference effects, data caches miss more frequently
while supporting multiple concurrent threads than a single instruction stream. In addition,
the data cache must be able to quickly respond to register spills and reloads from the NSF,
to prevent long pipeline stalls. This section addresses each of these issues in turn.

Several recent studies have investigated the effect of multithreading on cache miss rates
and processor utilization. Agarwal [1] has shown that for data caches much larger than the
total working set of all processes, the miss rate due to multithreading increases linearly
with the number of processes being supported. Typical cache miss rates due to multi-
threading range from 1% to 3%, depending on the application. Weber and Gupta’s
experiments [29] confirm this behavior.

However, these experiments were for large, coarse grain applications. In some cases, to
simulate higher levels of multithreading, the experimenters merely ran additional copies
of the original sequential program trace, rather than dividing that program into smaller
concurrent threads. Although there are no studies of the effect of multithreading for fine
grain programming models, experiments have shown that cache miss rates are strongly
dependent on a program’s working set size. Since fine grain parallel programs have much
smaller working sets than coarse grain programs [69], miss rates due to multithreading
should not be a dominant component of execution time.

All multithreaded machines spill and reload registers to the cache. However, this small
number of registers per context does not take much room in a data cache. The NSF caches
fewer registers than segmented register files, since it only allocates spills registers for live
data, and explicitly deallocates registers when possible. Finally, to minimize interference
between concurrent contexts, [1] suggests hashing Context IDs to addresses, and
accessing the data cache with the resulting hashed address. The NSF Ctable easily
supports this technique.

An important distinction between the NSF and a conventional segmented register file is
that when the latter switches contexts, it loads all of the registers from the context in one
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operation. While this loads unnecessary data, it also provides opportunities for pipelining
those reloads. In addition, a segmented register file only reloads contexts after switching
threads or calling subroutines. The NSF, on the other hand, may potentially miss and
reload a register on any instruction. The effect that this has on processor performance
depends on the design of the data cache.

Suppose that the data cache can respond to a fetch request that hits in the cache in time
Thit. Suppose that each successive access to that cache line takes time Tpipe. If the register
write port is only one word wide, then the time required to reload a context of C words1

into a segmented register file is:

(EQ 2-1)

If after returning to a context, a Named-State Register File must reload N words in order to
finish the current thread, this will take time:

(EQ 2-2)

For many modern RISC processors with on-chip data caches [57], Tpipe is equal to Thit.
But since cache access time determines the cycle time of many of these processors, Tpipe
may be less than Thit on future designs [13]. The Named-State Register File must then
reload proportionally fewer registers in order to perform as well as the segmented register
file. In other words, the NSF will perform better if:

(EQ 2-3)

The same arguments apply for register spilling, which could use write buffers into the
cache to pipeline writes. Chapter 3 revisits this issue. But note that this analysis assumes
that conditional register misses and reloads can be performed as efficiently as load instruc-
tions on a conventional processor. Given the level of pipelining in most modern proces-
sors, this may add additional complexity or latency to the implementation.

2.4  Design Alternatives

Line Size

Building a Named-State Register File requires a number of design decisions. The most
basic issue is the width of register lines. As discussed earlier, a line may contain a single

1.  Ignoring the effect of instruction fetching and dispatching.

Tsegreload Thit Tpipe C 1–( )+=

Tnsfreload Thit N⋅=

N
C
----

Tpipe

Thit
------------<



42

The Named-State Register File 2.4

register, or a short vector of registers. The line is the basic unit of granularity of the
register file. While instructions may access individual registers within a line, an address is
associated with each line in the register file.

An NSF register file could be organized with lines as large as an entire context. Such a
register file would be very similar to the segmented register file described in Section 1.3.
However, an NSF with large lines is still a fully-associative structure. Lines can be allo-
cated and deallocated at any position in the register file. Any line in the file can hold any
address, and an address may move from place in the NSF during the lifetime of a program.

A segmented register file, on the other hand, is a non-associative or indexed structure.
Each context is assigned a frame in the register file, and a fixed address. Contexts do not
automatically spill and reload to arbitrary frames in the file. Some segmented files support
a fixed, round-robin frame allocation scheme in hardware [67]. While performs well for
sequential programs, a round-robin frame allocation scheme performs poorly when inter-
leaving multiple threads [36].

The line size of an NSF register file is a trade-off between area and granularity. One
advantage of large lines is that fewer fully associative decoder cells are needed to address
the register array. Another is that each decoder compares fewer address bits as line size
increases. Thus, amortizing a decoder over several registers in a line can significantly
reduce the size of the register file. However, as discussed in Section 1.3, large lines reduce
the register file utilization, since only a few registers in each line will be active at any time.
Reloading a large line may also load a number of inactive and unnecessary registers.

Multi-word lines and wide ports into the register file can improve register spill and reload
times. As discussed in Section 2.3.3, each data cache access requires a significant initial
latency. If the data path from the cache into the register file is wide enough, it can amortize
the cost of that access over several words. This may be enough to justify building Named-
State Register Files with wide lines.

Register reloads

As mentioned Section 2.1.4, there are several possible strategies for handling register
reloads in the NSF. The most efficient reload policy depends on the register line size, the
complexity of NSF logic, and the performance of the memory system. Chapter 5 investi-
gates the relative performance of different reload policies.

For misses on register reads, the NSF may reload the entire line containing the missing
register (block reload), or simply allocate a line and reload the one missing register (sub-
block reload). In order to reload individual registers into a line, each register in the line
must be tagged with a valid bit. The valid bit indicates that the register contains live data.
Every register reload or write must set the valid bit of its target. A NSF could then allocate
a line in the register file on a read miss, and only reload one register, setting its valid bit.
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The NSF could avoid reloading the remainder of the line until a read miss on another
register in that line.

An NSF could assign a valid bit to each line in the file, each register, or some sub-block
size in between the two. As discussed above, the choice of sub-block size may depend in
part on the width of the path to the data cache, and the initial latency and pipelined perfor-
mance of the data cache. If reloading two adjacent registers requires no more time than
reloading one, it may be best to reload a two word sub-block on every miss.

As shown in Section 5.4.3, valid bits and sub-block reloads may dramatically reduce
register reload traffic. Valid bits can also reduce register spill traffic, since only valid regis-
ters need be spilled when a line is replaced. However, as shown in Section 3.5, valid bit
logic requires a significant fraction of the register file area. Reloading an entire line on
misses is simpler to implement, and does not require any additional logic inside the
register file itself.

Writes may also miss in the register file. In a similar manner, a write miss may cause a line
or sub-block to be reloaded (a fetch-on-write policy), or may simply allocate a line and
write a single register (write-allocate policy) [46]. Write-allocate has the advantage that
the compiler can reuse one or two registers in a line without paying the cost of reloading
the entire line if it has been swapped out. It also means that only register reads cause lines
to be reloaded. On the other hand, it complicates the NSF spill and reload logic. A write-
allocate policy normally requires valid bits on each register in the NSF.

A fetch-on-write policy requires merging the newly written register with the rest of the
reloaded line or sub-block. Fetch-on-write can be very inefficient, especially on the first
write to a new line. A fetch-on-write policy forces the NSF to reload an empty line on the
first write to the line.

One way to improve the performance of fetch-on-write without adding valid bits to the
NSF is to have the compiler explicitly tag each write to a new line. This informs the NSF
that it should just allocate a new line for that register, rather than missing and trying to
fetch the line from memory. As shown in Section 5.4.2, tagging writes can eliminate a
large fraction of write misses and reloads. Tagging to allocate lines is easy if lines are the
size of an entire context, but much more difficult if lines are a few registers wide [46].

However, if lines in the NSF are only a single register wide, there is no need to ever reload
a line on a write miss. Each write simply allocates a new line and writes the register. All
writes to such a register file are explicity write-allocate. As shown in Section 3.6, single
register lines also simplify register allocation logic.

Explicitly deallocating a register after it is no longer needed frees up space in the register
file. This can increase the utilization of the register file, ensuring that it only contains live
data. The NSF provides a tag line for read-deallocate, to read a register and immediately
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deallocate it. As in the case of write tagging, identifying the last use of a register in a
subroutine requires effort by the register allocator. A compiler may need to generate two
versions of a code-block: one for execution within a loop, and one for the final iteration to
deallocate registers that are no longer needed. In case the compiler is not able to explicitly
deallocate each register, the NSF also provides a signal to deallocate all registers
belonging to a particular Context ID in one cycle.

Register spilling

The NSF spills lines to memory when it becomes full of live data. One way of managing
the register file is to allow the file to fill completely, and then stall on an instruction that
allocates a new line. A simpler method, from a hardware standpoint, is to always maintain
a free line in the register file. This ensures that register writes always complete, regardless
of which register is being written. The NSF can then stall the following instruction, if
necessary, to spill a line from the file. The NSF prototype chip described in Section 3.7
used the latter method. However, for simplicity, the software simulations in this thesis
followed the former strategy.

Context ID

Another design decision is the width of the Context ID field used to address registers in
the NSF. As mentioned earlier, larger CID fields allow more contexts to be active simulta-
neously, without reusing CIDs. Large CIDs increase the size of the fully-associative
register address decoders. As shown in Section 3.5, depending on the organization, the
address decoders may consume 8% to 15% of the NSF chip area. For multi-ported register
files, decoder area is not proportional to the number of CID bits, since several ports may
share the same CID.

Larger CID fields also increase the size of the Ctable which translates Context IDs to
Context Addresses. However, this single ported lookup table is relatively inexpensive to
build, and is not in the critical path for register accesses.

Registers per context

There have been several studies of the working set of sequential programs, and of the
optimum size of register windows for RISC processors [26,12]. This research indicates
that is often more efficient to divide a large register set into windows of 12 or 16 registers
each, rather than half as many windows of 32 registers each. There is little improvement in
program performance as additional registers are added to each window.

The Named-State Register File, on the other hand, can support many registers per context
without requiring each context to use those registers. In effect, each procedure activation,
or each thread, uses only as many registers as it needs. No activation will spill live data out
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of the register file without replacing it with more recent data. This may contradict those
earlier studies, and argue for allowing large register sets per context in the NSF.

However, even in the NSF, there is a cost to allowing each context to address many regis-
ters. Larger register offset fields increase the size of instruction words, since each instruc-
tion must be able to directly address three operands. In the same way, larger offsets
increase the size of the NSF address decoder.

This thesis will not fully investigate the optimum number of registers per context for
different applications. To effectively study this trade-off would require modifying the
register allocation phase of a compiler, and generating code optimized for different
maximum context sizes. Those compiler modifications for both sequential and parallel
code are outside the scope of this thesis.

Additional register ports

Additional ports into the register file have proved useful for super-scalar processors,
which must feed several functional units simultaneously. They could also be useful to
improve the performance of the Named-State Register File. An additional read port allows
the NSF to spill lines from the file as it fills, without interrupting the instruction stream.
This port does not require additional complexity in the associative decoder, since the NSF
decides internally which victim lines to spill.

Additional write ports to the NSF are not as useful, since the NSF does not support any
form of register pre-loading. At best, increasing the width of the existing write port allows
the NSF to reload several registers at a time from the data cache.

2.5 Analysis1

Intuitively, a fine-grain binding of names to locations in the Named-State Register File
would seem to require fewer loads and stores than a segmented register file to support the
same number of active threads. The simple analysis in this section bears this out.

Consider a processor with N words of fast register storage2. Assume that the number of
live registers per task is an exponentially distributed random variable with mean µ. To
support i tasks on a conventional multithreaded processor, the registers are divided into i
frames of N/i words each. With this arrangement a spill occurs in a single frame with a
probability of e-N/iµ. So the probability of a spill in any frame is given by:

1.  This analysis was first presented by Prof. William Dally.

2.  This analysis does not consider name spilling which occurs when the number of names that can be bound
to fast register storage is exhausted. Nor does it consider the impact of different replacement strategies in the
NSF.
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(EQ 2-4)

The probability density function for the total number of live registers is obtained by
convolving the density functions of the tasks together giving an Erlang distribution:

(EQ 2-5)

In a Named-State Register File a spill occurs only when the total number of live registers
exceeds N. The probability of such a spill is given by integrating Equation 2-5 from N to ∞
giving:

(EQ 2-6)

Figure 2-4 compares the spill probabilities of a segmented register file and a Named-State
Register File as the number of tasks, i, is varied from one to 32 with the number of regis-
ters, N, fixed at 128, and the average number of live registers per task, µ, fixed at 8.

FIGURE 2-4. Probability of register spilling for a segmented register file and the NSF.
Number of registers: N=128, Average live registers per task: µ=8.
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Figure 2-4 shows that the NSF has a significantly lower probability of spills than a
conventional segmented register file. With eight active tasks, half of the register storage
holds live variables. At this 50% utilization level the NSF has only a 1% probability of
spilling while the segmented register file has a 69% spill probability. Alternatively, the
NSF could attain this spill probability while accommodating eighteen active tasks, many
more than a segmented register file.
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CHAPTER 3

Implementation

The preceding two chapters introduced the Named-State register file, described how it is
accessed, and how it supports multiple contexts efficiently. But in order to be useful, the
NSF must also provide fast access to data and must be feasible to build in existing VLSI
technology. This chapter describes how to build a NSF, compares its size and speed to
ordinary register files, and demonstrates a prototype implementation.

Preface

Register files are multi-ported, meaning that they read and write several operands simulta-
neously. A typical processor reads two register operands and writes a single destination
register per instruction cycle. The register file could be built with fewer ports by time-
multiplexing within a processor cycle. This is how the MIPS-X register file [18], for
example, can support two reads and a write per cycle with a two-ported register file. Other
high performance processors require additional read and write ports to support multiple
functional units or speculative execution [24]. However, most of this discussion will
describe single cycle, three ported register files.

3.1  NSF Components

Figure 3-1 describes the detailed structure of the Named-State register file. It also high-
lights some differences between the NSF and conventional register files. The primary
difference is the NSF’s fully-associative address decoder. Before discussing the details of
register decoders in Section 3.2, this section reviews the other major components of the
NSF.

3.1.1  Inputs and Outputs

Table 3-1 lists the signals that connect the Named-State register file to a processor pipeline
and memory system. The Address buses tell the register file which registers to read and
write, while Data buses carry those operands to and from the ALU. Register addresses for
the NSF require more bits, but otherwise these buses are the same as in conventional
register files. However, the NSF also uses four Alloc signals in addition to the address bits
to indicate when to allocate and deallocate registers.
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The NSF also uses three Status signals to indicate whether an operand was resident in the
register file. In response to an access miss, the pipeline will usually stall while fetching the
appropriate register line from the data cache. After reloading the line into the register file,
the instruction can proceed. The probe instruction, introduced in Section 2.1.5, is an
exception to this schedule. Probe instructions simply test whether an operand is in the

FIGURE 3-1. Input and output signals to the Named-State Register File..

Register File Signal Type Definition

R1Adr, R2Adr, WAdr Addres
s

Input Address of register read operands 1, 2, and write operand.
Each address has the form: <Context ID: Offset>

WData Data Input Data value to write into register.

R1Data, R2Data Data Out-
put

Register read operands.

R1Dealloc, R2Dealloc Alloc Input Deallocate a register after reading its value.

WAlloc Alloc Input Allocate this write operand, do not fetch from memory.

CIDDealloc Alloc Input Deallocate all registers from the context specified in R1Adr.

R1Miss, R2Miss,
WMiss

Status Out-
put

An operand was not resident in the register file.
Stall pipeline while fetching a line from memory.

SpillReq Spill Out-
put

The register file is full. Spill a line to memory.

SpillAdr Spill Out-
put

The register address of a spilled line.

SpillData Spill Out-
put

Contents of spilled line, output through a read port.

TABLE 3-1. Signals linking the Named-State register file to processor pipeline.
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R1Data R2Data

R1Miss
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register file, but never reload or spill lines. Also note that the WMiss signal is not needed
for files that are only one register wide.

Finally, the NSF uses Spill signals to unload data from the register file when it becomes
full. The SpillReq signal stalls the processor in order to spill a line. Just as the NSF reloads
data through the register write port, it spills lines through one or both of the register read
ports. The SpillData bus simply shares those ports with the pipeline. However, the NSF
uses one additional port (SpillAdr) to spill a line’s Context ID and Offset at the same time
as its data. This register address is translated to a virtual memory address by a table lookup
as described in Section 2.3.2. This allows the NSF to spill registers into the data cache.

3.1.2  Valid bits

Each register in the NSF must be tagged with a valid bit. This indicates that the register
has been allocated in the file, and contains a valid data word. If a line of the file contains
several registers, each must have a valid bit. When a line is first allocated for a register,
only that register’s valid bit will be set. (This is known in cache terminology as sub-
blocking). Subsequent writes to other registers in the line set their valid bits as well. As
described in Section 2.1.3, a read_deallocate operation will clear the valid bit associated
with a register after reading the value of that register. Finally, the NSF must be able to
deallocate all registers belonging to a single context by clearing all their valid bits in one
operation.

3.1.3  Victim select logic

The victim select logic determines when the Named-State register file becomes full, and
also picks which line to spill to make room for new registers. To simplify the pipeline, the
NSF should always maintain one free line in the register file. This ensures that register
writes always succeed, and allows instructions to drain from the pipeline. If an instruction
writes the last free line in the register file, succeeding instructions must stall to allow the
NSF to spill a line. Full detection logic simply checks that all register lines have a valid bit
set.

The NSF uses a Pseudo Least Recently Used strategy (PLRU) [37] to pick which line to
spill from the file. It approximates a true LRU strategy using a single access bit per line.
The NSF sets this bit on any read or write to a line. A rotating victim pointer points to the
first line whose access bit is not set. When all access bits are set, they are all cleared, and
the victim pointer is advanced by one line. This ensures that the NSF never flushes regis-
ters that have recently been accessed. This strategy takes advantage of the temporal
locality of register accesses among several different contexts.

The NSF could use other victim selection strategies, such as round-robin, which steps
through each line in sequence, moving to a new line every time the register file fills up.
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This is simple to implement, but completely ignores the order in which registers were
accessed. A simple variant of the round-robin strategy never flushes a line that has just
been written, to avoid thrashing in the register file. Finally, a random or pseudo-random
strategy simply picks a victim at random from among the register lines.

3.2  Fixed Register File Decoders

The most significant difference between the Named-State register file and conventional
register files is the NSF’s fully associative address decoder. Before describing how to
build such a programmable decoder, this section reviews how to build address decoders
for conventional register files.

Conventional register files use fixed address decoders. The register file is divided into N
rows, each M registers wide. An address R bits wide (where R=log2N), selects one of the
N rows. If each row contains several registers, other address bits select one of the registers
to read or write.

Figure 3-2 shows a single row of such a register file. Each of three decoders in each row
checks if an operand address matches the index of this row. If so, the decoder drives the
appropriate word line to read or write this row of the register array1.

There are many ways to decode a register address. The one-stage decoder, shown in
Figure 3-2, checks to see if the address bits encode its row number by performing an R bit

1.  Logic external to the register file ensures that it will never simultaneously read and write a single register
within the array. Instead, the logic enables bypass paths to directly carry the output of one instruction to the
input of the next.

FIGURE 3-2. A row of a conventional register decoder.
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wide AND. Buffers drive R bits of an operand address and R bits of its inverse down
across each row decoder.

An alternative is to use a tree of decoders for each row, in which each AND gate is only B
bits wide, rather than R bits. Each stage of the tree is faster than a single stage decoder,
since gate switching speed is a function of fan-in. This structure also allows successive
levels of the decoder to buffer up the signal in order to drive a large capacitance word line.

A final alternative is to pre-decode the register address bits, and use a two-level decoder
structure. If the R bit operand address is composed of M fields of B bits each, the first
decoder stage converts each field of B bits into 2B decoded signals, and drives these
signals down across each row. Each row decoder AND gate is then only M bits wide.

Since the first stage of decoding is combined with address drivers, this structure may be as
fast as a one-level decoder, with much lower fan-in per gate. This design can also be built
with the same number of buffered address lines as in the one-level decoder. If B=2, the
first stage converts each field of two address bits into four decoded signals, for a total of
2R signals. Because of its speed and compactness, a pre-decoded structure is often used to
address large register files.

3.2.1  Decoder circuit design

Although the decoders shown above perform a NAND across several address bits, that
NAND need not be a simple combinational gate. A combinational M input NAND gate
requires 2M transistors in CMOS technology, and does not scale well with the number of
inputs.

FIGURE 3-3. A two-stage, fixed address decoder.
Each of M pre-decoded fields is 2B bits wide , in which only one line is active.
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Decoder gates can also be built as precharged NAND structures. These designs pull up on
an output line during one clock phase, and then pull down on that output through a chain
of pass transistors during the next phase. While precharging requires more complicated
clocking strategies, and is only suitable for synchronous circuitry, it only requires 2+M
transistors. A precharged design can be faster than a fully combinational design for small
M.

In an alternative precharged NOR gate, each input can discharge the output through a
single transistor. While this design adds more capacitive load to the output signal, it scales
better than NAND structures for large M.

3.3  Programmable Decoders

The Named-State register file uses a programmable address decoder to build a fully asso-
ciative structure. While each row of a fixed decoder is wired to recognize its index on the
address lines, the NSF decoder is first programmed with an address, and then matches
against that address on subsequent accesses.  Figure 3-4 describes the behavior of such a

programmable decoder. Each row of the decoder contains a latch that holds the address of
this register line. An address is written into the latch when this row is allocated to a
register variable. Each of three operand decoders performs a multi-bit comparison of the
latched address with an operand address.

FIGURE 3-4. A row of a programmable address decoder.
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Since a register address in the NSF consists of a Context ID and an Offset, each row
decoder must latch that full address. However, as shown in Figure 3-4, the two read oper-
ands share a common CID, while the write operand uses a different CID. This allows the
NSF to copy registers from one context to another, and for successive instructions to come
from different contexts. But since no instruction needs to read from different contexts at
the same time, the NSF can economize on address lines.

In the structure shown here, each row matches against CID and offset separately. This
allows an instruction to deallocate all rows that belong to a particular context. It also has
the advantage that each XNOR gate has fewer inputs. A two-level structure can be as fast
as a single level for this number of address bits.

3.3.1  A programmable decoder cell

While Figure 3-4 describes a row of a decoder as separate latch and match logic, it is
smaller and faster to build as an array of Content Addressable Memory cells [33]. A CAM
cell is a latch that matches against its address lines. Each row of the NSF decoder consists
of C CAM cells to match against Context ID bits, and O cells to match Offset bits.

Figure 3-5 is a schematic diagram of an address match unit for Offset bits, showing one bit
of a simple CAM cell.  This cell contains a one bit address latch, as well as three sets of

FIGURE 3-5. A single bit of a programmable address decoder.
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operand address match logic. Initially this row of the register file is empty. When the NSF
allocates this line, it asserts alloc for this row. This loads a new address into each latch bit
CDLatch in the row. On subsequent accesses, if this bit of any of the operands matches the
value in CDLatch, the match logic enables a bit of the precharged NAND gate. If all the
bits match, the decoder asserts a word line into the register array to read or write that
register.

The bit cell shown in Figure 3-5 matches one of three operand offsets against the address
offset of this row. A reduced form of this bit cell compares two Context IDs with the CID
of this row. A final set of NOR gates combines the two match results and drives the word
lines. Each NAND chain is short enough that the decoder is not significantly slower than
conventional fixed decoders.

3.3.2  Alternative decoder designs

Figure 3-5 describes a very simple decoder circuit design. Other designs may be faster or
more efficient. The thesis does not investigate those circuit designs, since the goal is to
evaluate the effect of different architectural decisions on register file performance. This
section discusses some alternatives.

The precharged NAND circuit is as fast as a NOR gate for a small number of address bits.
Since CID and offset should each be 5-6 bits wide, there is no advantage to using a NOR
structure, which requires additional signal lines to clock properly. Alternatively, a
programmable decoder could use pre-decoded address lines, using a NOR across 2B

decoded bits and then a NAND of M results. However, this would require Mx2B bits of
address latch, rather than MxB bits for a single-level decode.

This design uses a single transistor clocked with cclk to discharge the entire NAND chain
of match transistors. An alternative for both NAND and NOR designs would be to gate
operand addresses with a clock. If both op1adr and op1adr#  are held low until the
discharge phase, then the final pull-down transistor to ground on op1match# is not needed.
This might speed up decode, and eliminate some signal lines, but would significantly
complicate clocking strategy for the circuit.

Another technique for speeding up the decoders is to attach a sense amplifier to each
match line. The sense amplifier could detect when the line begins to discharge, and drive
the word line much faster. Otherwise, a simple NOR gate must wait for the match lines to
completely discharge through a long chain of pass transistors.

By way of example, a new design for a memory management unit exploits some of these
techniques to build a 64 entry translation look-aside buffer [33]. The fully associative
address decoder matched across 22 address bits in a precharged NOR structure with sense
amps. The TLB had an access time of 4.35ns in a foundry ASIC process.
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3.4  Performance Comparison

The Spice circuit simulator [58] was used to evaluate the performance of the Named-State
register file as compared to conventional register files. Several different designs were
tested for each file. This section describes the results of those simulations.

The goal of this study was not to build the very fastest register file decoders. Instead, the
simulations compared two decoders built in a conservative process, with very simple
logic. No complex clocking schemes or fancy circuit techniques were used in this compar-
ison. Instead, both decoders were designed using the same level of effort, in hopes that the
relative performance would scale to more aggressive designs.

Each simulation traced the time required to decode a register address and drive a word line
into the register array, and to read out the contents of a register. The simulations did not
count time required to drive signals to and from the processor pipeline, or additional
multiplexers on the data path. The circuits were synchronous with a global clock cclk,
which allowed them to use precharged decoding logic. The simulations assumed that
register addresses were stable and could be driven across the decoders before the start of
the decode phase. All decoder logic was allowed to settle before gating with cclk.

These simulations used a relatively conservative, 1.2 µm CMOS process. It is a two-level
metal process, with an average capacitance of 0.3 fF/µm for minimum width first level
metal. The simulations used the size of an SRAM cell in this process to estimate the height
and width of different register file organizations. The simulations estimated the total
capacitance on signal lines by adding the gate or drain capacitance of transistor loads on
the lines to the wire capacitance.

The decoder for the “segmented” register file used pre-decoded address lines and a pre-
charged NAND pull-down decoder for each operand. Two organizations were tested: a
decoder for a 128 row by 32 bit wide register file, as well as a 64 row by 64 bit word
design. The latter design required each decoder to match across fewer address lines, but
added additional load to the row word line drivers.

The same two register file organizations were simulated with programmable, “Named-
State” address decoders. These designs used pre-charged, NAND pull-down circuits to
decode the bits. The associative decoder did not pre-decode any address bits, since each
row decoder must match across all bits of the address anyway. Pre-decoding does not save
area for programmable decoders. For the number of address bits required, NAND pull-
down structures were somewhat more compact than pre-charged NOR circuits, and were
just as fast.

Figure 3-6 shows the results of these Spice simulations. The NSF required 12% to 23%
longer to decode addresses than a pre-decoded, segmented register file, since it must
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compare more address bits. It also took 15% more time to combine Context ID and Offset
address match signals and drive a word line into the register array.

For both register file sizes, the time required to access the Named-State register file was
only 5% or 6% greater than for a conventional register file. This may affect the processor’s
cycle time, if the register file is in the critical path. Currently, many processors are instead
limited by cache access time [34].

3.5  Area comparison

This section compares the VLSI chip area required to build a Named-State register file
with that required for a conventional register file. The area estimates were derived using
cell layouts from a prototype NSF implementation described in Section 3.7. That chip was
built using an inefficient 2µm N-well CMOS process, with two levels of metal intercon-
nect.

Figure 3-7 illustrates the relative area of the different register files. In 2µm technology, a
128 row by 32 bit wide Named-State register file with one write and two read ports is 78%
larger than the equivalent segmented register file. An NSF that holds 64 rows of two regis-
ters each requires 46% more area than a segmented register file.

Figure 3-8 shows the same area comparison, if the register files were built using a more
aggressive 1.2µm CMOS process. Because the NSF programmable decoder can be laid

FIGURE 3-6. Access times of segmented and Named-State register files.
Files are organized as 128 lines of 32 bits each, and 64 lines of 64 bits each.
Each file was simulated by Spice in 1.2µm CMOS process.
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out more compactly under the address lines, and because metal pitch shrunk more than
minimum feature size, the decoder consumes a smaller fraction of the register file area in
this technology. However, the random logic for valid bits and victim selection is a larger
fraction of chip area. In this technology, a 128 row by 32 bit wide Named-State register
file is 54% larger than the equivalent segmented register file. An NSF that holds 64 rows
of two registers each requires 30% more area than the equivalent segmented register file.

3.6 Design Alternatives

Line Width

Figure 3-8 shows the effect of line width on register file area. A NSF file with two regis-
ters per line is 20% smaller than a file with single register lines. This comes from amor-
tizing decoders and valid bit logic across more bits of registers. A file with wide lines also
matches fewer address bits in the programmable decoder. A two register wide file is only
slightly slower than a file with one register per line.

FIGURE 3-7. Relative area of segmented and Named-State register files in 2um CMOS.
Area is shown for register file decoder, word line and valid bit logic, and data array. File sizes are
expressed as bits wide x registers high. All register files have one write and two read ports.
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Register spilling

Another alternative concerns how to flush registers. When the NSF spills a register, it must
spill both data and address. One way of reading out the address bits is through the write
operand bit lines wadr and wadr#. Another is to widen the register array, and store address
bits alongside register data. A final alternative is to provide additional ports out of the
register file, so that a register can be spilled while others are being read and written. All
the simulations and area estimates in this thesis use the first alternative.

Additional ports

Many recent processors require more than two read ports and one write port into the
register file. Extra ports may be used to service additional functional units, to support
speculative execution, or to allow spilling and reloading of registers in the background.
Figure 3-9 estimates the relative area of segmented register files and the NSF, each with
two write ports and four read ports. Note that the NSF files in this comparison can read
from one context, and write to two other contexts in a single cycle. (The CID decoders are
three ported).

As ports are added to the register file, the area of an NSF decreases relative to segmented
register files. In this comparison, a 128 row by 32 bit wide Named-State register file is

FIGURE 3-8. Relative area of segmented and Named-State register files in 1.2um CMOS.
Area is shown for register file decoder, word line and valid bit logic, and data array. All register
files have one write and two read ports.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

Area of register files in 1.2um CMOS
A

re
a
 in

 u
m

^2

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

Segment
32x128

Segment
64x64

NSF
32x128

NSF
64x64

0%

20%

40%

60%

80%

100%

120%

140%

160%

%
 A

re
a

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

Decode

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

Logic

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

Darray

Ratio

100%
89%

154%

120%



3.7 A Prototype Chip

61

only 28% larger than the equivalent segmented register file. A 64 by 64 bit wide NSF is
only 16% larger than the equivalent segmented register file. In these estimates, the area of
a multiported register cell increases as the square of the number of ports. Decoder width
increases in proportion to the number of ports, while miss and spill logic remains constant.

3.7 A Prototype Chip

A prototype chip was built to evaluate the Named-State register file. The goals in building
this chip were:

• To design and evaluate the NSF logic in detail.

• To show that the NSF could be built in conventional VLSI technology.

• To investigate the performance of the NSF, and to verify circuit simulations.

• To validate area estimates of different NSF implementations.

The chip logic was designed by Peter Nuth and David Harris. The chip was designed and
laid out by David Harris over the summer of 1992. The chip was fabricated by the MOSIS
fast prototyping service. Figure 3-10 shows a photograph of the completed chip.

FIGURE 3-9. Area of 6 ported segmented and Named-State register files in 1.2um CMOS.
Area is shown for register file decoder, word line and valid bit logic, and data array. These
register files have two write and four read ports.
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FIGURE 3-10. A prototype Named-State Register File.
This prototype chip includes a 32 bit by 32 line register array, a 10 bit wide fully-associative
decoder, and logic to handle misses, spills and reloads. The register file has two read ports and
a single write port.
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3.7.1  Design Decisions

• The chip is fabricated in the MOSIS double metal, 2µm N-channel CMOS process.
While this is not a dense process, it was the only one that our CAD tools could support
at the time.

• The chip holds a 32 line by 32 bit register array, with one register per line. This was the
smallest realistic register file that we could build. Using single register lines simplified
decoder and valid bit logic.

• The prototype chip used 10 bit wide register addresses, 5 bits of CID and 5 bits of Off-
set. This is clearly too large for such a small register array, but it allowed us to evaluate
the performance of larger register files. A 10 bit address would be appropriate for a 128
register NSF.

• The address decoder was built as described by Figure 3-5, using two 5 bit wide pre-
charged NAND chains. The prototype does not use any unusual circuit techniques.

• The prototype could read two registers and write a third on every cycle. Unlike NSF
designs described here, the prototype chip could be addressed with three distinct CIDs
simultaneously. Since most realistic processors would share a single CID between two
read operands, the prototype address decoder is larger than necessary.

• Rather than a pseudo-LRU victim selection strategy, the prototype chip used a round-
robin scheme to pick a register to spill. A simple rotating shift register selected the next
victim.

• The chip used a conservative, static logic design for valid and miss logic.

• Finally, since the prototype used single register lines, every write operation attempted
to allocate and write a new register in the array. A write never missed, since the chip
logic always maintained at least one free line in the array. On every register write, the
NSF wrote a data word into that free line. If the write address did not match any exist-
ing line in the file, the NSF set a valid bit on the free line, allocating that register. Oth-
erwise, if the write address already existed in the file, the data word was written to that
existing line.

Appendix A describes the structure and operation of the prototype chip in more detail.
That report also describes the purpose and logic design of each of the basic cells in the
prototype.
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CHAPTER 4

Experimental Method

4.1  Overview

This chapter outlines the software simulation strategy used to evaluate the Named State
Register File. The results of those simulations are detailed in Chapter 5.

Figure 4-1 describes the simulation environment. At its core is a flexible register file simu-
lator called CSIM. The simulator is driven by traces of parallel and sequential bench-
marks. The filters S2NSP and TLTRANS translate the assembly code of those benchmarks
to NSF instructions. The filters also annotate the assembly code so that when it is run on a
conventional architecture, it generates a full trace of the program’s execution. CSIM reads
both translated NSF code and program traces, and simulates accesses to a register file of
arbitrary size and organization.

4.2  Register File Simulator

Figure 4-2 outlines the modules of CSIM, the register file simulator. The core of the simu-
lator is a flexible register module, and a pipeline control unit that issues reads and writes to
the registers. Other modules fetch instructions, interleave streams, and handle code and
trace files.

4.2.1  Simulator Instructions

In order to simulate application programs, we generate traces of basic blocks, not full
instruction traces. A basic block is a contiguous sequence of instructions between branch
points. The code translators S2NSP and TLTRANS must be able to parse native assembly
code and recognize branch instructions and branch targets. In return for this extra
complexity, block traces are much smaller and faster to generate than instruction traces.
Typical basic block traces for the applications used in this study are 80MB - 200MB long.
A full instruction trace would be approximately 20 times longer. More importantly, this
strategy allows CSIM to read in the entire program as NSP code before beginning the
simulation. By paging in the block trace during execution, CSIM requires far less disk
bandwidth than an instruction trace approach. As a final optimization, the block tracing
routines compress traces on the fly to further reduce their size by a factor of eight.

CSIM executes a very simple instruction set known as Icode. Icode abstracts away all
details of the instructions executed. In fact, Icode does not specify ALU operations at all,
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merely distinguishing register to register instructions from loads and stores or branches
instructions. Table 4-1 describes the Icode instruction types.

The only unusual Icode instructions are the context control instructions NEWCID,
POPCID, and SWITCHCID. An ordinary subroutine call does not automatically create a
new context for the child procedure register frame. Rather it is the called procedure's
responsibility to allocate and deallocate a context as needed. NEWCID creates a new
context identifier, but does not explicitly allocate any registers for the new context. Subse-
quent instructions from this thread will use this new context identifier to allocate, read and
write registers. The POPCID instruction, on the other hand, explicitly flushes any of the

FIGURE 4-1. Simulation environment.
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current context's registers that remain in the register file. The SWITCHCID instruction
switches to a new context as determined by thread control routines. (See Section 4.2.2).

Each Icode instruction may specify several source register operands and a destination
register. CSIM permits the register accesses described in Table 4-2.

FIGURE 4-2. The CSIM register file simulator.

Instruction Description

NOP Do nothing

REG Any register to register instruction

LOAD Load word from memory into register file

STORE Store register into memory

BRANCH Jump to a new basic block

CALL Subroutine call to a new basic block

RETURN Return from subroutine

NEWCID Create new context

POPCID Deallocate this context from register file

SWITCHCID Switch to an existing context

TABLE 4-1. Icode instruction types.

Register access Operation

READ Normal register read. Miss if register is not resident.

READ_DEALLOC Read register, then deallocate.

TABLE 4-2. Register access operations.
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A normal READ access simply reads the value of a register. If the register is not resident in
the register file, the pipeline stalls and must fetch the register from memory. READ_-
DEALLOC explicitly deallocates the register when it is no longer needed. If all the regis-
ters in a line have been deallocated, the entire line is cleared from the register file.

WRITE_ALLOC allocates a new register line and writes a register within that line. A
normal WRITE operation assumes that the register addressed is resident in the register file.
If it is not, the simulator must fetch that register line from memory. This distinction allows
a compiler to label first writes to a register line, so that the instruction will never cause a
write miss on an unallocated location. However, if the register file is organized with only a
single register per line, there is never any reason to miss on writes. The simulations take
this into account, executing all WRITE operations as WRITE_ALLOC for single word
register lines.

As mentioned in Section 2.1.3, each read or write may access a register in the current
context, or in its parent context. Thus a single instruction may copy a value from a caller’s
register frame to the callee’s frame. Each access can also set or clear a register full bit for
synchronization on a data word.

4.2.2  Thread control

The CSIM simulator can run three types of programs:

• Sequential code.

• Coarse grain parallel code formed by interleaving several sequential programs.

• Pure parallel programs.

CSIM can issue register accesses from a single instruction stream or from several concur-
rent streams. To emulate multithreaded code, CSIM can interleave instructions from a
number of distinct sequential programs. By switching threads in response to run-time
events, CSIM can simulate the behavior of parallel programs. Otherwise, an external
parallel processor simulator may generate traces of a true parallel program running on a
single processing node. These traces specify both basic block and context, to represent any
number of thread scheduling policies. If such a parallel simulation environment is avail-
able, it relieves the burden of specifying a realistic scheduler within CSIM.

The benchmarks described in the chapters that follow are all either purely sequential
programs traced on a conventional processor, or parallel programs traced by a parallel

WRITE Write register. Miss if register is not resident.

WRITE_ALLOC Allocate register line, then write.

Register access Operation

TABLE 4-2. Register access operations.
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processor simulator. When running a purely sequential program, CSIM allocates a new
context to each new procedure invocation. This allows register contexts to be used as stack
frames, in a manner similar to register windows [66]. Instructions may copy data from a
parent’s context to its child for argument passing, or from child to parent to return the
result of a procedure call.

When interleaving multiple sequential threads, CSIM creates a new context for each
procedure invocation by each of the threads. Instructions may pass data between parent
and child procedures, or between concurrently running threads1. CSIM may switch
between threads in response to a number of run-time events, such as a procedure call or
return, or a register operand miss. CSIM can simulate an external data cache in order to
switch threads on a cache miss, or may simply force a cache miss on some fraction of
cache accesses. CSIM tracks full/empty bits on register locations in order to set and clear
synchronization points on those registers. However, no provision is made to automatically
restart a thread when a synchronization variable has been resolved. Finally, CSIM may
emulate a HEP style [76] multithreaded pipeline by running the threads in a round-robin
manner, issuing a single instruction from each thread before switching to the next.

In order to run a pure parallel program on CSIM, the program must have generated a trace
file that indicates both which basic blocks to run and when to switch contexts. Otherwise,
CSIM would have to fully emulate the thread scheduling policy, as well as the semantics
of that parallel program language. The parallel program traces used in this study consist of
basic block and context identifier pairs. The TAM parallel programming language [21]
used in this study ensures that synchronization points always occur at the end of basic
blocks, so that each block runs to completion, and context switches occur only at basic
block boundaries.

4.2.3  Context ID management

In order to support the three different thread execution models described in Figure 4-1,
CSIM tags each instruction executed with a unique context number. The context number is
a three word tuple: . The task field distinguishes statically
defined task traces. This allows CSIM to run multiple copies of the same trace, each
rooted at a different context number. A task may fork any number of child threads at run-
time. Each child is assigned a new iteration number within the current task. Finally, a
sequential or parallel thread may call and return from subroutines. Specific NSF instruc-
tions in the code trace increment the context number’s call_depth field after a procedure
call to allocate a new context for each call frame.

1.  Note that this requires a thread to know the context number of a particular invocation of another thread.
This is not well supported by existing sequential languages.

Task{ Iteration Call_Depth }
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A given instruction stream, labelled with a unique  pair, has a single
call stack. As the stream calls and returns from procedures, it increments and decrements
the call_depth. Since each stream has only one call stack, the tuple always uniquely iden-
tifies an existing context.

While a context number can address an unlimited number of contexts, the number of
contexts that may be resident in the register file is quite small. So the NSF uses a short
context identifier, or CID, to address contexts in the register file. The field used to repre-
sent the CID need only be large enough to refer to all the contexts in used by concurrently
running threads. Depending on the size of the register file, a typical CID field might be 5
or 6 bits wide, large enough to refer to 32 or 64 concurrent contexts.

The context map module of CSIM translates context numbers associated with threads to
CIDs for addressing the register file. It also translates a CID to the address of a context in
memory when flushing a register out of the file. This is the role of a Ctable, as described
by Section 2.3.2. Every time the simulator switches to a new thread, it checks that the CID
assigned to that thread is still valid. Since there are a very large number of potential
context numbers competing for a relatively few CIDs, the context map may have to reas-
sign CIDs among the currently running threads. In practice this happens infrequently, due
to the locality of threads scheduled for execution.

4.2.4  Opfetch and Opstore

Ordinarily, CSIM will fetch and execute successive instructions from a single thread, until
hitting an exception as described above. Every NSF instruction may read two source regis-
ters and write a third register. CSIM decodes each instruction’s source registers, builds a
register address, and fetches each in turn from the register file. If any source register is not
available in the register file, the instruction has missed and must be re-issued when the
operands become available1. At this point, the CSIM pipeline may elect to switch contexts
and fetch instructions from a new stream, or it may simply stall the current instruction
while fetching the missing register line. All the simulations described in Chapter 5 simply
stall the pipeline long enough to fetch a line from the data cache.

4.2.5  Register file

The central module of the CSIM simulator is the model of the register file itself. This
module allocates and deallocates registers, tracks all accesses, and reports hits and misses
to the opfetch and opstore units.

1.  Note that currently, CSIM fetches the registers in sequence. The same instruction may miss and be re-
issued several times if neither source register is available. Real hardware would fetch both missing registers
before re-issuing the instruction.

Task{ Iteration }
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The register file is organized in a hierarchical structure. At the lowest level is the register
cell. For every cell in the register file, CSIM tracks whether the cell contains valid data,
whether the data is more recent than data in memory, and whether the FULL bit is set for
synchronization on that register value.

Register cells are organized into lines. A register line is the unit of granularity of the
register file. Lines are flushed out and reloaded into the register file as a unit. CSIM keeps
track of whether a line is resident in the register file. It also tracks the number of live regis-
ters in each register line. When a line is flushed out of the register file, CSIM does not
modify any register cell contents except the dirty bits. In this way, when the line is
reloaded into the register file, valid registers are restored correctly.

A register frame contains all the register lines associated with a particular context. Unlike
cells and lines, register frames are not physical structures. They exist only to make the
simulation more efficient. At any time, any or none of the lines belonging to a particular
context or frame may be resident in the register file. The NEWCID instruction creates a
frame for a new context, but does not load any of its lines into the register file. The
POPCID instruction deallocates all the frame’s resident lines, and destroys the frame.

The top level register file structure in CSIM handles register accesses, flushes and reloads
register lines, and counts a large number of statistics during a simulation.

The register file can hold a fixed number of register lines. Each line could belong to any
existing register frame. A number of different policies are possible for selecting which
register line to flush when the register file is full. A specific module of the simulator
handles this victim selection. Currently, CSIM uses a Least Recently Used strategy, in
which the victim is the register line that has not been read or written for the longest time.
The register file miss handler keeps pointers to all register lines, sorted by the order in
which they were accessed. The line at the tail of the list is the victim to be flushed. CSIM
could support other victim selection strategies by using the same structures as the current
miss handler. A Round-Robin policy orders the lines by their position in the register file. A
Random policy picks a victim at random from the resident register lines. All of the simula-
tions in Chapter 5 use the LRU strategy.

Before each CSIM simulation run, a user must specify the parameters of the register file to
be simulated. These include:

• The number of registers in the register file. In this way, simulations compare equal
sized register files that are organized differently.

• The number of registers in each register frame. Different programming languages and
applications may access a different number of registers per context. All simulations set
the size of the register frame to the maximum register offset addressed by any context.
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• The number of register cells in each register line. This is the granularity of binding of
variable names to registers. A register line may range in size from a single register to
the size of a register frame. The former simulates a fully-associative Named-State reg-
ister file, while the latter simulates a segmented register file.

• The maximum number of contexts that may be addressed concurrently. This is limited
by the size of the Context ID field used to address the register file.

4.3  Sequential Simulations

This section describes the method used to translate sequential programs to run under
CSIM, and some of the implications of that translation process. CSIM requires two input
files: the translated Icode for an application program, and the trace of basic blocks
executed by a run of that program. The code translator S2NSP performs both functions for
a sequential program.

4.3.1  S2NSP

The S2NSP translator converts Sparc [79] assembly code to Icode. It also inserts instruc-
tions into the Sparc code that trace the basic blocks executed by the program. While
S2NSP could translate any program compiled for the Sparc, we have only used C [50]
language source programs for sequential benchmarks.

With some minor modifications, S2NSP could translate the assembly code of any conven-
tional RISC processor to Icode. The reason for choosing Sparc code is that the Sparc
architecture uses register windows [67]. Register windows, as fixed sized register frames,
are similar to contexts in the Named-State register file. In addition, since Sparc programs
pass procedure arguments in registers, they are a good test for passing values between
contexts. Finally, Sparc code can be converted to acceptable quality Icode with a relatively
simple translator.

To convert a Sparc program to Icode, S2NSP allocates a new context for each new register
window required. In a manner similar to the Sparc, it allocates the context after entering
the first code block of a subroutine. Only procedures within the user’s program will allo-
cate contexts, but not operating system routines that cannot be translated by S2NSP.
However, an operating system routine may call a procedure in the user program. Allo-
cating contexts at the time of the call would lead to incorrect execution.

S2NSP translates Sparc instructions to the simple Icode instructions described in Table 4-
1. It also translates references to Sparc registers to the corresponding registers in a CSIM
context. The global, local and output registers of the Sparc register window become regis-
ters within the current context. A window’s input registers become accesses to output
registers in the parent of the current context.
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While a Sparc instruction can address any one of 32 registers, the translated program will
address at most 20 registers per context under CSIM. Only the 16 local and output regis-
ters belong to the current register window. Also, S2NSP reserves two Sparc global regis-
ters to help trace the program execution. Some other global registers are reserved for use
by the operating system. The remainder can be used as scratch registers by any procedure,
and are translated to registers in the current context.

4.3.2  Limitations

The Icode produced by S2NSP is not as efficient as that produced by a compiler specifi-
cally for the Named-State register file. The most serious omission is that code produced by
S2NSP does not explicitly allocate and deallocate registers. A true Icode compiler would
deallocate registers after their last use within a procedure. However, S2NSP would have to
be far more complex in order to perform this register usage analysis. The translator would
have to record register usage within basic blocks and within the entire procedure to see
when it was safe to deallocate a register. In addition, S2NSP would have to generate
prologue and epilogue code blocks to allocate or deallocate registers used in a code block
within a loop. But even this analysis would not be enough to generate efficient Icode, since
a compiler would usually assign registers differently to accommodate CSIM.

S2NSP does not reassign registers, but merely translates Sparc register references to the
equivalent NSF registers. Since the NSF can support a large number of registers per
context without the cost of saving and restoring large register frames, a true NSF compiler
would probably use many more registers than the 20 used by the Sparc compiler. In fact,
an NSF compiler might never reuse registers within a procedure, if it were always possible
to deallocate the registers after their last usage.

Compiler construction and register assignment for the NSF is an interesting research topic
in its own right. As always in computer architecture, there is a tension between hardware
and software techniques to solve a particular problem. More sophisticated software could
simplify the design of the NSF. Unfortunately, the scope of this thesis does not allow for
such investigations.

Rather than building a more sophisticated compiler to generate Icode, the CSIM simulator
was instrumented to see the effect of more efficient software. CSIM counts all occasions
when a line is flushed out of the register file, and then never reloaded before the end of the
context. If the line contains live data, it could have been deallocated after the last read of
those registers, freeing up space in the register file. CSIM counts all such unnecessary
flushes that any reasonable compiler would have prevented.

CSIM also counts all writes to new or previously allocated registers. Some writes miss on
a register, and cause an empty line to be loaded into the register file. Had the compiler
tagged this WRITE as a WRITE_ALLOC instead, it could have prevented this unnecessary
register reload.
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The statistics gathered by CSIM count obvious situations where deallocating on register
reads and allocating on writes would improve performance. But since deallocating regis-
ters in one context could greatly reduce the number of loads and stores required to run
another context, CSIM cannot determine the true performance of tagged reads and writes
without actually simulating good code.

4.3.3  Tracing sequential programs

In order to trace an actual run of a program, S2NSP must insert tracing instructions into
the Sparc assembly code stream. Then all the assembly language files are compiled and
linked with additional tracing routines to generate an executable.

After identifying a basic block in the assembly code, S2NSP inserts a sequence of 14
instructions in-line at the beginning of the basic block. The instructions insert the unique
index of this basic block into a buffer in memory. Just before every procedure return, or
before the program exits, S2NSP inserts a call to a logging routine which writes out the
block trace buffer. The logging routine prints the traces as ASCII digits in order to make
debugging easier. However, it also pipes the output through a Lempel-Ziv [44] compres-
sion routine to reduce the size of the traces and the amount of disk I/O required.

The tracing code inserted in-line increases the execution time of the program by 20%.
However, printing out the traces, which calls a standard C library printout routine to write
out each trace index, increases the program’s execution time by a factor of 20. The final
phase, of piping the traces through a compression routine, only adds an additional 20% to
the execution time.

4.3.4  Anomalies

The Sparc instruction set contains a number of anomalies that make it difficult to translate
to Icode.

• The Sparc processor uses condition codes for all testing and branching. Since an arbi-
trary number of instructions may separate setting a condition code from the branch that
depends on it, any instructions inserted into the code stream must not modify any con-
dition codes. In particular, block tracing code cannot test an index into the trace buffer
to determine if it should flush out the traces.

• Most branch instructions on the Sparc are delayed branches. S2NSP must re-order
instructions around delayed branches when generating Icode. This is especially difficult
in the case of “branch or squash” instructions, in which the instruction in the branch
delay slot is not executed if the branch is not taken.

• The CSIM register file supports two register reads and a single write per cycle. Most
Sparc instructions are simple, 3 operand instructions that execute in a single cycle.
However, a store instruction may read three registers: the data to be stored, an address
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in memory, and an offset from that address. In addition, the Sparc instruction set
includes instructions to load and store double words. A double word load specifies a
target register for the load. Both that register and the register that follows it in the regis-
ter window are written in successive cycles. S2NSP must translate these instructions
into multiple instruction Icode sequences.

• Sparc call and return instructions implicitly read and write the stack pointer register,
one of the input registers in the register window. The Sparc instructions to push and pop
register windows may read an arbitrary register in the parent window and write another
register in the child window.

• Finally, the Sparc architecture uses a separate set of registers for floating point opera-
tions. CSIM does not model these registers at all. For this reason, none of the applica-
tions chosen for this study use much floating point arithmetic.

4.4  Parallel Simulations

Converting parallel programs to run under CSIM is similar to converting sequential
programs. In both cases, the source program is translated to Icode, and a run of the appli-
cation generates a basic block trace. However, there are not many true parallel program-
ming environments that could be converted to run under CSIM. Some programming
environments consist of a message-passing library called from within ordinary C
programs [73]. Other approaches statically partition the application into a small number of
very large threads that are each run on a separate processor [74]. Neither of these program-
ming environments could generate code well-suited for execution on a multi-threaded
processor. To evaluate the context switch performance of the NSF required an application
with many short threads, and frequent switching between threads. For our parallel experi-
ments, we used Dataflow programs written in Id [60], as compiled using the Berkeley
TAM compiler [72].

4.4.1  TAM code

A goal of the TAM (Threaded Abstract Machine) project is to evaluate the performance of
Dataflow programs on a number of different machine architectures. The traditional
approach to running Dataflow code has been to build processors customized for that
language [7,65]. Many of these machines treat each Dataflow instruction as an indepen-
dent task, and synchronize between instructions. The Berkeley TAM compiler instead
produces code for general purpose parallel computers [64,81]. The TAM compiler groups
instructions into short sequential code blocks. The TAM run-time scheduler attempts to
group together a set of code blocks to run as one unit. This technique reduces the number
of context switches required to execute the Dataflow program, and produces code that runs
on conventional sequential processors [79].
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In order to produce code for a number of different processors, the TAM compiler compiles
Id programs to a common intermediate language known as TL0 [84]. TL0 represents the
assembly language of a Threaded Abstract Machine, much like Pascal’s p-code. A number
of translators have been written from TL0 to different instruction set architectures. A
portable translator converts TL0 to C code [50] and then compiles the resulting program
for a specific machine.

Every TL0 subroutine is partitioned into a number of short threads1. Each thread executes
to completion without suspending or branching. It is similar to the basic blocks of sequen-
tial programs. A thread may fork another thread by pushing a pointer to that thread onto a
local thread queue known as a continuation vector. Threads on the thread queue are
executed in LIFO order, so if ThreadA forks ThreadB and then terminates, it ensures that
the processor will simply branch to ThreadB.

The only conditional statements in TL0 are conditional forks, which fork one of two
threads onto the local queue. Threads may also be synchronizing, meaning that they are
controlled by an entry count variable. Each fork of a synchronizing thread decrements and
tests its entry count. The thread will not execute until its entry count reaches zero. This is
useful to ensure that all variables used in the thread are available before running the
thread. The compiler is responsible for allocating and initializing all entry count variables
for an invocation of a subroutine.

Every TL0 subroutine also contains a number of inlets, or message handler routines. Inlets
are similar to threads, in that they are short blocks of code that run to completion.
However, since inlets respond to messages sent by other processors, they run asynchro-
nously, and may interrupt other threads. An inlet can read and write variables within the
current context, and may also fork threads. Inlets are used to receive arguments to a func-
tion, the results returned by child function calls, and responses to global memory requests.

Since TL0 is an explicitly parallel language, it assumes that any number of invocations of
a subroutine may be running at one time. Each subroutine invocation is known as an acti-
vation. An activation frame is the context of a single activation. It contains all local vari-
ables for the activation, some local queues for scheduling threads within this activation,
and a pointer to the code for this subroutine. Every thread forked by the activation is
pushed onto its local thread queue. The TAM run-time system will run all threads on the
local queue before deactivating the current activation frame and switching to a new activa-
tion. This ensures that the processor will run for as long as possible within a single context
before switching to a new context. TAM will never schedule an activation for execution
unless it contains threads that are ready to run.

1.  Note that TAM “threads” are short code blocks, not the general parallel activations described in the rest
of this thesis.
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Since the threads of an activation are run sequentially, the only way of spawning paral-
lelism in the TAM system is by sending a message. Sending a message to Inlet0 of a
subroutine allocates and initializes a new activation frame for that subroutine. Inlet0 allo-
cates all local variables, sets up all entry counts for synchronizing threads, and initializes
the local task queue. Similarly, Thread0 of a subroutine terminates the current activation.
It sends the result of the subroutine call in a message to its parent activation, and deallo-
cates the current activation frame.

4.4.2  TLTRANS

The TLTRANS filter translates TL0 code to Icode for execution under CSIM. Every TL0
inlet or thread becomes an Icode basic block. Every TL0 instruction is translated into one
or more Icode instructions. References to TL0 local variables and synchronization
counters become references to CSIM registers.

Each TL0 synchronizing thread is translated into two Icode blocks: The first simply decre-
ments the entry count for this thread and exits. The second basic block decrements the
entry count and then runs the thread to completion. Since CSIM does not know the initial
value of each synchronization counter, it relies on the trace of the TAM program to indi-
cate each decrement and test of the counter, and the final successful execution of the
thread.

A TAM activation frame is equivalent to a CSIM context. Unlike conventional stack
frames, CSIM contexts can be saved to memory and resumed in any order. TLTRANS
allocates a register in the context for each TAM local variable or synchronization counter.
The size of the context required for each subroutine depends on the number of local vari-
ables in the subroutine. In order to simulate the resulting Icode, we must set the context
size in CSIM to the size of the largest subroutine in the application.

4.4.3  Tracing TAM programs

While TL0 code is inherently parallel, it can also run on a sequential processor. A
compiler known as TLC translates the TL0 code of an application to C code. All thread
scheduling and message sending is handled by calls to a TAM run-time library. The
resulting compiled C program is a simulation of a TAM machine running the application.

TLC can also produce annotated C code, which traces every thread and inlet as the
program runs. It will also trace every synchronization counter, and every failed attempt to
run a synchronizing thread. We have written a program to translate this verbose tracing
output to a block trace for CSIM. The resulting trace specifies every basic block that was
executed, and the context in which it ran. Running this trace under CSIM describes one
execution of a parallel program on a sequential processor. Unfortunately, since thread
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scheduling decisions are compiled in with the application program, TLC does not allow a
user to vary that execution at all.

4.4.4  Limitations

Register allocation

There is no register allocator yet available for the Threaded Abstract Machine. Register
allocation in TAM is difficult, since thread may execute in any order within a quanta.
While this allows threads to be grouped together and minimizes context swtiches, it makes
variable lifetime analysis very difficult.

TAM sets no hard limit on the number of local variables per activation. As a result, there is
a greater variance in the size of contexts in TL0 programs than in Sparc programs. Some
TL0 subroutines will use only a few local variables, but TLTRANS will create a large,
fixed size context for each routine. This means that many TAM programs will run very
inefficiently with some register file configurations under CSIM. In particular, when CSIM
is used to simulate a segmented register file, every context switch will require loading and
storing very large contexts, even though the compiler may know that most of those regis-
ters were never used by a particular subroutine.

There are several ways of overcoming this problem with our translation system. The first
would be to set a maximum context size in TLTRANS, and for the translator to only map
some local variables to those registers, leaving the rest in the context’s memory segment.
However, since TLTRANS cannot do register usage analysis on TL0 code, it will not be
able to pick the best subset of local variables to assign to registers.

The approach used in our simulations is to set a limit on the maximum context size in
TLTRANS, and to simply map all local variable references into this small number of
registers. So even if the application uses hundreds of local variables per thread, the simu-
lator only touches 32 or 64 registers per context. This mapping is completely simplistic,
and does not take into account variable usage frequency, or locality of references.

Thread scheduling

The preceding section highlights another problem with this method of tracing TAM code.
We trace an execution of a parallel program on a sequential processor. All messages that
the processor receives were generated by its own threads. In the absence of these
messages, threads would all run on this processor, in depth-first order, just like a sequen-
tial program. Since inlets are asynchronous, they will interrupt this execution order. While
this is not the most interesting run of that program, it is not clear whether a true parallel
execution would show different register miss and reload rates under CSIM.
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When a TL0 procedure calls another subroutine, it sends a message to that routine’s Inlet0.
The inlet handler creates the child’s context, and runs within that context. Subsequent
message sends pass arguments to the child routine through other inlets. A sequential
processor, after running each inlet, will return to caller’s context, and continue to run
threads in that context. The processor will not switch to run any threads in the child
context until all ready threads in the parent have completed.

This thread schedule is exactly that of a sequential program in which the caller creates a
stack frame for the child, and initializes local variables in that frame. The child does not
actually run until the parent is forced to wait for the result of the procedure call. Of course,
a TL0 procedure may spawn several child routines concurrently, and may pass arguments
to each, before invoking them in turn.

Since TAM software will compile and run on parallel processors, we could try to generate
traces on different parallel machines to see if the code performs any differently than on a
sequential processor. We could trace the threads and inlets executed on one node of a
multi-computer and run that trace through CSIM. Unfortunately, the TAM software library
does not readily generate thread traces on parallel processors. Modifying the TAM soft-
ware or instrumenting other parallel simulators to produce these traces is outside the scope
of this thesis.
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CHAPTER 5

Experimental Results

This chapter describes the performance of the Named-State Register File running a
number of sequential and parallel applications. The first section describes the benchmark
programs used in this study. Later sections review the advantages of the NSF relative to
conventional register files, and present simulation results that support these claims.
Succeeding sections analyze the behavior of several different register file organizations, to
see which factors contribute most to performance. The chapter closes by computing the
overall effect of Named-State on processor performance.

5.1  Benchmark Programs

The performance results in this chapter are simulations of three sequential and six parallel
programs. As described in Chapter 4, the sequential applications were written in C [50],
compiled to Sparc assembly code [79], and translated to assembly code for the CSIM
simulator. The sequential benchmarks are:

• ZipFile A public domain compression utility, based on the Lempel-Ziv [44] algo-
rithm. Zip is compressing a single 8,017 byte file.

• RTLSim An register transfer language simulator for the Message Driven
Processor [22]. RTLSim is running a 198 cycle network diagnostic on a
single MDP node.

• GateSim A gate level simulation of the MDP. This program is a superset of RTLSim,
using the RTL simulator to trigger a much more intensive simulation of the
MDP gates. GateSim is running a 735 cycle suite of network diagnostics on
the gate level model of the MDP router.

The parallel programs were written in Id [60], compiled and traced using the Berkeley
TAM simulator [21], and translated to CSIM code. The parallel benchmarks are:

• AS A simple array selection sort.

• DTW Dynamic time warp algorithm.

• Gamteb Monte Carlo photon transport in a cylinder of carbon.

• QS Quick-sort using accumulation lists.

• Paraffins Generates paraffin molecules from radicals.

• Wavefront A multi-wave matrix manipulation algorithm.
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Experimental Results 5.2

As described in Section 4.3.2, the sequential programs were only able to use a maximum
of 20 registers per procedure call. However, each parallel program defined many local
variables per context, which were then mapped into 32 registers. Thus all the simulations
in this chapter assume 20 registers per context for sequential code, and 32 registers for
parallel code.

Table 5-1 lists the static and dynamic instruction counts of the different programs.

5.2  Named-State Advantages

The Named-State Register file:

• Uses registers more effectively than conventional register files, by only holding live,
active data in the register file.

• Supports more concurrent tasks with less register spill and reload traffic than conven-
tional files.

• Uses software and hardware management to run both sequential and parallel code effi-
ciently.

5.3  Performance by Application

The results in this section compare the Named-State Register File to a segmented register
file with the same number of registers. The segmented register file consists of 4 frames of
20 registers each for sequential programs, or 32 registers each for parallel simulations. On
a register miss, the segmented register file spills and reloads an entire frame of registers,
even if they do not all contain live data. The segmented file selects frames to spill using a

Benchmark Type
Source
code lines

CSIM
instructions

Instructions
executed

Avg instr per
context switch

GateSim Sequential 51,032 76,009 487,779,328 39

RTLSim Sequential 30,748 46,000 54,055,907 63

ZipFile Sequential 11,148 12,400 1,898,553 53

AS Parallel 52 1,096 265,158 18,940

DTW Parallel 104 2,213 2,927,701 421

Gamteb Parallel 653 10,721 1,386,805 16

Paraffins Parallel 175 5,016 464,770 76

Quicksort Parallel 40 1,137 104,284 20

Wavefront Parallel 109 1,425 2,202,186 8,280

TABLE 5-1. Characteristics of benchmark programs used in this chapter.
Lines of C or Id source code in each program, CSIM instructions in the translated program,
instructions executed by CSIM, and average instructions executed between context switches.
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Least Recently Used strategy. The NSF is organized as in Chapter 3, a fully associative
register file containing 80 or 128 lines of one register each, and a LRU strategy for
selecting victim lines.

5.3.1  Concurrent contexts

The average number of contexts resident in a register file indicates the amount of concur-
rency that an application can maintain in a given register organization. In some cases, the
register file limits the number of contexts resident, while in others, the application is
unable to generate many concurrent contexts.

Figure 5-1 illustrates the average number of contexts resident in the NSF and in a

segmented register file. It also shows the average number of concurrent contexts produced
by each application.

Among the sequential applications, both GateSim and RTLSim generate many active
contexts. These two programs have deep call chains, requiring a context for each proce-
dure invocation. While the segmented register file can hold only four contexts, the NSF
holds as many contexts as can share 80 lines. For both of these applications, the NSF holds
three times as many contexts as the segmented file.

FIGURE 5-1. Average contexts generated per application, and average contexts resident in NSF
and segmented register files.
Each register file contains 80 registers for sequential simulations, or 128 registers for parallel
simulations.
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The ZipFile application, on the other hand, has a relatively shallow call chain, and does
not require many concurrent active contexts. Here the NSF register file is able to hold
most of the call chain resident at one time. Thus ZipFile will require very little register
spilling and reloading on the NSF, while the segmented register file is only able to hold an
average of half of the call chain.

Our simulations of parallel programs are hampered by the poor task scheduling of the
uniprocessor TAM emulator. (See Section 4.4.4). Since this emulator does not model
communication delays or synchronization with other processors, it does not accurately
trace the thread execution of fine-grained parallel programs. As a result, most of the Id
applications studied here do not exhibit much parallelism. Table 5-1 shows the average
number of instructions executed between context switches for each application. But there
is a very large variance in each of these numbers. Unlike sequential applications, most of
the Id applications intersperse a long series of instructions from one context with a very
few instructions from another context.

The parallel programs all have fewer resident contexts than the sequential programs. Some
of the programs, such as AS and Wavefront, show remarkably little parallelism. For these
two programs, even a four frame segmented register file is able to hold the entire activa-
tion tree. DTW and QuickSort spawn somewhat more parallelism, but even these two
produce fewer concurrent contexts than a typical sequential application. Only Gamteb and
Paraffins generate very deep activation trees.

Even those Id programs which generate ample parallelism do not produce as many resi-
dent contexts as a typical sequential application. The reason is that Id programs all touch
more registers than the average C program. Figure 5-2 shows the average number of regis-
ters accessed per context for each application. The figure shows that while an Id context is
resident in a register file, it accesses three times as many registers as a typical C procedure.
Since Id contexts consume more space than C contexts, the NSF cannot keep as many resi-
dent at one time.

The large number of registers accessed by Id contexts may be a property of Id programs,
or it might be solely an artifact of the simulation environment. As noted in Section 4.4, the
TLTRANS translator folds a very large number of Id local variables into a set of 32 CSIM
registers. The translator does not use the number of accesses per variable, or the lifetime
of those variables, in mapping them to registers. A true register allocator would do a much
better job of mapping variables to registers, and should reduce the number of registers
accessed per context. In the absence of a decent compiler, the results shown here only
approximate the performance of a real register file.

5.3.2  Register file utilization

One way of measuring the fraction of a register file that is in use is to count registers that
contain live data. A register is considered live if it has been written by an earlier instruc-
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tion, and not yet deallocated. But a register that contains live data might be reloaded and
spilled from the register file without being accessed by any instructions. A register might
contain live data, but there is no reason to load it into the register file unless it will soon be
read or written. A better measure of register file usage is the proportion of registers that are
active, registers that have been read or written since they were loaded into the file.

FIGURE 5-2.  Average number of registers accessed by a resident context.

FIGURE 5-3. Percentage of NSF and segmented registers that contain active data.
Shown are maximum and average registers accessed in the NSF, and average accessed in a
segmented file. Each register file contains 80 registers for sequential simulations, or 128 registers
for parallel simulations.
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Figure 5-3 shows the average fraction of active registers in the NSF and segmented
register files. It also shows the maximum number of registers that are ever active. Each of
the sequential programs generates enough parallelism to fill the NSF register file with
valid data. Since sequential programs switch contexts frequently, and touch few registers
per context, a segmented register file contains many empty registers. Sequential programs
use almost 80% of the NSF registers, more than twice as many active registers as on the
segmented register file.

The situation is different for the parallel applications. Each context may touch many
different registers, without reusing any of the registers. Some of the registers are initial-
ized when the context is first allocated, and then not touched again until the context is
deallocated. The percentage of live registers in each context is very high, and the
percentage active is much less.

While some parallel programs do not generate much parallelism, those that do can fill the
NSF with data. These typical parallel programs access approximately 80% of the NSF
registers, better than most sequential programs. In contrast, parallel programs are only
able to use 50% of the segmented register file.

5.3.3  Register hit rates

Figure 5-4 shows the number of register accesses that missed in the NSF and segmented
register files as a percentage of instructions executed. This is greater than the percentage
of instructions that were retried, since some instructions miss on several operands.

FIGURE 5-4. Register misses divided by total instructions executed.
Each register file contains 80 registers for sequential simulations, or 128 registers for parallel
simulations.
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For all of the sequential applications, the miss rate in the NSF is almost non-existent.
While some sequential applications have deep call chains, the LRU replacement strategy
and many lines in the NSF allows this file to capture most of the procedure chain. Miss
rates in the segmented register file, on the other hand, are two orders of magnitude greater
than in the NSF. Building larger segmented register files, which hold more frames, will
reduce the miss rate somewhat, but as shown in Section 5.4.1, a segmented register file
must be very large to reduce misses to the level of a NSF file.

There is little difference in the miss rates of the NSF and segmented files for AS and
Wavefront, the two parallel applications that produce so little parallelism. On the other
hand, DTW, Gamteb and Quicksort have twice as many misses on NSF as on a segmented
file. This higher miss rate is to be expected, since the segmented file reloads an entire
context on a miss, ensuring that successive instructions from this context activation will
not miss.

5.3.4  Register reload traffic

The NSF spills and reloads dramatically fewer registers than a segmented register file.
Every miss in the NSF reloads a single register, while in the segmented file, it reloads an
entire frame. Figure 5-5 shows the number of registers reloaded by NSF and segmented
files for each of the benchmarks. This counts reloads of empty lines. Also shown is the
number of registers reloaded by the segmented file that actually contained valid data.

FIGURE 5-5. Registers reloaded as a percentage of instructions executed.
Also registers containing live data that are reloaded by segmented register file. Each register file
contains 80 registers for sequential simulations, or 128 registers for parallel simulations.
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For sequential applications, the segmented register file reloads 1,000 to 10,000 times as
many registers as the NSF. As shown in the miss rates of Section 5.3.3, a segmented
register file must reload a frame of 20 registers every 100 instructions. Note that if the
segmented register file only reloaded registers that contained valid data, it would reduce
the number of registers reloaded by a factor of 30. But because sequential programs
generate so many procedure activations, and cycle through them so quickly, a segmented
register file would still reload 2 to 3 orders of magnitude more registers than the NSF. The
NSF does not have as great an advantage over segmented register files in running parallel
code. Certainly, the NSF does not reload any registers while running AS or Wavefront
applications, which simply do not produce many parallel threads. But for most parallel
applications, the NSF reloads 10 to 40 times fewer registers than a segmented file. This is
due to the fact that the NSF only reloads registers as needed, while the segmented file
reloads an entire frame. But even if the segmented file only reloaded registers that
contained valid data, it would still load 6 to 7 times as many registers as the NSF. This is
because registers that contain valid data may still not be accessed during the current acti-
vation of a context.

This chapter does not show register spill results. But for most applications, registers
spilled are the same as those reloaded.

5.4  Experiment Parameters

The results introduced in Section 5.3 compared a four frame segmented register file to a
Named State register file of the same size. This section analyzes different design deci-
sions, including the size of the register files, the number of words per line, and spill and
reload strategies.

Rather than report separate performance results for each of the benchmarks, this section
only shows results for two typical applications. Since the parallel benchmarks behave so
differently, no attempt was made to average over the applications. Gamteb was selected as
a representative parallel benchmark, since it generates enough parallel tasks to fill any
sized register file, and the program code is larger than any of the other Id applications. The
shorter Id benchmarks are simply toy programs.

For the same reasons, GateSim, the largest sequential application, was selected to charac-
terize register file performance on sequential programs. GateSim is a large program that
runs several hundred thousand instructions.

5.4.1  Register file size

The most basic design decision is the size of the register file, expressed as the number of
frames that it can hold. The larger the register file, the more contexts it can hold simulta-
neously. This translates into lower miss rates and fewer registers spilled and reloaded.
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The simulations evaluate segmented files of between 2 and 10 frames long. For parallel
experiments, the frames each hold 32 registers, while for the sequential runs, each frame is
20 registers long. For each experiment, the NSF holds the same number of registers as the
equivalent segmented file, but organized as single register lines.

Resident Contexts

Figure 5-6 shows the average number of contexts resident in NSF and segmented register
files of different sizes. The average contexts resident in a segmented file is linear with the
size of the file, but increases slowly. A segmented file big enough for 10 contexts only
holds an average of 7 contexts resident. Since the register file only reloads contexts on
demand, it fills on deep calls but empties on returns. The larger the segmented register file,
the lower its average utilization.

In contrast, the number of active registers per context determines the average contexts
resident in an NSF. For sequential programs, which have an average of 6 active registers
per context, the NSF holds twice as many contexts resident as there are frames in the
register file. Unlike the segmented file, the average utilization of the NSF does not
decrease as the register file becomes larger.

However, the NSF only performs slightly better than a segmented file on parallel code,
holding one more resident context. A parallel program, which touches 20 registers per

FIGURE 5-6. Average contexts resident in various sizes of segmented and NSF register files.
Size is shown in context sized frames of 20 registers for sequential programs, 32 registers for
parallel code.
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context, tends to spill out earlier contexts. As a consequence, the NSF often empties, and
register file utilization is lower than with sequential code.

Register file utilization

Figure 5-7 shows the average number of registers that are active in different sizes of
segmented and NSF register files. Note that the utilization of segmented files decreases as
the size increases. This is because the average number of contexts resident in segmented
files is not proportional to the size of the file. Since each context has the same average
fraction of active registers, the coarse binding of names to frames reduces the utility of
segmented files.

For sequential applications, which frequently switch contexts and do not touch many
registers per context, the NSF touches more than twice as many active registers as a
segmented file. And because it can hold a few registers from many different contexts, the
NSF has better utilization with larger files.

For parallel applications, the NSF uses 20% more registers than the equivalent segmented
file. Since Id applications touch so many registers per context, both register files are less
efficient as they become larger.

FIGURE 5-7. Average percentage of registers that contain live data in different sizes of NSF
and segmented register files.
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Register reload traffic

The best argument in favor of Named-State Register Files is the number of register spills
and reloads required to run applications. In fact, the smallest NSF requires an order of
magnitude fewer register reloads than any practical size of segmented register file.As
shown by Figure 5-8, very small segmented files reload a register every 2 instructions for
sequential code. That proportion decreases rapidly to a register every 30 instructions for
moderate sized segmented files and every 4000 instructions for very large register files.

Parallel programs are more expensive, reloading a register every 8 instructions for average
sized files. Even on very large segmented files, parallel programs reload a register every
40 instructions.

Sequential code running on the smallest NSF, on the other hand, reloads a register only
once every 500 instructions. For larger register files, the NSF reloads almost no registers at
all. A typical NSF reloads 10-4 as many registers as an equivalent sized segmented register
file on sequential code.

The NSF does not perform quite as well on parallel code, reloading a register as often as
every 20 instructions, and as infrequently as every 150 instructions. This is due to the large
number of registers used by each Id context. But the NSF still reloads 5 to 6 times fewer
registers than a comparable segmented register file.

FIGURE 5-8. Registers reloaded as a percentage of instructions executed on different sizes of NSF
and segmented register files.
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5.4.2  Register line width

This section studies the performance of register files with different line sizes, ranging from
a NSF with one register per line, to a segmented register file with a line per context. Line
size affects register miss and reload rates in several ways. First, larger lines reload more
registers on every miss. This can lower the miss rate for larger lines, since subsequent
instructions might access registers within the same line. However, it also increases the
register reload rate, reloading registers that will not be accessed, or contain no valid data.
Finally, as discussed in Section 2.4, in a NSF with single word lines, every write simply
allocates a register, without needing to miss or fetch a new line.

Miss ratio vs. line size

Figure 5-9 shows the effect of register line size on read and write miss rates for sequential
and parallel applications. Write miss rates behave as expected, showing a gradual decline
with increasing line size, as subsequent register writes are more likely to hit in a line that
was recently loaded into the file. Of course, the write rate is zero for lines that are a single
word wide, since the file need never miss and reload a register that will only be over-
written. Since write misses occur at least 3 times as frequently as read misses, they tend to
dominate the register file miss and reload behavior.

Note in this analysis, the first write to a line is counted as a write miss, although the line
does not yet contain any data. These first writes to a line should just reserve space in the

FIGURE 5-9.  Register read and write miss rates as a function of line size for NSF register files.
Note that register write miss rate is 0 for line size=1. Each file holds 80 registers for sequential
simulations, 128 for parallel code.
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file, perhaps spilling registers, but should not reload any registers. The compiler could
ensure this either by tagging allocating writes as described in Section 2.1.3, or by explic-
itly allocating new lines before touching any registers in that line. While the latter is easy
for segmented files with large lines, it is inefficient for small line sizes.

Parallel read misses behave in a similar manner to write misses. For parallel programs,
increasing line size reduces the number of register misses, since each context is likely to
touch many registers within that line. A line that holds an entire context may reduce the
miss rate by a factor of 10 for parallel code.

However, for sequential code, read misses increase dramatically with line size. Segmented
register files, in which the line is the size of a context, have 100 times the read miss rate of
files with single word lines. For sequential code, in which contexts only touch a few regis-
ters between switches, loading many registers on a miss is a liability. Large lines reload
registers that are not needed by the current activation, and result in other useful data being
spilled out of the file.

Register reloading vs. line size

Figure 5-10 shows the effect of miss rates on register reload traffic. Three different alter-
natives are shown here. The most expensive scheme does not tag the first write to a new
line as discussed above, and blindly loads empty lines. The large number of resulting
empty register loads shows that some form of allocating new lines is necessary. A more
practical approach tags writes, and does not load any empty lines. Finally, Figure 5-10 also
shows the number of registers containing live data that are reloaded by each application.
While not all of these live registers might be accessed by the current context, this illus-
trates how many registers reloaded with each line are empty, and simply waste memory
bandwidth.

While most miss rates decrease with increasing line size, each miss is also more expen-
sive. The net effect is that the number of registers reloaded always increases with
increasing line size. A sequential program reloads almost no registers for single word
lines, and reloads a register for every 30 instructions on segmented register files. Parallel
programs require more reloads since each context touches more registers. For parallel
applications, small lines reload a register every 20 instructions, while the large lines of a
segmented file cause a register to be reloaded every 10 instructions.

This figure also demonstrates the advantages of single word lines in the NSF. On parallel
code, an NSF with double word lines reloads 3 times as many registers as an NSF with
single word lines. For sequential code, the difference is a factor of 10. This easily justifies
the additional cost of single word lines.

Note that a register file with multiple registers per line, which maintained valid bits for
each of the registers, could eliminate many write misses and subsequent reloads. The
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reloads due to read misses are a much lower percentage of program run time. The next
section discusses this effect in more detail.

5.4.3  Valid bits

The simulations described in this chapter model large register lines by spilling and
reloading an entire line at a time. For such an organization, the register file need only tag
each line with a valid bit. An alternative organization might group registers into large
lines, but tag each register with a valid bit. The address decoders for such a register file
organization would be simpler than for a fully-associative NSF with one register per line.
However, as shown in Section 3.5, register valid bits and victim selection logic consume
almost as much area as a fully-associative decoder.

This section highlights the benefits of tagging each register with a valid bit, for files with
large register lines. For such an organization, a register write would never reload a line,
but simply allocate the register and set its valid bit. However, a write might spill registers
from the file to make room for a new line. Similarly, a register read may cause a register to
be reloaded into the file, but would not reload an entire line.

FIGURE 5-10. Registers reloaded on read and write misses as a percentage of instructions.
Three sets of experiments are shown here. Maximum values include loads of empty lines on the
first write to a new line. Regular experiments do not reload empty lines. Live register reloads
only counts those registers that contain valid data. Shown as a function of line size. Each file
holds 80 registers for sequential simulations, 128 for parallel code.
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Valid bit hardware is useful in tracking both live and active registers. A register is live if it
has been written by a previous instruction, and is active if it will be accessed while the
current line is still resident. If the register file only reloads registers as they are needed, it
only loads active registers. Otherwise, it could reload an entire line at a time, but only load
live registers in the line.

A sophisticated compiler might try to keep track of which registers are valid during each
basic block of a program. By loading special trap handlers, or explicitly loading and
storing a word of register tags, the runtime software might be able to reduce the number of
registers that it spills and reloads. At best, software approaches might be able to spill and
reload only live registers. It seems unlikely that a processor could track active registers
without a tag on each word in the register file.

Figure 5-11 shows the effect of valid bits on register reloading. The figure compares basic
register reloads with live registers reloaded and estimates of active registers reloaded. For
parallel code, loading only active registers instead of all registers in a line reduces the
reload traffic by as much as one third. The savings is highest for large lines. Loading only
live registers accounts for half of that savings. For sequential code, live or active register
reloads can be as little as one third of total reloads.

However, an NSF with single word lines is still much more efficient than a segmented
register file with valid bits. The NSF requires only 25% of the register to memory traffic

FIGURE 5-11. Registers reloaded as a percentage of instructions.
Basic reloads count registers reloaded on non-empty lines. Live register reloads only counts
those registers that contain valid data. Active reloads only counts registers that will be
accessed while the line is resident. Shown as a function of line size. Each file holds 80 registers
for sequential simulations, 128 for parallel code.
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required by a tagged, segmented file for parallel code. On sequential code, the NSF
reloads 3 orders of magnitude fewer registers than a segmented file with valid bits. By
using both valid bits and single word lines, the NSF performs much better than a file using
valid bits alone. Since valid bits are a significant fraction of the NSF area, it does not seem
worthwhile to build a register file without fully associative decoders.

5.4.4  Explicit allocation & deallocation

As shown in the previous sections, explicit compiler allocation of register lines (allocate-
on-write) significantly decreases the number of empty lines reloaded on register writes.
Explicit deallocation of individual registers by the compiler should reduce misses and
register traffic by freeing registers in the NSF after they are no longer needed.

This study did not perform the compiler modifications required to deallocate registers
after their last use. Nor did it include modifications to the register allocator to pack active
registers within a single small line.

5.5 Program Performance

Most of the performance results in this chapter express register spill and reload traffic as a
fraction of instructions executed by each benchmark. This section attempts to quantify the
net effect of different register file organizations on processor performance by counting the
cycles executed by each instruction in the program, and estimating the cycles required for
each register spill and reload. This analysis is highly dependant on the relative costs of
processor instructions and on the design of the memory system. Since these costs are
outside the scope of this thesis, the analysis that follows is at best an estimate of true
performance.

Table  shows the latency in cycles for different instructions and for register file spilling
and reloads. Most of these numbers were taken from timing simulations [43] of a
Sparc [79] processor, with Sparc2 cache sizes and hit rates. Three different sets of cycle
counts are shown: timing for the NSF; for a segmented file with hardware assist for spills
and reloads; and for a segmented file that spills and reloads using software trap routines.

Instruction NSF Segment Software

ALU 1 1 1

LOAD 2.1 2.1 2.1

STORE 3 3 3

BRANCH 1.3 1.3 1.3

TABLE 5-2. Estimated cycle counts of instructions and operations.
Compares times for the NSF, a segmented register file with hardware assisted spilling and
reloading, and a segmented file with software spill and reload.
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Figure 5-12 shows the resulting proportions of execution time spent spilling and reloading
registers for sequential and parallel code. The NSF completely eliminates the overhead on
sequential programs, which for a hardware assisted segmented file accounts for 8% of
execution time. The difference is almost as dramatic for parallel programs, cutting over-
head from 28% for the segmented file to 12% for the NSF.

CALL 1 1 1

RETURN 1 1 1

NEWCID 1 1 1

POPCID 1 1 1

Context Switch 2 2 8

Operation NSF Segment Software

Read Miss 0.2 0.2 1

Write Miss 0.2 0.2 1

Register Flush 3 2.3 5.31

Register Reload 2.2 1.8 3.44

FIGURE 5-12. Register spill and reload overhead as a percentage of program execution time.
Overhead shown for NSF, segmented file with hardware assisted spilling and reloads, and
segmented file with software traps for spilling and reloads. All files hold 128 registers.

Instruction NSF Segment Software

TABLE 5-2. Estimated cycle counts of instructions and operations.
Compares times for the NSF, a segmented register file with hardware assisted spilling and
reloading, and a segmented file with software spill and reload.
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5.6  Results Summary

5.6.1  Goals of the NSF

The simulations in this chapter show that the NSF has met all of its design goals.

Register file utilization

The NSF holds more active data in its register than a conventional file of the same size.
The register utilization for both segmented and Named-State Register Files depends
strongly on the application. Due to poor task scheduling and register allocation, some
parallel applications generate very few contexts. But for large sequential and parallel
applications, the NSF fills an average of 80% of the register file with active data. In
comparison, the segmented file is only able to keep 25% to 50% of registers busy.

Active Contexts

The NSF holds more concurrent active contexts than conventional files. For sequential
code, the NSF holds more than twice as many procedure call frames as a conventional file,
without having to spill and reload registers.

Register traffic

The NSF is able to support more resident contexts with less register spill and reload traffic
than a segmented register file. Because of the deep call trees and few registers per proce-
dure used by sequential applications, the NSF almost never spills registers. It requires on
0.1% to 1% of the register reload traffic of segmented files. On parallel applications, the
NSF reloads an average of 6 to 10 times fewer registers than segmented file.

Fast context switching

Since the NSF has much lower register traffic than a segmented register file and compa-
rable miss rates, it is able to switch contexts more efficiently. For parallel applications, the
NSF may miss on twice as many accesses as a segmented file. For sequential programs,
the NSF hardly misses on any accesses. The net effect is much lower reload traffic, and the
ability to quickly switch between a large number of concurrent contexts.



5.6.2 Alternatives

99

5.6.2  Alternatives

Large segmented files

One alternative to the high register utilization of the NSF is to build larger segmented
register files. But because segmented files are coarsely partitioned, they become less effi-
cient with size. As a result, the NSF holds as many active registers as a segmented register
file twice its size. For parallel code, the NSF holds as many active registers as a 20%
larger segmented file.

For register reloads, the difference is even more dramatic. A typical NSF file reloads fewer
registers than any practical size of segmented file. In fact for sequential code, the NSF
reloads 100 times fewer registers than a segmented file twice its size.

Valid bits

Two effects contribute to the performance of the NSF. The first is that when an access
misses in the register file, only that register is reloaded, rather than an entire set of regis-
ters. This is because each register is tagged with a valid bit. The second is that the NSF is
fully-associative with single word lines. Thus the NSF is able to fill the registers with
active data, and to hold only most recently used data in the register file.

The experiments in this chapter illustrate that fully-associative, fine-grain addressing of
registers is much more important than valid bits on each word. An NSF with single word
lines may completely eliminate register spilling and reloading on sequential programs, and
cut the reload traffic in half for parallel programs. Single word lines also perform much
better than double word lines.

The benefits of valid bits alone are not as significant. A segmented register file with large
frames and valid bits for each register may spill and reload 35% to 65% as many registers
as a file without valid bits. However, an NSF with single word lines reloads only 25% as
many registers as a tagged segmented file on parallel code, and 1000 times less registers
on sequential code.

5.6.3  Evaluation

The net effect of the Named-State Register File is significant for both sequential and
parallel programs. The NSF eliminates speeds up sequential applications by 8%, in elimi-
nating all register spill overhead. For parallel applications, the NSF cuts the overhead in
half, from 26% of execution time with a segmented file, to 12% for the NSF.

Chapter 3 estimated that the NSF may require 30% to 50% more area than a segmented
register file. This may amount to 7% of the processor chip area. As transistor budgets
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increase, and performance becomes more critical, the Named-State Register File is an
inexpensive means of improving performance on both sequential and parallel applications.
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CHAPTER 6

 Conclusion

6.1  Overview

6.1.1  Background

Registers have become a critical resource in modern computer architectures. Virtually all
modern processors provide some form of fast, random-access local memory for temporary
variables. Alternatives range from top-of-stack buffers [32, 25,11] to vector registers [71]
to overlapping register windows [ 31,67,79]. But by far the dominant form of temporary
storage is a small, directly accessed register set [ 6,82,75].

Several factors are responsible for the popularity of register files:

• High performance:
Register files are small local memories that are tightly integrated with the processor
pipeline. They are typically accessed as simple indexed arrays. This reduces access
time and allows them to be easily multiported.

• Short addresses:
Instructions refer to registers by short offsets. This allows a single instruction to refer to
several register operands. The ability to operate on registers efficiently, combined with
better compiler technology, has lead to the popularity of modern load-store
architectures [34].

• Separate register name space:
Registers define a region of memory separate from the virtual address space of memory
operands1. A compiler can manage this name space without regard to access patterns
and aliasing among memory allocated data.

However, while these factors encourage the use of registers for temporary variables in
high performance processors, they also make it more difficult to manage registers in
dynamic and data dependent programs.

Since sequential program performance depends on effective use of the register set,
researchers have spent much effort on register allocation strategies [16,17]. Modern
compilers are able to allocate registers among basic blocks within a procedure, but it is
much more difficult to allocate registers across procedure call boundaries [86,78]. The

1.  Unlike stack-based machines [32,11], or architectures with memory-mapped registers [10].



102

Conclusion 6.1.2

problem is not only to efficiently pack a larger number of variables into a fixed sized
register set, but to anticipate the call graph of a program at compile or link time. When a
number of procedure activations compete for a limited register name space, and the order
of those activations is not known at compile time, the register space will not be used effi-
ciently. Such a dynamic program will spend a large fraction of its time spilling and
reloading registers from memory.

This resource allocation problem is even more severe in multi-threaded environments,
when a processor rapidly switches between several concurrent threads [76,47,41]. Parallel
programming models use multi-threading to cope with long communication latencies and
frequent, unbounded synchronization delays. When programs can dynamically spawn
parallel procedure activations across multiple processors, it is impossible to statically
predict a thread schedule.

Existing parallel processors deal with dynamic scheduling either by not using registers at
all [65,21], by not preserving registers across synchronization points [42], or by
segmenting the register space among a few resident threads [76,47,4]. Since effective use
of registers can dramatically improve program performance, processors need a form of
register file that speeds both statically scheduled code and dynamic context switching.

6.1.2  Contribution of this work

This thesis introduces the Named-State Register File, an associative, fine-grain register
structure. The NSF uses registers more effectively than conventional register files, and
supports a large, dynamic set of local variables with less traffic to memory.

The NSF uses a combination of compile-time and hardware register management to map
variables into a limited physical register set. The NSF is a fully-associative structure with
small register lines, to bind variables to register locations at much finer granularity than
conventional register files. The NSF provides a large register name space by appending a
Context ID to each register reference.

This thesis shows an implementation of the NSF, and analyses its access time and chip
area. The thesis also simulates a number of register file organizations running both
sequential and fine-grained parallel code, to evaluate the performance of the NSF relative
to conventional register files. This research has shown that the NSF can significantly
improve program performance for a variety of programming models.

6.1.3  Scope of this work

The Named-State Register File provides a mechanism for a large number of concurrent
activations or contexts to share a register name space. The NSF does not impose any
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policy on how those contexts share the registers. The activations may be executed in any
order. The NSF spills and reloads registers from backing store as needed.

Depending on how a programming model defines a context, context switching may take
several forms. Some common examples of context switching are:

• A process switch in a multiprogrammed operating system.

• Light-weight task switching in user applications [3].

• A procedure call in a sequential language.

• Processor multithreading to handle I/O [80].

• Block multithreading among several concurrent threads [29,2].

• Cycle-by-cycle multithreading among a few threads resident on a processor [76,47].

While the NSF can efficiently support most of these forms of context switching, it
performs best when switches are unpredictable, and the time between switches is compa-
rable to the cost of loading and unloading a context. It would be inefficient to allocate a
separate Context ID for each user process in an operating system that switched processes
every few milli-seconds. This would consume CIDs unnecessarily, and any benefit would
be hidden in the time required to switch between such heavy-weight processes.

On the other hand, as shown by the simulations in this thesis, it is easy to compile code
which allocates a new CID for each procedure activation. The NSF can hold a significant
fraction of a sequential call chain without spilling and reloading registers. An application
might combine context switching on procedure calls and among concurrent tasks. By
assigning CIDs among the tasks, the processor could run each task with efficient proce-
dure calls, and also rapidly switch between tasks.

Finally, an application might use several contexts within a single procedure. Since allo-
cating and deallocating contexts is inexpensive in the NSF, this provides a mechanism for
expanding the range of registers accessible to a single procedure. It also simplifies the task
of register allocation across basic blocks. The penalty for allocating additional contexts is
low, since only active registers will be assigned space in the NSF.

6.2  Summary of Results

6.2.1  Implementation

The area of an NSF relative to conventional register files depends on its organization. A
fully-associative Named-State Register File with single word lines is 50% larger than a
conventional register file with the same number of registers. This increases a typical
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processor’s chip area by less than 5%. Much of the additional area for the NSF is devoted
to valid bits and logic for handling register misses, spills and reloads.

Many modern processors architectures have introduced wide data words [57], and addi-
tional ports into the register file for multiple functional units [24]. Both organizations
should reduce the relative area devoted to associative decoders and spill logic in the NSF.
The NSF’s fully-associative address decoders consume only 15% of the register file area,
and increase its access time by only 6%. A Named-State File should only be marginally
larger than conventional register files for these advanced organizations.

6.2.2 Performance

The small register lines of the Named-State Register File lead to much better utilization of
the register set for typical applications. Small lines also significantly reduce the register
traffic required to support these applications. For large sequential applications, a moderate
sized NSF is able to capture most of the procedure call chain. As a result, the NSF spills
and reloads only 1/4000 as many registers as a conventional register file of the same size.
On sequential code, the NSF has less register traffic than a conventional file with 4 times
as many registers.

The NSF’s behavior on parallel applications is highly dependant on efficient register allo-
cation. For the applications studied here, which did not allocate registers effectively, the
NSF reloaded 1/6 as many registers as a conventional register file. For these parallel
programs, the NSF has less register traffic than a conventional file with more than twice as
many registers.

Most of the performance benefit of the NSF is because it is fully-associative at the granu-
larity of a single register. Conventional register files may use explicit register allocation or
valid bits on individual registers to allow sub-block reloading and reduce traffic to
memory. But an NSF with valid bits and single word lines outperforms register files with
valid bits and large lines. The NSF requires only 1/4 the register traffic of the best
segmented register file on parallel code, and only 1/1000 the register traffic for sequential
programs.

Finally, while the effect of register reloading on program performance depends on the
processor’s instruction set and memory system, this study estimates that the NSF speeds
execution of parallel applications by 17% to 35%, and of sequential applications by 9% to
18%.
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6.3  Future Work

Initial studies and simulations indicate that the NSF has potential to significantly improve
the performance of dynamic sequential and parallel programs. However, a number of
issues in software to exploit register file organizations were not addressed by this thesis.

Register allocation

The programs simulated in this thesis were compiled with very simple register allocation
policies. In fact, as discussed in Section 4.4.4, the Berkeley TAM compiler used to
compile parallel Dataflow applications did no register allocation at all [72]. This severely
compromised the performance of those applications. It is hoped that a more realistic
register allocator would use fewer active registers per context. For such code, the Named-
State Register File would use registers much more efficiently, and would perform much
better than conventional register files, as indicated by its behavior on sequential applica-
tions.

The NSF has the ability to explicitly allocate and deallocate individual registers. None of
the simulations in this study explicitly deallocated registers after their last use. While
freeing up register space in the NSF could improve register utilization and reduce spill
traffic, it is unclear what percentage of registers could be explicitly deallocated in this
manner. Conventional register usage analysis must often apply conservative estimates of
register lifetimes. Further study is needed to investigate the efficacy of register dealloca-
tion algorithms and their effect on NSF performance.

Another register allocation issue is how to group active registers within fixed-sized lines.
The simulations in this thesis compared register files with different line sizes and
measured the register spill traffic they required. An NSF with single register lines was
found to perform much better than files with larger line sizes. But these simulations all
used the same register allocation strategy. If a compiler could target its register usage
strategy to a file with a particular line size, it might be able to group active registers
together in a single line, so several active registers are reloaded at a time [85]. Since
memory design often supports pipelining and block reloads, this might make Named-State
Files with line sizes of two or four registers more efficient than those with single register
lines. However, it is not clear how well a compiler could operate with these additional
constraints.

Thread scheduling

As discussed in Section 4.4.3, Dataflow applications simulated in this study were traced
by a simple, uniprocessor emulator. The emulator did not realistically portray how Id
programs might run on a large-scale parallel processor. The resulting thread trace does not
accurately model the effect of communication latency, synchronization between proces-
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sors, and data distribution across a multicomputer. To evaluate the effect of an NSF on
parallel processor performance, the simulations in this thesis should be re-run with actual
thread traces from those parallel machines. Preliminary results indicate that Id programs
switch contexts much more frequently on multiprocessors than on a single processor [21].
This suggests that the NSF can significantly improve the performance of large-scale
parallel processors.

Context management

The NSF uses Context IDs to identify concurrent procedure or thread activations. As
discussed in Section 6.1.3, there are many ways of allocating CIDs among a set of activa-
tions. One alternative that was not investigated in this thesis was to allow a single proce-
dure or thread activation to use several distinct CIDs. This provides a flexible method of
assigning large numbers of registers to a particular context, without burdening all contexts
with large register sets. It also may simplify register allocation among basic blocks in a
procedure, especially for parallel code in which those basic blocks may run in any
order [72].

In order to take advantage of the larger register space defined by Context IDs, an applica-
tion must manage those CIDs among the active contexts. There are a limited number of
CIDs, and either procedure call code or thread schedulers must assign them to dynami-
cally created contexts. While the simulations in this thesis indicate that a small set of CIDs
is large enough to support many contexts without conflict, this deserves further study. In
particular, simulating specific scheduling algorithms would ensure that a small set of CIDs
does not interfere with efficient thread scheduling.

The preceding sections illustrate the importance of the interaction between hardware and
software in computer architecture. This thesis has proposed mechanisms that use a combi-
nation of hardware and software to efficiently manage processor resources. This combina-
tion exploits static knowledge of program structure and adapts well to dynamic runtime
behavior.
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APPENDIX A

 A Prototype Named-State Register File1

David Harris
September 24, 1992

A.1  Abstract

This paper summarizes the work that I have done on the Named-State Register File project
as a UROP over the summer of 1992. It describes the functionality of the Named-State
Register File and the objectives of this project. Then it discusses implementation details at
both schematic and layout levels, including a pinout diagram of the chip that I have sent
for fabrication. It details the functionality of the chip that has been sent for fabrication, the
timing, testing, and pinouts, and concludes with a set of preliminary results.

A.2  Operation

Register 0 of every context ID is always present in the register file and is hardwired to 0,
as is the convention in many processors. Write operations to this register are ignored,
making it a suitable write address for operations such as NOP.

When a write operation occurs, the register is allocated if it does not already exist or is not
currently in the physical register file. In order to guarantee that writes will succeed, the
Named-State Register File always maintains one empty physical register. If necessary,
another register may be flushed from the cache to make room. This is done by halting the
processor pipeline and performing a special read cycle to read the victim out of the
register file and directing the CPU to write it to main memory for storage, at the same time
invalidating the register in the cache.

When a read operation occurs, read request lines may flag that either of the two read oper-
ations failed because the desired register is not currently in the cache. If this happens, the
processor must fetch the registers from storage in main memory.

Three additional control lines allow tasks to deallocate registers when they are no longer
needed. Either of the two registers read may be freed at the end of the read. In addition, the

1.  This appendix was extracted from Internal Memo 46 of the MIT Concurrent VLSI Architecture Group
and slightly edited for inclusion in the thesis.
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entire set of registers used by a given Context ID may be released at once when the
process using that ID terminates.

A.3  Objectives

The objective of this project was to design and build a Named-State Register File to verify
that the idea is efficiently realizable and to obtain estimates about timing and chip area
required.

I designed a Named-State Register File with the following specifications: The register file
contains 32 physical 32 bit registers. The file supports two reads and a write every cycle;
each register address is a 10 bit quantity consisting of a 5 bit offset and a 5 bit context ID
(CID). The entire circuit should run as fast as possible and consume as little area as
possible. In addition, the circuit should scale to 128 physical registers without requiring
complete redesign.

Peter Nuth and Bill Dally provided advice on a variety of implementation problems and
Whay Lee and Noble Larson gave me great help with the fabrication process.

A.4  Circuit Description

The circuitry in the Named-State Register File is moderately complex. A series of figures
at the end of this document show the complete details of the design. This section provides
an overview of the entire chip’s logic, then delves into timing, naming conventions, a
precise description of the Named-State Register File functionality, and schematic-level
description of each cell.

A.4.1  Overview

Figure 1 shows a block diagram of the entire Named-State Register File. At this level of
detail, it is very similar to a conventional register file: the only difference is that the simple
address decoder of a conventional file is replaced by more sophisticated logic to maintain
the cache information. As always, there are three data busses: a 32 bit write bus and two
32 bit read busses. Also there are three 10 bit address busses specifying the offsets and
Context IDs for read and write operations. The remaining control lines are specific to the
Named-State Register File operation. A Reset line clears all of the valid bits in the cache,
initializing the file to an empty state and marking register 1 as the first victim to flush.
Three free lines control deallocating registers when they are no longer needed. The Flush-
Request line indicates that the cache is full and directs the processor to stall the pipeline
while the current victim is flushed from the file. The two ReadRequest lines indicate that a
read operation missed and that the processor must fetch the desired operand from main
memory before continuing execution of the given process.
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A.4.2  Clocking

The Named-State Register File is driven by a two phase non-overlapping clock. During
Phi1, the register file lines precharge while the Decode/Match logic performs its dirty
work. During Phi2, the register file performs the appropriate read and write operations
while the cache logic precharges in anticipation of the next phase. Also during Phi2, the
allocate logic chooses the next empty line to write.

A.4.3  Naming Conventions

Some naming conventions reduce confusion given the number of signals and cells in the
Named-State Register File. All names begin with an uppercase letter and each succeeding
word in a name also begins with an uppercase character. The cache logic is divided into
seven main functional units. The name of each unit ends with the word Block. Each block
consists of many rows of cells containing logic, one for each register in the file. The name
of each logic cell ends with the word Cell. There are a number of large amplifiers for
driving signals down long lines. The name of each of these cells ends with the word
Driver.

The three ten-bit address busses are named R1[i], R2[i], and W1[i] (0 ≤ i < 10). The three
32-bit data busses are named Read1[i], Read2[i], and Write[i] (0 ≤ i < 32). There are four
input lines, Reset, FreeR1, FreeR2, and FreeCID. There are three outputs, FlushRequest,
ReadRequest1, and ReadRequest2. The non-overlapping clock signals are named Phi1,
Phi2, Phi1Bar, and Phi2Bar.

In addition, there are a number of internal signals, shown in Figure 2 on the overview of
the Decode/Match circuitry. Each of these signals is used on every row of the logic; in a 32
register Named-State Register File, a signal named MeltDown will have instances Melt-
Down[i] (0 ≤ i < 32). MeltDown[0] corresponds to the bottom row, while MeltDown[31]
corresponds to the topmost row. There are six match lines used by the programmable
decoders: R1OffMatchBar, R1CIDMatchBar, R2OffMatchBar, R2CIDMatchBar, WOff-
MatchBar, and WCIDMatchBar. These match lines are used to compute three word lines:
R1Word, R2Word, and WWord. In turn, these word lines control three lines which drive
the register file: R1Out, R2Out, and WOut. The R2CIDMatch line is also derived from the
R2CIDMatchBar signal. There are two valid lines, ValidBar and ValidA. The FlushMe
line is used on flush cycles and the Allocate line chooses the next row in which to perform
a write operation.

A.4.4  Functionality

Now we can precisely describe the functionality of the Named-State Register File and the
responsibilities imposed upon a processor which uses this Named-State Register File.
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The Named-State Register File contains N (in this case N=32) rows of Decode/Match
logic and registers. Row 0 is hardwired to always be present and match on Offset 0 of any
CID. Each row contains a valid bit which determines if the register on that row contains
valid data and a programmable decoder which matches the virtual address of the register
stored on that row. A shift register running the height of the cache (except row 0) chooses
the next victim for flush operations. A tree structure can identify in logarithmic time the
first free line to allocate for write operations.

To initialize the cache, the Reset line must be raised for two consecutive cycles. This
clears all of the valid bits and sets the victim select shift register to point at row 1.

Let us begin by examining the two phases of an ideal cycle where both read operations
succeed and the cache is not close to full. During Phi1, the bitlines of the register file
portion are precharged for read operations and properly set up for write operations. The
Decode/Match logic matches both read addresses to raise the appropriate R1Word and
R2Word lines. The write function is slightly more complex. Because the Named-State
Register File does not know in advance if the write address is already in the cache, it must
perform a write on both the actual register (if the register is present) and on another empty
line which should be allocated in the event that the desired register was not already in the
cache. The programmable decoder on the allocated line latches the write address and the
valid bit of that line is initially set on the assumption that the register was not already in
the cache. During Phi2, the valid bit of the newly allocated line is cleared if it is found that
the write address already was in the cache. Also, the topmost empty row is chosen for the
next allocate operation and the cache logic is precharged again. Meanwhile, the register
file performs the desired read and write operations.

There are a few less-ideal situations where extra processing must occur. When the last
empty row is allocated (even if it is not actually needed), the Named-State Register File
must flush a valid row (called the victim) from the cache to guarantee an empty row for
the next write operation. This is done by raising the FlushRequest signal near the start of
Phi2. During the next cycle, the processor should stall the pipeline. The cache reads the
victim onto the Read1 bus and clears the valid bit in the row that contained the victim. The
processor must write this value to an appropriate location in main memory to store it until
needed in the cache again. This also bumps the victim select shift register up by one row
until it reaches the top of the column at which point it wraps around to row 1 again. In
order to perform a flush operation, the address of the flushed line must be available, some-
thing not done in this design due to space limitations. This can be done either by running a
tap out of each programmable decoder or by adding an additional ten bits to each register
file to contain the address of the register as well as the data contained.

If a read operation misses, a ReadRequest line is raised by the end of Phi1. The processor
must restore the missed register from main memory before continuing execution of this
process. Typically, this may be done by sending a memory request off to a memory unit,
then performing a context switch and continuing execution of another process for a while.
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Care must be taken that this other process is not also waiting for a failed read. When the
register’s contents are fetched from main memory, the processor should stall the pipeline
and insert a special cycle to write the fetched value into the register file. Then the instruc-
tion that caused the miss should be re-executed.

When a process is done with a register, it should raise the appropriate free line on the last
read of that register. This clears the valid bit of that register. When the process terminates,
it should raise the FreeCID line. This releases all of the registers with the same context ID
as that used in the R2 address.

A.4.5  Cell Descriptions

Figure 2 illustrates how the various blocks in the Decode/Match logic communicate. This
section describes each of those blocks in more detail.

The DecodeBlock (Figure 3) matches the virtual address of various registers using a
programmable decoder. Five columns match the offset; another five match the CID. When
a register is initially allocated, the decoder latches for that line are loaded with the write
address. On future reads and writes, all of the decoder latches must match the address in
order to pull down the match lines that indicate that the register may be in the cache (the
valid bit must also be set to indicate that the register has not been flushed but not reused
yet). The match lines are in effect a pair of six transistor precharged NAND pulldown
chains; offset and CID are matched separately and combined in the GateBlock to prevent
the excessive delays from a 11 transistor pulldown. The offset and CID match cells must
be interleaved; otherwise, one block will perform faster and the other slower due to
uneven capacitance distribution. Note the danger of charge sharing; a hefty capacitive load
must be present at the right end of the array to prevent the output from accidentally being
brought low via charge sharing. Note also that row 0 of this logic should be hardwired to
match offset 0 of any CID.

The GateBlock (Figure 4) consists primarily of NOR gates to drive a word line if the
offset and context ID of the address match and the valid bit is set on that given word line.
An extra gate is required for handling flushes to drive the R1Word line corresponding to
the line to flush.

The MissBlock (Figure 5) has three lines to detect misses on the read or write addresses. If
a read fails, the appropriate ReadRequest line is raised to ask the processor to fetch the
missing register; if a write address is missed, a new line is allocated during the same phase
for the new register. Note that the block is structured as a N-bit precharged NOR gate with
latches at the bottom to record the result when it is valid by the end of Phi1.

The ValidBlock (Figure 6) contains some messy ad-hoc logic to set and clear a valid bit
latch. On cycles where a register should be flushed or the cache is reset, the valid bit must
be cleared. During Phi1 of every cycle, the topmost empty line is allocated; if the write
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succeeded that cycle, the line is then deallocated during Phi2. Two more latches sample
the valid bit at appropriate times to insure valid values when they are needed elsewhere in
the circuit. Note that row 0 should be hardwired to always be valid. Some equations might
clarify this:

The VictimBlock (Figure 7) is a shift register that chooses the next victim to be flushed
when the Named-State Register File fills. At reset, a single 1 is loaded into the shift
register in row 1. During flush cycles, the register cell containing the 1 raises the FlushMe
line for the corresponding row to flush that register and the shift register advances by one
upward, looping back when the top is reached. Row 0 is never a candidate to flush. True
LRU (Least Recently Used) replacement policy of course would be somewhat more effi-
cient, but this approach uses a minimum of chip area.

The FullBlock (Figure 8) determines when the cache is full. It is built from a N-input
precharged NOR gate with a latch at the bottom to grab the FlushRequest signal at the end
of Phi1. It is possible to request a flush even when one line is still empty if that line is allo-
cated on the given cycle but not actually needed.

Finally, the AllocateBlock (Figure 9) is a binary tree structure used to choose the topmost
empty line to allocate. It is built from a chain of alternating positive and negative logic. I
have considered a number of other designs including 4:1 cells and variants on the
Manchester carry chain, but simulations show that this circuit performs better than the
alternatives that I have explored.

A.4.6  Critical Paths

Addresses are presumed to be stable at the DecodeBlock throughout Phi1. During Phi1,
the decoders must pull match lines low. These match lines must be combined with the
valid bits in GateBlock to control the word lines. The word lines must be latched by the

ValidLatch set on:

Allocate • Phi1

ValidLatch cleared on:

FreeR1 • R1Word • Phi1 or

FreeR2 • R2Word • Phi1 or

FreeCID • R2CIDMatch • Phi1 or

FlushMe • Phi1 or

WHit • Phi2 • Allocate

ValidA = ValidLatch sampled during Phi1

ValidBar = ValidLatchBar sampled during Phi2

TABLE A-1. Valid bit logic.
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end of Phi1. Also, the miss lines and valid bits may be cleared by word lines and must be
ready to be latched at the end of Phi1. This sets a lower bound on the length of the Phi1
cycle.

Register access dominates the Phi2 cycle. The word lines must be driven across the
register file. The proper registers must respond, either being written or being read onto the
bitlines. The two read bitlines must be latched by the end of Phi2 so that they may be
precharged again during Phi1.

Of course, precharge of the large NOR structures in the decoder must also occur during
Phi2, but this is unlikely to be a bottleneck until N becomes very large.

The other critical path is the selection of the next empty line to allocate. At some point
during Phi1, the valid bits (presuming need for of the last allocate line) become valid. The
ValidA signal must propagate up and down a tree in the AllocateBlock. This may be a
slow step because the tree has a depth proportional to the logarithm of the number of
registers (i.e., 5 for 32 registers, 7 for 128 registers). Finally, it must be latched by the end
of Phi2 for use in the next cycle.

A.5  Layout Considerations

The Named-State Register File was implemented in a standard 2 micron N-well CMOS
technology. I used the GDT tools to lay out and simulate the cache. While I can make no
claims that the layout is the best possible realization of the Named-State Register File’s
functionality, I did make my best effort given the time constraint of one summer to mini-
mize chip area and optimize for speed.

The Named-State Register File fits sideways in a 4600x6800 micron frame. Metal level 1
lines carry signals along the rows; metal level 2 lines bring VDD and GND, clocks,
address lines, and control lines vertically down blocks. Typically, the bottom half of each
cell contains the metal 1 signal busses and the top half contains logic. Each row is 83
microns tall. The largest arrays of logic are the registers themselves (32 columns, each 70
x 83 microns) and the decoder cells (10 columns, each 171 x 83 microns).
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After completing a significant amount of layout, I revised the design to eliminate an extra
line, formerly called ValidF. The ValidF logic is still in the Valid cell and the unused line
still runs through the Victim and Full cells; in a redesign, some space may be saved by
removing the unneeded line and utilizing the freed space.

A.6  Scaling Considerations

Some effort was made in designing the Named-State Register File to scale well to larger
sizes of register files (such as 128 registers). However, there are a number of changes that
must be made to maintain performance after scaling.

On account of the capacitance of large bit lines, the register file itself degrades in perfor-
mance as the number of registers goes up. To compensate, it is standard practice to place
sense amplifiers on the bit lines to measure small changes in voltage on reads and more
rapidly determine the output of the file. The register file is designed with complementary
read lines already to facilitate adding sense amps.

The victim select shift register has a lengthy wire from the topmost row wrapping around
to row 1. It is important to simulate this register carefully and determine that the signal can
propagate all the way from row N-1 down to row 1 during Phi2. If this becomes a signifi-
cant problem, one can rearrange the shift register by interspersing up and down shift regis-
ters so that every shift operation only has to propagate by the height of 2 rows.

The FlushRequest and ReadRequest pulldown chains are likely to be a limiting factor in
the timing of very large register files. For instance, for N=128, the chain is effectively a
128 input NOR gate. It may be necessary to rearrange this as a logarithmic tree of NOR
gates to overcome the tremendous capacitance problems and large amount of power dissi-
pated by the precharged logic.

A number of large buffers are used to drive signals down the columns. These buffers will
have to be scaled to efficiently drive the larger capacitances of longer lines.
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Finally, electromigration may become a serious problem for larger Named-State Register
Files. The current design just uses very rough estimates of currents and duty cycles to size
the clock and power supply lines. For a practical system, these numbers should be given
more consideration lest the circuit tear itself apart during normal usage.

A.7  Timing Simulations

To get some information on cycle times, I ran a large simulation of the entire chip using
Lsim. Unfortunately, Lsim is notoriously bad for obtaining accurate results; I have typi-
cally observed results 50% to 150% slower than Spice produces for the equivalent circuit.

I measured the following numbers from Lsim. Each includes the delay through a three-
inverter buffer to drive the potentially long line from the cache to the output pads.

The timing on the read bitlines appears suspiciously fast to me; possibly the measurement
was bad. Clearly, the time for the register array during Phi2 is much faster than the time
for the Named-State Register File logic. I was unable to measure the timing to compute
FlushRequest with the outputs available; however, it is a function of ValidA, so has at least
13 ns to be computed. I also was unable to measure the time to compute the next Allocated
line, but that can occupy all of Phi2, so it should have plenty of time. Therefore,
computing ReadRequest is probably the critical path. Assuming 24 ns phases and 1 ns of
non-overlap, the Named-State Register File can run at 20 MHz in 2 micron technology.-
Given the inaccuracies of Lsim, I would expect that the actual chip would run at between
20 and 40 MHz.

A.8  Pinouts

I designed and carefully simulated a 4 row Named-State Register File. For the final chip, I
generated a 32 row cache with 32 bit registers. In addition, this version contains the

From Phi1 to:

ValidA rises on allocated line: 9.1 ns

R2CIDMatch: 10.5 ns

R2OffMatchBar: 11.3 ns

R2Word: 16.3 ns

ReadRequest2Bar falls: 22.8 ns

From Phi2 to:

R2Out: 4.0 ns

Read bitlines pulled low: 5.4 ns

TABLE A-2. Simulated signal delays from each clock phase.
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various drivers for the columns and address lines. This logic has not received the same
amount of simulation due to time constraints and is a potential source of critical failures.

The completed logic was placed in a 64 pin pad frame and a number of inputs and outputs
were connected in order to perform some tests and timing of the actual chip. Inputs are
connected directly to the column drivers. Outputs use a 3 stage buffer to drive the capaci-
tance of the lines going to the pins; therefore, all outputs are actually the complements of
the signal. Finally, there are three VDD pins, three GND pins, four clock pins, and three
pins for testing very simple circuitry.

Only a few of the 30 read and write address pins were connected; all the rest are tied to 0.
Likewise, only a few of the 96 data lines are connected. All of the major input and output
control lines are available; in addition, a few of the match, valid, and flush lines are tapped
for timing information. Figure A-1 below shows the pinouts of the chip:

A.9  Epilogue

The prototype chip was fabricated by MOSIS, and we received first silicon in October ‘92.
In spite of our best efforts, the chips did not function. The pad frame used for this proto-
type contained numerous errors, including hard power to ground shorts. This pad frame
was donated by another group and imported into our CAD tools for this project. The GDT
tool’s design rule checker was unable to verify the pad frame prior to fabrication. As a
result, we have been unable to test any logic on the prototype chip.
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FIGURE A-1. Pinout of the prototype chip.
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AllocateCell:

This cell consists of tree of three species (classified by Silicon
Biologists as Allocatus Primus, Secundus, and Tertius) of subcells
that alternate positive and negative logic.  The Valid inputs change
starting late in Phi1 and the new Allocate line must be latched at the
end of Phi2.

NOT and NOR gates are sized N3/2, P6/2
NAND gates are sized N6/2, P6/2
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This page contains schematics for a variety of drivers and the SRAM cell used in the register array.

WordDriver

Three word drivers are used on each row
in the WordBlock to produce the three word
line signals that are driven across the
register array.

BitDriver

Each column of the register array contains drivers to
precharge the read bitlines and drive the write data
and its complement down the write bitlines.

SRAM

The Register block is an array of triple-ported SRAM
cells that support two differential read operations and
a single write operation each cycle.

ColumnDriverColumnDriverBar

Column Drivers

The column drivers are used to drive signals down the
tall columns.  Four instances of ColumnDriver are used
for the three Free lines and the Reset signal.  The
AddressBlock consists of an array of three instances of
ColumnDriver and three instances of ColumnDriverBar
above each of the ten Decoder columns.  These drivers
are used to amplify theread and write address lines.

Buffer

This simple buffer is not used in the ContextCache
logic, but is used to drive test outputs along the
relatively long lines to the pads.
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