
Internet Fish
by

Brian A. LaMacchia

Arti�cial Intelligence Laboratory

and

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Abstract

I have invented \Internet Fish," a novel class of resource-discovery tools designed to help users

extract useful information from the Internet. Internet Fish (IFish) are semi-autonomous, persistent

information brokers; users deploy individual IFish to gather and re�ne information related to a

particular topic. An IFish will initiate research, continue to discover new sources of information,

and keep tabs on new developments in that topic. As part of the information-gathering process the

user interacts with his IFish to �nd out what it has learned, answer questions it has posed, and

make suggestions for guidance.

Internet Fish di�er from other Internet resource discovery systems in that they are persistent,

personal and dynamic. As part of the information-gathering process IFish conduct extended, long-

term conversations with users as they explore. They incorporate deep structural knowledge of the

organization and services of the net, and are also capable of on-the-y recon�guration, modi�cation

and expansion. Human users may dynamically change the IFish in response to changes in the

environment, or IFish may initiate such changes itself. IFish maintain internal state, including

models of its own structure, behavior, information environment and its user; these models permit

an IFish to perform meta-level reasoning about its own structure.

To facilitate rapid assembly of particular IFish I have created the Internet Fish Construction

Kit. This system provides enabling technology for the entire class of Internet Fish tools; it facil-

itates both creation of new IFish as well as additions of new capabilities to existing ones. The

Construction Kit includes a collection of encapsulated heuristic knowledge modules that may be

combined in mix-and-match fashion to create a particular IFish; interfaces to new services written

with the Construction Kit may be immediately added to \live" IFish.

Using the Construction Kit I have created a demonstration IFish specialized for �nding World-

Wide Web documents related to a given group of documents. This \Finder" IFish includes heuris-

tics that describe how to interact with the Web in general, explain how to take advantage of

various public indexes and classi�cation schemes, and provide a method for discovering similarity

relationships among documents.

Thesis Supervisor: Gerald J. Sussman

Matsushita Professor of Electrical Engineering

This report is a revised version of a thesis submitted in partial ful�llment of the requirements for

the degree of Doctor of Philosophy in the Department of Electrical Engineering and Computer

Science at the Massachusetts Institute of Technology in May, 1996.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Notice of Copyright and Terms of Limited License

This technical report, including all �gures, tables and code fragments, is Copyright c1996 Brian

A. LaMacchia. Country of �rst publication: United States of America. All rights granted to the

author in accordance with 17 USC xx101 et. seq. are hereby reserved.

Pursuant to 17 USC x201(d)(2), the author hereby grants to the Arti�cial Intelligence Laboratory

of the Massachusetts Institute of Technology (hereinafter \the AI Lab") certain nonexclusive, non-

transferrable, limited rights related to the copyright of this document:

1. The AI Lab may reproduce paper copies of this technical report for use within the MIT

community for educational or research purposes (an action which is an exclusive right of the

copyright holder under 17 USC x106(1)).

2. The AI Lab may reproduce paper copies of this technical report and distribute such copies to

the public (an action that is an exclusive right of the copyright holder under 17 USC x106(1)

and 17 USC x106(3)) so long as no fee is charged for such copies in excess of the actual cost

of making the copy.

3. All copies of this technical report made by the AI Lab under this license must include a copy

of this copyright notice and license.

4. All other uses of this technical report within the scope of the exclusive rights of the copyright

holder as speci�ed in 17 USC x106 are reserved by the author, and any action by the AI Lab

that infringes any of those exclusive rights, except as explicitly granted above, requires the

expressed written consent of the author.

Acknowledgments

This thesis could not have been completed without the support of a great many people. I wish to

take this opportunity to express my appreciation for their help in bringing this thesis to a successful

conclusion.

First, my sincerest thanks to those whose work became part of the Internet Fish. Steven Adams

wrote the Scheme code to support s-expression HTML. Michael (\Ziggy") Blair provided the

demonstration problem for the Finder IFish. The Architext index and search engine (now called

\Excite for Web servers") was provided courtesy of Excite, Inc. The HTTP proxy server code

was written by CERN.

I am deeply grateful to all my friends at Silverglate and Good for their overwhelming generosity,

which permitted me to work from home this past year and write this thesis. Thanks especially to

Harvey Silverglate, Andy Good, Sandie Fennell, Dana Gurwitch, and Gia Barresi.

For the past year I have been fortunate in having a retreat up Massachusetts Ave. to which I could

escape when I needed to do something other than thesis. I thank Professors Arthur Miller

and Charles Nesson of Harvard Law School for graciously allowing me to audit Copyright

during the Fall term of 1995 and Law, Internet and Society during the Spring term of 1996.

My thanks also to the students in both classes who helped make those classes the most fun I've

had in a classroom since I entered graduate school at MIT.

My legal education began at Silverglate and Good and Zalkind, Rodriguez, Lunt and

Duncan; in addition to those already mentioned above I'd like to thank Sharon Beckman,

Phil Cormier, Jason Gull and Da�odil Tyminski of S&G and David Duncan of ZRL&D for

their help leading me through the �ner points of the law.

When I wasn't working on IFish or reading case law, I was helping others overcome the wonders

of modern hardware software. Thanks much to all the clients of LaMacchia Computer Consult-

ing: Tricia Prevett at KHJ Integrated Marketing (formerly KelleyHabibJohn Marketing

and Advertising), Hearst New Media, Terry Ehling at The MIT Press, Errol Mor-

ris at Fourth Floor Productions, Jay Lupica at Buyers Advantage, and John Habib at

Alexander Mortgage.

For the past four years I have been fortunate to be part of the local fundraising e�orts of St. Jude

Children's Research Hospital. Thanks to all the people involving in making TomorrowNite

'93-'96 happen, especially Paul and Jane Ayoub, Joe and Christa Ayoub, and Steven and

Karen Salhaney.

For almost ten years I have worked as a member of Project MAC (the Project on Mathematics

and Computation) at the MIT Arti�cial Intelligence Laboratory. What made that group such a

great place to work in the years gone by were the people who inhabited it: Michael Blair, Liz

Bradley, Mike Eisenberg, Arthur Gleckler, Philip Greenspun, Kleanthes Koniaris, Bill

Rozas, Thanos Siapas, Jason Wilson and Henry Wu. Together they formed a very special

collection of people, one with which I was proud to have been associated.

My thanks to Ellen Spertus, David LaMacchia, Jim Miller and Gerald Sussman for pro-

viding comments on early drafts of this thesis.

For most of my graduate career I was fortunate to have been supported by an AT&T Foundation

PhD Fellowship. My thanks to the AT&T Foundation and the former AT&T Bell Labo-

ratories for that �nancial support. The majority of the work in this thesis was funded by this

fellowship.

Portions of this thesis were also supported by the Open Software Foundation Research In-

stitute. Portions of this technical report were supported by a Packard Fellowship in Science

and Engineering from the David and Lucile Packard Foundation.

Gerald J. Sussman, Matsushita Professor of Electrical Engineering, supervised this thesis. Harold

Abelson, Class of 1922 Professor of Computer Science and Engineering, and James Miller, World

Wide Web Consortium and MIT Laboratory for Computer Science, served as readers on my thesis

committee.

There are others whose actions contributed to the completion of this thesis at this time, in this

manner. While their actions must be acknowledged, it does not seem appropriate to do so here in

this place. I commend to readers interested in those stories my forthcoming book, Defending Dave,

and other tales of the 'Net, which shines the bright light of truth and public scrutiny in a number

of dark corners.

This thesis describes research conducted at the Arti�cial Intelligence Laboratory of the Mas-

sachusetts Institute of Technology. Support for the Laboratory's arti�cial intelligence research

is provided in part by the Advanced Research Projects Agency of the Department of Defense under

O�ce of Naval Research contract N00014-92-J-4097.

This one's dedicated to a lot of people.

In memory of my father's parents

Hon. Otto H. and Dinah LaMacchia

(I know the Judge approves of what I have done)

and

In honor of my mother's parents

Gerald and Leona Tigar

(who have been my home away from home here in Boston)

For my parents,

Robert and Sherry LaMacchia

who have always given of themselves so that I

might have the best possible education, whatever the price

For all my friends who stood by me in the darkness,

keeping alive the ickering ame of hope:

Ziggy, who taught me how to argue,

Arthur, who opened my eyes to life outside the lab,

Russ, who taught me how to keep score in a ballgame,

Liz, who taught me how to climb mountains, real and metaphorical,

Retta, who always had an ear, or advice, or just a shoulder to cry on,

Philip, who showed me Lexis, Westlaw, and the path to Harvard Law School,

Bill, who taught me to stand by my principles and beliefs, no matter the cost,

and, most especially,

Henry,

my mentor, o�ce mate, friend, con�dant and drinking buddy,

who taught me how to appreciate wine, route network cable,

design circuits, give of myself to charity, and hack,

be it code, restaurants or hotels,

but, most of all,

For Dave,

who had to endure what no man should ever have to endure,

and in doing so showed a depth and strength of

character, conviction and shear will

that I can only hope to equal.

Contents

1 Introduction 1

1.1 The Internet: Evolution in Action . 1

1.2 Resource Discovery on the Internet . 3

1.2.1 Jurassic Net|FTP and Usenet . 3

1.2.2 Gopher and other Campus-Wide Information Systems (CWIS) 5

1.2.3 The World Wide Web . 5

1.2.4 Indexing Local Filesystems . 8

1.2.5 Client-side Approaches . 9

1.3 The Need for Something More { the Internet Fish 10

1.3.1 Heuristic Knowledge . 11

1.3.2 Long-Term Conversations . 11

1.3.3 Serendipitous Resource Discovery . 15

1.3.4 Other Goals and Limitations . 16

1.4 The Road Ahead . 17

2 Encapsulating Heuristic Knowledge 19

2.1 Claims and Assumptions . 20

2.2 Infochunks . 22

2.3 Operations: Tranducers and Rules . 25

2.4 Infochunk-rule Interactions and Supporting System Software 28

2.4.1 The Interaction Loop . 28

2.4.2 Events . 29

2.4.3 Error Handling and Recovery . 30

2.4.4 Resource Management . 32

i

ii Contents

3 User Interactions and Interestingness 33

3.1 User Interaction . 33

3.1.1 Questions and Answers . 34

3.1.2 System Support . 36

3.1.3 Putting It All Together . 39

3.1.4 Ordering Questions . 42

3.2 Interestingness . 42

3.2.1 Design Goals . 42

3.2.2 Prototype Implementation of Interestingness 44

4 The \Finder" IFish 49

4.1 Building an IFish that Finds Web Pages \Like These" 49

4.2 Heuristic Knowledge in the Finder IFish . 49

4.2.1 Heuristics to Find New Sources of Information 50

4.2.2 Heuristics to Look For Relationships Among Retrieved Objects 57

4.3 Querying the User to Re�ne the Search . 60

4.4 Approximating Interestingness of Web Pages . 66

4.5 A Session with the IFish . 70

5 The Future of IFish 75

5.1 Evaluating IFish Performance . 75

5.2 Future Work . 77

5.2.1 Straight-line Improvements . 77

5.2.2 Self-analysis . 78

5.2.3 Inter-IFish Communication . 79

5.2.4 IFish in Other Information Oceans . 79

5.2.5 Toward Serendipitous Resource Discovery . 80

5.3 IFish and the Future of Information Markets . 80

5.3.1 The Marginal Cost of Content . 81

5.3.2 The Marginal Price of Time . 82

5.3.3 Selling Time: the Next Layer of the \Internet Wars" 83

5.4 Conclusion . 86

List of Tables

4.1 Results of an Architext concept search. The listed �lename is the IFish-generated

�lename of a locally-cached copy of the document. The document title is the HTML-

tagged title in the document, if one exists. 61

4.2 User evaluation of top documents found by the Finder IFish. 73

iii

iv List of Tables

List of Figures

1-1 Growth of the World Wide Web, as measured by WebCrawler [47]. 6

2-1 Value slots in the infochunk data structure and typical content of each slot. 23

2-2 Value slots in the infochunk data structure and typical content of each slot. 23

2-3 The syntax of typeinfo declarations . 24

2-4 A sample infochunk and its internal components . 25

2-5 An example IFish rule: URL->HTTP-REQUEST-HEAD. 27

2-6 A simpli�ed view of the IFish interaction loop. 28

2-7 Events . 29

2-8 The IFish default error handler. 31

3-1 Value slots in the question data structure and typical content of each slot. 35

3-2 An example HTML document . 37

3-3 The HTML document in Figure 3-2 represented in s-exp HTML 38

3-4 Rule declaration for KEYWORD/KEYWORD->RELEVANCE-QUESTION 40

3-5 The transducer tdcr/keyword/keyword->relevance-question. 40

3-6 The question-maker qm/keyword/keyword->relevance-question 41

3-7 Value slots in the interestingness data structure. 44

3-8 The interest rule BACKWARD-LINK-TO-RELEVANT . 45

3-9 An example interestingness structure, including its contents. 46

3-10 A simple interestingness evaluation function. 46

4-1 The rule URL-STRING->URL. 51

4-2 The rule HTTP-REQUEST-HEAD->HTTP-REQUEST . 52

4-3 The rule HTTP-REDIRECT-HEAD . 53

4-4 The rule KEYWORD->LYCOS-URL . 54

v

vi List of Figures

4-5 The rule LYCOS-URL->ANCHORS+URLS . 55

4-6 The rule ALTAVISTA/KNOWN-USER-RELEVANT-URL->FIND-REFERENCING-URLS. 57

4-7 The function architext/infochunk->keywords, which computes likely keywords

for a particular HTML document. 59

4-8 A sample error-handler question. 62

4-9 A sample keyword-related question. 63

4-10 Rule declaration for ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION 64

4-11 A sample question generated by qm/architext/related-doc->relevance-question. 65

4-12 The interest rule NULL-PATH-URL. 66

4-13 The interest rule WEBSERVER. 67

4-14 Interest rules for ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-EVENT. . . 68

4-15 The interest rule ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION. 69

4-16 Seed URLs for the Finder IFish. 70

4-17 Infochunk declarations for the seed URLs. 71

4-18 Discovered documents ranked by interestingness. 71

4-19 User questions generated by the Finder IFish. 72

4-20 Discovered documents ranked by interestingness. 74

5-1 Web infrastructure layers . 83

Chapter 1

Introduction

1.1 The Internet: Evolution in Action

Take any current newspaper and lay it side-by-side with an issue of the same paper two or three

years old. Now compare the two papers: of course the names and faces and places \in the news"

will be di�erent, but look beyond that. Look at the \mail addresses" that appear in today's

paper, like \losers@wpost.com1." See the strange lines of characters in the automobile ads

(http://www.honda.com/) or in the movie ads (http://www.mca.com/othello). Look through

the classi�ed ads at the number of people o�ering \Web services" or \unlimited Internet Access for

only $15/month." Pick up a copy of Newsweek (which declared 1995 \The Year of the Internet")

and turn to the weekly feature called \Cyberscope." Thirty-six months ago any mention of the

Internet in the popular press was rare; now not a day goes by without an Internet news story.

There is no denying the hype surrounding the Internet; one need only look the initial public

o�erings (IPOs) and subsequent stock price uctuations of Internet-related companies like Netscape

Communications or Yahoo for a tangible indication of the future expectations placed on the medium.

Earlier this year we celebrated the 25th anniversary of the \founding" of the ARPAnet, and yet over

all those years the continued connections of widely-separated computation sources and data storage

repositories barely received notice. Whereas before this recent explosion the types of information

available on-line via the Internet were severely limited, now the �rst place to look for information

of any type is \the net." Over the last 36 months we have seen tremendous growth in both the

quantity and variety of information being published on the Internet. More people are acquiring

access to the Internet (either directly or via an Internet Service Provider (ISP)), more people are

learning how to access remote sources of information, and more people are putting their own data

\on the net" for public consumption. If you want to know today's baseball schedule (assuming the

players are not on strike), share prices for mutual funds, the latest weather reports and satellite

images, or even the Latin name for the sticky wattle plant, you can obtain that information from

sources on the Internet.

The problem facing Internet users today is not whether relevant information is available on-line

(it most likely is), or whether it is possible to gain access to the relevant information repositories.

Today's problem is in �nding the repositories that have the desired information. Recent distributed

1The e-mail address for the Washington Post's weekly Style Invitational contest.

1

2 Chapter 1. Introduction

information systems have made publishing information easy, but �nding a single piece of desired

data in the Internet's sea of information is like trying to �nd a needle in 10,000 haystacks. Resource

discovery is the process by which customers �nd sources for the data they desire. As the amount of

Internet-accessible data continues to grow, there is an increasing need for tools to discover, organize

and categorize new sources of information.

The resource discovery problem is not new; research on resource discovery dates back thirty

years or more [52]. What have changed are some of the fundamental assumptions concerning

the underlying pool of information that is accessible to the user. Nothing in the sea of available

information may be considered static anymore. The information itself is dynamic, the repositories

of information are dynamic, the primitive indexing tools available are dynamic, and even the set

of available tools is dynamic as new services aimed at helping people �nd the information they

desire announce themselves to the world constantly. The books published that purport to contain

\catalogs" of the Internet or \yellow pages-like" listings are dated as soon as they are committed to

paper. Even the well-maintained on-line categorical listings of data repositories are having trouble

maintaining themselves in the face of exponential growth2.

Resource discovery is generally interpreted to refer to the problem of �nding a network-accessible

resource that contains some piece of desired information. However, there is another angle to the

same problem: maintaining watch over a growing stream of information. In this case, �nding

related information resources is not the problem (the resources are already known); the problem is

that the rate at which new information is added to that resource is growing and thus more e�ort is

required to maintain the same level of awareness with respect to the information resource. (Anyone

who has tried to remain current in a Usenet newsgroup as that newsgroup undergoes an explosion

of tra�c has experienced this problem.) Maintaining a �xed level of awareness with respect to an

information source as that source grows is a variant of the resource discovery problem.

The majority of Internet resource discovery tools to date have been based on the idea of pro-

viding large, monolithic3 servers that hold indexes of available information. The Archie [18], De-

jaNews [14], Veronica [23], Excite [20], and WebCrawler [47] services are all representative examples

of monolithic servers4; there are of course many other similar systems [15, 28, 29, 35, 36, 39, 59].

The source and type of information indexed varies by service: Archie and Veronica, for example,

index only �lenames or header lines. Other services provide summary-based indexing [36, 47] or

full-text indexing [15, 31].

While these broad-based indexes often provide useful starting points for further resource dis-

covery, they themselves are not su�cient tools for dealing with the growing collection of Internet-

accessible data. They often su�er from the \too little/too much" problem: for a given query, the

index in question returns either too few resources (thus frustrating the user) or too many resources

(which the user cannot deal with in a reasonable manner)5 There is also no notion of \ongoing

2The Yahoo [59] service is now reporting over 5000 new addition requests every week. A project that was started

by a couple of graduate students providing a useful service in their spare time has blossomed into a full-blown

commercial enterprise.
3\Monolithic" here refers to the logical representation of the server to the user. The fact that a server may be

fully-replicated across multiple machines for performance reasons doesn't change the basic model.
4Recent work on the Harvest [9] system has extended the \monolithic server" approach to a distributed, multi-level

indexing scheme.
5For example, a simple query to Digital's Alta Vista service [15] on the term \cryptography" returns a list of

\documents 1-10 of about 20000 matching some of the query terms, best matches �rst." Having access to 20000

possible articles is great, but it's not practical for the user to page through the results ten at a time to �nd the

1.2. Resource Discovery on the Internet 3

queries" with these systems; an incoming query is processed, answered and dismissed. The index

itself is a representation of some �xed set of data at some �xed point in time. In order to detect

new information resources as they appear, the index itself must be updated on a continuing basis

and users must query the index periodically and look for results not found by prior queries.

This thesis describes the design, implementation and deployment of a system for constructing

a di�erent type of resource discovery tool, one that tailors itself to �nding resources that contain

information relating to a particular topic and perhaps maintaining that collection of resources over

an inde�nite period of time. The tool runs autonomously, although both it and the user that creates

it are able to initiate discourse when desired. We call this tool an \Internet Fish" (IFish) because

it \swims" in the \sea of information" that is the Internet looking for \tasty bits of information"

that relate to its topic of interest. Internet Fish both �nd new sources of information and also

monitor known information streams for new, interesting data.

The remainder of this chapter lays the background for our discussion of the Internet Fish.

Section 1.2 below briey outlines past and current work in the �eld of resource discovery on the

Internet, including the myriad of currently-popular index services available on the World Wide Web

(Section 1.2.3). In Section 1.3 we discuss how these current systems fail to make use of encapsulated

heuristic knowledge (Section 1.3.1) and long-term conversations (Section 1.3.2). Section 1.4 outlines

the structure of the remainder of the thesis.

1.2 Resource Discovery on the Internet

Research on resource discovery techniques has grown concurrently with widespread publication of

information on the Internet. This is a pure case of necessity being the mother of invention; as

the amount of information available has increased it has outstripped the ability of individuals to

manually \keep up" and organize the information. Thus, as is natural, automated methods of

indexing available information were developed. This section briey outlines the more well-known

methods of publishing information on the Internet and their associated indexes.

1.2.1 Jurassic Net|FTP and Usenet

The earliest form of data publication on the Internet is probably the anonymous FTP server [49].

Use of FTP, the File Transfer Protocol, to move �les across the network has always been one of the

primary uses of the ARPAnet (and later the Internet). Historically FTP tra�c accounted for over

40% of the total byte tra�c on the NSFNET backbone. Even as late as April, 1995, when WWW

byte tra�c exceeded FTP tra�c, FTP tra�c still accounted for over 20% of the use of the network6.

Any machine that can act as an FTP daemon has the capability to serve �les anonymously; that

is, to allow unlimited access to portions of its �lesystem so that anyone may access and download

particular resources that help him or her best. If the user can provide a more re�ned query (e.g. \cryptography

AND knapsack") the search results may become tractable, but this is not always possible. In particular, if the user

performing the query doesn't already know what he or she wants to �nd, it may be impossible to narrow the search

to produce a reasonable number of documents.
6These statistics were collected by MERIT, Inc., as part of their operation of the NSFNET backbone network.

The NSFNET ceased to exist in May, 1995, when government subsidies for the backbone ended; tra�c that was

carried on the NSFNET backbone has since migrated to multiple parallel networks operated by private companies.

4 Chapter 1. Introduction

the data stored there. This capability has long been used to maintain data archives on the Internet

that are freely accessible.

Given the name of a machine that allows anonymous FTP access and the name of a particular

�le on that server, it is easy to gain access to the server and download the speci�ed �le. However,

when one does not have both of these two pieces of information the task of �nding the desired data

is signi�cantly more complicated. The FTP protocol itself does not provide methods for searching

the contents of remote servers, and there is no global registry of machines running anonymous FTP.

The Archie [18] system connects to each of a �xed list of anonymous FTP servers and recursively

extracts the server's directory structure. Archie then indexes the absolute pathnames of all the

�les on the server in question. The index is replicated across multiple, distributed servers and

is available via a number of interfaces. Archie does not index the contents of �les available via

anonymous FTP; only the names of �les are indexed.

The other major data publishing system that has long been available on the Internet is the

collection of Usenet newsgroups, often collectively called \netnews." Today, there are literally

thousands of individual Usenet newsgroups7; the number of newsgroups available to any particular

user is a function of what newsgroups are received and stored by the user's netnews server machine.

Whereas FTP servers are used almost exclusively for the distribution of static �les (data, programs,

etc.), netnews is used for the most part to distribute communication (messages among groups of

users).

Usenet itself provides for only limited archival storage of posted messages; the amount of time

any particular message \lives" on a news server depends in part on how long that news server holds

netnews messages8. Typically messages are archived for 7-30 days, enough time for interested users

to read messages and maintain some sense of continuity in threads of discussion, but short enough

to limit required disk space. Permanent archives and indexing mechanisms are provided by others

on an as-needed (or as-desired) basis. For example, the sci.math newsgroup is archived at URL9:

gopher://math.lfc.edu/11/MathRelItems/scimathArchive

The archive retains every message and automatically builds a WAIS [31] index of message contents.

The usenet-address archive [46] maintains a list of recently-seen e-mail addresses by extracting

addresses from the stream of netnews messages. Many \Frequently Asked Questions" lists (FAQs)

are \archived" by automatically reposting the contents to netnews periodically; the reposting tasks

are handled by automated servers. Some netnews FAQs are also archived via anonymous FTP

at speci�c sites around the Internet; this is a special case of the more recent phenomenon of

fully-indexed netnews servers10. Usenet newsgroups may also be gatewayed with particular e-mail

mailing lists; the gateway provides bidirectional exchange of postings and articles so that newsgroup

and mailing list see the same collection of writings. Many mailing lists are archived automatically,

so Usenet postings may eventually end up on an FTP server somewhere well after the article has

7Currently my own .newsrc �le, which records what newsgroups I subscribe to and what articles I have read in

each newsgroup) has over 10750 newsgroups in it to which I could subscribe.
8Netnews server software allows server administrators to decide when articles in a particular newsgroup should

expire and be removed from the system. Usually the higher the volume of tra�c in a particular newsgroup the

shorted the time period articles are left on the server.
9Throughout this document we reference documents published on the Internet with Uniform Resource Locators [6]

(URLs).
10Currently both Alta Vista [15] and DejaNews [14] provide fully-indexed access to their collection of newsgroups.

These services do expire articles over time, but provide approximately 60-90 days worth of access in some newsgroups.

1.2. Resource Discovery on the Internet 5

disappeared from news servers. Or, since some mailing lists and individual newsgroups may also

be gatewayed through hypertext-generating servers, content originating in netnews may also be

available via the World Wide Web (see Section 1.2.3 below).

1.2.2 Gopher and other Campus-Wide Information Systems (CWIS)

The Gopher [40] system, introduced in 1992, quickly became popular as a publication system

because it simpli�ed access to a web of distributed information. Gopher presents the user with a

hierarchy of menus; leaf nodes in the graph may contain text, graphics or sound. Once a Gopher

server is set up on a machine, publishing new data in \Gopherspace" is relatively easy, as is providing

local links to remote data sources. Gopher also provides a limited search/index mechanism for user-

published indexes; that is, an indexed database can be added to Gopherspace and simple keyword

searches may be performed on that database via the Gopher interface. Gopher itself does not

provide any sort of indexing of server contents, although individual server operators may index the

contents of their servers manually (using something like WAIS) and publish those indexes via the

Gopher search/index interface.

The Veronica service [23] provides title-based indexing of the contents of Gopherspace. Veronica

walks through all the Gopher servers accessible from the Univ. of Minnesota \Mother Gopher"

server compiling a list of all accessible documents and directories. Titles are extracted from each

visited document during the tree walk and collected. This collection is then sorted, indexed and

distributed to the various Veronica query servers on the Internet. Users are then able to access the

Veronica index via limited boolean keyword searches.

Gopher was one of a number of early campus-wide information systems (CWIS). The TechInfo

system [38], developed at MIT, was another early attempt at providing distributed public infor-

mation. Like Gopher, TechInfo was a hierarchical collection of �les where leaf nodes could contain

text, graphic, or sound �les. Unlike Gopher, TechInfo did not have a centralized server answering

queries. Instead, TechInfo distributed a description of the hierarchy of information nodes via and

underlying distributed �lesystem (AFS [42, 57], the Andrew File System) to provide distributed

access to information. TechInfo clients only needed access to this distributed database in order

to build a menu of possible choices for the user. When a leaf node was requested the information

in the distributed database told the TechInfo client where it could �nd the desired �le within the

larger AFS system. TechInfo was �rst subsumed into Gopherspace via a Gopher-to-TechInfo gate-

way that ran as part of MIT's early Gopher service. Later, a gateway from HTTP to TechInfo was

deployed, thus giving every WWW browser access to TechInfo information.

1.2.3 The World Wide Web

The introduction of the World Wide Web (WWW or \the Web" [3]) in 1993, and in particular the

Mosaic [1] family of WWW browsers, has been primarily responsible for the phenomenal growth

in Internet publishing seen today. Mosaic/WWW is often quoted in the popular press as the

Internet's �rst \killer app[lication]," akin to the role Visicalc played in the popularity of the Apple

II microcomputer during the early 1980s. Mosaic's \point-and-click" interface to the constantly-

growing hypertext that is the WWW, together with its ability to seamlessly intermix text, graphics

and sound, has drawn many new people onto the Internet. The WWW architecture and the popular

6 Chapter 1. Introduction

HTTP servers available for free fromW3C11 and NCSA make it particularly easy for users to author

information and publish it on the Web.

It is di�cult at best to measure the size of the WWW. New WWW servers are constantly being

added to the network and new documents are constantly being added to existing servers; similarly

old servers and documents may no longer be available. Some Web documents are interfaces to

underlying databases; the complete content may be accessible from the Web but not in a fashion

that makes indexing possible. Finally, many Web browsers support multiple protocols: Netscape

2.0, for example, supports HTTP, Gopher, FTP, Usenet (through a user-customizable particular

netnews server), and e-mail (via SMTP [48] and POP [43]). Thus, when one publishes data via

Gopher, it is available not only to people using Gopher-speci�c clients but also to anyone running

a WWW client that understands the Gopher protocol. Because these browsers provide e�ectively

seamless access to a wide range of information, any meaningful measure of the size of the WWW

must be quali�ed and state which particular de�nitions of \size" and \WWW" they depend upon.

Figure 1-1: Growth of the World Wide Web, as measured by WebCrawler [47].

There have been and continue to be numerous attempts to \walk the WWW" and count avail-

able WWW servers, documents and even words; our best statistics to date come from the various

Web indexing services that attempt to exhaustively traverse the Web gathering documents. Fig-

ure 1-1 shows the growth of the WWW as measured by the number of accessible HTTP servers

discovered over time by WebCrawler12. Claims of being the \most comprehensive" index have lead

11The World Wide Web Consortium.
12The WebCrawler-derived data necessarily undercounts the true size of the Web as it only represents servers that

1.2. Resource Discovery on the Internet 7

to a rivalry and informal competition among the various indexing projects that continues to this

day. For a while Lycos [36] was the leading index service, registering hundreds of thousands of

accesses each day; Lycos �rst identi�ed over one million separate Web documents in November,

1994. The WebCrawler service [47] (acquired by America Online in June, 1995) was the leading

competitor until December, 1995, when Digital's Alta Vista [15] service went on-line. Alta Vista

began service with a index covering over ten million individual Web documents and over eight

billion individual words. Between December, 1995, and February, 1996, Alta Vista indexed another

eleven million web pages, bringing the total number of indexed documents to twenty-one million.

Lycos has also crossed the \ten million" barrier and continues to search out new Web servers and

new documents.

This tremendous growth in the amount of data published via WWW has led to a number

of attempts to index the Web's contents. Initially these attempts proceeded along the lines of

the Veronica project in Gopherspace: they attempted to collect title-like information about every

reachable page of data on the WWW and build boolean keyword searches into that database. The

JumpStation [22], probably the �rst well-known attempt to index any WWW information, collected

only \<TITLE>"-tagged information from pages it encountered. (The WWW Wanderer [26] was

a similar early project, although its goal was only to discover available WWW servers. It only

collected information about machines that were running WWW servers.) Later projects like the

World Wide Web Worm (WWWW) [39], the WebCrawler and Lycos, collected more summary

information to index from each WWW page. For example, Lycos tries to summarize the actual

content of documents in addition to collecting heading text:

For each document fetched, Lycos keeps the title, headings, subheadings, and links, plus

the 100 highest weighted words (using Tf*IDf13 weighting) plus the �rst 20 lines. [36]

The Lycos approach thus takes advantage of human-tagged information (headings), often-appearing

keywords and \introductory" text that generally appears at the beginning of a �le.

As mentioned above in Section 1.1, the shear amount of accessible and indexed information

often leads to the \too much/too little" problem. The usefulness of being able to search many

millions of documents for particular keywords depends in part on the number of documents found.

Keyword searches that return hundreds of thousands of \hits" (document matches) are not partic-

ularly useful, especially if the documents are \sorted in no particular order14." These drawbacks

led to the creation of \moderated" Web site listing services and classi�cation schemes, the most

successful to date being the Yahoo [59] indexing service. The graduate students who founded Ya-

hoo15 created a broad, hierarchical classi�cation scheme for Web sites based on subject matter; the

classi�cation scheme is similar to those used by the Library of Congress (for classifying books and

periodicals) and the American Mathematical Society's Math Reviews publications (which classify

have been discovered by the indexing robot. The data also counts only HTTP servers and does not include FTP or

Gopher servers.
13(Term frequency) * (Inverse Document frequency) weighting is described in [52].
14Simple keyword searches via Alta Vista may not be sorted; complicated searches may be able to use a scoring

algorithm to sort the search results. Lycos and WebCrawler both return documents according to internal scoring

rules.
15Yahoo was started by David Filo and Jerry Yang, graduate students in Electrical Engineering at Stanford, as

a free classi�cation service, similar to a Yellow Pages listing. Yahoo became so successful that it was spun o� as

a start-up company. To date Yahoo's revenue stream is generated solely by advertising; small advertisements are

placed in each page of search results returned. Many other free Internet services are supported in similar fashion.

8 Chapter 1. Introduction

scholarly mathematical publications by topic). The various Yahoo headings, the actual text of

referenced URLs, and even a small description of the contents of the Web site may all be searched

by keyword. Yahoo's success spawned multiple similar services: Point Communications' Point [35]

service (now allied with Lycos), and the McKinley Group's Magellan index [56] are two of the

largest competitors. Point and Magellan both provide actual reviews and numerical ratings of Web

sites. The proliferation of these various indexing and search services, each with its own domain of

coverage, has led to the creation of \meta-search" services like MetaCrawler [54], SavvySearch [17]

and WebCompass [50]. These services use the monolithic indexing services as subroutines: they

query each of the indexing services in parallel, aggregate the results and return the composite to

the user who made the query.

Maintaining the quality of a classi�cation scheme like Yahoo's is time consuming; entries must

be checked, updated, and revised periodically. Yahoo allows people to submit pointers to new

Web sites to be included in the hierarchy, but each submission must still be validated by hand for

relevance and appropriateness. Reviews (like those provided by Point) and ratings systems (like

that used by Magellan) must also be revised periodically or they will cease to be useful. Some of this

work may be pushed back onto the operators of the Web servers themselves; after all, a site wishing

to be listed in one of these classi�cation services will gladly provide the (relatively minimal) e�ort of

maintaining their own site's information, and the Web makes this sort of distributed collaboration

easy16. IBM's Aqu�� database [29] of Web pages allows individual users to link related pages together;

these links are bidirectional and may be found at either the referencing or referenced page. Thus,

even if the original Web document does not contain a particular pointer such a link may be added

to Aqu�� and will be displayed when the page is retrieved via the Aqu�� system.

Finally, we should point out that as the capabilities of these various indexing services increased,

other rapidly-changing information streams were able to be indexed, too. A large subset of the

available Usenet newsgroups are now fully indexed by both Alta Vista and DejaNews [14]. DejaNews

in particular provides access to approximately the past three months worth of netnews postings.

It is possible to search the collected database by subject keyword, by title keyword, or by author

(either name or e-mail address). Author searches yield not only the individual articles written by

someone but also a summary of articles by newsgroup. Articles that contain Usenet referral headers

are hyperlinked to the referenced postings, thus making it easy to climb backwards along a thread

of discussion.

1.2.4 Indexing Local Filesystems

There has also been much work recently in providing advanced indexing services for local �lesystems.

The Essence [27] system provides semantic �le indexing for a wide variety of �le types. Essence

uses heuristics (such as �lename su�xes or \magic numbers" in Unix binary �les) to determine

the type of information contained in a particular �le. Content summaries are then produced for

each �le; content summary generation depends on the type of the �le. Summaries are then indexed

using a modi�ed version of WAIS to provide fast searches over the collection of summaries.

The Semantic File System (SFS) [24] is another indexing system that uses semantic information

16One of the best examples of harnessing the collective power of the Web to produce collaborative work is the

Internet Movie Database, available at http://www.msstate.edu/Movies. All the information in the database was

submitted by volunteers; the resulting collection is perhaps the most comprehensive set of movie-related facts and

trivia ever published.

1.2. Resource Discovery on the Internet 9

to classify �les in a local �lesystem. SFS uses transducers (�lters) to convert �les into attribute-

value pairs, which are then used as the basis of classifying �les in virtual �le systems. Virtual

directory names in SFS are interpreted by the system as index queries; the content of a virtual

directory is the set of �les that matches the query. Gi�ord's Content Router [55], a query system for

distributed information servers, is built on top of the SFS. Queries in the Content Router system

describe desired object attributes. The contents of individual information servers are described

by content labels; these labels are then registered with content routers that receive user queries.

Content routers compare an incoming user query to the set of known content labels and forward the

query to appropriate information servers. Virtual directories generated by individual information

servers are then merged into one view presented to the user.

The GLIMPSE [37] system provides another approach to indexing local �lesystems. GLIMPSE

facilitates fast searching through the use of a very small, approximate inverted index. GLIMPSE

divides a collection of documents into 256 blocks17 and builds an inverted index listing, for each

search term, the blocks in which that term occurs. Linear search is then performed over the

indicated blocks to �nd the exact location of the search term in the �lesystem. GLIMPSE is built

on top of agrep [58], an approximate regular expression search tool for individual �les; no semantic

analysis is performed when building the GLIMPSE index.

1.2.5 Client-side Approaches

As mentioned above, most of the resource discovery tools available to Internet data publishers are

large, monolithic systems that \robotically" gather data from the network. One notable exception

to this rule is the WWW browser-based \�sh search" work by De Bra and Post [13]. De Bra and

Post modify a Mosaic client to perform limited WWW searches starting from a user-designated

root document. \Fish search" is thus basically a depth- and breadth-limited tree walk from the

given root, except that the depth and breadth limits dynamically change over time based on the

relevance of documents \in the hierarchy" already retrieved.

The Letizia system [32, 33] is another client-based tool that assists resource discovery. Letizia

is tightly coupled with a particular Web browser and constantly monitors how the user makes use

of the browser. Letizia attempts to learn about user preferences and interests by watching and

recording which links the user chooses on each page. Using this information Letizia tries to predict

which links will be chosen next by the user and prefetches that information while the user is reading

the contents of the current page.

Web browsers themselves are growing in ways that make them more useful for long-term resource

discovery and maintenance. The \hotlinks" feature of Mosaic (\bookmarks" in Netscape) is a user-

created list of URLs; these links are easily accessible within the browser, typically from a pull-down

menu. Netscape 2.0 clients keep track of when the user last visited the documents references by

each bookmark and is able to automatically visit these sites to check for changed content. Thus, a

user interested in watching over a hundred individual Web pages may quickly discover which pages

have recently changed and require review18.

17In standard �lesystem parlance a block is often a subdivision of an individual �le. A block in GLIMPSE most

likely contains many �les, as a block is a large subdivision of the entire �lesystem.
18Knowing only that a Web page has changed, of course, is not necessarily su�cient, as it may be di�cult to �gure

out what on the page has changed. The AT&T Internet Di�erence Engine [16] provides one solution to this problem.

10 Chapter 1. Introduction

The Letizia and \�sh search" tools both interface with particular browsers via a client-control

interface that provides limited access to the browser. Browsers are becoming more extendable,

and this development should produce more client-side resource discovery tools. For example, the

Netscape 2.0 browser now supports Java [2] applets (mini-applications) on certain platforms. Java

applets are downloaded fromWeb servers as part of particular Web documents (like in-lined images)

but these applets actually perform computations within the client browser and display information

locally. Netscape also supports \JavaScript" which is a simpli�ed version of Java but does allow

access to the network from within Netscape. (Java itself was designed to be a \safe" language and

as such the Java virtual machine is not supposed to allow Java applets access to external resources

like disk drives, serial ports or network connections.) These extension languages have already been

used to display running stock ticket quotations (user-con�gurable, of course); we will certainly see

more complex applications in the near future.

Finally, we should point out that not all client-side tools require modi�cation of or even close

contact with a Web browser. The OreO19 [10] development kit, written by this author and others

at the Open Software Foundations Research Institute (OSF RI), provides a simple mechanism for

creating client-side applications, interposed between a browser and a network connection, that

watch and possibly mutate data ow between the browser and the outside world. Using OreOs it

is possible to provide on-the-y annotation of retrieved Web pages: for example, we can build an

OreO that watches the datastream for likely ZIP Code numbers and annotates that information

with hyperlinks to Postal Service and census information concerning that area of the country. We

could also use OreOs to improve system response by performing look-ahead caching of Web pages,

or provide better history mechanisms for a browser, or even assist groupwide communication.

1.3 The Need for Something More { the Internet Fish

Section 1.2 above outlines a number of resource discovery systems currently operating on the

Internet. Unfortunately these systems, and the straight-line improvements of them that have and

will continue to follow, are not su�cient to meet the resource discovery needs of all users. In

particular, there are three areas in which these large, monolithic systems are lacking:

1. Current resource discovery systems do not avail themselves of certain types of heuristic knowl-

edge about the structure of the Internet and the data sources available on it. This information

can be quite powerful and is readily available to experienced human Internet navigators.

2. Current resource discovery systems contain no notion of \long-term conversations" with users

or any method of \remembering" queries over time. This information can also be quite

powerful.

3. Current systems lack the ability to provide serendipitous resource discovery20.

Our goal in designing and building the \Internet Fish Construction Kit" was to build the enabling

technology for constructing simple resource discovery tools that could take advantage of encap-

sulated heuristic knowledge and long-term conversations, as well as provide perhaps serendipitous

19The name \OreO" was chosen because OreO-based applications look like HTTP proxy servers on all interfaces

(Web browser and server) and contain a \�lling" in between that does something interesting.
20Some services, like Alta Vista, allow users to travel to a randomly (or semi-randomly) chosen URL. Such behavior

may be considered a very limited form of serendipitous resource discovery.

1.3. The Need for Something More { the Internet Fish 11

research discovery beyond \send me to a randomly chosen URL." This section provides an overview

of each of these areas; subsequent chapters detail how the Internet Fish Construction Kit supports

these goals.

1.3.1 Heuristic Knowledge

Current Internet resource discovery systems utilize little knowledge (if any at all) concerning the

\structure" of the Internet and the information published therein. For example, within the commu-

nity of U.S. university mathematics departments it is common practice to name servers accessible

to non-local users via the convention math.<school>.edu; this is one of many naming conventions

on the Internet that often provide clues to human searchers. Similarly, were I trying to locate a web

server for the University of California at Berkeley, the �rst machine I would try to contact would

be www.berkeley.edu. From experience, I know that berkeley.edu is UCB's reserved Internet

domain and that it is conventional to name the Web server for a particular domain www.<domain>.

Schwartz's Net�nd [53] program for discovering electronic mail addresses made signi�cant use of

this type of information to �gure out what SMTP (e-mail) servers to talk to. Knowledge about

naming conventions, the structure of the Domain Naming System (DNS) [41] and speci�c Internet

protocols (�nger [60] and SMTP) was encapsulated within the system as heuristic rules.

In addition to \structural" information it is also desirable to be able to encode heuristic infor-

mation about certain existing services on the Internet. Internet Fish, for example, should be able

to take advantage of other known indexing services and be able to interpret search results. On-line

resources like dictionaries, thesauri, geographic nameservers, and ZIP Code services are available

for ready reference whenever need arises; IFish need to be aware that such services exist and that

they may draw upon them as they desire. We also want the ability to capture representation

knowledge for retrieved documents; IFish need to understand what might be \interesting" in an

HTML document21 or what a URL looks like in an e-mail message. A dynamic system for storing

heuristic knowledge about the network is necessary if we want IFish to be able to learn about their

environment.

To this end, one of two main design goals for the Internet Fish Construction Kit is to facilitate

the addition of heuristic information and integration of that information into the overall search

engine. As the set of accessible Internet services useful to an Internet Fish changes over time, our

heuristic knowledge system must be capable of on-the-y modi�cation and expansion. Furthermore,

we wish to keep the representation model of heuristic information as simple as possible, since

eventually heuristic content is going to be provided by a number of sources.

1.3.2 Long-Term Conversations

Another area of weakness in current Internet resource discovery systems is the lack of long-term

memory and any notion of conversation between indexing services and their users. Current servers

view each query made of them as an independent event; they assume that there is no linkage or

relationship between any two queries. This assumption allows servers with large client bases to

e�ciently process the many unrelated queries they receive, but it throws away information that

21Recall from Section 1.2.3 above that Lycos explicitly indexes all title, heading and subheading terms. Lycos

assumes that words and phrases appearing in these contexts are have special meaning because the author of the

document chose them to represent a block of text.

12 Chapter 1. Introduction

might be useful to an individual user trying to �nd items through multiple queries of the same

service.

The usefulness of interaction between the resource discovery tool and the user is not in doubt;

much of the research in traditional information retrieval (IR) methods has focussed on relevance

feedback from the user to constrain the search. For example, the Content Router [55] contains

an extremely simple level of interaction: query re�nement. After submitting initial queries to the

server, users have the option of trying to \re�ne" those queries by making them more speci�c.

The server analyzes the index terms in the user's query, looks at what other terms co-occur with

those terms in the index, and suggests additional re�nement terms to the user based on conditional

probability of co-occurrence. This very simple form of data-dependent interaction is one example

of a \short-term" conversation between a user and an index server.

Internet Fish will use conversations in a much more signi�cant manner than simple query re�ne-

ment. Long-term conversations between an IFish and its creator will allow higher-level \interest

re�nement" but also re-allocation of resources and human assistance in the process of acquiring

knowledge. Since Internet Fish will exist over long periods of time they have the opportunity to

collect more information and perform more analysis on their particular topic of interest than more

general indexing services. Further, because IFish will gather information gradually, over time we

can expect IFish to make deductions about the �eld of interest and request additional information

or con�rmation from users as appropriate. Finally, as the number of information sources discovered

increases, scarce IFish resources will be in greater demand; interaction will allow users to direct

how IFish resources should be utilized.

What might one of these conversations look like? Below are two examples of human-Internet

Fish interactions which demonstrate how Internet Fish could take advantage of both encapsulated

heuristic knowledge and long-term conversations. Note that we assume the existence of a natural

language interface between the user and the IFish in these examples; the current Construction Kit

permits only limited, structured interaction.

User: System, create a new Internet Fish for me.

System: Internet Fish \Fish17" created, initialized and ready for use.

User: Fish17, I'm interested in �nding information about a particular person. The person's name

is \L. Craig Evans." He's a mathematician.

Fish17: OK, this may take a little while...

[Time passes...]

Fish17: You told me that \L. Craig Evans" is a mathematician. Based on that information I decided

to go look at the membership of the \American Mathematical Society." I found a \Lawrence

Craig Evans" listed. Is this the person you're interested in?

User: Maybe. How many other \Evans" did you �nd there?

Fish17: 17 other \Evans" but none approximated \L. Craig."

User: What have you learned so far about \Lawrence Craig Evans?"

1.3. The Need for Something More { the Internet Fish 13

Fish17: There's an e-mail address given: evans@math.berkeley.edu

User: OK, assume with high probability that he's the right guy. Make searching for other possibilities

a low-priority task.

Fish17: OK.

[Time passes...]

User: So, what do you know now about L. Craig Evans?

Fish17: Well, he's de�nitely at Berkeley. I found addresses for him at both the American Mathematical

Society and in an on-line phone book at Berkeley. Mailing addresses are slightly di�erent,

although the e-mail addresses and phone numbers are identical. Here's what I got from the

AMS:

Lawrence Craig Evans

Department of Mathematics

University of California Berkeley

Berkeley, CA 94720-0001

510-643-7417

evans@math.berkeley.edu

and here's what I got from Berkeley:

EVANS, Lawrence C.

Professor, Math

907 Evans Hall

Berkeley, CA 94720-3840

(510) 643-7417

EVANS@MATH.Berkeley.EDU

Judging by the MR classi�cations of his research papers, Evans seems to do a lot of research

in the area, \Partial di�erential equations." In the past 5 years he has had 18 papers reviewed

in Math. Reviews, and all but �ve were listed in category 35 (Partial di�erential equations).

Here are the MR numbers and titles for his �ve most recent books/papers:

1. (no title information available) MR number 94k:35117.

2. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity. (a

paper written with S. M�uller) MR number 94h:35205.

3. Partial regularity for stationary harmonic maps into spheres. (a paper) MR number

93m:58026.

4. Phase transitions and generalized motion by mean curvature. (a paper written with

H. M. Sonner and P. E. Souganidis). MR number 93g:35064.

5. Measure theory and �ne properties of functions. (a book written with R. F. Gariepy).

MR number 93f:28001.

14 Chapter 1. Introduction

I've not yet found copies of the papers on-line, although I've found an anonymous FTP

server at Berkeley that has an \L.C.Evans" directory. It appears to contain errata for the

Evans-Gariepy book and a set of notes on PDEs.

I'm now searching Usenet for information about L. Craig Evans.

User: Where in Usenet are you searching?

Fish17: I've started in sci.math and sci.math.research.

User: OK, get me copies of his �ve most recent papers in partial di�erential equations. This is a

high-priority task.

Fish17: OK.

[Time passes...]

Fish17: Three of the papers you requested are available on-line via a commercial service. It will cost

$8 per paper to get electronic versions. Can I spend $24 to get all three?

User: Go ahead.

Fish17: OK, the other two papers do not seem to be available on-line. I can request printed copies

from his o�ce if you like.

User: Do that, and when you've �nished go into stand-by mode.

Most of the information that Fish17 cited above is readily available on-line, if one knows where

to look for it. The phrase \He's a mathematician" gives the IFish a starting point: the AMS on-line

directory and index of reviewed papers22. From that list, one can imagine searching the Science

Citation and Math Reviews databases for paper titles and cross-references. Netnews searches are

performed daily by numerous \clipping services." Finding anonymous FTP servers at Berkeley is

not di�cult given some knowledge about server naming conventions, or via Archie23.

The above example demonstrates an Internet Fish's ability to go out and �nd information on

a new topic of interest. Internet Fish can also act as information brokers for particular topics of

interest, watching data streams for new information in those topics. Here is an example of an

Internet Fish that knows about and continuously monitors \cryptography:"

User: Fish23, tell me what's happened in cryptography recently.

Fish23: Well, OK. I've seen �ve interesting items since you last asked:

1. Crypto '96 was held in Santa Barbara, CA, from Aug 18-22. 75 papers were scheduled

to be presented.

22http://www.ams.org/committee/publications/author-lookup.html
23Some Archie servers allow regular-expression searches of the server's list of anonymous FTP servers. Asking the

Archie server at archie.rutgers.edu for all anonymous FTP servers matching *berkeley*" yields nine servers, one

of which is math.berkeley.edu.

1.3. The Need for Something More { the Internet Fish 15

2. There's been a lot of discussion on sci.crypt about a paper titled \Failsafe Key Escrow"

by Leighton and Killian.

3. There's also been a lot of discussion about something called \MD5" and a weakness

relating to \collisions" both in sci.crypt and on the Cypherpunks mailing list.

4. A new newsgroup has appeared, sci.crypt.research. I've added it to the list of

newsgroups I monitor.

5. Finally, there seems to be a new FAQ announced on Cypherpunks, available from the

URL ftp://ftp.netcom.com/pub/tcmay/CP-FAQ.

User: How many newsgroups are you monitoring?

Fish23: I'm currently watching �ve di�erent newsgroups: sci.crypt, sci.crypt.research,

alt.security.pgp, talk.policy.crypto, and comp.org.eff.talk. The last two don't con-

tribute much as cryptography information sources, although they have lots of tra�c.

User: Follow the MD5 discussion closely, and send me copies of anything sent by people in the

domain \rsa.com." See if you can �nd a copy of the Leighton & Killian paper on-line some-

where.

[Time passes...]

Fish23: I managed to �nd a copy of \Failsafe Key Escrow" in an anonymous FTP archive at

lcs.mit.edu. The URL of the paper is:

ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tr.outbox/MIT-LCS-TR-636.ps.gz

I've put a copy of the paper in your papers subdirectory.

User: Fish23, thank you.

1.3.3 Serendipitous Resource Discovery

The third \limitation" of current resource discovery systems, the lack of serendipitous resource

discovery, is really more a desired property for Internet Fish and not a limitation of current systems.

Perhaps the most enticing feature of the WWW is that users are never quite sure what they are

going to �nd when they follow a hyperlink. There is always the possibility of �nding something

unexpected while browsing the Web, something the user �nds interesting yet did not know about

previously. We call the process of �nding interesting information in an unexpected place or manner

serendipitous resource discovery, for it was \lucky" that we found what we did.

Opportunity for serendipitous resource discovery seems to be one of the most attractive features

of the WWW for new users. When the Web was still relative small, almost invariably new users

returned frequently to the \What's New With NCSA Mosaic and the WWW" page looking for

new Web sites to explore24 Services exist that cater to Web browsers' desire for \unexpected

24The \What's New With NCSA Mosaic" page [44] listed announcements of new Web servers and new content

that was maintained by the Mosaic developer team at NCSA. At that time (early 1994) the WWW consisted of at

most a few thousand servers and new server announcements numbered at most ten daily; it was possible at the time

to visit every new server and at least glance through its on-line content. As of January, 1996, new Web servers were

being brought on-line at a rate in excess of 300 per day, and that rate itself continues to increase.

16 Chapter 1. Introduction

but interesting" information25. Ideally, Internet Fish will become \generators" of serendipitous

resource discovery; in the course of their searches they may uncover information that is related

to their search topic in an unexpected manner, or they may discover an unexpected relationship

between two \independent" bodies of knowledge.

1.3.4 Other Goals and Limitations

Our Internet Fish Construction Kit provides the framework for building Internet Fish and tailoring

them for particular types of information retrieval tasks. Our design is su�ciently general and

abstract to allow IFish to operate in a wide variety of information environments. However, to

prove the viability of our approach we have chosen to make certain assumptions concerning the

operating environment.

First, Internet Fish created by this thesis will \swim" in the sea of information freely available

on the Internet; IFish will not interact at this time with commercial database systems. Public, free,

Internet-accessible resources have the bene�ts of network connectivity (and connectivity problems),

free access, a more uniform network protocol for access, and the abundance of poorly-organized

information. While commercial systems certainly contain an abundance of information, there are

fewer opportunities to \add value" via an Internet Fish to a commercial database that is already

fully indexed and accessible.

Second, the currently favored method of data publication on the Internet is the World Wide

Web (which implicitly includes all of Gopherspace and all anonymous FTP servers as well as the set

of information available from HTTP servers). Given that the overwhelming majority of Internet-

published information sources are available via WWW protocols, the Internet Fish must live in the

WWW. Additional protocols will be added as necessary and desired, but the primary goal of this

thesis will be to produce an Internet Fish capable of swimming in the WWW.

Third, for the purposes of this project we assume that individual Internet Fish may communicate

with only one user at a time and that individual IFish exist independently and do not communicate

with other IFish. Were we to carry on with the �sh metaphor there would be \schools" of Internet

Fish swimming in the Internet, and each IFish would be able to communicate and swap information

with other IFish. IFish could then become more specialized (in terms of area of interest) and

\bloated" IFish could subdivide into multiple smaller units.

Finally, the sample conversations shown above demonstrate typical Internet Fish search behav-

ior, but these conversations provide a view of only the lower level of an IFish's operation, namely

the process of acquiring actual information in response to particular criteria of interest. Internet

Fish also operate at a meta-level of resource discovery; the goal at this level is not to �nd particular

information but to discover e�ective techniques for �nding information. Internet Fish have the pos-

25For example, the \Cool Site of the Day" service at

http://www.infi.net/cool.html

points to a di�erent WWW page each day. The \URL Roulette Wheel" at

http://kuhttp.cc.ukans.edu/cwis/organizations/kucia/uroulette/uroulette.html

returns a di�erent, randomly chosen URL every time it is accessed. Alta Vista [15] and WebCrawler [47] also provide

services which will direct a users to a randomly chosen URL at his request.

1.4. The Road Ahead 17

sibility of discovering information about resource discovery. Although not addressed in this thesis,

Internet Fish may permit new methods for discovering e�ective procedures for resource discovery.

Consider the task a research librarian faces when given a new, unfamiliar topic to investigate. The

librarian often begins work with no particular knowledge of the �eld of inquiry, and the criteria

for determining whether something is of interest to the client may not be speci�c. The librarian,

therefore, needs to be able to determine whether retrieved information has a reasonable chance of

interesting the client (is the information \in the ballpark" of the topic of interest). At a higher level,

the research librarian must be able to �nd information resources that are suitable for searching the

particular topic under study. To accomplish these tasks, the librarian draws upon two types of

knowledge:

1. Particular knowledge about the speci�c �eld encompassing the topic of interest.

2. General knowledge concerning meta-resources or structure that may be used to �nd topical,

speci�c information sources to answer the query.

Ideally, the research librarian would have a signi�cant amount of knowledge particular to the topic

of interest; this would allow the librarian to quickly focus in on resources likely to answer the

client's query. If such speci�c knowledge is not available, the librarian uses more general resources

and indexes to �nd candidate resources that might contain the desired information.

The parallels between research librarians and Internet Fish are obvious. When Internet Fish

begin life, they do not contain lots of inherent knowledge about their particular area of study; this

knowledge must be acquired over the lifetime of the IFish. To acquire this particular knowledge

IFish, like research librarians, depend on general knowledge of research techniques and other

available resource discovery tools. Research librarians acquire this knowledge through training;

Internet Fish will acquire some of this knowledge through built-in heuristics and some via deduction

over time.

To build the Internet Fish spawning ground we will need one or more languages to describe

the construction of an IFish. IFish need to be able to represent their internal state, acquired

knowledge, and the procedures by which information is transformed or acquired. Such languages

must exist if we desire eventual inter-IFish communication or wish to interface IFish into general

applications. As IFish are consumers and transformers of information we need to understand what

the \primitive operations" are on units of information, and what primitives are appropriate for

IFish construction. Methods of combining these primitive operations also need to be addressed,

for we want IFish to be able to combine and synthesize new types of IFish as necessary. Together,

our experiences with Internet Fish will yield a starting point for the construction of future \network

librarians."

1.4 The Road Ahead

Armed now with a grasp of the history and current practices of Internet resource discovery systems

we may dive into the details of the Internet Fish Construction Kit. We begin with the goal of facili-

tating encapsulation of heuristic knowledge. Chapter 2 discusses programming and system features

provided by the Construction Kit that enable rapid encoding of such knowledge and also allow

particular IFish to take advantage of that knowledge during the course of operation. Chapter 3

details Construction Kit features that support long-term conversations between the IFish and its

18 Chapter 1. Introduction

user. This chapter also describes how IFish determine \interestingness;" that is, in the absence of

user interaction how the IFish attempts to order information based on how interesting it might be

to the user. Chapter 4 provides a detailed look at the construction of a particular Internet Fish

that is designed to search out Web pages similar to pages provided by the user. This \Finder"

IFish makes use of many common Web index engines and shows how simple heuristic knowledge

and user interaction together provide a powerful research tool. Finally, thoughts on serendipitous

resource discovery, evaluating IFish performance, and the future of IFish-like tools are presented

in Chapter 5. We conclude that chapter, and this thesis, with some predictions on the future

information \seas" that will be homes to vast schools of Internet Fish.

Chapter 2

Encapsulating Heuristic Knowledge

At their core, Internet Fish are consumers of information. Their entire existence is predicated on

the gathering, digesting, and processing of diverse bits of information that may be scattered across

the globe in various databases and repositories. We cannot predict what information an IFish

will �nd as the consequence of a particular starting state, nor can we even predict what types of

information will necessarily be encountered. What we are able to state with some certainty, though,

are a number of basic, fundamental properties of the information space in which IFish exist. We

can describe for the IFish how certain pieces of information may be linked to other pieces of

information, or how various references to information may be decomposed and reassembled. IFish

must be taught how to interact with their environment, and it is the basic properties of that

interaction, the heuristic knowledge we wish to implant in Internet Fish, that is the subject of this

chapter.

We concentrate below on the portion of the Internet Fish system designed to facilitate the

encapsulation of heuristic knowledge. By \encapsulation of heuristic knowledge" we mean specif-

ically the encoding of certain rules, assumptions, axioms, processes, procedures, etc., that allow

an Internet Fish to interact with its environment. For example, since we require Internet Fish

to interact with the World Wide Web (see 1.3.4 above), we must teach IFish how to recognize

possible URLs, how to validate whether a particular URL is accessible, and how to retrieve the

information document that is speci�ed by a given URL. Some heuristics may relate to the structure

of the network, perhaps teaching Fish about the SMTP protocol and procedures likely to validate

e-mail addresses, or perhaps rules that help �sh to recognize that the string \www.ai.mit.edu"

(a) looks like a fully-quali�ed domain name (FQDN) for an Internet host (because of the string

structure), and (b) is likely to be running a WWW server on port 8026 (because the FQDN begins

with \www"). The heuristics might be more speci�c, explaining perhaps how to parse the HTML

returned by a query to the Lycos [36] database and turn the page of text intended for human

consumption into further information to be considered and investigated by the Fish. If we wish

to create a Fish particularly good at �nding mathematical information, we can add heuristics for

dealing with the American Mathematical Society's on-line directory listings or electronic versions

of Math Reviews on CD-ROM.

We begin by describing in Section 2.1 the claims and assumptions under which we have chosen to

operate, as well as some of the issues that weigh in favor or opposition for each. These assumptions,

26Port 80 is the canonical TCP port for HTTP servers.

19

20 Chapter 2. Encapsulating Heuristic Knowledge

although fairly basic, drive many of our design choices. Sections 2.2 and 2.3 then give the technical

details of our implementations of infochunks (primary units of information) and rules for operating

on those infochunks. In Section 2.4 we discuss the interactions between infochunks and rules in the

Fish system. The topics of user interaction and assessing the \interestingness" of infochunks are

left for Chapter 3 below.

2.1 Claims and Assumptions

The �rst step in the design process for the Internet Fish system was to compile a list of known

facts and reasonable assumptions under which Internet Fish operate. These claims have a direct

impact on many particular IFish design choices, as outlined below.

Claim 1 The Internet Fish operates in a dynamic environment:

a. The information space of interest, the World Wide Web, is dynamic over time.

b. Fixed transformations on data may yield di�erent results over time.

c. The set of operations an Internet Fish can perform changes over time.

It is without question that the total collection of information available via the World Wide Web

is constantly in ux. As mentioned in Section 1.2.3 above, the Web is growing at a tremendous

rate: Yahoo alone reports that they are receiving thousands of requests each week to add new server

listings to their service. The statistics gathered by Lycos, Alta Vista and other web indexing engines

clearly indicate the number of WWW \pages" (documents) that are accessible to an unprivileged

WWW client is growing at a greater-than-linear rate. Furthermore, we know these statistics must

be undercounting the true nature of the Web because they cannot account for dynamic databases

accessed via a static WWW interface27. Thus, because the information space can change over time,

the Internet Fish cannot treat any information it extracts from the WWW as guaranteed static.

In fact, because the connectivity of the Web is also not guaranteed (see Claim 2 below) a (slightly

paranoid) Internet Fish needs to cache locally copies of retrieved data, along with the date and

time of the retrieval.

Yet the fact that the Web is dynamic permeates the IFish design beyond simple data caching.

Because the Web is dynamic certain Web services that the IFish uses as primitive tools (e.g. DEC's

Alta Vista index [15]) necessarily return di�erent answers over time. Thus, any IFish that depends

on such services always has the option to re-query the services in the hope that the query will turn

up new information sources previously undiscovered. Even local data transformations, analyses

that the IFish performs on its own local data set, will change over time as the IFish consumes

more information28. Therefore we need to be able to identify certain IFish operations as possibly

time- and/or network-dependent, since each such operation may need to be repreated at a later

time.

27For example, the FedEx database of package tracking information, accessible at http://www.fedex.com/, changes

state every time a FedEx worker picks up a package or transfers a package from one point to another. The interface

page, however, is static.
28For example, the current IFish implementation performs clustering of retrieved HTML documents periodically

to determine relationships among groups of documents.

2.1. Claims and Assumptions 21

IFish are dynamic in a third way, one which is independent of the possible changes in the

information space. As mentioned in Section 1.3.4 above, we would like IFish to be able to discover

and generate new transformation rules over time and recognize patterns of operation that are

e�ective resource discovery procedures. IFish, therefore, should be able to modify their own rules

sets over time, and thus rules may be discovered at a later date that can be applied to information

previously thought to be completely processed. IFish also must maintain records of what rules were

applied to particular pieces of data and when those applications took place29. Our implementation

must therefore permit rules to be changed easily over time without disturbing or invalidating the

collection of information that has been gathered up to that point.

Separate from the issues relating to dynamic information environments are issues related to the

structure, sequence and organization of the information space.

Claim 2 An Internet Fish cannot assume a priori:

a. The set of all possible types of information that it will encounter.

b. The existence of a \best" or \guaranteed" measure of the relevance of a particular document,

or that it is possible to perfectly quantize the \interestingness" of a particular piece of infor-

mation in either general or relative terms.

These claims, too, seem fairly obvious, but as will be shown below they constrain our design to

some extent. Type information, or the lack thereof, is the easiest to support. By \type informa-

tion" we refer to semantic labels on particular content, not primitive object types that may be

determined by the operating system or environment. For example, we may want an IFish that un-

derstands that strings satisfying the regular expression: [^@\%.:-]+@([^.]+.)*[^.]+ are possible

e-mail addresses [12]. Rules in the IFish can use this probable type information as a precondition

satis�er for a routine that tries to validate e-mail addresses via SMTP port 2530. Thus, our IFish

must support loose semantic type information, including qualitative modi�ers such as \possibly,"

\de�nitely," and \de�nitely not." Of course our type system should not be bounded or limited if

possible, since we cannot predict when new types will be added to the system or what types of

information will be encountered.

\Interestingness" (that is, how inherently interesting is a particular piece of information to

an IFish at a given moment in time) is discussed in detail in Chapter 3 below, but we should

mention here one related underlying assumption. Most of the literature in resource discovery relates

to document scoring: algorithms for trying to determine relevance of one document to another

document, to a group of documents, or to the user making the query. Our current implementation

of IFish uses one such algorithm as a way to gather evidence of possible relationships among

documents. A problem arises, however, if we try to use some such quantitative measurement to

decide what subproblem an IFish should work on next. Since our information space is unbounded,

it is extremely unlikely that an IFish would run out of tasks (rule applications) it could perform.

Thus, in order to conserve IFish e�ort (a �nite resource) some method of targeting e�ort toward

those information pieces most likely to yield relevant data is desirable. There is a danger, however,

29
IFish must also record error-related information, as discussed below.

30Mail handlers that speak SMTP, the Simple Mail Transfer Protocol, operate on TCP port 25. Using the VRFY

and/or EXPN commands it is often (but not always) possible to con�rm that a given e-mail address is received at a

particular destination.

22 Chapter 2. Encapsulating Heuristic Knowledge

in putting \too much faith" in numerical scoring of documents, namely that some truly interesting

and relevant documents will never be explored because they fail to meet some numerical cuto�31.

We must be careful, therefore, to not overburden whatever measure of interestingness we use with

too many dependent system applications (like processor and memory resource allocation).

There are other constraints, too, that are imposed on IFish . Our information sources are

all located at remote sites; the slowest part of our system32 is the network itself and retrieval

of information over that network. (Even if the IFish is running on a host with fast Internet

connections, the server at the far end may be heavily loaded, or separated from the IFish by a slow

network link, or both.) We would like IFish to have a structure that permits easy multitasking

so that when the network is the slow link the processor is not idle busy-waiting for the network.

Furthermore, since the majority of Web resources we access are designed to be human-readable as

opposed to machine-readable, we must assume that some signi�cant e�ort will be spent parsing

retrieved information into machine-friendly structures and converting machine queries into the

(perhaps quite cumbersome) human-friendly formats expected by the services we access. Thus,

anything we can do to minimize linear dependencies in the system and foster multitasking or

multithreading of an IFish's tasks is a good idea.

Finally, we must remember that one of our goals for IFish is to begin to discover e�ective

procedures for resource discovery: techniques and chains of procedures that are particularly e�ective

at discovering information. We are interested therefore not only in the raw information extracted

by IFish but also in the way in which that information was obtained or generated. Capturing the

\generation record" is also important for communicating with IFish users; we want to be able to

answer questions like, \How did you discover fact x?" or \What evidence supports y?" Thus it

is important as we are building local hypertexts of related information to also keep track of rule

invocations used to generate each piece of information.

2.2 Infochunks

In the IFish universe there are basically two types of interesting objects: infochunks and rules
33.

An infochunk is a \chunk of information," a piece of information which may be acted upon; rules are

procedures that operate on infochunks and may create new infochunks, modify existing infochunks,

or perform some other task34, possibly with side e�ects. This section describes the structure of

infochunks and the hypertext structure that IFish build to contain retrieved information as they

research.

IFish infochunks are implemented as MIT Scheme structures; every infochunk contains six

value slots, as illustrated in Figure 2-1. Most of the infochunk value slots are self-explanatory. The

31These problems are not new, of course. MIT's Undergraduate Admissions O�ce may overlook a well-quali�ed

applicant because the numerical scores assigned to the application are not completely representative, to name one

such example.
32Currently, the portion of the IFish system that consumes the most realtime is that which deals with the network.

We can easily imagine having routines in the IFish that are so analysis-intensive that their resource cost (in terms

of memory and processor time consumed) exceeds that of the network.
33This split of the universe of IFish-interesting objects we call the \information/operation dichotomy," playfully

invoking the idea/expression dichotomy that is a foundation of modern U.S. copyright law. See Baker v. Selden, 101

U.S. 99 (1879), and its progeny.
34Rules may also create, modify or remove rules.

2.2. Infochunks 23

Infochunk slot name Possible content

data any piece of information

typeinfo list of meta-information statements, possibly empty

interestingness interesting structure for data

backward-links list of links to generating infochunks, possibly empty

forward-links list of links to generated infochunks, possibly empty

invocation-list list of rules applied to this infochunk and when the

rule application occurred

Figure 2-1: Value slots in the infochunk data structure and typical content of each slot.

data slot is a pointer to a raw piece of information35. The interestingness structure for this piece

of information is contained in the interestingness slot. The invocation-list is simply a list of rules

that have been applied to this infochunk along with a timestamp of when that rule application

occurred.

Forward-links and backward-links are lists of link structures and are used to weave together

individual infochunks into the hypertext structure being built by the IFish. Figure 2-2 shows a

typical links structure. Each link contains a pointer to the infochunk at the \other end" of the

Link slot name Possible content

infochunk infochunk to which the link points

rule-name symbolic name of the rule that created this link

timestamps non-empty list of times at which this link was created/re-created

Figure 2-2: Value slots in the infochunk data structure and typical content of each slot.

link, along with the name of the rule36 that created the link and the time(s) of link creation. We

must include the rule name here because it is possible to have multiple links, representing di�erent

rules applications, between two particular infochunks and we do not wish to elide that information.

Similarly, since rule application is not guaranteed static in time, and indeed since rules themselves

may change over time, we must allow for the possibility that multiple applications of the named

rule will occur and thus the existence and validity of the link may be asserted multiple times. All

links are directed relationships, and links are always added in pairs so that every forward-link has

a corresponding backward-link. A forward-link from infochunk I1 to infochunk I2 via rule R means

that the rule application R(I1) generated infochunk I2; a backward link from I1 to I2 implies that

R(I2) generated I1.

The typeinfo slot contains a list, possibly empty, of declarations of meta-information con-

cerning the contents of the data slot. Recall that under our assumptions, IFish cannot assume

much concerning the types of information they will encounter out on the Internet. Nevertheless,

35For implementation-speci�c reasons the contents of the data slot may actually be spilled to disk and not resident

in core memory. Spilling data is automatically handler by the IFish interaction loop, as discussed in Section 2.4.4

below. Retrieving spilled data from disk is transparent to higher-order IFish procedures.
36See Section 2.3 for a discussion of rules versus rule names and why we use the latter here.

24 Chapter 2. Encapsulating Heuristic Knowledge

there is meta-information that IFish can use to discuss possible types of retrieved information

and restrict rule applications to only relevant or well-formed inputs. Typeinfo declarations con-

form to the grammar shown in Figure 2-3. As an example of the meta-information captured

<typeinfo-declaration> == (UNKNOWN) | (KNOWN <symbol>) | (NOT <symbol>)

| (POSSIBLE <symbol>)

| (POSSIBLE <symbol> <confidence>)

<symbol> == any legal Scheme symbol

<confidence> == oating-point value x, 0 < x < 1

Figure 2-3: The syntax of typeinfo declarations

by this simple typeinfo syntax, consider what happens when an IFish comes across the string

\http://www-swiss.ai.mit.edu/" in a retrieved HTML document. The HTML parsing routines

identify this string as a (POSSIBLE URL-STRING){\possible" because the string needs to be parsed

by a URL parser and veri�ed as conforming to the URL speci�cation. The (POSSIBLE URL-STRING)

typeinfo then triggers a rule application that tries to parse the URL in accordance with RFC 1738 [6].

If the parse succeeds the rule may update the infochunk's typeinfo from (POSSIBLE URL-STRING) to

(KNOWN URL-STRING). Similarly, the newly-generated URL structure would be labeled a (POSSIBLE

URL); it can be upgraded to (KNOWN URL) only after the IFish has veri�ed that the URL actually

names some retrievable content on the web. Figure 2-4 shows a representative infochunk pulled

from the hypertext structure built by an actual IFish. The data object contained in this infochunk

is a URL structure, representing a URL split into its constituent parts (access protocol, host name

and path). The typeinfo declaration (KNOWN URL) tells the system that the data object is a valid

URL structure and is in fact the name of an accessible WWW document. The IFish determined

that the URL was indeed valid by successfully performing an HTTP HEAD request on the URL37.

The lone link in the forward-link list connects this infochunk to the infochunk containing the results

of the HEAD request, which was generated from this infochunk via the URL->HTTP-REQUEST-HEAD

rule, and the invocation-list contains a timestamp for when that rule application took place.

Notice that the infochunk in Figure 2-4 contains �ve backward links; each link represents a rule

application that generated the URL contained in the data slot. The infochunk each backward-link

points to contains a list of HTML anchors (hyperlinks) and URLs. These lists of URLs are generated

from other retrieved documents, so together these links represent �ve HTML documents that all

contains links to the URL http://martigny.ai.mit.edu:80/~bal/pks-toplev.html. We can

�nd the URLs of the referencing documents by following chains of backward-links until we reach

the infochunks containing the desired URLs.

37An HTTP HEAD request is identical in operation to the GET request except that the content server returns only

the HTTP request headers and not the actually content of the document. IFish always perform HEAD requests �rst

where possible in order to both con�rm that the URL points to actual content and also to check the MIME type and

size of the content document. The current prototype IFish will only retrieve documents that are both of type HTML

and are relatively small compared to the amount of heap memory available (since the document is temporarily stored

in its entirety in the heap.)

2.3. Operations: Tranducers and Rules 25

#[infochunk #[interest 0:1:0]:#[url http://martigny.ai.mit.edu:80/~bal/pks-toplev.html]]

(data #[url http://martigny.ai.mit.edu:80/~bal/pks-toplev.html])

(typeinfo ((known url))

(interestingness #[interest])

(backward-links

(#[link #[infochunk #[interest]

((#[url http://www.viacrypt.com:80/] . ViaCrypt)

(#[url http://www.SLED.com:80/] . Sled Corp.))

anchors+urls->url]

#[link #[infochunk #[interest]

((#[url http://www.pegasus.esprit.ec.org:80/people/arne/pgp.html] ...))]

anchors+urls->url]

#[link #[infochunk #[interest]

((#[url http://bs.mit.edu:8001/pgp-form.html] . PGP from the Web))

anchors+urls->url]

#[link #[infochunk #[interest]

((#[url http://web.mit.edu:80/network/pgpfone] . PGPfone)

(#[url http://bs.mit.edu:8001/pgp-form.html] . here))] anchors+urls->url]

#[link #[infochunk #[interest]

((#[url http://www.yahoo.com:80/bin/menu1/-Computers_and_Internet/]...))]

anchors+urls->url]

(forward-links

(#[link #[infochunk #[interest]

#[http-request http://martigny.ai.mit.edu:80/~bal/pks-toplev.html]]

url->http-request-head]))

(invocation-list

((url->http-request-head . 816672957) (url/remember-hostname! . 816672956)))

Figure 2-4: A sample infochunk and its internal components

2.3 Operations: Tranducers and Rules

The second class of objects in the IFish universe contains rules. Rules describe procedures that

operate on infochunks and perform some task, usually the generation of new infochunks. It is

via prede�ned rules that we build heuristic knowledge into IFish. Methods for obtaining new

information over the network, procedures to identify and parse particular representations of data

objects, and even meta-rules that generate new rules that extend IFish in a particular fashion are

examples of the types of heuristic knowledge that can be encapsulated in rule objects.

Every rule in the current implementation of IFish operates on exactly one infochunk. This

restriction no more limits the set of theoretically-expressible heuristics than does \currying" argu-

ments in �-calculus. Each rule in the current IFish implementation consists of four parts: a name,

a precondition, a transducer, and an error-handler. We describe each of these components in detail

below.

Every IFish rule has a unique name by which it may be referenced. In our IFish implementation

26 Chapter 2. Encapsulating Heuristic Knowledge

the name of a rule is simply a Scheme symbol. The need for unique, symbolic names for rules is

created by our desire to be able to save and restore the complete state of an IFish
38. Furthermore,

as one of our goals is to have IFish analyze their own information-gathering procedures we need

to be able to compare rules that may have identical function but not consist of identical Scheme

procedure objects. The rule name adds a layer of indirection that allows us to maintain a handle

on rules without having to retain raw procedure objects. IFish rules are conventionally named

by the typeinfo components of the input and output infochunks (e.g. URL->HTTP-REQUEST-HEAD

is the rule the takes a URL and attempts to retrieve via the HTTP HEAD command the content

headers of the given URL).

A rule's precondition and transducer de�ne respectively what infochunks are acceptable inputs

for the rule and what action the rule has with respect to that infochunk. An IFish working with a

particular infochunk determines what rules apply to that infochunk by invoking in sequence each

known rule's precondition to the infochunk. Rule preconditions are always boolean procedures of

exactly one argument (an infochunk); infochunks that return a value of true when given as inputs

to a rule's precondition are in the domain of the rule's transducer. The transducer is the portion

of the rule that actually performs work. Usually a transducer applies some operation to the input

infochunk, and if new information is generated the transducer constructs a new infochunk to contain

that new information, links the new infochunk into the existing hypertext, and \announces" the

existence of the new infochunk to the IFish system. Should an error occur while the rule is running,

the rule's error-handler is invoked to handle the signalled condition.

Figure 2-5 shows the Scheme source code for an example rule, in this case the rule that de-

scribes the �rst phase of retrieving the WWW document described by a particular URL39. The

DEFINE-TRANSDUCER macro accepts as argument a symbolic name for a transducer object and a

procedure of the form (lambda (infochunk) ...) and creates a transducer object in the Scheme

environment referenced by the symbolic name that can be used in subsequent rule de�nitions40.

The DEFINE-RULE macro takes as arguments a rule name (a Scheme symbol), a precondition pro-

cedure, a transducer, and optionally an error-handler, which are used to both create a rule object

and install that rule in the IFish system. Macros are provided for common precondition cases,

such as SIMPLE-TYPE-PRECONDITION which checks that the typeinfo of an infochunk satis�es the

boolean equation speci�ed as the �rst argument (in this case a disjunction of the types (POSSIBLE

URL) and (KNOWN URL)), and if so passes the infochunk on to the second argument (if present) and

returns that value. Thus, the precondition for URL->HTTP-REQUEST-HEAD guarantees that the input

(a) has typeinfo (POSSIBLE URL) or (KNOWN URL), and (b) the data slot of the infochunk contains

a Scheme URL structure.

When the rule URL->HTTP-REQUEST-HEAD is applied to a particular infochunk, the URL struc-

ture is extracted from the infochunk and passed on to low-level HTTP network routines that try to

38MIT Scheme cannot in general dump procedure objects to disk without dumping the entire contents of the

Scheme heap.
39
IFish use a two-step process to retrieve the \contents" stored at a particular URL. In the �rst phase, IFish try

to retrieve the speci�ed URL using the HTTP HEAD command. HEAD is similar to GET except that the remote server

only returns the HTTP result code and content headers and not the actual content [5]. The returned content headers

may include information relating to the size of the speci�ed object, the date and time the object was last modi�ed,

a MIME [8] type, or even a di�erent URL where the requested content can be found (a forwarding pointer). IFish

use this information to avoid downloading large documents that cannot be analyzed by the current system, such as

images or sound �les.
40The DEFINE-TRANSDUCER macro hides some complexity from the user created by the current IFish implementation.

2.3. Operations: Tranducers and Rules 27

(DEFINE-TRANSDUCER tdcr/url->http-request-head

(lambda (infochunk)

(let* ((url (infochunk/data infochunk))

;; don't let the HEAD request take more than 10 seconds

(raw-result

(run-for-n-seconds (lambda () (url/head-url url)) 10)))

(if (condition? raw-result)

raw-result

(let* ((result (http-raw-result->http-request url raw-result))

(new-infochunk

(make-infochunk

result

(cons '(known http-request-head)

(typeinfo/filter-out-basetype infochunk 'url)))))

(ANNOUNCE-AND-LINK new-infochunk)

(VALIDATE-TYPEINFO 'url)

)))))

(DEFINE-RULE 'URL->HTTP-REQUEST-HEAD

(SIMPLE-TYPE-PRECONDITION

'(or (possible url) (known url))

(lambda (infochunk) (url? (infochunk/data infochunk))))

tdcr/url->http-request-head

;; try out the network default

default-network-error-handler)

Figure 2-5: An example IFish rule: URL->HTTP-REQUEST-HEAD.

perform a HEAD request on the given URL. Assuming that the request succeeds41, the raw result

(a string) is parsed into an http-request structure and encapsulated in a new infochunk. The rule

must now notify the IFish system that it has created a new infochunk that should be linked into

the hyperstructure of known infochunks; this is accomplished via the macro ANNOUNCE-AND-LINK.

Finally, since the HTTP request succeeded, the rule also knows that the input URL does indeed

specify an actual, accessible document, and the typeinfo on the URL's infochunk must be updated

to reect this knowledge. The (VALIDATE-TYPEINFO 'url) macro expression simply guarantees

that any typeinfo entries of the form (POSSIBLE URL) are changed to (KNOWN URL).

Notice that by making each step of the process of transforming information a separate rule

application it is very easy to leverage already-de�ned IFish rules when creating new rules. A

particular transducer may be invoked by multiple distinct rules, each with separate preconditions

and error handlers. Further, rules may be rede�ned \on-the-y" in response to changing conditions.

IFish may be easily modi�ed to include new sources of information as they become available.

41If the network request fails the rule transducer will return a Scheme error condition as its value. The IFish

mechanisms for dealing with errors is discussed in detail in Section 2.4.3 below.

28 Chapter 2. Encapsulating Heuristic Knowledge

2.4 Infochunk-rule Interactions and Supporting System Software

Having de�ned both infochunks and rules, we turn now to the \low-level" systems of the IFish

that both trigger infochunk-rule interactions and also provide various auxiliary systems, such as

error recovery and event handling. Together, these pieces of the IFish provide the substrate upon

which we explore user-IFish conversations. We begin in Section 2.4.1 with the IFish interaction

loop, which is responsible for selecting and evaluating infochunk-rule pairs. Section 2.4.2 discusses

in brief the IFish event handling system, which allows tasks to be scheduled to occur at particular

times. Error handling and recovery is detailed in Section 2.4.3. IFish system support for user

interactions may be found in Chapter 3 along with a broader discussion of user interactions and

interestingness.

2.4.1 The Interaction Loop

The interaction loop is the core of the IFish system; it is this loop that controls which rules are

applied to which infochunks and the order in which those applications are made. At its most basic

level, the interaction loop operates as outlined in Figure 2-6. Each cycle through the interaction loop

begins with a gc-check!, which checks the amount of available Scheme heap and forces a garbage

collection if that amount is below a particular threshold. Part of the IFish system attaches itself

to the Scheme garbage collector and will spill infochunk data slots to disk as necessary to free up

heap memory.

GC-Check!

Stop-Fish?

Event
check?

Process
Event

yes no

no

Stop!

Extract most interesting
infochunk I

Applicable
rule for I?

no

Run rule on I
yesyes

Figure 2-6: A simpli�ed view of the IFish interaction loop.

After the gc-check! has been performed the interaction loop checks a particular global variable

for a signal to end execution; assuming that signal is not raised the interaction loop proceeds to

2.4. Infochunk-rule Interactions and Supporting System Software 29

check for time-dependent events that need to be processed. Section 2.4.2 describes event handling

in detail; each event has associated with it a trigger time, and all events with trigger times before

the current time of the event check are processed immediately.

Assuming that there are no events needing to be processed, the next step in the loop is to identify

an infochunk upon which to work during the cycle. Infochunks are sorted42 by \interestingness"

(see Section 3.2 below) and the \most interesting" infochunk is identi�ed. This infochunk then

becomes the focus of attention for the IFish until the cycle is completed.

Once the current \most interesting infochunk" has been identi�ed every rule precondition is

invoked on that infochunk. Any rule whose precondition evaluates to true is an applicable rule

(i.e. the current most interesting infochunk is a valid input for that rule). Each applicable rule is run

in turn on the infochunk under study until every applicable rule has been processed; when �nished,

the interaction loop then starts over. Every IFish rule application occurs within a protected

environment so that errors may be caught and handled when they occur. When an errors does

occur, it is trapped by the system and the Scheme error condition is passed to the rule's error-

handler for further processing.

Notice that the interaction loop does not itself impose any additional sequential execution

constraints on the IFish. Thus, in a multiprocessor environment the IFish may spawn multiple

tasks simultaneously so long as shared areas of memory are guarded against overlapping accesses.

The current IFish implementation in fact uses MIT Scheme's threads package to allow simultaneous

execution of the interaction loop itself as well as the miniature WWW server that is used to provide

user interaction (see Section 3.1.2 below).

2.4.2 Events

Event handling is another important piece of the IFish substrate, for it is through events that

time-dependent actions enter into the IFish equation. Remember the assumptions of Claim 1

above: everything an IFish retrieves is subject to change and every rule involving the network may

incur transient failures. We need to give IFish rudimentary routines scheduling process executions,

refreshing suspect or short-lived data, and other time-dependent tasks that may arise. The current

IFish event model is suspiciously trivial, but it provides the minimum set of necessary functionality.

Event slot name Possible content

thunk Scheme procedure of zero arguments to invoke

time Time after which invocation is allowed

Figure 2-7: Events

An event object contains only two items: a thunk and a time. The thunk may be any Scheme

procedure of zero arguments; the time is a standard Unix timestamp of the current time43. Events

42Notice that we are assuming here the existence of a total order, based on \interestingness", for the set of infochunks

under consideration. A total order is not strictly necessary; we could use the same algorithm with a partial order.

If no order exists among infochunks then we must depend solely on user interaction if we wish to do better than

random selection.
43The low-level system call on most Unix systems returns an integer representing the number of seconds since

30 Chapter 2. Encapsulating Heuristic Knowledge

are \declared" by inserting them into a global event-heap which automatically keeps them sorted

in order of earliest permitted execution time. Every invocation of the interaction loop then simply

compares the earliest timestamp to the current system time. Thus, given a thunk and a time,

creating a \single-shot" event is as easy as (event/install! (make-event thunk time)). For

recurring events, the IFish system provides the following convenient construct:

(define (event/make-recurring-event! thunk loop-time #!optional start-time)

(let ((start-time (if (default-object? start-time)

(get-universal-time)

start-time)))

(let ((recurring-thunk

(lambda ()

(thunk)

(event/make-recurring-event!

thunk loop-time (+ loop-time start-time)))))

(event/install! (make-event recurring-thunk start-time)))))

The \Finder" IFish described in Chapter 4 uses recurring events for a variety of housekeeping

functions, such as making periodic snapshots and summary reports of the state of the IFish.

Recurring events also allow IFish rules to defer portions of their executions until later points in

time.

2.4.3 Error Handling and Recovery

The third component of the IFish support system involves error handling and recovery. IFish

live in a dynamic environment �lled with networks that may be inaccessible, data sources which

may fail, and procedures that may not properly handle the \unexpected." This demands that

IFish have very robust error handling. IFish must not only be able to withstand errors but also

handle them properly, perhaps by retrying the computation that caused the error or asking for user

intervention. Our current IFish implementation has relatively simple mechanisms for dealing with

errors but these mechanisms are quite su�cient for our purposes.

Recall that every rule application carried out by the IFish interaction loop occurs within a

protected environment so that errors may be trapped and handled within the IFish itself. Every

IFish rule includes as one of its components an error-handler element; a default error handler is

used if no explicit routine is provided to the DEFINE-RULE macro. An IFish error-handler is a

procedure of three arguments: infochunk, rule and error condition. In appropriate cases such as

temporary network outages error handlers thus can retry or reschedule or the errant rule application.

By default, any rule de�nition that does not include its own error handler is assigned the default

error handler shown in Figure 2-8. The default handler �rst saves away a copy of its arguments

in case the user should wish to examine the error condition later44. Then the error handler calls

the question-maker qm/default-error-handler to construct a yes/no question asking the user

whether the rule application that raised the error should be retried; Section 3.1.2 describes user

questions and question-makers in detail. The resulting yes/no question is then installed into the

system and presented to the user through the normal conversation interface. No further action

January 1, 1970.
44This is most useful for debugging purposes.

2.4. Infochunk-rule Interactions and Supporting System Software 31

(define (default-error-handler infochunk rule condition)

(let* ((condition-type/name

(access %condition-type/name (->environment '(runtime error-handler))))

(condition/field-values

(access %condition/field-values (->environment '(runtime error-handler))))

(infochunk-data (infochunk/data infochunk))

(rule-name (rule/name rule))

(condition-object

(list (condition-type/name (condition/type condition))

(with-output-to-string

(lambda () (display (condition/field-values condition))))))

(error-record

(vector infochunk-data rule-name condition-object (get-universal-time))))

(with-values

(lambda () (make-question 'qm/default-error-handler error-record))

(lambda (the-question the-question-ichunk)

(let ((new-infochunk

(make-infochunk the-question-ichunk '((known question)))))

;; This is normally done by ANNOUNCE-AND-LINK,

;; but we're not within a DEFINE-TRANSDUCER here

(link-infochunk infochunk new-infochunk rule-name)

(infochunk/recompute-interestingness! infochunk)

(infochunk/recompute-interestingness! new-infochunk)

(announce-new-infochunk new-infochunk))

;; install the question

(question/install! the-question)

;; that's it!

))))

Figure 2-8: The IFish default error handler.

is taken until the user's answer indicates whether he wishes the IFish to retry the failed rule

application.

The default error handler does not attempt to restart or redo a rule application on its own

because it handles internal Scheme errors (which do arise) along with network-related problems.

However, the majority of errors encountered by an IFish arise from transient conditions on the

Internet; a remote host may be unaccessible or some portion of the DNS45 hierarchy may be

distributing incorrect information, or any of a number of other ills. All of these errors are transient

in nature and often simply retrying the rule application that raised the error in the �rst place is

su�cient. The IFish system provides an alternative error handler for such errors that is appropriate

for network-related rules. The default-network-error-handler attempts to retry the failed rule

application at a future speci�ed time (by default �ve minutes after the �rst attempt) via the IFish

45Domain Name Service [41], the mechanism by which symbolic host names (e.g. freeside.ai.mit.edu) are

converted into numeric IP addresses (e.g. 18.43.0.178).

32 Chapter 2. Encapsulating Heuristic Knowledge

event system; if this second attempt fails then the default error handler (or a rule-speci�c handler)

is invoked.

2.4.4 Resource Management

To the user, an IFish appears singularly devoid of any resource limitations or constraints. Un-

fortunately the IFish system does not have the luxury of unlimited memory, storage or network

bandwidth for individual IFish and thus the system must maintain a watchful eye over each of

these precious resources. Network access and bandwidth are by far the most limiting resources,

since an IFish and the far end of a slow 28.8 Kbps connection must necessarily be conscious of

the time cost of retrieving any particular document. Network resource management, because it is

intertwined with particular rules and particular documents, is best handled via extra preconditions

on network-related operations. For example, the rule HTTP-REQUEST-HEAD->HTTP-REQUEST, which

is responsible for retrieving the actual contents of a particular Web page, checks both the content

type and length before initiating a transfer. A page must be su�ciently small and in a useful form

before it will be downloaded and decoded46.

Other types of resource management are better handled on a global scale. In a multi-threaded

environment we might have to restrict the total number of network connections created, or perhaps

we have access to a large data stream that can only be accessed linearly (like a tape with possibly

interesting data on it). IFish have to deal with limited in-core storage; dynamic memory is not

in�nite and since the IFish has knowledge about the data it has already collected it is in a better

position to spill data to disk than a general virtual memory system. The IFish system includes its

own spill code to transparently move infochunk data to and from magnetic storage (hard disks).

When the available Scheme heap memory falls below a threshold, the spill system detects the

low-memory condition and begins moving infochunk data slots to disk. Replacing spilled data

objects are small records that contain both the �lename of the spilled code as well as a hash value

derived from the spilled data. The computed hash is the same as that used to store and retrieve

infochunks within the system47, thus overall system performance is not degraded too much by

having many data objects present only on disk.

The interaction loop works together with the spill subsystem to keep a certain minimum amount

of memory available. The (gc-check!) call at the beginning of the interaction look tests the

Scheme object heap to see if the memory threshold has been crossed; if it has, then the standard

Scheme garbage collector (GC) is invoked. The Scheme GC provides a hook (hook/gc-finish)

which is called after the completion of garbage collection; IFish replaces the default hook with its

own that causes infochunk data to be spilled to disk if the GC pass did not free up enough memory.

46Currently IFish depend on the value of the MIME Content-type header that is sent with every HTTP 1.0

response. Similarly, IFish depend on the Content-length header for the size of the document about to be retrieved.
47For e�ciency reasons infochunks are kept in a hash table, since for every new piece of infochunk data we want to

check whether we have seen that piece of data before. Hash tables provide amortized constant cost for such lookups.

IFish use specialized hash tables to take advantage of the cached hash values left behind when data is spilled.

Chapter 3

User Interactions and Interestingness

Throughout the previous chapter we were concerned only with IFish as consumers of information.

The entire substrate up to this point has focussed on facilitating easy incorporation of new data

sources and other heuristic knowledge into the IFish system. Now it is time to consider what

IFish do with the information they consume. This chapter concentrates on these aspects of IFish:

how IFish communicate with the user and how IFish internally model \interestingness." The

two topics are intertwined with each other, as IFish need user communication to more accurately

model interestingness, and also as IFish use interestingness to control which questions are put to

the user.

The �rst section of this chapter, User Interaction, describes how user-IFish communication

is integrated into the overall IFish system. Section 3.2 describes the requirements IFish impose

upon possible systems for measuring or otherwise comparing infochunks based on their interesting-

ness. These two components, together with infochunks, rules and transducers, complete the IFish

substrate and pave the way for the prototype IFish described in Chapter 4 below.

3.1 User Interaction

We have seen how heuristic knowledge allows an IFish to interact with indexing services available

over the WWW; these services accept questions (queries) from an IFish and (usually) answer them

promptly. If the service does not answer promptly we may detect this condition and handle the

error appropriately. Assume now, however, that we wish to interact with a particularly ill-behaved

service, one which has the following properties:

� The service may or may not answer an IFish query,

� Should the service answer your question, it may take an arbitrarily long time to answer it,

and

� The order in which questions are presented to the service is important, as the service may

be more likely to answer some questions over others depending on how the questions are

presented.

Any service on the network sharing these properties might be rationally classi�ed as \misbehaved."

Consider for a moment, though, how user queries must appear to an IFish, and it becomes apparent

33

34 Chapter 3. User Interactions and Interestingness

that user interaction from the IFish perspective is dealing with a remote service that misbehaves.

Dealing with the user, and taking advantage of the user's knowledge and guidance, thus requires

some modi�cations and extensions to the IFish substrate. We need to make it easy both for IFish

to pose questions and for the user to answer them, and we also need to integrate the mechanism

for user interaction into the overall IFish system.

Note that we assume implicitly here that any long-term conversation between an IFish and the

user may be represented as a series of question-answer pairs. For our demonstration IFish (the

\Finder" IFish in Chapter 4) this is certainly the case: every IFish question put to the user asks

him to con�rm or deny particular statements about speci�c infochunks. A similar situation arises

when the user asks the IFish a question, although often the question is implied by some user action

(such as pushing a button or clicking on a particular URL).

3.1.1 Questions and Answers

To add user-interaction capabilities to the IFish substrate we must �rst identify how user-IFish

information exchange compares with the information exchange between an IFish and a remote

WWW server. Like a Web server, a user accepts requests for information from an IFish and may

(if the user so chooses) respond to the information request in an appropriate manner. The user's

answer to a question may then trigger some particular action within the IFish system. For example,

if the user tells the IFish that a particular document is not relevant, an IFish can incorporate that

data into its own structure and weed out or otherwise downgrade new documents that correlate

well with the known non-relevant document.

This cycle of operation for questions, \generate a question, pose it to the user, and act upon the

user's response," is not very di�erent from how IFish process infochunk-rule interactions. Unpro-

cessed infochunks have \applicable rules" repeatedly applied to them; some of the rule applications

may generate new information. Similarly, when a question is posed to the user, the user's response

may or may not add new information into the IFish system. Thus, at an abstract level human

users appear to IFish as another network service, although one with di�erent low-level behavior

properties.

The fact that interactions with the user may be viewed as just another network communication

by an IFish suggests that we not attempt to create a sui generis system for user-interaction but

rather that we try to incorporate it into the IFish substrate that already exists. We could create an

entirely new method for handling user queries (and in fact an early prototype of the system did treat

user communication as a completely separate and orthogonal component of the IFish substrate),

but the similarities between user questions and other information requests are compelling.

What information must an object representing a user question contain? Every question must

contain information that:

1. Allows the IFish system to generate a representation of the question that the user can un-

derstand, as well as a method for responding to the question, and

2. Tells the IFish system, depending on the user's response to the question, what action(s) the

IFish should take.

These two items, a method of declaring itself to the user and a method for dealing with the

user's response, are the bare minimum requirements for a user question. Without a representation

3.1. User Interaction 35

generator the IFish does not know how to properly pose the question to the user. Without a

user-dependent action there's no reason for an IFish to pose the question in the �rst place.

Each question in the IFish system is a structure that contains six pieces of information; Figure 3-

1 illustrates a typical question. The �rst two slots in the question structure, the sexp-html-proc

Question slot name Possible content

sexp-html-proc Procedure for generating an s-expression HTML

description of the question

answer-proc Procedure for acting upon the user's response

serial-number A unique identi�er for each question

question-maker-name The procedure that generated this question

question-maker-arguments The arguments to the procedure that generated

this question

question-ichunk Data object of the infochunk associated with this

question.

Figure 3-1: Value slots in the question data structure and typical content of each slot.

and answer-proc, hold procedures that respectively know how to generate s-expression HTML48

representations of the question and how to act upon the user's response. The question's serial-

number is a unique identi�er across all questions in a particular IFish; the serial-number is used in

conjunction with the sexp-html-proc and the IFish user-interaction code to identify user answers

speci�c to this particular question. The question-maker-name and question-maker-arguments slots

exist so we may regenerate the question at a later time if necessary49. Question-ichunk is a pointer

to the infochunk associated with this particular question.

Questions are generated by IFish rules just as other infochunks are. When a question-generating

rule is applied to an infochunk, the rule generates both the question structure and an associated

infochunk. The new infochunk is linked into the infochunk hypertext as before; the question is

installed separately into the IFish user-interaction mechanism, which makes the system aware of

the new user question. Questions are presented to the user in order from most to least interesting,

where the interestingness of a question is the interestingness of the associated infochunk. This allows

the general infrastructure for estimating the interestingness of a particular infochunk (detailed below

in Section 3.2) to be applied uniformly to both \regular" and question-related infochunks.

Section 3.1.2 below details the operation of the user-IFish interaction mechanism. In brief,

when the user asks the IFish for a list of pending (asked but unanswered) questions, the IFish

generates textual representations of each question using the sexp-html-proc component of each

question structure. The question itself controls the format of the user's response. Thus, when

a question is answered, the user's answer is simply passed to the question's answer-proc, which

evaluates the answer and takes action appropriately. Usually, the action involves modifying the

48S-expression HTML is a variant of HTML that is used throughout the IFish system for communicating with the

user. Section 3.1.2 describes the advantages of s-expression HTML in detail.
49In particular, these two values are used to regenerate questions after restoring an IFish from disk. Because

Scheme has di�culty dumping procedure objects to disk, we need to be able to store fasdump-able representation of

pending user questions that allow us to regenerate the question procedures themselves.

36 Chapter 3. User Interactions and Interestingness

particular infochunk that gave rise to the question in the �rst place, as well as recording the user's

answer for future reference.

User questions are treated by the IFish system exactly like any other piece of information except

where absolutely necessary. By incorporating questions into the infochunk structure we leverage all

of the existing IFish system for operating on infochunks and estimating their interestingness. User

replies to questions are also incorporated into the permanent infochunk structure. Where questions

di�er from other infochunks is in how users are asked to answer questions and how user responses

are captured by IFish.

3.1.2 System Support

The IFish substrate contains a number of special-purpose modules for supporting user-interaction.

Roughly speaking we can divide these special functions into three groups:

1. Support for a user-interaction language and/or format,

2. Primitives for creating questions of a particular type or format, and

3. Functions that pose questions to the user and process the user's response.

In the IFish system all of these functions are closely related to the overall use of the Web as

a means of retrieving information. Since IFish already must \swim" in the Web, and since the

Web (as of HTML 2.0) supports user-questions via interactive forms, it seemed logical to use this

already-existing infrastructure to ask IFish questions and receive responses. Also, as there already

exist nice graphical user interface clients50 for the Web, by using the Web as our question-response

medium we leverage all the GUI code built into Web clients and need write very little code to

control the appearance of the user interface.

Notice that whereas normally IFish are Web clients, seeking out information that exists on

remote Web servers, in the case of user interaction the IFish itself plays the role of the Web server

and it is the user at the other end of a network connection using a Web client. Thus, it was

necessary to build into IFish not only the ability to mimic a Web client (to retrieve information

from remote web servers) but also the ability to run a small Web server (to talk to the user's web

client). To this end, we �rst describe s-expression HTML, an HTML variant, and then move on to

the subjects of question-generating primitives and the IFish WWW server.

S-Expression HTML

The HyperText Markup Language (HTML) standard [4] for content on the WWW uses only strings

as language elements; every HTML document is a concatenation of strings that contain either

content (\Welcome to my homepage") or semantic labels (). Since HTML

depends only on a common character representation it is extremely portable, but that portability

requires a lot of string manipulation and parsing. For IFish, which need to be able to construct

\on the y" many HTML documents (such as user question and response forms), a more friendly

internal representation of HTML is desired.

50e.g. Netscape

3.1. User Interaction 37

<html>

I think the document

STAT-USA/Internet Site Economic, Trade, Business Information

[

local copy

] is relevant. Is it?

<form METHOD="get">

<input TYPE="hidden" NAME="serial_number" VALUE="1">

<select SIZE="1" NAME="answer">

<option VALUE="1" SELECTED> Known user-relevant

<option VALUE="2"> Possibly user-relevant

<option VALUE="3"> Not relevant

</select>

<input TYPE="submit" VALUE="Submit!">

</form>

</html>

Figure 3-2: An example HTML document

S-Expression HTML
51 (s-exp HTML) is a variant of HTML that uses Scheme s-expressions

instead of strings for its representation language. Documents written in s-exp HTML are maintained

in pre-parsed form, which makes it very easy to combine, splice and subdivide content as required.

HTML semantic tags are maintained as headed lists in s-exp HTML, and the scope of such tags is

precisely the contents of the headed list52. Figures 3-2 and 3-3 show a sample HTML document

and the corresponding s-exp HTML. Notice that each s-exp HTML tag is itself a list containing

both the tag label and attribute-value pairs.

S-exp HTML is currently used by IFish for all HTML-based interactions with the user. The

IFishWWW server accepts s-exp HTML expressions as input and converts them to HTML strings

just before sending requested content to the user's browser; the conversion process also handles

certain HTML character translations53. Used in conjunction with Scheme's quasiquote construct

s-exp HTML allows us to create large, structured HTML documents with very compact procedures.

51Alan Bawden originally proposed creating an s-expression variant of HTML. The implementation of s-exp HTML

detailed here was implemented by Stephen Adams for another Scheme-related project and subsequently incorporated,

with slight modi�cations, into the IFish system.
52In HTML, the scope of some tags is delimited by opening and closing tags, such as and , which delimit

content that should be displayed in boldface.
53Certain characters appearing in HTML content must be encoded because they have special meaning within

HTML. For example, the character < is the open delimiter for HTML tags; used within the body of content it must

be encoded as <.

38 Chapter 3. User Interactions and Interestingness

(html

"I think the document "

((a (href "http://www.stat-usa.gov:80/"))

"STAT-USA/Internet Site Economic, Trade, Business Information")

" ["

((a (href

"file:///home/bal/thesis/phd/src/tmp/html_960318_5/57874_0.html"))

"local copy")

"] "

" is relevant. Is it?"

(br)

((form (method get))

((input (type hidden) (name "serial_number") (value "1")))

((select (size 1) (name answer))

((option (value 1) (selected)) "Known user-relevant")

((option (value 2)) "Possibly user-relevant")

((option (value 3)) "Not relevant"))

((input (type submit) (value "Submit!")))))

Figure 3-3: The HTML document in Figure 3-2 represented in s-exp HTML

Creating Questions

Creating IFish questions is fairly straightforward, although the IFish system must do some work

to keep the various question-related structures synchronized with each other. There are three types

of objects within the question subsystem: questions, question-ichunks, and question-makers. We

start with question-makers and then proceed to the other two structures.

Question-makers were created to provide an arti�cial boundary layer at which question informa-

tion was not lost while still permitting the IFish data structures to be written to and restored from

disk via the Scheme primitives fasdump and fasload respectively. A question-maker is a named

procedure within the system, like a rule, that is generally declared by IFish modules at system load

time. Question-makers accept as arguments Scheme dump-able objects, such as lists and vectors

but not procedures or environments. Question-makers may accept any number of arguments.

A question-maker's procedure is invoked by name upon a list of arguments via make-question.

Make-question creates new question and question-ichunk structures (which will be related in the

IFish system) and passes the new question structure to the named question-maker along with any

other arguments. When the question-maker �nishes it will have �lled in all the slots in the question

structure. Make-question then copies data from the question into the question-ichunk, assigns a

unique serial number to this pair of objects, and returns both the question and question-ichunk

structures via Scheme's values/with-values multiple-value-return system.

The IFish system provides a number of primitive question constructors that question-makers

may call to quickly assemble sexp-html-proc and answer-proc procedures. These primitives generally

accept as arguments an s-exp HTML description and action thunks that correspond to each of the

possible answers to the question. For example, the question/make-yes-no-pieces procedure

accepts an s-exp HTML description of a question, a \yes" thunk and a \no" thunk; it constructs

3.1. User Interaction 39

a question containing an HTML form with \yes" and \no" buttons. Each button, when pressed,

triggers invocation of the appropriate thunk. Similar procedures exist to construct \choose one

from this list" and \choose some from this list" questions.

Once a rule transducer has received the question and question-ichunk from make-question, it

must install these two structures in the IFish system. The question-ichunk becomes the data slot

of a new infochunk54 which is installed, linked to and announced in the usual manner. (The new

infochunk will be linked to the infochunk that triggered the question.) The question structure is

passed to question-install! which adds it to the list of questions for the user maintained by the

IFish's Web server.

The IFish WWW Server

The IFish system contains within it a limited-functionality Web server which is used for communi-

cating IFish information to the user interacting with the IFish. We chose to implement the server

as part of the IFish process to facilitate easy dynamic access to the contents of an IFish. Also,

the forms capabilities of HTML 2.0 provide an easy way to gain user interaction while leveraging

the various GUI Web browsers that already permeate the marketplace.

IFish run Web server processes within a separate Scheme execution thread; the locking mech-

anisms built into the Scheme threads library provide synchronization and guarantees of exclusive

access to particular data structures where needed. The server itself is basically a tree of path-

handlers, which are procedures that operate on URL pathnames. Path-handlers are linked together

in parent-child relationships by path components. When a parent handler is passed a pathname,

it extracts the �rst component55 and looks to see if that component is the label on any link to

any of its children. If it is, then the child handler is recursively invoked on the remainder of the

pathname. If no link is named by the extracted component then the parent path handler itself is

responsible for handling the request. All path-handlers return s-exp HTML expressions in response

to being invoked on a pathname. When a response is ready to be sent to the user, a single call to

shtml->ascii-string converts the s-exp HTML into string-based HTML which is then written

to the Scheme output port connected to the user's browser.

3.1.3 Putting It All Together

We are now ready to create an IFish rule that takes advantage of user interaction. The best way to

understand the interplay between rules, transducers, question-makers, questions, question-ichunks,

and the IFish Web server is to walk through an extended example from the Finder IFish. Fig-

ure 3-4 shows the rule declaration for the rule KEYWORD/KEYWORD->RELEVANCE-QUESTION, which is

one of the Finder IFish's heuristics. This rule looks for possible keywords generated56 by the IFish

54Notice that we cannot use the question structure itself as the data slot of the new infochunk since the question

structure contains procedure objects.
55Pathnames, as de�ned in the URL speci�cation [6], are concatenations of path components separated by forward-

slashes (/).
56When the Finder IFish encounters a known user-relevant infochunk containing a retrieved document it invokes

the rule ARCHITEXT/KNOWN-RELEVANT-DOC->POSSIBLE-KEYWORD-LIST to generate a small list of possible keywords.

(The default size of the keyword list is �ve.) These keywords are subsequently separated into individual infochunks

and each word may potentially trigger a number of keyword-related rules, including calls to various Web search

engines. Every keyword generated in this manner is considered initially to be \possibly user-relevant;" the IFish

40 Chapter 3. User Interactions and Interestingness

that may be related to the user's current interests. The rule generates a question to the user of

the form, \I think this keyword is relevant. Do you �nd it relevant?" This rule is very straight-

(DEFINE-RULE 'KEYWORD/KEYWORD->RELEVANCE-QUESTION

;; precondition: infochunk must contain a url

(SIMPLE-TYPE-PRECONDITION

'(and (known keyword) (possible user-relevant)))

tdcr/keyword/keyword->relevance-question)

Figure 3-4: Rule declaration for KEYWORD/KEYWORD->RELEVANCE-QUESTION

forward: any infochunk with both (KNOWN KEYWORD) and (POSSIBLE USER-RELEVANT) typeinfo

declarations will trigger rule application. (Keywords derived from a user-relevant document by

the Finder IFish are tagged with typeinfo ((KNOWN KEYWORD) (POSSIBLE USER-RELEVANT))57.

The transducer called by the rule is also fairly trivial; it is shown in Figure 3-5. When in-

(DEFINE-TRANSDUCER tdcr/keyword/keyword->relevance-question

(lambda (infochunk)

(let ((the-keyword (infochunk/data infochunk)))

(with-values

(lambda ()

(make-question 'qm/keyword/keyword->relevance-question the-keyword))

(lambda (the-question the-question-ichunk)

(let ((new-infochunk

(make-infochunk the-question-ichunk '((known question)))))

(ANNOUNCE-AND-LINK new-infochunk))

(question/install! the-question))))))

Figure 3-5: The transducer tdcr/keyword/keyword->relevance-question.

voked, the transducer extracts the contents of the infochunk's data slot and passes that data to

the question-maker qm/keyword/keyword->relevance-question via the with-values construct.

When qm/keyword/keyword->relevance-question completes, it returns the new question and

question-ichunk. These are then installed, respectively, in the IFish question space and infochunk

hypertext.

needs the user's assistance to turn that quali�cation into either \de�nitely relevant" or \de�nitely not relevant."

Thus the need for a user question.
57Recall that typeinfo lists may contain an arbitrary number of declarations. In this particular case the IFish knows

that the output of the Architext keyword-generating rule is always a keyword, thus (KNOWN KEYWORD), and also knows

that the keyword was derived from a (KNOWN USER-RELEVANT) document, thus (POSSIBLE USER-RELEVANT).

3.1. User Interaction 41

The �nal component of this rule is the question-maker qm/keyword/keyword->relevance-

question, shown in Figure 3-6. This procedure extracts some information from IFish infochunks

(DEFINE-QUESTION-MAKER 'qm/keyword/keyword->relevance-question

(lambda (the-question the-keyword)

(let ((the-infochunk (infochunk/data->infochunk the-keyword)))

(question/make-one-of-many-dropdown-pieces

the-question

�(seq "I think the keyword "

(b ,the-keyword)

" is relevant." (br)

(b "Interestingness: ")

,(with-output-to-string

(lambda () (display (infochunk/interestingness the-infochunk))))

" Is it?")

�(((seq "Known user-relevant")

,(lambda ()

;; in this case, add '(known user-relevant) to the typeinfo

(add-or-merge-typeinfo! the-infochunk '(known user-relevant))

;; since we've changed the structure of the infochunk, we have

;; to re-apply already applied rules & look for changes

(infochunk/changed! the-infochunk)))

((seq "Possibly user-relevant")

,(lambda ()

;; in this case, add '(known user-relevant) to the typeinfo

(add-or-merge-typeinfo! the-infochunk '(possibly user-relevant))

(infochunk/changed! the-infochunk)))

((seq "Not relevant")

,(lambda ()

;; in this case, add '(known user-relevant) to the typeinfo

(add-or-merge-typeinfo! the-infochunk '(not user-relevant))

(infochunk/changed! the-infochunk))))))))

Figure 3-6: The question-maker qm/keyword/keyword->relevance-question

and constructs a \choose one of many"-type question. The routine question/make-one-of-many-

dropdown-pieces turns an s-exp HTML description of the question and a list of 2-lists of possible

choices and converts it into an HTML SELECT element. The user is presented with the keyword

the IFish derived from a (KNOWN USER-RELEVANT) document and is asked to classify the keyword

as either \de�nitely relevant," \possibly relevant" or \de�nitely not relevant." Selecting one of

these options installs an event that appropriately updates the typeinfo of the keyword-containing

infochunk.

42 Chapter 3. User Interactions and Interestingness

3.1.4 Ordering Questions

Deciding which questions to ask the user, and even how and when to ask those questions, is still

only part of the story. Not all questions are equal in importance, and an IFish's communication

channel with its user is extremely limited. Since the user, our hypothetical \ill-behaved" server

from above, may only answer a few of the questions posed to it by the IFish, we want to present

the most important questions �rst. How we determine which questions are \most important" is

yet another aspect of determining the \interestingness" of a piece of information. Since questions

themselves are IFish infochunks, if we can approximate the intrinsic interestingness of an IFish

infochunk we can use that information to order user questions. This leads naturally to the second

half of this chapter.

3.2 Interestingness

The �nal component of our IFish Construction Kit is the subsystem that measures the \inter-

estingness" of an IFish infochunk (or question). What is interestingness? Interestingness is a

function that provides the IFish with a relative measure of how interesting information may be to

the user. Heed well the words in emphasis: IFish interestingness makes very weak claims about the

information it measures. Interestingness is used to rank infochunks relative to each other, but we

must be careful not to put too much weight on the numbers it produces. Similarly, interestingness

measures are most useful as predictors of possible user interest. If IFish can make good guesses

as to how interested the user will be in particular infochunks, it can make the most of the the

IFish-user communication channel. We begin below with a more detailed description of the design

goals for interestingness and the minimum required primitive operations that any acceptable IFish

interestingness measure must support. Our prototype interestingness implementation is presented

in Section 3.2.2.

3.2.1 Design Goals

As in Chapter 2 above, the interestingness portion of the IFish substrate is dictated by a number

of design goals and requirements:

� Interestingness need not be a perfect predictor of user interest; it need only be reasonably

e�ective in order to constrain the search for information.

� The interestingness subsystem needs to be extensible, exible and modi�able by other portions

of the IFish system.

� Interestingness must provide a comparison function that is a total order over infochunks.

� The interestingness subsystem must permit use and application of appropriate heuristic

knowledge.

� Interestingness functions must have full access to infochunks, including both the data and the

hypertext structures within infochunks.

3.2. Interestingness 43

� Like infochunks themselves, interestingness structures58 need to be dumpable Scheme objects.

� There is a minimal set of operations that the interestingness subsystem must provide to the

other portions of the IFish system.

Of these goals the �rst one is most important. Designing a perfect model of a user's interest in a

particular piece of information is itself a foundational question in arti�cial intelligence. We cannot

hope to solve that problem here as part of a single thesis. It is important to realize, however, that

we really do not need to solve that problem. It is a fundamental assumption of the IFish system

that the data space is dynamic and thus total search over that space is not feasible. IFish use

interestingness to focus attention on a subset of available tasks and thus constrain the boundaries

of its search. If interestingness information successfully directs IFish e�ort it is useful.

The second design goal for interestingness is that it be as extensible, exible and modi�able as

the rest of the IFish system. If IFish rules are able to rewrite themselves or other rules on the

y, certainly interestingness should be able to as well. This leads naturally to an interestingness

implementation similar to IFish rules, which already permit dynamic creation of \interest rules"

that score interestingness of an infochunk.

In order to constrain search, IFish must be able to compare the interestingness of two in-

fochunks and decide which of the two is \more interesting" given the current state of the IFish.

Thus, the interestingness subsystem must provide a comparison function for interestingness and

the \less than/greater that/equal to" trichotomy property. For the prototype implementation of

interestingness described in Section 3.2.2 below a total order function was implemented for inter-

estingness; the comparison function infochunk-interest>? imposes the total order59 on all pairs

of interestingness structures.

Incorporating heuristic knowledge in the IFish interestingness system is as important as in the

infochunk portion of the substrate. For example, we may want IFish to consider Web server \home

pages" more interesting than other pages60. There are also heuristics that can be applied to the

structure of the infochunk hypertext itself; infochunks may be more or less interesting because they

are linked to other particular infochunks. Thus any interestingness system should permit a similar

form of heuristic encapsulation as that used in generating infochunks in the �rst place. Of course,

interestingness functions obviously need access to infochunk structural information in order to use

heuristics that depend on that information.

Finally, we must also consider what primitive, interestingness-related operations the implemen-

tation must support. Some primitive operations will be dictated by the actual implementation,

including procedures to create and modify interestingness structures. Other primitive operations,

such as infochunk-interest>?, are necessitated by the rest of the IFish system. IFish-required

primitives may be divided into four categories:

1. Constructors, accessors, parsers and print procedures for the interestingness structure itself.

58Recall from Chapter 2 that every infochunk contains within it an interestingness structure. To the infochunk that

structure is opaque; it is only useful to interestingness-related routines. That infochunks must be dumpable Scheme

objects necessitates the same requirement for interestingness structures.
59Note that it is possible to weaken the total order requirement and use a partial order instead, since we only use

the order to choose tasks to work on next. However, the fewer pairs of interestingness structures that are related

under the partial order, the closer the IFish's task management procedure approaches random selection.
60Deciding whether a particular HTML page is a home page is also open to heuristic analysis; home pages generally

have either empty path elements in their URLs or paths that end in index.html.

44 Chapter 3. User Interactions and Interestingness

2. A comparison operation for the total order imposed upon infochunks.

3. Procedures to compute and recompute an infochunk's interestingness.

4. Support for interestingness-related heuristic rules.

The �rst category, providing constructors and other basic routines to create and take apart interest-

ingness structures, are dictated for the most part by the data structures used in the implementation.

Obviously we need to have a comparison function that implements the total order relation over

the set of infochunks; it is su�cient to de�ne only infochunk-interestingness>?, but for the

sake of convenience an equivalence operation (infochunk-interestingness=?) may also be war-

ranted. IFish routines also need methods to calculate the interestingness of an infochunk and

force a recalculation when some element of an infochunk has changed, if the implementation itself

does not already transparently provide these services. Finally, just as IFish provides substrate for

transducers and rules, interestingness-related rules also require support functions. The next section

provides a detailed description of a prototype implementation of interestingness that is su�cient

for the Finder IFish described in Chapter 4 below.

3.2.2 Prototype Implementation of Interestingness

The prototype IFish implementation of interestingness closely parallels that of infochunks and

rules; here our \infochunks" are interestingness data structures and our \rules" are interest rules.

An interest rule is similar to a rule for heuristic information; every interest rule has a name, a

precondition and an action. To compute the interestingness of an infochunk, every interest rule

with a precondition satis�ed by the infochunk is invoked in sequence. Invoking an interest rule

applies the rule's action to the infochunk61.

The set of possible actions an interest rule may take when invoked is limited to modi�cations

to the interest structure. Figure 3-7 illustrates a typical interestingness structure; the structure

contains four data slots. Each data slot in the structure contains a list (possibly empty) of (interest-

Interestingness slot name Possible content

user-slot An interest-rule-value list, possibly empty.

self-slot An interest-rule-value list, possibly empty.

forward-links-slot An interest-rule-value list, possibly empty.

backward-links-slot An interest-rule-value list, possibly empty.

Figure 3-7: Value slots in the interestingness data structure.

rule-name, value) pairs, where the interest-rule-name is a symbol associated with a particular

interest rule and the value is an integer quantity.

61Actually, in the current implementation interest rules take two arguments: an infochunk and an interestingness

structure. Interest rules update the interestingness structure explicitly passed to them, not the structure contained

within the infochunk. This allows the system to completely recalculate the interestingness of an infochunk without

having to worry that an error or other system exception will leave a half-calculated interestingness structure within

an infochunk.

3.2. Interestingness 45

Two Scheme procedures are available to interest rules for modifying the contents of a data slot.

These rules are named interest/increment-<slotname> and interest/decrement-<slotname>

respectively, where <slotname> is any slot in the interestingness structure (e.g. user-slot). When

an interest rule wants to express an increase in the interestingness of an infochunk, it does so by

calling an interest/increment-<slotname> procedure of the appropriate slot. For example, Fig-

ure 3-8 shows the interest rule BACKWARD-LINK-TO-RELEVANT, which increases the interestingness

of any infochunk that was derived from an infochunk known to be relevant to the user62. The

(DEFINE-INTEREST-RULE 'BACKWARD-LINK-TO-RELEVANT

;; precondition

(lambda (infochunk)

(> (length (infochunk/backward-links infochunk)) 0))

;; action

(lambda (infochunk interest)

(for-each

(lambda (the-backward-link)

(let ((the-quality (infochunk/contains-basetype?

(link/infochunk the-backward-link) 'user-relevant)))

(cond

((not the-quality) #f)

((eq? (car the-quality) 'known)

(interest/increment-forward-links-slot! interest *rule-name*))

((eq? (car the-quality) 'not)

(interest/decrement-forward-links-slot! interest *rule-name*)))))

(infochunk/backward-links infochunk)))

)

Figure 3-8: The interest rule BACKWARD-LINK-TO-RELEVANT

precondition for this rule is very simple; any infochunk with a backward link satis�es it. The rule's

action increments the user-slot once for every backward link to a known user-relevant document

and decrements the slot once for every backward link to a document known to be not relevant to

the user. By default, these incrementing (and decrementing) procedures add (subtract) one to a

value contained in the slot; larger values may be passed as optional arguments to override this

default.

The interest structure itself is simply a collection of lists containing interest rule names and

values (an \interest-rule-value" list in Figure 3-7). When an interest rule action calls a slot incre-

menter the incrementer looks for an entry in the interest-rule-value list containing the interest rule's

name. If there is such an entry, then the associated value is simply incremented as appropriate. If

the interest rule's name does not appear in the list, then a cons cell containing the rule and the

increment value are added to the list. Figure 3-9 shows an interestingness structure from a sample

infochunk. The infochunk's interestingness is currently determined by the interest rules foo, bar

and baz.

62Note that this rule also decreases the interestingness of an infochunk derived from an infochunk known not to be

relevant to the user.

46 Chapter 3. User Interactions and Interestingness

user-slot ((foo . 3))

self-slot ()

forward-links-slot ()

backward-links-slot ((bar . 1) (baz . 1))

Figure 3-9: An example interestingness structure, including its contents.

There is one component remaining to be de�ned in order to satisfy the minimal requirements

for an IFish interestingness system: the function imposing a total order upon the set of all possible

interestingness structures. For this implementation, we assume that there exists a function f :

I ! Z mapping I, the set of all possible interestingness structures, to Z, the set of integers.

Interestingness structures are then compared by comparing the results of applying f to each of the

interestingness structures. Since the \greater than" function > is a total order over Z, we have

constructed a total order over I63.

(define (interest/interest->number the-interest)

(let ((user-slot (interest/user-slot the-interest))

(self-slot (interest/self-slot the-interest))

(forward-links-slot (interest/forward-links-slot the-interest))

(backward-links-slot (interest/backward-links-slot the-interest))

(user-val 0)

(self-val 0)

(forward-links-val 0)

(backward-links-val 0))

(if (not (null? user-slot))

(set! user-val (reduce + 0 (map cdr user-slot))))

(if (not (null? self-slot))

(set! self-val (reduce + 0 (map cdr self-slot))))

(if (not (null? forward-links-slot))

(set! forward-links-val (reduce + 0 (map cdr forward-links-slot))))

(if (not (null? backward-links-slot))

(set! backward-links-val (reduce + 0 (map cdr backward-links-slot))))

(+ (* user-val 100) (* self-val 10) forward-links-val backward-links-val)))

Figure 3-10: A simple interestingness evaluation function.

The Scheme code implementing function f is shown in Figure 3-10. Basically, f sums the

numerical portions of each interest-rule-value for each slot and compares these \slot summary"

values. The constants in f were chosen so that interestingness would be heavily weighted in favor of

the user-slot, since that slot is where e�ects related to user-relevance appear in the interestingness

structure. The forward- and backward-links slots are weighted least since these slot values are

63Notice that at some level the constructed order function over I � I violates Claim 2(b), since we are explicitly

quantizing the intrinsic interestingness of infochunks. Although we cannot assume the existence of such a function

in general, it works well for our Finder IFish and is easy to implement.

3.2. Interestingness 47

used to record secondary and indirect interestingness e�ects on infochunks. This de�nition of

interest/interest->number allows us to compare two infochunks by numerically comparing the

two respective interestingness structures:

(define (interest>? interest1 interest2)

(> (interest/interest->number interest1)

(interest/interest->number interest2)))

(define (infochunk-interest>? ichunk1 ichunk2)

;; grab the interest structs

(let ((interest1 (infochunk/interestingness ichunk1))

(interest2 (infochunk/interestingness ichunk2)))

(interest>? interest1 interest2)))

IFish use infochunk-interest>? as the sorting procedure for heaps holding infochunks as well

as rank-ordering questions awaiting user attention (see Section 3.1.4 above).

The order function used in the interestingness subsystem is necessarily related to the goals

and particular heuristic knowledge of a speci�c IFish. An IFish's set of interest rules de�nes the

possible values that can appear in an interestingness structure. The simple order function just

described does not behave di�erently based on the particular rules that modi�ed the structure, but

it would certainly be reasonable for it to do so.

48 Chapter 3. User Interactions and Interestingness

Chapter 4

The \Finder" IFish

4.1 Building an IFish that Finds Web Pages \Like These"

For two chapters we have de�ned, described and detailed the IFish substrate; now it is time for the

payo�. In this chapter we use the various tools built into the substrate to construct a functioning

IFish. The demonstration IFish described below was designed to �nd Web documents that are

similar to a set of Web documents provided by the user. That is, the goal of this \Finder" IFish is

to solve the \�nd me more Web pages like these" problem. Such an IFish might be used to keep

watch over a set of pointers to various related resources on the Web, or to gather together pages

that may be related but spread out all over the network. We assume that the user provides the

Finder IFish with an initial set of infochunks, and from only this information, heuristic knowledge

and user interaction the Finder attempts to gather together related information.

Our description of the various components of the Finder IFish follows that of the general sub-

strate in Chapters 2 and 3 above; because IFish components are truly \mix-and-match," pieces

of the IFish were written as new Web services or new analysis techniques became available. Sec-

tion 4.2 discusses the two types of heuristic information inside the Finder: heuristics that provide

methods of �nding new Web pages, and heuristics that are used to analyze the pages already re-

trieved over the network. When the Finder thinks it has discovered a relevant Web page, it asks

the user to view the page and con�rm or refute the relevancy assumption. Section 4.3 details this

question mechanism. Interestingness rules written speci�cally for the Finder IFish are outlined in

Section 4.4. Finally, Section 4.5 presents an actual user-IFish conversation to �nd Web pages of a

particular type.

4.2 Heuristic Knowledge in the Finder IFish

The initial problems faced in building an IFish are organizational in nature. At least a broad,

general picture of the types of modules required and how those modules will interact with one

other is needed before one can begin writing those modules. For the Finder there are two classes

of heuristic knowledge that we know will be needed from the start. First, the Finder IFish needs

heuristics that describe how to �nd and retrieve information objects over the network, including

objects located on remote information servers. This in turn implies that the Finder must be able

49

50 Chapter 4. The \Finder" IFish

to use the various monolithic search engines in order to seek out new information sources. Second,

after the Finder retrieves documents it needs some mechanism for analyzing those documents and

comparing the information contained within to the user-supplied information. Together, these two

categories of heuristics will provide the Finder IFish with the ability to:

� Use known relevant information to �nd new sources of information,

� Retrieve new information over the network from these new information sources,

� Analyze the new information for any that appears related to the known relevant information,

and

� Use the new, relevant information to re-seed this process and begin again.

The IFish substrate already provides much of this framework, so long as the Finder IFish is

designed to take proper advantage of these facilities. As is the case with many computer programs,

a little thought at the beginning over where and how to draw abstraction boundaries will save much

e�ort later on.

4.2.1 Heuristics to Find New Sources of Information

Learning the lingua franca of the Web

In order to �nd new information sources, this IFish must �rst be able to communicate e�ectively

with remote servers and both send and receives information in mutually-recognized protocols.

Recall from Section 1.3.4 the assumption that IFish operate within the scope of the World Wide

Web and must be able to swim freely within this medium. Thus, the logical starting point for the

Finder IFish is to create the heuristics that will permit it to interface with the rest of the Web64.

The IFish substrate already includes Scheme routines that provide communication facilities with

other Web servers; we thus need only to wrap these routines within IFish transducers and rules.

To begin, consider the most primitive non-trivial element of the Web, the Uniform Resource

Locator (URL) [6]. A URL is a pointer to an object somewhere within the Web. Figure 4-1

shows the IFish rule that describes how character strings representing URLs may be converted

into URL objects themselves. The transducer tdcr/string->url is very simple. First, the trans-

ducer extracts the string which is the contents of the data slot of the input infochunk. The string

is converted to a URL via url/string->url, an internal Scheme procedure that implements a

parser/scanner conforming to the URL RFC. The resulting URL is then encapsulated within a

new infochunk, appropriately tagged as a (POSSIBLE URL)65, and announced and linked into the

infochunk hyperstructure. The rule declaration of URL-STRING->URL creates a new rule that trans-

forms \url-strings" into URLs simply by invoking the transducer.

Getting a correctly-parsed URL is only the �rst step in the process of turning a pointer to a

Web document into the referenced document itself. Once the IFish system has generated what

64It is arguable that the low-level heuristics for interacting with the network should be considered part of the IFish

substrate and not of any particular IFish. For the purposes of this chapter's exposition it is illustrative to see how

the Web heuristics interact with the other modules.
65The new URL is tagged as \possible" instead of \known" because until an attempt is made to actually retrieve

the object pointed to by the URL it is not known whether the referenced document actually exists.

4.2. Heuristic Knowledge in the Finder IFish 51

(DEFINE-TRANSDUCER tdcr/string->url

(lambda (infochunk)

(let* ((string (infochunk/data infochunk))

(result (url/string->url string))

(new-infochunk (make-infochunk result '((possible url)))))

(ANNOUNCE-AND-LINK new-infochunk)

(VALIDATE-TYPEINFO 'url-string)

)))

(DEFINE-RULE 'URL-STRING->URL

(SIMPLE-TYPE-PRECONDITION

'(or (possible url-string) (known url-string))

(lambda (infochunk) (string? (infochunk/data infochunk))))

tdcr/string->url)

Figure 4-1: The rule URL-STRING->URL.

appears to be a valid URL, the obvious next step is to attempt to verify that the URL actu-

ally points to something. Veri�cation is accomplished by trying to perform an HTTP HEAD

request66 on the URL; the rule URL->HTTP-REQUEST-HEAD67 accomplishes this task (see Figure 2-5

on page 27). This rule demonstrates some of the automated error-recovery procedures of the IFish

substrate. The actual network request, triggered by the evaluation of (url/head-url url), is

performed within a protected Scheme thread that is only permitted to run for a few seconds. If

the execution does not complete within that time raw-result will be a Scheme error condition

object instead of the raw string returned by the remote Web server. A rule transducer application

that return an error condition automatically triggers that rule's error handler (in this case the

default-network-error-handler).

Once the HTTP headers for a particular URL have been successfully retrieved, the IFish

66A HEAD request is like a GET request except that the remote server returns only the HTTP 1.0 headers for

the requested object instead of both the headers and the object content. Typical HTTP headers include both

MIME information such as \Content-type" and \Content-length" as well as other headers speci�c to the server. For

example, in response to a HEAD request for the URL http://www-swiss.ai.mit.edu/, the Web server running on

www-swiss.ai.mit.edu returns the following header lines:

� Server: Netscape-Communications/1.1

� Date: Wednesday, 03-Apr-96 02:28:06 GMT

� Last-modi�ed: Thursday, 15-Feb-96 22:53:37 GMT

� Content-length: 3911

� Content-type: text/html

67The author apologizes for the nomenclature of the http-request data structure. One might think that an

http-request is a data structure containing outbound information that is part of an HTTP GET or HEAD request.

Within the IFish system, however, http-request structures contain the results of GET and HEAD requests, which

follows the naming scheme used by the W3C WWW library reference implementation [45] used as the basis for this

code.

52 Chapter 4. The \Finder" IFish

considers whether it can retrieve the entire document. Figure 4-2 shows the rule declaration for the

HTTP-REQUEST-HEAD->HTTP-REQUEST rule; the transducer is essentially similar to the transducer

in Figure 2-5 above. Notice how the rule preconditions work together with infochunk content to

(DEFINE-RULE 'HTTP-REQUEST-HEAD->HTTP-REQUEST

(SIMPLE-TYPE-PRECONDITION

'(known http-request-head)

(lambda (infochunk)

(let ((http-request (infochunk/data infochunk)))

(and (http-request? http-request)

(= (http-request/status-code http-request) 200)

(let ((content-type

(http-request/lookup-header http-request "Content-type")))

(and content-type

(or

(string=? "text/html" (second content-type))

(string=? "text/plain" (second content-type)))))

(let ((content-length

(http-request/lookup-header http-request "Content-length")))

(if content-length

;; if there is a Content-length header, make sure the length

;; is smaller that 1/4th the available heap

(< (string->number (second content-length)) (/ (gc-flip) 4))

;; if no Content-length header, go for it anyway (unsafe!)

#t))))))

tdcr/http-request-head->http-request

default-network-error-handler)

Figure 4-2: The rule HTTP-REQUEST-HEAD->HTTP-REQUEST

implement heuristic restrictions. The precondition �rst checks that the HEAD request returned

an HTTP status code of 200, meaning that the HEAD request was completed successfully. After

verifying the status code the Content-type and Content-length headers are checked for acceptable

values68; if these checks succeed then the IFish may invoke the rule's action, which will retrieve

the entire document over the network.

In implementing these HTTP-related rules we have consciously represented the process as mul-

tiple small heuristic rules as opposed to one big heuristic that might go directly from URL (or

even a string representation of a URL) to document contents. The reason for this approach is

twofold. First, coding the heuristics this way exposes what might otherwise be internal data struc-

tures containing useful information to the rest of the IFish. Second, by splitting the heuristic

68In this particular IFish we only permit content with MIME content types \text/html" or \text/plain" to be

retrieved. This restrictions prevents the IFish from retrieving non-textual Web pages (e.g. images, sound �les, or

movies), which is useful at the moment because the IFish does not have any routines for analyzing non-textual data.

Content-length is limited to a fraction of available Scheme heap so as not to exhaust memory during the network

transfer; this limitation also restricts the IFish from grabbing very large documents which tend not to contain text.

4.2. Heuristic Knowledge in the Finder IFish 53

into multiple pieces it is easy to add tailored rules for particular special cases at a later date. For

example, Figure 4-3 shows the rule HTTP-REDIRECT-HEAD. HTTP-REDIRECT-HEAD complements the

(DEFINE-TRANSDUCER tdcr/http-redirect-head

(lambda (infochunk)

(let* ((http-request-head (infochunk/data infochunk))

(location-entry

(assoc "Location" (http-request/header-alist http-request-head))))

(if location-entry

(let ((redirected-url (second location-entry)))

(let ((new-infochunk

(make-infochunk

redirected-url

(cons '(possible url-string)

(typeinfo/filter-out-basetype infochunk 'http-request-head)))))

(ANNOUNCE-AND-LINK new-infochunk)

))))))

(DEFINE-RULE 'HTTP-REDIRECT-HEAD

(SIMPLE-TYPE-PRECONDITION

'(known http-request-head)

(lambda (infochunk)

(let ((http-request (infochunk/data infochunk)))

(and (http-request? http-request)

(= (http-request/status-code http-request) 302)))))

tdcr/http-redirect-head

default-network-error-handler)

Figure 4-3: The rule HTTP-REDIRECT-HEAD

rule HTTP-REQUEST-HEAD->HTTP-REQUEST in Figure 4-2; HTTP-REQUEST-HEAD understands how to

process HEAD requests that do not complete successfully (status code 200) but instead reply that

the requested content has been moved (redirected, status code 302) to another location. Servers

that issue redirection pointers include the new location of the content in the HTTP headers; this

rule extracts that new location from the headers and generates a new infochunk, labelled with

typeinfo url-string, containing the new content pointer. Since the IFish system already knows

how to work with url-strings, the addition of only this small rule has given IFish the ability to

properly handle HTTP redirect requests.

These HTTP-related rules, together with other heuristics, provide for the IFish basic network

connectivity services. All IFish network requests are processed in HTTP proxy mode; an HTTP

proxy server operating at a known IP address and port is used by the IFish for all network requests.

The proxy server handles multiple URL protocols, including HTTP, FTP and Gopher. Thus, the

IFish need only be able to speak the HTTP proxy protocol to the proxy server in order to gain

access to remote HTTP, FTP and Gopher content servers.

54 Chapter 4. The \Finder" IFish

Working with Monolithic Search Engines

Now that the IFish has the ability to converse with a vast array of remote information servers, the

next challenge is to �gure out what to do with that connectivity. Beyond simple document retrieval

and extraction of hyperlinks pointing to other documents, the Finder IFish needs heuristics for

dealing with the variety of search and indexing engines that are available on the Web. The majority

of these servers provide at least keyword searching; some, like Alta Vista, permit more advanced

queries such as searches over only the destination URLs of hyperlinks.

We begin with keyword-based queries to search engines such as Lycos, WebCrawler and Infoseek.

Each of these services has a unique user interface and thus requires customized heuristics, but the

basic structure of the engine-speci�c heuristics is constant. The Lycos heuristics are a representative

example of the customizations required to interface with particular servers. Assume that there exists

a su�ciently-interesting infochunk containing a keyword (a string) within its data slot. Many search

engines, including Lycos, encode the keyword(s) upon which the search is to be based within a URL;

retrieving the contents of this URL via the HTTP GET command causes a search on that keyword

to be executed dynamically and the results to be returned as the content of the URL. In the case

of Lycos, valid search URLs are of the form:

http://www.lycos.com/cgi-bin/pursuit?ab=lycos&query=<keyword>

where \<keyword>" is replaced by the actual keyword at the base of the search. Figure 4-4 shows

the IFish rule that generates a Lycos-speci�c URL of this form from a generic keyword.

(define (lycos/make-search-url keyword)

(url/string->url (string-append

"http://www.lycos.com/cgi-bin/pursuit?ab=lycos&query="

keyword)))

(DEFINE-TRANSDUCER tdcr/keyword->lycos-url

(lambda (infochunk)

(let* ((keywords (infochunk/data infochunk))

(lycos-url (lycos/make-search-url keywords))

(new-infochunk (make-infochunk lycos-url '((known lycos-url)))))

(ANNOUNCE-AND-LINK new-infochunk)

)))

(define-rule 'KEYWORD->LYCOS-URL

(SIMPLE-TYPE-PRECONDITION

'(known keyword)

(lambda (infochunk) (string? (infochunk/data infochunk))))

tdcr/keyword->lycos-url)

Figure 4-4: The rule KEYWORD->LYCOS-URL

Notice that although the output of this rule is an infochunk with a URL in its data slot, the

4.2. Heuristic Knowledge in the Finder IFish 55

typeinfo associated with the URL is not (KNOWN URL) but rather (KNOWN LYCOS-URL). This change

prevents the IFish from using the generic URL-handling machinery and instead permits use of rules

tailored speci�cally for Lycos results, as shown in Figure 4-5. Because we know that the Lycos

server exists and that the constructed search URL is valid we can immediately retrieve the contents

of the URL and in doing so perform the search. Furthermore, when we extract HTML anchors

from the search results that contain pointers to other Web documents, we speci�cally exclude any

pointer that either (a) appears in the list lycos/urls-to-exclude or (b) points to a document

residing on the Lycos server itself (www.lycos.com). There is certain �xed material that is returned

as part of every search, such as pointers to Lycos's hiring opportunities69, measurements of the size

of the current Lycos database70, and pointers to Lycos searches on keywords alphabetically close

to the keyword we submitted. Lycos-speci�c heuristics prevent the IFish from blindly following

these pointers.

(define lycos/urls-to-exclude

(map url/string->url

'("http://www.pointcom.com/" "mailto:webmaster@lycos.com")))

(DEFINE-TRANSDUCER tdcr/lycos-url->anchors+urls

(lambda (infochunk)

(let* ((url (infochunk/data infochunk))

(raw-result (url/get-url url))

(http-request (http-raw-result->http-request url raw-result))

(anchor-url-list (http-request->anchors+urls http-request))

(result (list-transform-negative anchor-url-list

(lambda (x)

(or (member (car x) lycos/urls-to-exclude)

(string-ci=? (url/host-name (car x)) "www.lycos.com")))))

(new-infochunk (make-infochunk result '((known list-of (pair url text))))))

(ANNOUNCE-AND-LINK new-infochunk)

;; http-request is about to be GC'd, but the file on disk is not,

;; so manually clear the file by invoking set-http-request/body!

(set-http-request/body! http-request "")

)))

(define-rule 'LYCOS-URL->ANCHORS+URLS

(SIMPLE-TYPE-PRECONDITION

'(known lycos-url)

(lambda (infochunk)

(url? (infochunk/data infochunk))))

tdcr/lycos-url->anchors+urls)

Figure 4-5: The rule LYCOS-URL->ANCHORS+URLS

Although they do not take advantage of many features of Lycos, the two rules KEYWORD->LYCOS-URL

69http://www.lycos.com/lycosinc/jobs.html
70
http://www.lycos.com/sow/TrueCounting.html

56 Chapter 4. The \Finder" IFish

and LYCOS-URL->ANCHORS+URLS are su�cient to make IFish aware of the Lycos server and be able

to use it productively71. Similar modules provide keyword-based interfaces between the IFish and

the Yahoo, Infoseek, WebCrawler and Excite72 search engines. Once the IFish has discovered a

keyword, all of these keyword-based rules will trigger, providing new information to be digested.

Digital's Alta Vista search engine provides simple keyword-based searches of its database, but

it also permits more complicated (and, perhaps, more interesting) operations. For the Finder

IFish we include not only keyword-based heuristics (like those for Lycos above) but also a sample

set of heuristics that demonstrates IFish use of the advanced functionality. Alta Vista permits

searches over not only the text content of Web pages but also over the textual representations

of document URLs and anchor URLs that appear. That is, an Alta Vista search of the form

+link:http://www-swiss.ai.mit.edu/bal/pks-toplev.html will return all indexed documents

that contain pointers matching all or part of the query73. This capability is extremely useful for

IFish because it may be used to �nd Web documents that contain links to a particular document.

In particular, the Alta Vista query

+link:<the-url> -url:<the-url-hostname>

will retrieve every document that contains a pointer to <the-url> that is not being served by the

same server as <the-url>. Figure 4-6 shows the rule that adds this heuristic ability to the IFish

system. Any document known to be relevant to the user will trigger this rule, which in turn queries

Alta Vista for documents that point to the known relevant document and are not located on the

same server as the known relevant document. Note that there is some complexity that is hidden

within the call to altavista/simple-query, but that complexity is due solely to the need to parse

the results of an Alta Vista search, intended to be read by humans, into an IFish-friendly format.

The ALTAVISTA/KNOWN-USER-RELEVANT-URL->FIND-REFERENCING-URLS rule is but one of many

heuristics that could be written for IFish to make better use of the full capabilities of the Alta

Vista engine; the Finder IFish includes only a few such heuristics to demonstrate the power and

ease of use of the underlying substrate. Similarly, an IFish programmer could also add numerous

routines to improve the interface to other search engines. Of course, should a new service become

available while an IFish is running new rules for the service may be written and installed in the

IFish on the y, thus making the new service immediately available to the running IFish74. The

important issue to realize is that the IFish substrate provides structure and tools that in turn allow

particular heuristics to be quickly coded and installed as part of the IFish system. How easy it is

to write such heuristics varies with every situation. Heuristics to interface to many remote search

engines are relatively easy to write, whereas, as we shall see immediately below, analysis heuristics

may require more e�ort.

71At the present time, IFish use only the �rst page of search results returned by Lycos in response to a search,

even if there are many pages of \hits." The Lycos heuristics may be easily extended to sift through all the returned

database entries.
72Except for Excite, the heuristics for these other services are essentially identical to the Lycos rules presented

here. The only signi�cant changes are that the URLs excluded (e.g. URLs that point to www.lycos.com in the Lycos

case) vary with each site. Excite uses HTTP POST requests for searches instead of GET requests, and thus the

Excite-related heuristics were also modi�ed to work with a slightly di�erent protocol.
73Alta Vista splits strings on punctuation boundaries, so this search will match documents pointing to

http://www-swiss.ai.mit.edu/bal/ as well as the pks-toplev.html �le.
74In fact, a new search engine wanting to attract users to its service might even make available IFish-speci�c

heuristics as part of their service. If IFish knew to look in a standard location for such extensions it could download

the new heuristics and modify itself on the y to talk to the new server.

4.2. Heuristic Knowledge in the Finder IFish 57

(DEFINE-TRANSDUCER tdcr/altavista/known-user-relevant-url->find-referencing-urls

(lambda (infochunk)

(let* ((the-url (infochunk/data infochunk))

(altavista-simple-query-string

(string-append

"+link:" (url/url->string the-url #f) " -url:"

(url/host-name the-url))))

(let ((the-result

(altavista/simple-query altavista-simple-query-string)))

(if the-result

(let ((new-infochunks

(map (lambda (pair-url-text)

(make-infochunk (car pair-url-text) '((possible url))))

(altavista-result/result-list the-result))))

(ANNOUNCE-AND-LINK-MANY new-infochunks)))))))

(DEFINE-RULE 'ALTAVISTA/KNOWN-USER-RELEVANT-URL->FIND-REFERENCING-URLS

(SIMPLE-TYPE-PRECONDITION '(and (known url) (known user-relevant)))

tdcr/altavista/known-user-relevant-url->find-referencing-urls)

Figure 4-6: The rule ALTAVISTA/KNOWN-USER-RELEVANT-URL->FIND-REFERENCING-URLS.

4.2.2 Heuristics to Look For Relationships Among Retrieved Objects

IFish heuristics for retrieving information across the Web solve only half the problem: once infor-

mation has been gathered it must also be analyzed. We turn our attention now to the rules built

into the Finder IFish that try to generate new information through study of what has already been

retrieved.

The heuristics described in the previous section for �nding new sources of information on the

Web all depend on either keywords or document URLs in order to generate new information.

Keywords known to be relevant to the user are used in conjunction with various search engines

to generate new pointers to possibly-relevant documents. URLs pointing to \known relevant"

documents generate promising new pointers by locating documents that contain pointers to the

relevant document. Therefore, in order for these services to be useful the Finder IFish needs to

be able to deduce either keywords or new documents that the user would consider relevant. The

ability to make deductions of this form allows gathered information to automatically generate new

information without having to ask constantly for user assistance.

To begin, consider what information may be deduced when an IFish validates a particular

URL http://host:port/abs path, say by performing an HTTP HEAD request on the URL and

receiving a \successful completion" response. First, of course, the success of a HEAD request

indicates that the URL does indeed reference a particular document. But the success of the HEAD

request also indicates that there is an HTTP server running on port port on the host host. Since

web servers generally have a \home page" that they serve when presented with a null path argument

58 Chapter 4. The \Finder" IFish

(i.e. when abs path is the empty string), when an IFish discovers a new Web site containing

possibly-relevant documents it probably wants to also see if the site has a home page in one of

the standard home page locations75. Furthermore, the abs path component may consist of one or

more character sequences separated by forward slashes (e.g. foo/bar/baz/quux.html). Typically

there is a correlation between the structure of the abs path and the structure of the Web server's

underlying �lesystem. If so, then an IFish can walk \up" the abs path by repeatedly removing

slash-delimited path components and testing the resulting subpaths for existence and contents.

These simple heuristics may help locate more Web documents, but what the IFish really needs

are tools for measuring how relevant or similar a retrieved document is, if at all, to documents known

to interest the user. Of course, this particular task is a classic information retrieval problem, and

IFish may make use of traditional IR methods in evaluating retrieved documents. For the Finder

IFish we chose to interface it to Architext [19], an indexing and query engine distributed by

the authors of the Excite Web search service. In addition to being freely available, Architext

provides both \concept" and \gather" search capabilities for local collections of text and HTML

�les. Although little information is available concerning Architext's various algorithms (since the

engine itself is proprietary), Architext \concept" searching appears to perform some form of vector

clustering among documents; \gather" searching appears to implement a scatter/gather algorithm

in which a subset of documents are clustered together into a �nite number of groups based on

pairwise measures of relevance among the documents. As part of the gather process the Architext

engine also generates representative keywords for the document cluster. Thus, IFish can use

Architext indexes of retrieved documents and subsequent searches to generate possible keywords

and also measure document relevance; the information so generated is exactly what the heuristics

described in Section 4.2.1 need in order to �nd new information sources.

Writing IFish heuristics to take advantage of Architext functionality is a little more compli-

cated than previous examples, but the complexity arises mostly from interface issues. The Architext

indexer and search engine are \black boxes" as far as the IFish is concerned: the programs are

distributed over the Internet as precompiled binaries and thus the interface to both programs is

�xed. Furthermore, the output generated by the search engine is intended to be human-friendly, not

machine-friendly. Thus, much of the IFish heuristics necessarily deals with constructing Architext

queries in their particular format, invoking the indexer and search engine with appropriate inputs to

simulate a human user, and parsing the output of the search engine into an IFish-useful format. For

example, consider the IFish heuristic ARCHITEXT/KNOWN-RELEVANT-DOC->POSSIBLE-KEYWORD-LIST,

which attempts to generate relevant keywords for a particular HTML document via Architext's

gather function. The rule declaration and transducer are straightforward; Figure 4-7 show the in-

ternal IFish function architext/infochunk->keywords, which performs the actual computation.

After checking that the Architext index is current76, the infochunk (which in this particular rule

contains a relevant HTML document) is converted into an internal document number that Archi-

text uses to name the document. This document number is required by the Architext interface

for the \gather" function. Finally, the results of a gather performed on the infochunk contents are

parsed to extract the computed keywords.

Although probable keyword extraction is useful, for IFish what is most important about Ar-

chitext is its ability to rank order documents by how \related" they are to a particular document.

75In addition to the \null path" location, home pages are also often served from the path \index.html."
76Since generating a new index takes time, the IFish only updates the Architext index on demand. The current

distribution of Architext does not permit incremental updates of the index.

4.2. Heuristic Knowledge in the Finder IFish 59

(define (architext/infochunk->keywords infochunk)

;; this function only applies to infochunks that contain HTML documents

(if (not (architext/infochunk-is-html? infochunk))

'()

(begin

;; first, check that the index is up-to-date

(guarantee-architext-index!)

;; convert the infochunk to the Architext index internal document number

(let* ((ichunk-filename (http-request/body-filename (infochunk/data infochunk)))

(a-r (architext/filename->architext-result ichunk-filename))

(docnum (architext-result/document-number a-r)))

;; do the gather operation

(let* ((raw-gather (architext/raw-gather

architext-current-index (list '. docnum)))

(parsed-gather (car (architext/parse-raw-gather raw-gather))))

(architext-gather-result/summary-words parsed-gather))))))

Figure 4-7: The function architext/infochunk->keywords, which computes likely keywords for

a particular HTML document.

The prototype IFish makes signi�cant use of this feature in order to deduce whether particular

documents are likely to be found relevant by the user. The rule declaration for

ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-EVENT

is as follows:

(DEFINE-RULE 'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-EVENT

(SIMPLE-TYPE-PRECONDITION

'(known user-relevant)

architext/infochunk-is-html?)

tdcr/architext/known-relevant-doc->find-related-docs-event)

Every (KNOWN USER-RELEVANT) document triggers this rule, which in turn invokes the transducer77

(DEFINE-TRANSDUCER tdcr/architext/known-relevant-doc->find-related-docs-event

(tdcr-helper/relevant-docs->related-docs

'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-1

'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-2))

77The transducer is parameterized because an almost-identical transducer is used in a mirror-image rule that looks

for documents related to a document declared to be (NOT USER-RELEVANT) by the user. Such documents as identi�ed

by the mirror-rules are negatively scored as appropriate.

60 Chapter 4. The \Finder" IFish

The heart of the analysis in captured by tdcr-helper/relevant-docs->related-docs. When

called, tdcr-helper/relevant-docs->related-docs �rst creates a thunk (a Scheme procedure of

zero arguments) which encapsulates a computation to be performed at a future time. Invoking the

thunk performs the encapsulated computation; in this case the invoked thunk issues an Architext

concept query requesting that documents be ranked relative to the particular document that was

contained within the infochunk passed as an argument to the rule. The created thunk is used to

build a recurring system event, and this event is then installed into the running IFish system as

the rule's last action. Thus, although this rule is only run once for each known relevant document,

when run the rule modi�es the running IFish system to periodically re-query the Architext index

and recompute for each document how \related" it is to the known relevant document. The IFish

needs to periodically update earlier relationships deduced by this rule since the Architext ranking

of documents changes as the underlying index changes.

Using the information generated by an Architext concept search is relatively straightforward.

Let D be an HTML document retrieved by the IFish and let ID be the IFish infochunk that con-

tains D within its data slot. Assume that the user has declared that D is (KNOWN USER-RELEVANT),

either by directly modifying IFish data structures or in response to an IFish question78 about D.

Performing an Architext concept query on D returns a list of all documents within the Architext in-

dex sorted by relevance to D. Table 4.1 shows the output of a typical Architext concept query. The

\rating," scaled to the range 0{100, measures how related a particular document is to document

D. In addition to the relevance scores Architext also groups documents into rougher categories,

represented by the \group" number. The IFish uses these group numbers to establish relationships

among HTML document infochunks. Any documentD0 that is listed in group 1 causes infochunk I 0
D

to be linked to ID with the label ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-1; group

2 documents are similarly linked with link label ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-

DOCS-2. As discussed in Section 4.4 below, these links trigger IFish interest rules that make

highly-related documents more interesting.

These Architext-based heuristics, together with the other heuristics outlined above, provide

the Finder IFish with both the means of acquiring new pieces of information and also some basic

routines for making educated guesses as to the relevance of those pieces of information to the overall

search goal. In the next two sections we shift focus to the Finder IFish's ability to ask speci�c

questions of the user and also the speci�c interest rules added to the IFish substrate to make use

of the additional information added by these heuristics.

4.3 Querying the User to Re�ne the Search

In the previous section relatively few heuristics provided the Finder IFish with abilities both to

gather new information sources over the web and also to perform some primitive analysis of the

usefulness of collected information. Yet these functions demonstrate only one-half of the capabil-

ities of the IFish substrate. Our focus shifts now to the user-interaction portions of the IFish

Construction Kit and how the Finder IFish makes use of these facilities. At a minimum, IFish

must be able to communicate to the user what relevance assumptions it has made and ask the

user to con�rm or refute its guesses. The user need not answer these questions for the IFish to

78Section 4.3 below discusses IFish questions concerning document relevance that may be generated by the Finder

IFish.

4.3. Querying the User to Re�ne the Search 61

Doc. # Rating Group Filename Document Title (<title>. . . </title>)

39 99 1 21467 0.html Avant Garde: a virtual marketplace

175 96 1 7300 0.html Information Analytics: 4W.COM

173 94 1 7036 0.html makepage.pl

28 92 1 17518 0.html Telebyte NW - Hot and Cool

169 92 1 64642 0.html TRAVEL - Internet Travel Network. . .

51 91 1 25369 0.html INTERNET ENTERTAINMENT NETWORK

132 91 2 48920 0.html Star City Mall: Lincoln, Nebraska USA

160 91 2 60579 0.html Travel & Entertainment Network (TEN-IO) home page

164 91 2 61784 0.html Nebraska Investment Finance Authority

60 90 2 29188 0.html University of Illinois at Urbana-Champaign UIUC

77 90 2 3246 0.html Hoagie's Homepage

172 89 2 6537 0.html The Prairie Astronomy Club

41 88 2 22451 0.html The Internet Movie Database FAQ

13 88 3 13643 0.html Virtual Adventures Domain

71 87 3 31349 0.html Welcome to Lightside

0 87 3 10001 0.html Entertainment

45 87 3 23986 0.html Internet Address Finder

73 87 3 31410 0.html Gri�th University Welcome Page

163 86 3 61649 0.html Nebraska Investment Finance Authority

14 86 3 13879 0.html Sun Microsystems

54 86 3 25956 0.html Puzzle Depot: Marketing Services

62 86 3 29778 0.html Copyright

166 86 3 62627 0.html The Film Festivals Server

Table 4.1: Results of an Architext concept search. The listed �lename is the IFish-generated

�lename of a locally-cached copy of the document. The document title is the HTML-tagged title

in the document, if one exists.

62 Chapter 4. The \Finder" IFish

continue working, but as the user answers more questions accurately the IFish can dynamically

modify itself to more closely match the user's stated interests.

The Finder IFish is able to ask the user three types of questions: questions related to IFish

errors, questions related to automatically-generated keywords, and questions related to HTML

documents that the Finder thinks are relevant. Questions of the �rst type, pertaining to IFish

errors, are generated either by the default IFish error handler, as discussed in Section 2.4.3, or

by rule-speci�c error handlers. Figure 2-8 shows the Scheme code that generates questions for the

default error handler. When an IFish encounters an error during rule application the rule, input

infochunk and error condition are bundled up into a \yes/no" question that is installed into the

IFish system.

Figure 4-8: A sample error-handler question.

Figure 4-8 shows how these \yes/no" error handler questions appear to the user. In addition to

providing a means of responding to the question (via buttons labelled \yes" and \no"), the question

itself is hypertext linked to the the rule, infochunk, and error condition that were involved in the

error. This allows the user to gather further information and take the details into account before

answering the question. Upon receiving an a�rmative response to this question, the IFish will

retry the rule application; a negative response removes the question from the queue and the IFish

will not pursue the rule application further.

Keyword questions posed by the IFish are a little more complicated than error questions; the

code the Finder IFish uses to generate keyword-related questions was presented as the compre-

hensive example in Section 3.1.3. Any keyword tagged with typeinfo (POSSIBLE USER-RELEVANT)

generates a user question asking for con�rmation or refutation of the \user relevant" typeinfo claim.

Since all keywords extracted via Architext processing from known relevant HTML documents are

so tagged, every such keyword generates a user question. How relevant a keyword is to the user

impacts on that keyword's interestingness, which in turn a�ects when the IFish will focus attention

on that keyword and perform a number of keyword-based search engine queries. A typical keyword

question, at it appears to the user, is shown in Figure 4-9.

4.3. Querying the User to Re�ne the Search 63

Figure 4-9: A sample keyword-related question.

The most interesting questions generated by the Finder IFish are those challenging the rele-

vance of a particular document. Recall from Section 4.2.2 above the heuristic ARCHITEXT/KNOWN-

RELEVANT-DOC->FIND-RELATED-DOCS-EVENT, which dynamically modi�es the IFish by installing

a recurring event into the system. This event, invoked periodically, searches for already-retrieved

documents that seem to be related to a particular \seed" document. When this process believes it

has found a related document, it links that related document's infochunk to the infochunk contain-

ing the seed document. The label on the link between the two infochunks depends upon how related

the IFish thinks the two documents are79, and the presence of such a link in turn triggers a question.

Figure 4-10 shows the rule declaration for the rule ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION.

This rule looks for HTML documents with links generated by the Architext relevance-matching

heuristic and generates a question to the user of the form, \I think this document is relevant. Do

you �nd it relevant?" Notice that this rule has a non-trivial precondition; infochunks must satisfy

all of these properties for the rule to apply to them:

� The infochunk must contain an HTML document.

� The infochunk must not contain types (KNOWN USER-RELEVANT) or (NOT USER-RELEVANT)

(we don't want to ask the user a redundant question).

� The infochunk must contains a backward link labelled either

{ ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-1, or

{ ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-2.

79The two possible link labels, ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-1 and

ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-2, represent the Architext-generated groups of relevant

documents.

64 Chapter 4. The \Finder" IFish

(DEFINE-RULE 'ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION

(lambda (infochunk)

(and (architext/infochunk-is-html? infochunk)

;; this piece makes sure we don't consider anything

;; that's either (known user-relevant) or (not user-relevant)

(let* ((typeinfo (infochunk/contains-basetype? infochunk 'user-relevant))

(the-quality (and typeinfo (car typeinfo))))

(if the-quality

(and (not (eq? the-quality 'known))

(not (eq? the-quality 'not)))

#t))

(not

(null?

(list-transform-positive (infochunk/backward-links infochunk)

(lambda (link)

(or (eq? (link/rule-name link)

'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-1)

(eq? (link/rule-name link)

'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-2))))))))

tdcr/architext/related-doc->relevance-question)

Figure 4-10: Rule declaration for ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION

4.3. Querying the User to Re�ne the Search 65

When triggered, this rule invokes the transducer tdcr/architext/related-doc->relevance-

question, which is essentially the same as tdcr/keyword/keyword->relevance-question in Fig-

ure 3-5 above. The user question itself is generated and installed in the IFish system by the

question-maker qm/architext/related-doc->relevance-question. Each \related" infochunk

generates a question asking the the user to declare the document \known [to be] user-relevant,"

\possibly user-relevant," or \not relevant." Figure 4-11 shows how a typical question appears to the

Figure 4-11: A sample question generated by qm/architext/related-doc->relevance-question.

user. If the user chooses to answer the question, the infochunk's typeinfo declarations are updated

as appropriate. In this case, were the user to declare the document relevant (i.e. adding (KNOWN

USER-RELEVANT) to the infochunk's typeinfo), that change would satisfy rule preconditions that

were previously false and the infochunk would be re-scheduled for further processing. Notice that

the user has the option of con�rming the relevance of a document or declaring the document not

relevant. Both statements are important pieces of information, for documents that closely correlate

with \not relevant" documents are themselves not as likely to be relevant to the user. As mentioned

in footnote 77 on page 59 above, the Finder IFish contains mirror-image heuristics for dealing with

HTML documents known to be not relevant to the user. These rules, together with their interest

rule counterparts that appear in Section 4.4 below, act to account for both positive and negative

information.

Together these error questions, keyword questions and document questions create a rudimentary

conversation between the Finder IFish and the user. The IFish poses questions as a means of

evaluating its own judgements and interestingness measures. As the user answers more questions

the self-modi�cations that the IFish makes in response to each question further re�ne the IFish's

vision of what the user wants. Note that in the case of the Finder IFish actions taken in response

to answered questions do not directly modify IFish rules or interest rules. Rather, the actions

modify the typeinfo associated with particular infochunks and, as we shall see in the next section,

that change in type information in turn modi�es the behavior of interest rules. When interest rules

change the IFish model of interestingness itself is changed; thus the user's answers to questions

indirectly cause the IFish to change its perception of all the infochunks in the system.

66 Chapter 4. The \Finder" IFish

4.4 Approximating Interestingness of Web Pages

The last component of the Finder IFish we describe is the set of application-speci�c interest rules

used to estimate the \interestingness" of particular infochunks. These interest rules supplement the

general rules of Section 3.2.2, which represent interestingness that derives from the data structures

the IFish constructs internally (as opposed to interestingness that derives from the current oper-

ating environment of the IFish). Application-speci�c interest rules in the Finder IFish fall into

two categories: rules that relate to the structure of the Web, and rules that deal with information

generated by Architext.

To begin, recall from Section 4.2.1 that the IFish contains numerous heuristics for working

e�ciently over the Web. Although not explicitly mentioned above, the Finder IFish contains two

heuristics aimed at �nding relevant \home pages." Every time it encounters a validated HTTP

URL (i.e. a URL known to point to a document on an accessible HTTP server), the Finder IFish

extracts from that URL the protocol, host name and port of the remote server and encapsulates

that information in its own infochunk together with the typeinfo declaration (KNOWN WEBSERVER).

That is, if the IFish has veri�ed via HTTP that the URL

http://www-swiss.ai.mit.edu/bal/pks-toplev.html

points to an accessible Web document, then the IFish knows that the host www-swiss.ai.mit.edu

is running an HTTP server on port 8080. The infochunk containing the server-related information

later triggers a rule that constructs likely \home page" URLs for that particular server, and these

URLs are ultimately announced to the IFish system; if the IFish �nds these URLs su�ciently

interesting it will attempt to verify them by testing for the existence of the document pointed to

by the URL.

(DEFINE-INTEREST-RULE 'NULL-PATH-URL

;; precondition

(lambda (infochunk)

(let ((the-typeinfo (infochunk/contains-basetype? infochunk 'url)))

(and the-typeinfo

(eq? (car the-typeinfo) 'known)

(or (string=? (url/path (infochunk/data infochunk)) "/")

(string=? (url/path (infochunk/data infochunk)) "/index.html")

))))

;; action

(lambda (infochunk interest)

(interest/increment-self-slot! interest *rule-name*)))

Figure 4-12: The interest rule NULL-PATH-URL.

Given two documents identical except for their location on a particular Web server, we want

80Port 80 is the default port for HTTP servers and is assumed in URLs that do not specify a port number.

4.4. Approximating Interestingness of Web Pages 67

the Finder IFish to consider\home page" documents slightly more interesting. The act of placing a

particular document at the root of a server indicates some level of wide applicability or relevance of

that particular document relative to the other documents around it on the server. Causing the IFish

to evaluate \home page" URLs in a slightly more favorable light is easy, as demonstrated by the

interest rule shown in Figure 4-12. This rule applies to all veri�ed URLs (i.e. with typeinfo (KNOWN

URL)) with URL paths that are either empty (\/") or contain exactly \/index.html". The interest

rule's action simply adds a small-value tag (NULL-PATH-URL 1) to the infochunk's interestingness

self-slot. All other things being equal, an infochunk satisfying this rule's precondition will be favored

slightly over other infochunks that do not.

(DEFINE-INTEREST-RULE 'WEBSERVER

;; precondition

(SIMPLE-TYPE-PRECONDITION '(known webserver))

;; action

(lambda (infochunk interest)

(let ((back-links (infochunk/backward-links infochunk)))

(interest/increment-self-slot!

interest

rule-name

(let* ((the-interest-slots

(map (lambda (the-link)

(interest/self-slot

(infochunk/interestingness

(link/infochunk the-link))))

back-links))

(collapsed-slots

(map

(lambda (a-self-slot)

(cond

((null? a-self-slot) 0)

(else

(reduce + 0 (map cdr a-self-slot)))))

the-interest-slots)))

(reduce max 0 collapsed-slots)

)))))

Figure 4-13: The interest rule WEBSERVER.

Moving up the complexity scale a little bit, consider next possible interest rules for the (KNOWN

WEBSERVER) data structures. How should the Finder IFish evaluate the interestingness of a partic-

ular Web server? For now, the interestingness of a Web server is a function of the most interesting

URL pointing to a document that resides on that server. While this particular measure fails to

take into account the distribution of multiple interesting URLs on a single server, it demonstrates

how interestingness may be derived from the collective interestingness of an infochunk's neighbors.

Figure 4-13 shows the Scheme code for the interest rule WEBSERVER. For each infochunk that is the

68 Chapter 4. The \Finder" IFish

source of a pointer to the \Web server" infochunk81, the rule computes the sum of the infochunk's

self-slot interestingness declarations. The \Web server" infochunk's interestingness self-slot is then

incremented by the maximum of all these calculated values.

These two interest rules provide some interestingness information to the Finder IFish, but the

interest rules that really allow the Finder to separate the information wheat from the cha� are

those that work with the various Architext-based heuristics. Recall from Section 4.2.2 above that

the recurring events installed in the IFish system by the rule ARCHITEXT/KNOWN-RELEVANT-DOC-

>FIND-RELATED-DOCS-EVENT periodically create links between HTML-document infochunks based

on relationships suggested by the Architext search engine. These links record relationships between

known relevant documents and related documents that may themselves be relevant to the user.

Thus, whether an infochunk is connected to a relevant document by such a link, as well as the type

of the link itself, has implications for the interestingness of the infochunk.

(DEFINE-INTEREST-RULE 'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-1

;; precondition -- HTML docs only

(lambda (infochunk)

(and (architext/infochunk-is-html? infochunk)

(not (null? (list-transform-positive (infochunk/backward-links infochunk)

(lambda (link)

(eq? (link/rule-name link)

'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-1)))))))

;; action

(lambda (infochunk interest)

(interest/increment-user-slot! interest *rule-name* 3)))

(DEFINE-INTEREST-RULE 'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-2

;; precondition -- HTML docs only

(lambda (infochunk)

(and (architext/infochunk-is-html? infochunk)

(not (null? (list-transform-positive (infochunk/backward-links infochunk)

(lambda (link)

(eq? (link/rule-name link)

'ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-2)))))))

;; action

(lambda (infochunk interest)

(interest/increment-user-slot! interest *rule-name*)))

Figure 4-14: Interest rules for ARCHITEXT/KNOWN-RELEVANT-DOC->FIND-RELATED-DOCS-EVENT.

The two interest rules shown in Figure 4-14 together create a dependency between the links gen-

erated by the recurring Architext queries and the interestingness of the infochunks so linked. Each

link between infochunk IR known to be relevant and infochunk I containing a possibly-relevant

HTML document increments the user-slot of I's interestingness structure. Links indicating that

81Equivalently, these infochunks are the set of destination infochunks de�ned by the \Web server" infochunk's

backward links.

4.4. Approximating Interestingness of Web Pages 69

I is contained within IR's \group 182" (most related group) of infochunks increments I's user-slot

by three83; \group 2" links increment I's user-slot by one. Since the contents of an interestingness

structure's user slot is most heavily weighted by the function interest/interest->number (Sec-

tion 3.2.2), these rules serve to quickly bring infochunks related (in the Architext sense) to known

relevant documents to the attention of the IFish and ultimately the user84.

One �nal interest rule completes the set of application-speci�c rules for the Finder IFish. Recall

that user questions themselves have representative infochunks in the IFish system, and the order

in which questions are presented to the user is based on the interestingness of those associated

infochunks. We want Architext-related questions generated by the prototype IFish (described in

Section 4.3 above) to be as interesting as the particular documents they reference; that way the

more interesting the IFish thinks a particular HTML document is the greater the importance of

any Architext-related question. Thus we need an interest rule that will cause Architext-related

question infochunks to inherit their interestingness from the \parent" infochunk (which contains

the actual document). The interest rule in Figure 4-15 performs this task automatically.

(DEFINE-INTEREST-RULE 'ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION

;; precondition -- only questions

(lambda (infochunk)

(and (question-ichunk? (infochunk/data infochunk))

(eq? (question-ichunk/question-maker-name (infochunk/data infochunk))

'qm/architext/related-doc->relevance-question)))

;; action -- inherit interestingness from parent

(lambda (infochunk interest-struct)

(let ((the-back-link

(car

(list-transform-positive (infochunk/backward-links infochunk)

(lambda (link) (eq? (link/rule-name link)

'ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION))))))

(let ((parent (link/infochunk the-back-link)))

(infochunk/inherit-interestingness parent interest-struct)))))

Figure 4-15: The interest rule ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION.

With the speci�cation of the ARCHITEXT/RELATED-DOC->RELEVANCE-QUESTION interest rule we

have completed our description of the various components of the Finder IFish. In the next (and

�nal) section of this chapter we \test-drive" the Finder and provide an example sessions of a user

working with the it.

82Architext grouping constructs are described in Section 4.2.2 on page 58.
83The values three and one were chosen arbitrarily by the author so that the IFish would favor but not work solely

on \group 1" links. Such constants would hopefully be chosen and modi�ed in future IFish by the IFish themselves

as part of its overall self-modi�cation abilities.
84Similarly, the mirror-rules for \not relevant" documents have mirror-interest-rules that cause documents related

to \not relevant" documents to be buried deep within the IFish system and make it unlikely that the IFish will ever

expend signi�cant e�ort on them.

70 Chapter 4. The \Finder" IFish

4.5 A Session with the IFish

Now that we have de�ned the initial rule set for the Finder IFish it is time to see how well the

tool works. To begin, we must create an instance of the Finder's input problem; that is, we need a

set of related Web pages for which we want to �nd similar pages. Once we have the initial set we

can start the IFish running and periodically check its status.

Our sample problem for this IFish session was kindly provided by Michael (\Ziggy") Blair.

Blair's research currently involves partial evaluation and run-time code generation [7] and he has

collected some URLs for \partial evaluation" pages that are relevant (in his opinion) to his own

research. The Finder IFish was seeded with �ve such URLs, as shown in Figure 4-16. In this

http://www-swiss.ai.mit.edu/~ziggy/descartes.html

Document title: Ziggy's Descartes Page at MIT { HTML Version

http://www.cs.cmu.edu:80/afs/cs.cmu.edu/user/wls/www/sbpm/people.html

Document title: Semantics Based People

http://www.irisa.fr/EXTERNE/projet/lande/consel/overview.html

Document title: PE Group - Overview

http://www.irisa.fr/EXTERNE/projet/lande/Lande anglais.html

Document title: Les projets

http://www.cs.washington.edu/homes/pardo/rtcg.d/index.html

Document title: Runtime Code Generation (RTCG)

Figure 4-16: Seed URLs for the Finder IFish.

experiment, the seed URLs were introduced into the Finder IFish by a set of Scheme infochunk

declarations (see Figure 4-17); a Web-based form communicating with the Finder's Web server

could also have been used.

Once the IFish was initialized, it was released into the Internet and allowed to proceed without

interruption or any user interaction for about an hour. During that time the IFish generated many

questions, primarily document relevancy queries created by the rule ARCHITEXT/RELATED-DOC-

>RELEVANCE-QUESTION. After this �rst hour of interaction the IFish was \retrieved from the sea"

for a period of user interaction. The Finder had already identi�ed approximately one hundred doc-

uments; Figure 4-18 shows the state snapshot presented to the user. Every discovered HTML docu-

ment is listed, ordered by the interestingness of the IFish infochunk containing the document. The

label [KNOWN] is added to any document with a typeinfo declaration of (KNOWN USER-RELEVANT)

contained within the typeinfo slot of the document's enclosing infochunk. Thus, since no user-

interaction occurred between the initial seeding of the IFish and the time when this snapshot was

taken, the only documents known to be relevant are the initial seeds.

In addition to the ordered list of HTML documents, the IFish also presents an ordered list of

questions. The questions are also ranked by interestingness; in the Finder IFish the interest rule

in Figure 4-15 above sets the interestingness for document-relevancy questions to be that of the

4.5. A Session with the IFish 71

(define *seed-urls*

'("http://www.cs.washington.edu/homes/pardo/rtcg.d/index.html"

"http://www.irisa.fr/EXTERNE/projet/lande/Lande_anglais.html"

"http://www.irisa.fr/EXTERNE/projet/lande/consel/overview.html"

"http://www-swiss.ai.mit.edu/~ziggy/descartes.html"

"http://www.cs.cmu.edu:80/afs/cs.cmu.edu/user/wls/www/sbpm/people.html"

))

(for-each

(lambda (url)

(let ((ichunk (make-infochunk

(url/string->url url)

'((known url) (known user-relevant)))))

(infochunk/recompute-interestingness! ichunk)

(announce-new-infochunk ichunk)))

seed-urls)

Figure 4-17: Infochunk declarations for the seed URLs.

Figure 4-18: Discovered documents ranked by interestingness.

72 Chapter 4. The \Finder" IFish

HTML document to which the question pertains. The top two questions are shown in Figure 4-19.

Notice that in both the document relevancy list and the question list hypertext links are included

to both the source where the IFish found the document and also a locally-cached copy. Thus the

user can immediately \click-through" the links on a question to evaluate and rate the questioned

document.

Figure 4-19: User questions generated by the Finder IFish.

To continue the demonstration, Blair evaluated and answered the top sixteen questions, all of

which asked him to rate the relevance of a particular document. The top discovered documents,

along with Blair's rankings, are shown in Table 4.2 below. Each question presented three possible

options: \relevant," \not relevant," and \possibly relevant." An up arrow (") indicates that the

document was ranked \relevant;" \not relevant" is designated by a down arrow (#) and \possibly

relevant" by a sideways-pointing arrow ($).

Two of the ratings made by Blair require explanation and highlight some of the limitations of

the current Finder IFish interface. The document titled \3. Program Overview" and marked with

a y symbol is a portion of the U.S. Government's implementation plan for the High Performance

Computing and Communications Program (HPCC) for �scal year 199585. This document did

not contain technical content that was related to \partial evaluation" but did contain information

85The URL for the discovered document is http://www.hpcc.gov/imp95/section.3.html.

4.5. A Session with the IFish 73

Document Title Rating

Jon's Functional Languages Page "

Dawson Engler "

3. Program Overviewy "

Programming with ELP - Table of Contents $

(No title) $

Bob Paige "

TCS Virtual Rolodex: Other Sources "

TJS paper "

Sean Levy's Bookmarks $

Francois Thomasset's Bookmarks #

(No title) #

Personal Home Pagesz #

the n-dim project #

RTCG Mailing List "

Glen Weaver's Compiler Related Links Page "

P. Cousot "

Table 4.2: User evaluation of top documents found by the Finder IFish.

related to possible funding opportunities in that �eld. This is one example of serendipitous resource

discovery, as the Finder IFish found something interesting yet unexpected. The Finder interface

does not currently allow the user to create multiple categories of relevancy, thus if the user rates the

document \known relevant" (as was done in this case) the Finder will assume it to have equal weight

and applicability as other \known relevant" documents. The document86 marked with a z symbol,

titled \Personal Home Pages," was another example of \interesting yet unexpected" information.

In his own words, Blair said that this document led to \another page that contained information

and hyperlinks related to Babylon 5 and The X-Files, which while not related to partial evaluation

were still very interesting to the user."

Another limitation of the current Finder interface is the inability to rate the relevancy of portions

of retrieved documents. For example, the document87 \Jon's Functional Languages Page" is an

organized collection of hyperlinks to other documents related to functional languages. Within that

collection were certain pointers and groupings that were closely related to Blair's thesis research,

but there were also many other pointers not so closely related. There is no way to communicate such

information back to the Finder IFish within the current user-interaction model, or to otherwise

restrict user statements to portions of documents. This limitation could be remedied within the

IFish framework by expanding the set of allowable responses to document-relevancy questions, or

by allowing ratings of particular URLs within a given document.

After Blair evaluated the documents in Table 4.2 and answered the associated questions, the

Finder IFish was again \turned loose" and told to continue gathering information. Armed with

new knowledge from its user (the ratings of the top previously-found documents and the new rules

86The URL for this document is http://www.dcs.napier.ac.uk:80/personal.html.
87\Jon's Functional Languages Page" may be found at the URL http://carol.fwi.uva.nl:80/~jon/func.html.

74 Chapter 4. The \Finder" IFish

those ratings created), the Finder IFish continued to gather documents. Figure 4-20 shows a

snapshot of the Finder's state after running for about another hour. Notice that the ten documents

rated as relevant by Blair have \oated" to the top of the list as their interestingness has increased.

These documents now generate new sources of information for the Finder IFish to download and

investigate, which in turn generate new user questions and information sources. Although not

shown in the �gure, documents negatively rated have \sunk" to the bottom of the list as they are

now less interesting than virgin, unaccessed information.

Figure 4-20: Discovered documents ranked by interestingness.

The feedback process the Finder IFish follows, gathering new information, generating user

questions and using user responses to retarget itself, can in theory continue inde�nitely. In practice,

of course, there may be resource limits that constrain the process. Also, over time user desires may

change, thus rendering as uninteresting documents previously viewed as relevant.

Chapter 5

The Future of IFish

We have described in this thesis an architecture for a new class of resource discovery tool and

demonstrated a system for constructing individual members of that class. The Finder IFish de-

scribed in Chapter 4 is a prototype, and while its success provides proof-of-concept it is just the

�rst (and perhaps one of the most simple) of an entire family of IFish. To achieve a better under-

standing of the full capabilities and limitations of the entire class of IFish a number of areas need

to be investigated. First, we need to develop meaningful measures of IFish performance. Second,

we must continue to \evolve" IFish; Section 5.2 discusses four possible research directions for IFish

improvement. We conclude this chapter, and the thesis itself, with some remarks and predictions

on the role IFish and IFish-like services may play in future information markets.

5.1 Evaluating IFish Performance

How should we attempt to evaluate and characterize the performance of individual IFish, or even

entire \schools" of related IFish? Are meaningful evaluations even possible? At the end of the

previous chapter we saw anecdotal evidence concerning the performance of the \Finder" IFish, but

anecdotes alone are not su�cient to fully evaluate IFish performance. Ideally, we would like robust

qualitative and quantitative measures so that just as IFish themselves are able to order individual

infochunks, so may we order and rank groups of IFish.

Traditional information retrieval (IR) performance is often characterized by two quantities:

precision and recall. Let C be a collection of documents, Q be a particular query to an information

retrieval process over C, and Q(C) denote the subset of C returned in response to Q by the IR

process. Let R(X) denote the subset of document collection X that contains exactly all \relevant"

documents in X (where relevancy is measured by some oracle, such as the user himself). The

precision p is then de�ned to be:

p =
jR(Q(C))j

jQ(C)j
(5.1)

where jXj denotes the cardinality of set X. The precision p is the fraction of documents returned

by query Q found to be relevant by the oracle. The recall r is de�ned as the fraction of all relevant

documents in the entire collection (as determined by the oracle) which are returned by the query;

75

76 Chapter 5. The Future of IFish

that is,

r =
jR(Q(C))j

jR(C)j
(5.2)

Notice that a query Q0(C) that simply returns the entire collection C must have a recall r0 = 1 and

a precision p0 that is the percentage of relevant documents in the collection:

p
0 =

jR(Q(C))j

jQ(C)j
=
jR(C)j

jCj
(5.3)

A query Q00 that always returned the empty set would have a recall r00 = 0 and an unde�ned

precision (since jR(Q(C))j = jQ(C)j = 0).

How would such measures translate into the IFish environment? To start, notice that there

are four underlying assumptions in the de�nitions of precision and recall. First, it is assumed that

the collection C of all documents in the universe under study is �xed; if C is not �xed than the

subset of relevant documents in C denoted by R(C) is also not �xed and thus recall cannot be

determined precisely. Second, by de�nition recall measures the percentage of relevant documents

actually returned by the query process, thus the query must have the possibility of actually seeing

and returning every relevant document in C. Third, the relevancy of a document, as de�ned by the

oracle, is also assumed to be �xed: if the set of all relevant documents changes then both precision

and recall may change. For example, if the user's interests change as part of the user-interaction

process, then the relevance criteria are not static. Finally, notice that there is an assumption that

the query process is independent of the relevancy oracle; if not, then every query engine would be

able to score perfect precision by invoking the oracle as part of the query mechanism.

IFish break all of these assumptions. IFish operate in a dynamic environment, where the

document collection, as well as the subset of the document collection that is accessible to the

IFish, may change over time. Further, although the collection may change over time, it may not

be possible for an IFish to detect such changes or discover all the documents in the collection

at a given point in time. The relevancy oracle in the IFish system is ultimately the user; as the

user's interests may change over time his relevancy responses may change. Also, IFish have access

throughout the query process to the user, and thus by de�nition the relevancy oracle embodied

in the user. IFish use such information as part of the querying process and modify themselves in

response to statements made by the oracle. Thus, it appears that we cannot categorize IFish using

precision and recall.

Another possible method for measuring IFish performance is to compare the amount of time

required by the IFish working with the user and by the user working alone to generate a particular

result. Obviously such a measurement would be highly dependent on the skill of the particular

user as well as the type on information being sought. In addition, it is not at all obvious that the

comparison should require the user-assisted IFish to �nd the exact same sources of information

discovered by the user working alone; instead, we may consider whether the results are equivalent

in terms of their appeal to the user.

There is a deep question concerning the implementation of the suggested comparison: what

exactly is meant by \time required" when we are discussing the capabilities of an IFish or a lone

user? There are obviously many di�erent possible \times:" the actual elapsed \real" time that

passes during the entire process, the processor time consumed, even the amount of time occupied

by active user participation. It is this last possibility that may be the most representative way to

gauge IFish performance; if the goal of a particular IFish is to free the user from doing the drudgery

5.2. Future Work 77

and thus making his precious time more productive, then we should at a minimum weigh heavily

how much time users must spend answering IFish questions against the results IFish obtained

with that limited interaction. Taking this concept a step further, we can imagine scoring IFish

performance as the ratio g=t, where g is the number of \golden nuggets of information" discovered

by the process and t is the total amount of user time spent in order to generate those golden nuggets

of information. Of course, such a measure requires an oracle that decides whether a particular piece

of information quali�es as a golden nugget or not.

Finally, we can envision trying to perform direct comparisons between an IFish search and sim-

ilar searches using the already-existing monolithic indexing services. For example, does the Finder

IFish �nd signi�cantly more \high-quality" information sources than a similar search performed

using Alta Vista? Of course, we would have to de�ne what a \high-quality" information source

is, a determination that can probably only be made by the user himself. Furthermore, the inputs

to the Finder and to Alta Vista are not comparable, so we would need to invent some scheme for

determining comparable sets of inputs.

5.2 Future Work

In this thesis we have spent much time and e�ort creating the Internet Fish Construction Kit,

a substrate that makes it easy to build various species of IFish. We have demonstrated that

the Construction Kit may be used to create useful IFish such as the Finder IFish described in

Chapter 4, but the Construction Kit is only the �rst step in exploring the capabilities and properties

of this new class of resource discovery tools. Of the many ways in which IFish research may proceed

from here we detail �ve:

1. Straight-line improvements to the Construction Kit and the assorted sets of heuristics.

2. Providing self-analysis capabilities for IFish.

3. Enabling and utilizing inter-IFish communication.

4. Deploying IFish in other information oceans.

5. Moving toward IFish that strive for serendipitous resource discovery.

Each of these possible extensions is orthogonal to the others and may be explored independently.

5.2.1 Straight-line Improvements

The Finder IFish is a minimalist creation; it incorporates relatively few heuristics for accessing

information and performing analysis of retrieved data. One obvious direction for future work,

therefore, is to expand the number and quality of the heuristics used in the Finder IFish. We can

spend time adding heuristics to deal with new monolithic indexing services, such as the A2Z [34],

Point [35] and Magellan [56] review services. In addition, current IFish heuristics may be expanded

or re�ned to extract more data from these services. For example, the Yahoo-related heuristics can

be improved and expanded to take greater advantage of the hierarchical structure of the Yahoo

database. Similarly, it is a relatively straightforward task to extend the Alta Vista heuristics so

78 Chapter 5. The Future of IFish

that IFish are not limited to the �rst 200 hits detected by an Alta Vista search, although not

entirely trivial88.

The data analysis heuristics in the Finder IFish could also be expanded signi�cantly. For

example, currently the Finder IFish performs almost no analysis on the structure of discovered

URLs; that is, except for the interest rule that slightly biases URL interestingness in favor of likely

home pages, the structure inherent in the path components of a URL are never recognized or used.

The path components of a URL typically represent some hierarchical data structure within a Web

server; the hierarchy is not necessary for the server to operate properly, but exists mainly for the

convenience of the maintainers of the data on the server. The fact that I as a server maintainer

chose to place a particular information object at /foo/bar/baz.html suggests to the IFish that

other documents similar to baz.html may be found within /foo/bar/*. Similar weight should be

given to the strings within an HTML document that are identi�ed as headers, since the author of

the document presumably chose those strings because they accurately summarized sections of the

text.

5.2.2 Self-analysis

Recall from Section 1.3.4 that a long-term goal for Internet Fish is a hope that IFish may even-

tually permit new methods for discovering e�ective procedures for resource discovery. That is,

at the same time as IFish are discovering information concerning particular topics, they are also

discovering meta-information about the process of discovering information. If IFish are to evolve

into somewhat-feeble research librarians, then they need not only self-reection but the tools to

analyze their own \thought processes" to recognize when they have found a particularly successful

method for �nding new, relevant information.

IFish already maintain much of the information that is needed for such self-analysis. Every

transitional link between two infochunks is labelled with both the name of the rule that created

the link as well as the time at which the link was created. Together with a complete history of

rules in the IFish system, this information can be used to reconstruct the derivation chain for

any infochunk89. The generated derivation history may then be used as input to self-inspection

procedures that look for patterns in the derivations. That is, just as IFish may contain analysis

rules that look for patterns in the data extracted from the Internet, so can the same IFish look for

patterns within its own execution history. The capability to perform self-inspection and to draw

inferences concerning the e�ectiveness of their own information-retrieval procedures is the �rst step

in the process of turning IFish into primitive Internet research librarians.

88Although an Alta Vista search may result in thousands of \hits," the service permits browsing of only the top

200 hits as ranked by Alta Vista's scoring mechanism. Thus, query re�nement is needed in order to access hits that

are ranked below 200.
89Depending on the IFish implementation some additional record-keeping may be required in addition to that

described in Chapter 2 in order to guarantee that full derivation is possible at an arbitrary point in the future.

For example, when a new infochunk is installed into the system with a data slot that matches the data slot of an

already-existing infochunk, the new infochunk and the existing infochunk are merged together. This merger process,

in the current IFish implementation, also merges the two typeinfo declaration lists into one new list. In order to be

able to reverse the merging process a record of the pre-merge typeinfo lists is necessary.

5.2. Future Work 79

5.2.3 Inter-IFish Communication

The IFish substrate provides mechanism for both network communication between an IFish and a

remote Web server as well as communication between an IFish and the user operating or running

it. Both classes of communication utilize the Web as the underlying network protocol; IFish act

as Web clients when talking to remote server and act as Web servers when interacting with the

user. There is, however, a third form of IFish communication not investigated within this thesis:

IFish-IFish (or inter-IFish) communication. That is, we would also like the IFish substrate to

facilitate interaction among multiple IFish, as every IFish itself is a potential information source

for other IFish.

Although perhaps not the most convenient protocol, the WWW functionality built into the

current IFish substrate may be used for inter-IFish communication. Imagine that I1 and I2 are

two independent IFish existing in the same information space, and assume that I1 and I2 are aware

of each other. I1 may then communicate in a limited fashion with I2 by answering questions posed

by I2 via I 0
2
s WWW server; I2 may similarly answer questions posed by I1. De�ning a suitable

representation language for inter-IFish communications is a separate (and generally orthogonal)

task90, just as HTTP and HTML together provide only a mechanism for information exchange.

It is fairly easy to justify the need for inter-IFish communication. Obviously each running IFish

is an information source and thus a potential information resource for another IFish. Similarly,

inter-IFish communication is a necessary piece of infrastructure if we wish to explore the behavior

of groups of IFish that act in concert with each other. There are other compelling reasons, too.

For example, as an individual IFish grows in size it may be necessary or desirable to subdivide it

into a \school" of multiple IFish, where each member of the school has a more speci�c domain of

interest than the original IFish. In order for such a school to maintain the same properties and

external behavior as the original IFish each school element must have access to part of the internal

structure of every member of the school91. It may be quite cumbersome to cast these types of

communications within the question/answer framework for user interaction of Chapter 3; a more

general knowledge-transfer mechanism (such as KQML [21]) is likely required.

5.2.4 IFish in Other Information Oceans

Although we have only considered IFish operating within the environment of the World Wide

Web, there is no reason to con�ne the IFish model to that particular information space. Indeed,

as pointed out in Section 1.3.4 IFish could just as easily operate on data contained within a

commercial database or local �lesystem. Obviously we would need to provide heuristics for acquiring

information from these spaces in order to construct such IFish, but the IFish architecture and

overall method of operation are still applicable.

As an example alternative information space for IFish, consider the database of transaction

90We say \generally orthogonal" because the protocol peculiarities of HTTP may dictate some of the representation

language's syntax.
91Recall that one of the properties of IFish as described in Chapters 2 and 3 above is that individual IFish

never forget the data slot contents of any infochunk and thus always merge infochunks that have equivalent data

slot contents. For a school of IFish to maintain this property, each IFish in the school must either maintain a

representation of the aggregated information content of the entire school or otherwise have access to information

stored in any member of the school.

80 Chapter 5. The Future of IFish

information associated with a major credit card issuer92 or long-distance telephone company93.

Such databases may themselves be spread over many local hosts in order to satisfy certain perfor-

mance guarantees, thus creating a locally-networked information space. Drawing inferences from

and �nding relationships among the contents of these databases, a task often referred to as \data

mining," is a goal of every creator of large databases (or at least their marketing departments).

We can see immediately how the IFish framework might be used to create a specialized data

mining tool. First, we would need to construct new information-gathering heuristics to replace the

Web-speci�c methods that are part of the IFish Construction Kit. If the data is stored within

a structured database then these heuristics may simply take as inputs structured queries, send

those queries to the database, and return the received responses. Once new information-gathering

heuristics were in place we could then write data mining analysis algorithms as IFish rules and

transducers and add them to the IFish.

5.2.5 Toward Serendipitous Resource Discovery

Finally, then, we consider the notion of serendipitous resource discovery, introduced in Section 1.3.3

above as the process of discovering interesting information in an unexpected place or manner. We

have already seen above in Section 4.5 above how the Finder IFish is capable of uncovering similarly-

related documents, but serendipitous resource discovery is more than just �nding information that

we know (or suspect) exists. A serendipitous Finder IFish, for example, would also discover

information spaces that may not be directly related to the set of \known relevant" documents

supplied by the user. In addition to �nding clearly-related documents, this IFish would suggest

areas of interest that the user may not already consider relevant. Thus, the user is not only surprised

by the uncovered data but also by its relationship to the known, desired information. This process

is similar in many respects to data mining and other attempts to �nd causal relationships among

data.

Extending IFish to enhance their chances for serendipitous resource discovery is closely related

to the process of adding self-analysis routines (Section 5.2.2). In both cases we want to extend

IFish's data-analysis routines to include new techniques; for serendipitous discovery though that

analysis will concentrate on the gathered data itself as opposed to the meta-information concerned

with how the IFish found that particular data. Serendipitous discovery will also require better

communication among related IFish (Section 5.2.3), since the data relationship we hope to discover

may likely cross individual IFish boundaries.

5.3 IFish and the Future of Information Markets

As we reach the end of this dissertation it seems both �tting and appropriate to conclude with

some speculation concerning the future growth of information markets and the variety of roles that

IFish and similar tools are likely to play. Obviously it is di�cult, at best, to make predictions

92The AT&T Universal Card database creates approximately two million transaction records per day; each trans-

action records buyer, merchant and purchase information.
93The AT&T long-distance telephone network generates approximately 200 million transaction records per day.

Each call creates a record containing the calling and called parties and the start and end times of the call; this

information is later used o�-line for billing and fraud-detection purposes.

5.3. IFish and the Future of Information Markets 81

concerning a medium that is undergoing rapid, radical change, but I believe that that there are

certain unavoidable trends that will shape how we think about information and time as commodities

with respect to the Internet. These trends are, namely:

1. The marginal cost of information content is being driven to zero,

2. The marginal price of an individual's time is not necessarily zero, and

3. As the price of content is driven to zero (following marginal cost), value will increasingly be

generated by systems that automatically �nd information or otherwise save time for humans.

I address each of these claims in turn below.

5.3.1 The Marginal Cost of Content

\The marginal cost of information content is being driven to zero." A simple statement, one which

at �rst seems perhaps even a tautology. If we assume information is equivalent to a collection of bits,

then the cost of producing copies of that information is almost entirely an up-front expense. Once

bits are generated and made available electronically, reproducing those bits can be done essentially

for free. Generating a particular, meaningful collection of bits in the �rst place is not cost-free, as

some e�ort (creative or otherwise) must be expended initially to generate the desired information.

However, once the information has been generated in electronic form, further copies require only

minimal new media, storage and e�ort. If the content is available from multiple sources, market

forces will drive the marginal price of that content to be equivalent to its marginal cost, and price

will continue to approach zero. Even if the content is available from only one source, if equivalent

(but not identical) content can be found elsewhere then competition among providers of equivalent

content will drive the price toward zero.

If the physical cost of reproducing bits is truly essentially zero, why is it the case that hundreds

(if not thousands) of content providers are staking their claims to territory in cyberspace and

announcing their intent to make money by charging users for access to content? That is, why are

so many content-providing companies willing to make an economic decision which implies that the

marginal price of content is not being driven to zero? The answer lies with our assumptions: either

equivalent content is not always available, or the cost of duplicating bits is not approaching zero.

Whether \equivalent content" is available (and thus whether there is competition in the market

for particular information) is highly dependent on the particular content being o�ered. Some

content, such as current sports scores or mutual fund quotations, may be available from a variety

of sources94. Other information, like full-text versions of legal opinions, may only be available from

a single information provider95. Furthermore, what one may consider \equivalent content" may

not be so equal to another; information equivalency may also be buyer-dependent.

94The price history of twenty-minute-delayed stock quotations on the Internet illustrates content price being driven

to zero. It used to be the case that delayed stock quotations could only be accessed over the Internet by purchasing

a subscription. Then multiple companies began to o�er stock quotations for free in return for certain demographic

information; the user data was then used for marketing purposes or for business solicitations. Now it is possible to

receive stock quotations absolutely free; the businesses that make quotes available view that service as advertising or

an enticement to lure users to their Web site.
95If one is the �rst provider of particular content on-line, then it is possible to charge for access to that content even

if that content is eventually available on-line from multiple sources. In this case the �rst content provider is extracting

value from its lead-time over the competition, a practice often referred to as \making money on the bleeding edge."

82 Chapter 5. The Future of IFish

For equivalent content that is available from multiple sources, if price is not driven to zero then

the cost of reproducing bits must be some positive quantity. True, there are some marginal costs

associated with the act of duplicating bits over the network (power to drive the network connection,

for example), but these costs are so small compared with the up-front hardware requirements that

they cannot be responsible for a long-term nonzero content price. The most likely culprit, at

least within Berne Union96 countries, is copyright. Assuming that the information content in

question is copyrightable within a particular country97, then copyright may be used to collect

a license fee from every use of the information, thus creating a nonzero cost to duplicating the

information. Furthermore, if the owner of the copyright so chooses, certain uses of the information

may be prohibited completely. Thus, copyright law provides both a mechanism by which the cost

of duplicating bits may have cost as well as a mechanism by which the universe of \equivalent"

content may be regulated.

Within a strong copyright regime, it is certainly possible that no equivalent, alternative content

exists for a particular piece of information. For example, there may not exist an equivalent for an

Ansel Adams photograph, or a Matisse cut-out, or a Washington, DC, subway map. In these cases

the copyright holder may be able to impose a nonzero reproduction or distribution cost on the

information and thus extract value by simply selling access to their protected content. For content

that is not exclusive or otherwise protected, or for which there is a competitive market, we cannot

expect to extract value by simply \selling the content." We need to sell something else, something

that has nonzero value to customers. Luckily there still exists such an item, even on the Internet:

time.

5.3.2 The Marginal Price of Time

If perfect competition in content markets drives the cost of content to zero, we can still extract

value (that is, make money) on the Internet from content-related services98. The price of content

may be zero, but there is still a transaction cost [11] involved when a user searches for particular

content: the time required to �nd the desired content. Assuming that I value my time at some

nonzero price, then even if the content itself is free I must expend time �nding the content I

want. Given this model, the reasoning behind the \golden nuggets per unit time" performance

measurement suggested in Section 5.1 is now clear: the less user-interaction time required by an

IFish to perform a particular task, the greater the value of that IFish to the user. Thus, when

we sell autonomous services on the Internet we are in reality selling expertise and time: expertise

in using and manipulating the network, and time that the human user need no longer spend to

perform some particular task.

96The \Berne Union" or \Berne Convention" (de�ned in 17 USC x101 as the signatories to the \Convention for the

Protection of Literary and Artistic Works, signed at Berne, Switzerland, on September 9, 1886, and all acts, protocols,

and revisions thereto") is an international agreement among countries concerning the granting and enforcement of

copyrights. Most countries are signatories to the Berne Convention; the United States is one of the most recent

members of the Berne Union, having rati�ed the Convention in 1988.
97What information is subject to copyright is a property of the Berne Union, the country where the information

may be copied, and the copyright laws of that particular country. Within the United States copyright law is fairly

broad, requiring only a modicum of originality, but does not extend, for example, to ideas or facts (17 USC x102(b)).
98Obviously, those companies in the business of providing Internet access still have viable business models. Even

without charges for bit carriage, the owners and operators of the physical substrate of the Internet have a marketable

product. Whether indirect charges for content, such as content subsidized by advertising, will still be a viable business

model is an open question.

5.3. IFish and the Future of Information Markets 83

5.3.3 Selling Time: the Next Layer of the \Internet Wars"

Finally, then, we come to a startling revelation. For all the hype and all the fanfare surrounding the

commercialization of the Internet, we really have not yet even begun to �ght the truly interesting

battles. This week's trade publication may tout a new round in the \browser wars" between

Netscape and Microsoft, or a new o�ensive in the \server wars," but these battles are just opening

skirmishes. The real, interesting �ghts are yet to come; they will involve the next layers of the

infrastructure, the layers above the servers and browsers and monolithic search engines that IFish

and IFish-like tools inhabit.

Higher-level services (e.g. IFish, meta-search services)

Monolithic indexing and search services

Browsers

Content servers Raw content

Figure 5-1: Web infrastructure layers

Consider for a moment the current infrastructure of the World Wide Web, pictured in Figure 5-

1, and the various \wars" supposedly being waged thereon. At the bottom layer we have the

various content servers and the content itself that is available on the Web. The \server wars" are

collectively the heated battles among the various companies, individuals and nonpro�t groups that

maintain and distribute server software to gain market share. Hardly a week goes by without a

declaration from one camp that their latest, nifty-keen, server out-performs everyone else's servers

on some particular benchmark. Right now the various commercial server companies are so anxious

to gain market share that they foist their products for free upon just about any breathing party

that should happen to wander past their portion of the Internet99. Yet all of this e�ort to gain

market share seems short-sighted, since content servers are part of the initial, sunk cost for making

content available on the Web; content servers are part of the equipment required to create a Web

server, but once a machine is turned into a Web server neither hardware nor software require further

maintenance100. What will change over time, if anything, is the content that is being stored on the

server.

99To date, www-swiss.ai.mit.edu, a Web server maintained in part by the author, has run at one time or another

server software from CERN, NCSA, Netscape, Open Market, Navisoft, and the Apache group. The CERN, NCSA and

Apache servers are freely available on the Internet; the other servers were provided for free upon claiming (truthfully)

that the Web server hardware belonged to an educational, non-pro�t organization.
100Of course, both the hardware and software may need to be upgraded over time as demand for the server's content

changes. However, the point of this discussion is that the hardware and software that together create a Web server

can be viewed in most cases as a one-time purchase.

84 Chapter 5. The Future of IFish

While the major players in the Web server market are �ghting for \mindshare" among the

population of Web server system administrators, a similarly heated battle is being fought to win

the allegiance of individual Web users (i.e. Web \surfers"). These \browser wars" are at least

as pitched battles as the \server wars," but they are targeted at the next layer up in the Web

infrastructure and a much larger user population. Again we see companies making highly irregular

business decisions101, presumably in the hope of gaining \market share" in a market where the

goods being \sold" are more often than not being given away for free. Presumably the browser

manufacturers �ghting these wars believe that the market for human interfaces to content on the

Web (which is all a browser is, after all) is going to be quite lucrative, since the browser is the

visible gateway to remote content. But as semi-autonomous information-gathering tools, such as

IFish, become more widespread, increasingly it will be the automated tools that interact with the

Web, not the humans sitting in front of browsers. Direct human browsing time may stagnate, or

even decline, as indirect human browsing of the Web increases in popularity.

Proceeding to the next level of the Web infrastructure we �nd even more competition among its

occupants. This layer of the infrastructure consists of the monolithic indexing and search services,

such as Yahoo, Lycos, WebCrawler and Alta Vista. All of the \lower-level" services that our Finder

IFish used in Chapter 4 as primitive methods of discovering new sources of information inhabit

this layer. Here the battles are not over which browser is better or which server is faster; instead,

since the products being o�ered are services, the claims and counter-claims concern which service

is \better" than the other services. \Better" is obviously a highly-subjective measure for these

services, and trying to determine whether there is a quanti�able measure of search services is as

di�cult a problem here as it is for IFish in general (see Section 5.1 above). The reason that the

�ghts among these services have so devolved is that, with few exceptions102, they generate revenue

solely from advertising. When a user browses one of these services, the results of the user's queries

are returned on Web pages including advertisements. Every visit to a services site, every query that

is performed, is a revenue-generating event103. Just as with all other forms of advertising, revenue

is directly correlated with pervasiveness of the advertising media and the size of the population

viewing the advertisement. Thus, in order to survive these services need to convince advertisers

that advertising on their service is an e�ective way to reach potential customers and also convince

users to use their service instead of their competitors' services.

Whether or not the advertising model is a successful means of generating revenue on the Internet

is currently a hotly-contested claim. Supporters of the advertising model argue that the Internet is

too much like broadcast media for anything but advertising to work. Detractors argue in response

101It is also interesting to note that United States antitrust law appears to work di�erently in cyberspace than in

industries grounded in physical goods. For example, Microsoft is currently giving away, for free, copies of its Internet

Explorer 2.0 (IE2.0) Web browser; Microsoft acquired the technology contained inside IE2.0 from Spyglass and pays

royalties on every copy of IE2.0 distributed. Since the free distribution of IE2.0 does not appear to be a limited-time

o�er, it seems unlikely that Microsoft can defend the give-away of IE2.0 as a temporary, promotional \sales" tactic; in

a physical-goods market Microsoft's pricing scheme would almost certainly be seen as predatory in nature and thus a

violation of x2 of the Sherman Act, which prescribes unilateral acts of monopolization and attempted monopolization.
102The notable exception here is Alta Vista, which is not currently an attempt to generate revenue by selling

advertising space to others. Digital Equipment Corp., the developers of Alta Vista, currently view the service as a

showcase product for Digital's hardware technology. Whether Digital will continue to view Alta Vista itself as purely

an advertisement is an open question.
103We assume here that the service's advertising rates are calculated based on the number of times the advertisement

is shown. If the advertising rates instead are based on the number of people who \click-through" the advertisement

to reach the advertiser's own Web site, then each advertisement presentation is only an opportunity for a revenue-

generating event [30].

5.3. IFish and the Future of Information Markets 85

that bit-carriage, pay-per-view or subscription payment models are viable alternatives, once there

is infrastructure in place that permits e�cient movement of very small amounts of digital currency

across the network. Such \micropayment" schemes [25, 51], so named because they aim to allow

e�cient transfer of amounts on the order of a tenth of a cent, are a current topic of research

but as yet none have been moved out of the laboratory and into public trials. However one feels

about advertising, there is a fundamental assumption being made by the services selling advertising

that is unlikely to hold true, namely that the \users" of their services are direct human browsers.

Advertising depends upon the possibility of purchasers being inuenced by the ads; take away the

connection to possible customers and the model falls apart. If indirect human browsing grows in

popularity, as is argued in this thesis, then increasingly the \people" reading the advertisements

on Magellan or Yahoo or WebCrawler will be automated processes, such as IFish.

In fact, if we move up to the top layer of infrastructure depicted in Figure 5-1 and look at the

current inhabitants of that space, we will already �nd automated services \feeding" o� the mono-

lithic indexes that ignore inserted advertisements altogether. For example, Selberg and Etzioni's

MetaCrawler [54] combines together search results from six other search engines; the SavvySearch

service [17] can access and merge results from up to twenty di�erent resources. The Finder IFish

itself basically implements a similar service as a by-product of its ongoing research (see Section 4.2.1

above). Such \meta-search" engines104 do not pass on the advertisements of the underlying search

services that they use as information sources; when displaying results obtained from the Excite

service, for example, SavvySearch is kind enough to remove the ads inserted by Excite105. The

advertising model, therefore, may not hold if the \browsers" of advertising-supported services are

themselves other automated services that are not inuenced by the ads.

We see now the truth behind the claim made at the beginning of this section, namely that the

truly interesting �ghts on the Internet, as well as the opportunities to extract value, will occur in

the layers of infrastructure built on top of today's current collection of content servers, browsers,

and monolithic indexing engines. Remember, time is a valuable commodity, and we can \sell time"

on the Internet by selling access to services that save humans time and perform certain tasks

automatically. I cannot \sell" the contents of a Yahoo-like service via advertising if the users of

the service are themselves automated, IFish-like tools. Furthermore, as Section 5.3.1 pointed out

above, I cannot sell content itself if equivalent content is available elsewhere, since competition will

drive the marginal price of content to zero. I can sell time, though, and (for most people) time has

a nonzero marginal price. Thus, we can save people time by constructing layers of autonomous,

persistent programs to perform tasks users want accomplished, and the value of these services will

be determined by the time they save as well as the quality of the product they generate.

In closing, let us return to the image with which we began this thesis, that of the Internet as a

vast \sea of information" in which various information-gathering tools like the IFish \swim." We

can imaging the Internet sea �lled with diverse populations of Internet Fish, some big, some small,

some at like ounder, some round like salmon. These IFish swim in the sea of information in order

to perform some task or satisfy some goal, and in the process of pursuing those goals IFish interact

with each other. Bigger IFish may \consume" or exchange data with smaller IFish in the process

of satisfying their particular goals. In our \layers of infrastructure" model these various types

of IFish inhabit di�erent portions of the upper layer of the infrastructure. Lower-level services,

104Those less charitable label such services \para-sites" as they truly do feed o� the work of other sites.
105It should be noted that such rewriting may be an infringement of Excite's copyrights, depending on whether the

URLs returned by Excite are themselves copyrightable.

86 Chapter 5. The Future of IFish

\smaller" IFish, are subservices to be utilized by bigger services as needed. An IFish's \user" may

in fact be another IFish occupying a higher level of infrastructure, swimming at a di�erent depth

in the sea. As a true, human user, the Internet services with which I interact may be pieces of

the topmost levels of infrastructure that are very good at understanding requests for information

phrased in English and recognizing what lower-level services would be particularly well-suited to

answering my request. The top-level IFish with which I interact may know nothing about \lattice

basis reduction algorithms" in particular but may be very good at classifying that topic as a

math-related inquiry and pass the problem o� to a known \math IFish," perhaps operated by the

American Mathematical Society. The AMS IFish in turn may recognize my query as belonging to a

particular �eld, sub�eld and branch of some hierarchical organization of mathematical knowledge,

and pass on the request (or some other request derived from it) to more-specialized IFish, etc.

Eventually the desired information percolates back to the top and I have my answer.

Finally, notice that every time an infrastructure layer boundary is crossed, every time one IFish

uses another IFish as a \sub�sh" (because the sub�sh is either more e�cient or more specialized

for the task at hand), we have the potential for an information market transaction. If IFish A

recognizes that sub�sh B can answer a query for less than A would have to expend to answer

the query itself, A can purchase access to B to answer the particular query. Digital currency

(as well as other tokens, perhaps) can be freely exchanged among IFish in order to satisfy my

request. It is somewhat ironic that the motivating factor for putting content on the Web was a

human population available to browse that information, and that as the amount of information

available vastly outstrips human capacity to handle that load, we will draw back from the Web and

increasingly leave the information-�nding to autonomous, persistent processes.

5.4 Conclusion

In this thesis I have detailed the invention of the \Internet Fish," a new class of resource-discovery

tools for �nding information on the Internet. Designed to be personal, persistent, and semi-

autonomous, Internet Fish are deployed, gather information, and return to the user to present

the current results of their search. In Chapters 2 and 3 we have described a new language for

constructing Internet Fish, built on top of Scheme, and an Internet Fish Construction Kit that

makes its easy to build and deploy particular IFish. The Construction Kit facilitates both the

encapsulation and inclusion of heuristic knowledge (Chapter 2) as well as long-term conversations

between users and IFish (Chapter 3). Combined, these two techniques give IFish a powerful ad-

vantage over static, monolithic search engines and allow IFish to modify their own behavior over

time in response to outside stimula.

Using the Construction Kit I have built a sample IFish, the Finder IFish, which demonstrates

the usefulness of both heuristic knowledge and user interaction. I named this particular IFish

the \Finder" because it is designed to �nd Web pages that are \like" a given set of Web pages.

\Likeness" for the Finder IFish is determined by a combination of text-based document relevancy

measures as well as preference statements from the user. Chapter 4 presented the Finder IFish

and detailed the heuristics it uses to manipulate the Web, take advantage of various search engines

and indexing services, and query the user for con�rmation of its own guesses.

In this chapter I have argued that as the universe of content and services available on the

Internet grows, services like Internet Fish will not only become prevalent but will be the primary

method of extracting revenue. Because bits can be duplicated and distributed for essentially free,

5.4. Conclusion 87

the price for accessing non-unique content on the Internet will be driven to zero. Services like

Internet Fish, however, that not only aggregate content but in doing so also decrease required

user time, will continue to have marketable value, since the marginal price of time is nonzero. We

are already seeing the beginning of this trend on the Internet with the increased popularity of

meta-search services (\para-sites") that leverage the work of various monolithic indexing services.

88 Chapter 5. The Future of IFish

Bibliography

[1] M. Andreessen. NCSA Mosaic technical summary. Technical report, NCSA, 1993. Available

from URL: ftp://ftp.ncsa.uiuc.edu/Web/Mosaic/Papers/mosaic.ps.Z.

[2] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, 1996. ISBN

0-201-63455-4.

[3] T. Berners-Lee, R. Cailliau, J.-F. Gro�, and B. Pollermann. World-Wide Web: The informa-

tion universe. Electronic Networking: Research, Applications and Policy, 1(2), 1992.

[4] T. Berners-Lee and D. Connolly. Hypertext markup language { 2.0. Technical Re-

port RFC 1866, IETF Network Working Group, November 1995. Available from URL:

ftp://ds.internic.net/rfc/rfc1866.txt.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol { http/1.0 (draft

05). Technical report, IETF HTTP Working Group, February 1996. Available from URL:

http://www.w3.org/pub/WWW/Protocols/HTTP/1.0/spec.html.

[6] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource locators (URL). Technical

Report RFC 1738, IETF Network Working Group, December 1994. Available from URL:

http://www.w3.org/pub/WWW/Addressing/rfc1738.txt.

[7] M. Blair. Descartes: A Dynamically Adaptive Scheme Compiler And Run-Time Execution

Specializer. PhD thesis, Massachusetts Institute of Technology, forthcoming. Available from

URL: http://www-swiss.ai.mit.edu/~ziggy/descartes.html.

[8] N. Borenstein and N. Freed. Mime (multipurpose internet mail extensions) part one:

Mechanisms for specifying and describing the format of internet message bodies. Tech-

nical Report RFC 1521, Internet Network Working Group, 1993. Available from URL:

ftp://ds.internic.net/rfc/rfc1521.txt.

[9] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. Harvest: A

scalable, customizable discovery and access system. Technical report, University of Colorado

at Boulder, 1994.

[10] C. Brooks, M. S. Mazer, S. Meeks, and J. Miller. Application-speci�c proxy

servers as http stream transducers. In Proceedings of the Fourth Interna-

tional World Wide Web Conference, December 1995. Available from URL:

http://www.w3.org/pub/Conferences/WWW4/Papers/56/.

[11] R. H. Coase. The Firm, the Market, and the Law. The University of Chicago Press, 1988.

89

90 BIBLIOGRAPHY

[12] D. Crocker. Standard for the format of arpa internet text messages. Technical Report RFC

822, IETF, August 1982. Available from URL: ftp://ds.internic.net/rfc/rfc822.txt.

[13] P. M. E. de Bra and R. D. J. Post. Information retrieval in the World-Wide Web:

Making client-based searching feasible. In O. Nierstrasz, editor, Proceedings of the First

Annual World Wide Web Conference, Geneva, May 1994. CERN. Available from URL:

http://www.win.tue.nl/win/cs/is/reinpost/www94/www94.html.

[14] Deja News Research Service, Inc. Deja news research servicetm. Available from URL:

http://www.dejanews.com/.

[15] Digital Equipment Corporation. Alta Vista: Main Page. Available from URL:

http://www.altavista.digital.com/.

[16] F. Douglis and T. Ball. Tracking and viewing changes on the web. In

Proc. of the 1996 USENIX Technical Conference, 1996. Available from URL:

http://www.research.att.com/orgs/ssr/people/douglis/papers/aide.ps.gz.

[17] D. Dreilinger. SavvySearch home page. Available from URL:

http://www.cs.colostate.edu/ dreiling/smartform.html.

[18] A. Emtage and P. Deutsch. Archie{an electronic directory service for the Internet. In Proc.

of the USENIX Winter Conference, pages 93{110, Jan 1992.

[19] Excite, Inc. Excite for web servers (EWS). Available from URL:

http://www.excite.com/navigate/home.html. Previously distributed as \Architext Ex-

cite for Web Servers" by Architext Software. \Architext Software" is now Excite, Inc.

[20] Excite, Inc. excite Netsearch. Available from URL: http://www.excite.com/.

[21] T. Finin et al. Draft speci�cation of the kqml agent-communication language. Technical

report, The DARPA Knowledge Sharing Initiative External Interfaces Working Group, June

1993. Available from URL: http://retriever.cs.umbc.edu/kqml/.

[22] J. Fletcher. JumpStation Front Page. Available from URL: http://www.stir.ac.uk/jsbin/js.

[23] S. Foster and F. Barrie. Common questions and answers about Veronica, a title

search and retrieval system for use with the Internet Gopher. Available from URL:

gopher://pogonip.scs.unr.edu/00/veronica/veronica-faq.

[24] D. K. Gi�ord, P. Jouvelot, M. A. Sheldon, and J. W. O'Toole. Semantic �le systems. In Proc.

13th ACM Symposium on Operating Systems Principles, pages 16{25. Assoc. Comp. Mach.,

Oct 1991.

[25] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro. The millicent

protocol for inexpensive electronic commerce. In Proceedings of the Fourth International

World Wide Web Conference. World Wide Web Consortium, 1995. Available from URL:

http://www.research.digital.com/SRC/millicent/papers/millicent-w3c4/millicent.html.

[26] M. Gray. The World-Wide Web Wanderer. Available from URL:

http://www.mit.edu:8001/people/mkgray/web-growth.html.

[27] D. R. Hardy and M. F. Schwartz. Essence: A resource discovery system based on semantic

�le indexing. In Proceedings of the 1993 Winter USENIX, pages 361{374, Jan 1993.

BIBLIOGRAPHY 91

[28] Infoseek Corportation. Infoseek guide. Available from URL: http://www.infoseek.com/.

[29] International Business Machines. aqu��. Available from URL: http://www.aqui.ibm.com/.

[30] Isabel Maxwell, Executive Vice President, The McKinley Group. Personal communication.

(The McKinley Group operates the Magellan search, index, review and rating service.).

[31] B. Kahle and A. Medlar. An information system for corporate users: Wide area information

servers. ConneXions | The Interoperability Report, 5(11):2{9, Nov 1991. Available from

URL: ftp://think.com/wais/wais-corporate-paper.text.

[32] H. Lieberman. An automated channel-sur�ng interface agent for the web. Available from URL:

http://lieber.www.media.mit.edu/people/lieber/Lieberary/Letizia/WebFive/Overview.html.

[33] H. Lieberman. Letizia: An agent that assists web browsing. In Proceedings of the Inter-

national Joint Conference on Arti�cial Intelligence, Montreal, 1995. Available from URL:

http://lieber.www.media.mit.edu/people/lieber/Lieberary/Letizia/Letizia-Intro.html.

[34] Lycos, Inc. A2Z. Available from URL: http://a2z.lycos.com/, 1996.

[35] Lycos, Inc. Point. Available from URL: http://www.pointcom.com/, 1996.

[36] Lycos, Inc. The Lycostm Catalog of the Internet. Available from URL:

http://www.lycos.com/, 1996.

[37] U. Manber and S. Wu. GLIMPSE: A tool to search through entire �le systems.

Technical Report TR 93-34, University of Arizona, 1993. Available from URL:

ftp://ftp.cs.arizona.edu/glimpse/glimpse.ps.Z.

[38] Massachusetts Institute of Technology. TechInfo overview. Available from URL:

http://web.mit.edu:1962/tiserve.mit.edu/9000/26323.html, July 1992.

[39] O. A. McBryan. GENVL and WWWW: Tools for taming the web. In O. Nierstrasz, editor,

Proceedings of the First Annual World Wide Web Conference, Geneva, May 1994. CERN.

Available from URL: http://www1.cern.ch/PapersWWW94/mcbryan.ps.

[40] M. McCahill. The internet gopher: A distributed server information system. ConneXions{The

Interoperability Report, 6(7):10{14, Jul 1992.

[41] P. Mockapetris. Domain Names - Concepts and Facilities. Technical Report

RFC 1034, IETF Network Working Group, November 1987. Available from URL:

ftp://ds.internic.net/rfc/rfc1034.txt; see also RFC 1035.

[42] J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, and F. Smith. Andrew: A

distributed personal computing environmen. Communications of the ACM, 29:184{201, 1986.

[43] J. Myers and M. Rose. Post O�ce Protocol { Version 3. Technical Report

RFC 1725, IETF Network Working Group, November 1994. Available from URL:

ftp://ds.internic.net/rfc/rfc1725.txt.

[44] NCSA Mosaic Project. What's new with ncsa mosaic and the www. Available from URL:

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/whats-new.html.

92 BIBLIOGRAPHY

[45] H. F. Nielsen, T. Berners-Lee, H. W. Lie, and J.-F. Gro�. The w3c reference library. Available

from URL: http://www.w3.org/pub/WWW/Library/.

[46] owner-mail server@rtfm.mit.edu. Help �le for the usenet-addresses database. Send e-mail to

mail-server@rtfm.mit.edu with 'send usenet-addresses/help' in the body of the message.

[47] B. Pinkerton. Finding what people want: Experiences with the WebCrawler. In Proceed-

ings of the Second Annual WWW/Mosaic Conference, to appear. Available from URL:

ftp://www.biotech.washington.edu/pub/WebCrawler.ps.gz.

[48] J. Postel. Simple Mail Transfer Protocol. Technical Report RFC 821, IETF Network Working

Group, August 1982. Available from URL: ftp://ds.internic.net/rfc/rfc821.txt.

[49] J. Postel and J. Reynolds. File Transfer Protocol (FTP). Technical Report

RFC 959, Internet Network Working Group, Oct 1985. Available from URL:

http://www.w3.org/pub/WWW/Addressing/rfc1738.txt.

[50] Quarterdeck Corp., Inc. Webcompass fact sheet. Available

from URL: http://arachnid.qdeck.com/qdeck/products/webcompass/.

Demo version (WebCompass Personal Edition) available from URL:

http://arachnid.qdeck.com/qdeck/demosoft/webcompass lite/.

[51] R. L. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment schemes.

1996. Available from URL: http://theory.lcs.mit.edu/~rivest/RivestShamir-mpay.ps.

[52] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,

1983.

[53] M. F. Schwartz and P. G. Tsirigotis. Experience with a semantically cognizant internet white

pages directory tool. Journal of Internetworking{Research and Experience, to appear.

[54] E. Selberg and O. Etzioni. Multi-service search and comparison using the metacrawler. In

Proceedings of the Fourth International World Wide Web Conference. World Wide Web Con-

sortium, 1995. Available from URL: http://www.cs.washington.edu/homes/etzioni/.

[55] M. A. Sheldon, A. Duda, R. Weiss, J. W. O'Toole, and D. K. Gi�ord. A content routing system

for distributed information servers. In Proc. Fourth International Conference on Extending

Database Technology, number 779 in Lecture Notes in Computer Science, Cambridge, England,

Mar 1994. Springer-Verlag.

[56] The McKinley Group, Inc. Magellan internet guide. Available from URL:

http://www.mckinley.com/, 1996.

[57] Transarc Corp. Transarc product information: Afs. Available from URL:

http://www.transarc.com:80/afs/transarc.com/public/www/Public/ProdServ/Product/AFS/index.html,

1996.

[58] S. Wu and U. Manber. Fast text searching with errors. Technical Report TR 91-11, University

of Arizona, 1991. Available from URL: ftp://ftp.cs.arizona.edu/agrep/agrep.ps.1.

[59] Yahoo, Inc. Yahoo! Available from URL: http://www.yahoo.com/.

BIBLIOGRAPHY 93

[60] D. Zimmerman. The �nger user information protocol. Technical Report RFC

1196, IETF Network Working Group, December 1990. Available from URL:

ftp://ds.internic.net/rfc/rfc822.txt.

