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Abstract

We seek to both detect and segment objects in images. To exploit both lo-
cal image data as well as contextual information, we introduce Boosted
Random Fields (BRFs), which uses Boosting to learn the graph struc-
ture and local evidence of a conditional random field (CRF). The graph
structure is learned by assembling graph fragments in an additive model.
The connections between individual pixels are not very informative, but
by using dense graphs, we can pool information from large regions of
the image; dense models also support efficient inference. We show how
contextual information from other objects can improve detection perfor-
mance, both in terms of accuracy and speed, by using a computational
cascade. We apply our system to detect stuff and things in office and
street scenes. 1.

1This work was sponsored in part by the Nippon Telegraph and Telephone Corporation as part of
the NTT/MIT Collaboration Agreement, and by DARPA contract DABT63-99-1-0012.



1 Introduction

Our long-term goal is to build a vision system that can examine an image and describe what
objects are in it, and where. In many images, such as Fig. 6(a), objects of interest, such as
the keyboard or mouse, are so small that they are impossible to detect just by using local
features. Seeing a blob next to a keyboard, humans can infer it is likely to be a mouse;
we want to give a computer the same abilities. Murphy et al used global context to help
object recognition [8], but did not model relationships between objects; Fink and Perona
[3] exploited local dependencies, but without a guiding probabilistic framework.

In this paper, we exploit contextual correlations between the object classes by introducing
Boosted Random Fields (BRFs). Boosted random fields build on both boosting [4, 9]
and conditional random fields (CRFs) [7, 6, 5]. Boosting is a simple way of sequentially
constructing “strong” classifiers from “weak” components, and has been used for single-
class object detection with great success [11].

Conditional random fields (CRFs) are a natural way to model correlation between labels
(the outputs of classifiers), given an image as input. The main problem with CRFs is how
to learn the correlation (graph) structure of the model. A 4-nearest neighbor grid structure,
successful in low-level vision, will fail in capturing important long distance dependencies
between whole regions and across classes. In BRFs, we learn the graph structure by us-
ing boosting to select from a dictionary of connectivity templates (derived from labeled
segmentations), which are combined together in an additive model. We also use boosting
to learn the local evidence potentials of the model. We interleave the learning steps with
approximate inference, based on belief propagation.

In addition to recognizing things, such as cars and people, we are also interested in recog-
nizing spatially extended “stuff” [1], such as roads and buildings. The traditional sliding
window approach to object detection does not work well for detecting “stuff”. Instead, we
combine object detection and image segmentation c.f., [2]. The desired output will be a
coarse segmentation of the image, where some of the regions have semantically meaning-
ful labels attached (see Fig. 6(b)). We will not rely on a bottom-up image segmentation
algorithm, which can be fragile without top-down guidance.

2 Learning local evidence potentials on a fixed graph

A conditional random field (CRF) is a distribution of the form

P (S|x) =
1

Z

∏

i

φi(Si)
∏

j∈Ni

ψi,j(Si, Sj)

where x is the input (e.g., image) and Ni are the neighbors of node i. We have assumed
pairwise potentials for notational simplicity. Suppose the ψ compatibility potentials are
known. Learning the local evidence potentials, φi, is still a hard problem, even if all the
Si’s are known during training, because computing the partition function Z is intractable
for most graphs (with the notable exception of chains and trees).1

For BRFs, we propose the following simple approximation: use belief propagation (BP) to
estimate the marginals, P (Si|x), and then use boosting to maximize the likelihood of each
node’s training data wrt φi. Since the potentials affect the results of BP and vice versa,
we suggest the following iterative scheme: perform one round of boosting (add one weak
learner to each φi), then perform one round of BP (send messages to all neighbors), and

1In a generative model, such as a Markov random field, we usually define φi(Si) = p(xi|Si), so
the local compatibilities are uncoupled from ψij , and hence are easy to learn. This is not the case
with a CRF.



1. Input: a set of labeled pairs {xi,m;Si,m}, neighbors {Ni}, pairwise compatibilities ψij

and parameters T,Nboost, NBP . Output: Local evidence functions f t
i (x).

2. Initialize F t=0
m = 0, wt=0

i,m = 1, M t=0
i (±1) = 1, and µt=0

i→j(±1) = 1.

3. For t=1..T,

(a) Iterate Nboost times

i. Solve the weighted least squares problem in Eq. 5 wrt f t
i .

ii. Update local potentials, with F t
i = F t−1

i + f t
i

iii. Update the beliefs using Eq. 3.

iv. Update the weights: wt+1
i,m = bti,m(+1) bti,m(−1)

(b) Iterate NBP times

i. Update messages using Eq. 2.

ii. Update the beliefs using Eq. 3.

Figure 1: Learning the local evidence potentials of a CRF using boosting.

repeat. If the potentials are fixed, this is just regular BP; if the messages are uninformative
(e.g., a disconnected graph), this is just regular boosting.

In more detail, the algorithm is as follows. At iteration t, the goal is to minimize the
negative log-likelihood of the training data. As in [10], we consider the per-label loss (i.e.,
we use marginal probabilities), as opposed to requiring that the joint labeling be correct (as
in Viterbi decoding). Hence the cost function to be minimized is

J t =
∏

i

J t
i = −

∏

m

∏

i

bti,m(Si,m) = −
∏

m

∏

i

bti,m(+1)S∗

i,mbti,m(−1)1−S∗

i,m (1)

where bti,m ≈ P (Si|xm, t) is the belief at node i in training case m given the evidence that

has reached it after t iterations. We consider binary states Si,m ∈ {−1,+1}, and S∗
i,m =

(Si,m + 1)/2, although the approach could be generalized to higher state dimensions.

The belief at node i is given by the following (dropping the dependence on case m)
bti(±1) ∝ φt

i(±1)M t
i (±1) where M t

i is the product of all the messages coming into i
from all its neighbors at time t and where the message that k sends to i is given by

M t+1
i (±1) =

∏

k∈Ni

µt+1
k→i(±1) µt+1

k→i(±1) =
∑

sk∈{−1,+1}

ψk,i(sk,±1)
btk(sk)

µt
i→k(sk)

(2)

where ψk,i is the compatility between nodes k and i. If we assume that the local potentials

have the form φt
i(si) = [eF t

i /2; e−F t
i /2], where F t

i is some function of the input data, then
it is simple to show that

bti(+1) = σ(F t
i +Gt

i), Gt
i = log M t

i (+1) − log M t
i (−1) (3)

where σ(u) = 1/(1+ e−u) is the sigmoid function. Hence each term in Eq. 1 simplifies to
a cost function similar to that used in boosting:

log J t
i =

∑

m

log
(

1 + e−Si,m(F t
i,m+Gt

i,m)
)

(4)

Defining F t
i (xi,m) = F t−1

i (xi,m) + f t
i (xi,m) as an additive model, where xi,m are the

features of training sample m at node i, we can learn this function in a stagewise fashion
by optimizing the second order Taylor expansion of Eq. 4 wrt f t

i , as in logitBoost [4]:

argmin
ft

i

log J t
i ≃ arg min

ft
i

∑

m

wt
i,m(Y t

i,m − f t
i (xi,m))2 (5)



1. Input: a set of labeled pairs {xi,m;Si,m}, bound T
Output: Local evidence functions f t

i (x) and message update functions gt
i(bNi

).

2. Initialize: bt=0
i,m = 0; F t=0

i,m = 0; Gt=0
i,m = 0

3. For t=1..T.

(a) Fit local potential fi(xi,m) by weighted LS to Y t
i,m = Si,m(1 + e

−Si,m(F t
i
+Gt

i,m
)).

(b) Fit compatibilities gt
i(b

t−1
Ni,m) to Y t

i,m by weighted LS.

(c) Compute local potential F t
i,m = F t−1

i,m + f t
i (xi,m)

(d) Compute compatibilities Gt
i,m =

∑t

n=1
gn

i (bt−1
Ni,m)

(e) Update the beliefs bti,m = σ(F t
i,m +Gt

i,m)

(f) Update weights wt+1
i,m = bti,m(−1) bti,m(+1)

Figure 2: BRF training algorithm.

where Y t
i,m = Si,m(1+e−Si,m(F t

i +Gt
i,m)). In the case that the weak learner is a “regression

stump”, fi(x) = ah(x)+b, we can find the optimal a, b by solving a weighted least squares
problem, with weights wt

i,m = bti(−1) bti(+1); we can find the best basis function h by

searching over all elements of a dictionary. Once we have updated F t
i , and hence φi, we

can compute the new beliefs, bt+1
i , and repeat. See Fig. 1 for the pseudo-code. As noted

above, standard boosting and standard belief propagation are just special cases of the BRF
algorithm, obtained by setting NBP = 0 and Nboost = 0 respectively. (In the latter case,
the local evidence φt

i must be provided as input.) By combining the two algorithms, we
can learn to classify using both local evidence and information from other variables.

3 Learning potentials between nodes and graph structure

In this section, we discuss how to learn the compatibility functions ψij , and hence the
structure of the graph. We assume that the graph is very densely connected so that the
information that one single node sends to another is so small that we can make the approx-
imation µt+1

k→i(+1)/µt+1
k→i(−1) ≃ 1. (This is a reasonable approximation in the case of

images, where each node represents a single pixel; only when the influence of many pixels
is taken into account will the messages become informative.) Hence

Gt+1
i = log

M t+1
i (+1)

M t+1
i (−1)

= (6)

∑

k

log

∑

sk∈[−1,+1] ψk,i(sk,+1)
bt

k,m(sk)

µt
i→k

(sk)

∑

sk∈[−1,+1] ψk,i(sk,−1)
bt

k,m
(sk)

µt
i→k

(sk)

≃ (7)

∑

k

log

∑

sk∈[−1,+1] ψk,i(sk,+1) btk,m(sk)
∑

sk∈[−1,+1] ψk,i(sk,−1) btk,m(sk)
(8)

With this simplification, Gt+1
i is now a non-linear function of the beliefs Gt+1

i (~btm) at
iteration t. Instead of learning the compatibility functions ψij , we propose to learn directly

the functionGt+1
i . We propose to use an additive model forGt+1

i as we did for learning F .

Gt+1
i,m =

t
∑

n=1

gn
i (~btm)



1. Input: a set of inputs {xi,m} and functions f t
i , gt

i

Output: Set of beliefs bi,m and MAP estimates Si,m.

2. Initialize: bt=0
i,m = 0; F t=0

i,m = 0; Gt=0
i,m = 0

3. From t = 1 to T , repeat

(a) Update local evidences F t
i,m = F t−1

i,m + f t
i (xi,m)

(b) Update compatibilities Gt
i,m =

∑t

n=1
gn

i (bt−1
Ni,m)

(c) Compute current beliefs bti,m = σ(F t
i,m +Gt

i,m)

4. Output classification is Si,m = δ
(

bti,m > 0.5
)

Figure 3: BRF run-time inference algorithm.

The weak learners gn
i (~btm) can be regression stumps with the form:

gn
i (~btm) = aδ(~w ·~btm > θ) + b

where a, b, θ are the parameters of the regression stump, and ~w is a set of weights selected
from a dictionary.

In the case of a graph with weak and almost symmetrical connections (which holds if
ψ(s1, s2) ≈ 1, for all (s1, s2), which implies the messages are not very informative) we can

further simplify the function Gt+1
i by approximating it as a linear function of the beliefs:

Gt+1
i,m =

∑

k∈Ni

αk,i b
t
k,m(+1) + βk,i (9)

This step reduces the computational cost. The weak learners gn
i (~btm) will also be linear

functions.

Hence the belief update simplifies to bt+1
i,m (+1) = σ(~αi ·~b

t
m + βi +F t

i,m), which is similar
to the mean-field update equations. The neighborhood Ni over which we sum incoming
messages is determined by the graph structure; and the values, αk,i and βk,i are deter-
mined by the pairwise compatibilities. Instead of trying to learn the compatibilities ψi,j ,
we propose to learn αk,i and βk,i directly. Each weak learner gn

i will compute a weighted
combination of the beliefs of the some subset of the nodes; this subset may change from
iteration to iteration, and can be quite large. At iteration t, we choose the weak learner gt

i
so as to minimize

log J t
i (b

t−1) = −
∑

m

log
(

1 + e−Si,m(F t
i,m+gt

i (b
t−1

m )+
∑

t−1

n=1
gn

i (bt−1

m ))
)

which reduces to a weighted least squares problem similar to Eq. 5.

See Fig. 2 for the pseudo-code for the learning algorithm, and Fig. 3 for the pseudo-code
for run-time inference. For simplicity, we have assumed that we perform a single round of
boosting,Nboost = 1, and a single round of belief propagation,NBP = 1, at each iteration.

4 BRFs for multiclass object detection and segmentation

With the BRF training algorithm in hand, we describe our approach for multiclass object
detection and region-labeling using densely connected BRFs.

4.1 Weak learners for detecting stuff and things

The square sliding window approach does not provide a natural way of working with irreg-
ular objects. Using region labeling as an image representation allows dealing with irregular



(a) Examples from the dictionary of about 2000 patches and masks, Ux,y, Vx,y .

(b) Examples from the dictionary of 30 graphs, Wx,y,c.
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(c) Example feedforward segmentation for screens.

Figure 4: Examples of patches from the dictionary and an example of the segmentation obtained
using boosting trained with patches from (a).

and extended objects (buildings, bookshelf, road, ...). Extended stuff [1] may be a very
important source of contextual information for other objects.

The weak learners we use for the local evidence potentials are based on the segmentation
fragments proposed in [2]. Specifically, we create a dictionary of about 2000 image patches
U , chosen at random (but overlapping each object), plus a corresponding set of binary (in-
class/ out-of-class) image masks, V : see Fig. 4(a). At each round t, for each class c, and for
each dictionary entry d, we construct the following weak learner, whose output is a binary
matrix of the same size as the image I:

vd(I) =
(

(I ⊗ Ud) > θd
)

∗ V d > 0 (10)

where ⊗ represents normalized cross-correlation and ∗ represents convolution. The intu-
ition behind this is that I⊗Ud will produce peaks at image locations that contain this patch/
template, and then convolving with V d will superimpose the segmentation mask on top of
the peaks. As a function of the threshold θd, the feature will behave more as a template
detector (θd ≃ 1) or as a texture descriptor (θd << 1).

To be able to detect objects at multiple scales, we first downsample the image to scale σ,
compute wd(I ↓ σ), and then upsample the result. The final weak learner does this for
multiple scales, ORs all the results together, and then takes a linear transformation.

fd
x,y,c(I) = α

(

∨σ[vd
x,y(I ↓ σ) ↑ σ]

)

+ β (11)

Fig. 4(c) shows an example of segmentation obtained by using boosting without context.
The weak learners we use for the compatibility functions have a similar form:

gd
x,y,c(b) = αd

(

C
∑

c′=1

bx′,y′,c′ ∗W
d
x′,y′,c′

)

+ βd (12)

The binary kernels (graph fragments) W d
x′,y′,c′ define, for each node x, y of object class

c, all the nodes from which it will receive messages. These kernels are chosen by sam-
pling patches of various sizes from the labeling of images from the training set. This
allows generating complicated patterns of connectivity that reflect the statistics of object
co-occurrences in the training set. The overall incoming message is given by

Gt
x,y,c(b) =

C
∑

c′=1

bx′,y′,c′ ∗

(

∑

n

αnWn
x′,y′,c′

)

+
∑

n

βndef
=

C
∑

c′=1

bx′,y′,c′ ∗W
′
x′,y′,c′ + β′



Car

Building

Road
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a) Incoming messages
to a car node.

car car building car road car

car building building building road building

car road road roadbuilding road

b) Compatibilities (W’).

F

G

b=σ(F+G)

c) A car out of context
(outside 3rd floor windows)

is less of a car.

b(car)

S(all)

t=1 t=2 t=4 t=20 t=40 Final labeling

d) Evolution of the beliefs for the car nodes (b(car)) and labeling (S) for (road, building, car).

Figure 5: Street scene. The BRF is trained to detect cars, buildings and the road.

This is computationally efficient as the function G is obtained by a convolution between
the beliefs of each class and the kernel W ′. We do not need to evaluate the individual gt.
Fig. 5(a-b) shows the structures of the graph and the weights W ′

x′,y′,c′ for a BRF trained to
detect cars, buildings and roads in street scenes.

4.2 Learning and inference

For training we used a labeled dataset of office and street scenes with about 100 images in
each set. During the training, in the first 5 rounds we only update the local potentials, to
allow local evidence to accrue. After the 5th iteration we start updating also the compatibil-
ity functions. At each round, we update only the local potential and compatibility function
associated with a single object class that reduces the most the multiclass cost. This allows
objects that need many features to have more complicated local potentials.

The algorithm learns to first detect easy (and large) objects, since these reduce the error of
all classes the fastest. The easy-to-detect objects can then pass information to the harder
ones. For instance, in office scenes, the system first detects screens, then keyboards, and
finally computer mice. Fig. 6 illustrates this behavior on the test set. A similar behavior is
obtained for the car detector (Fig. 5(d)). The detection of building and road provides strong
constraints for the locations of the car.

4.3 Cascade of classifiers with BRFs

The BRF can be turned into a cascade [11] by thresholding the beliefs. Computations
can then be reduced by doing the convolutions (required for computing f and g) only in
pixels that are still candidates for the presence of the target. At each round we update a
binary rejection mask for each object class, Rt

x,y,c, by thresholding the beliefs at round t:

Rt
x,y,c = Rt−1

x,y,c δ(b
t
x,y,c > θt

c). A pixel in the rejection mask is set to zero when we can

decide that the object is not present (when btx,y,c is below the threshold θt
c ≃ 0), and it is set

to 1 when more processing is required. The threshold θt
c is chosen so that the percentage

of missed detections is below a predefined level (we use 1%). Similarity we can define a
detection mask that will indicate pixels in which we decide the object is present. The mask
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Figure 6: Top. In this desk scene, it is easy to identify objects like the screen, keyboard and mouse,
even though the local information is sometimes insufficient. Middle: the evolution of the beliefs
(b and F and G) during detection for a test image. Bottom. The graph bellow shows the average
evolution of the area under the ROC for the three objects on 120 test images.

is then used for computing the features v(I) and messages G by applying the convolutions
only on the pixels not yet classified. We can denote those operators as ⊗R and ∗R. This
results in a more efficient classifier with only a slight decrease of performance. In Fig. 7 we
compare the reduction of the search space when implementing a cascade using independent
boosting (which reduces to Viola and Jones [11]), and when using BRF’s. We see that for
objects for which context is the main source of information, like the mouse, the reduction
in search space is much more dramatic using BRFs than using boosting alone.

5 Conclusion

The proposed BRF algorithm combines boosting and CRF’s, providing an algorithm that
is easy for both training and inference. We have demonstrated object detection in clut-
tered scenes by exploiting contextual relationships between objects. The BRF algorithm
is computationally efficient and provides a natural extension of the cascade of classifiers
by integrating evidence from other objects in order to quickly reject certain image regions.
The BRF’s densely connected graphs, which efficiently collect information over large im-
age regions, provide an alternative framework to grids for vision problems.
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