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ABSTRACT

We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional

approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be

slow and can require a lot of training data, since each classifier requires the computation of many different image features.

In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample

complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale

up to allow recognition of hundreds or thousands of objects.

We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by

finding common features that can be shared across the classes (and/or views). The detectors for each class are trained

jointly, rather than independently. For a given performance level, the total number of features required, and therefore the

computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected

jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts.

Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class

object detection. 1.

1This work was sponsored in part by the Nippon Telegraph and Telephone Corporation as part of the NTT/MIT Collaboration Agreement, and by
DARPA contract DABT63-99-1-0012.
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I. INTRODUCTION

A long-standing goal of machine vision has been to

build a system which is able to recognize many different

kinds of objects in a cluttered world. This would allow

machines to truly see and interact in the visual world.

Progress has been made on restricted versions of this

goal. In particular, it is now possible to recognize in-

dividual instances of highly textured objects, such as

magazine covers or toys, despite clutter, occlusion and

affine transformations, by using object-specific features

[19], [27]. In addition, it is possible to recognize classes

of objects, generalizing over intra-class variation, when the

objects are presented against simple uniform backgrounds

[22], [23], [17], [7], [20]. However, combining these two

approaches — dealing with clutter and generalizing across

intra-class variability — remains very challenging.

The most challenging problem in object detection is to

differentiate the object from the background. In the case

that we want to detect C classes of objects, the problem

of discriminating any object class against the background

is more difficult than discriminating between the C classes

for a patch known to contain one of the objects. One of

the reasons for this is that the background generates many

more distractors than the C − 1 other object classes.

The current state of the art for the problem of class-level

object detection in clutter uses classifier methods, such

as boosting and support vector machines, to distinguish

the class from the background. Researchers have made

reliable detectors for objects of a single class, such as faces

(e.g., [31]) or pedestrians (e.g. [24]), seen over a limited

range of viewing conditions. However, such approaches

seem unlikely to scale up to the detection of hundreds or

thousands of different object classes, or to many different

views of objects, because each classifier computes many

image features independently. These features typically

involve convolutions with part templates [9], [30] or with

a set of basis filters [31], [24]. Computing these features

is slow, and it requires a lot of data to determine which

features are useful. We believe that an essential ingredient

in the scale-up to multi-object detection will be the sharing

of image features for classification across multiple objects

and views; that is, training the classes jointly instead of

independently.

In this paper, we develop a new object classification

architecture that explicitly learns to share features across

multiple object classes. The basic idea is an extension of

the boosting algorithm [25], [10], which has been shown to

be useful for detecting individual object classes in cluttered

scenes [31]. Rather than training C binary classifiers

independently, we train them jointly. The basic idea of

the algorithm is that for each possible subset of classes,

we find a feature that is most useful for distinguishing that

subset from the background; we then pick the best such
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Fig. 1. Objects may share features in a way that cannot be
represented as a tree. In this example, we can see how each pair
of objects shares a part.

feature/subset, and repeat, until the overall error (across all

classes) stops decreasing, or until we reach a limit on the

number of features we can afford to compute (to bound

the run-time cost). (The details will be given below.) The

result is that many fewer features are needed to achieve a

desired level of performance than if we were to train the

classifiers independently. This results in a faster classifier

(since there are fewer features to compute) and one which

works better (since the features are fit to larger, shared data

sets).

Section II summarize previous work on multiclass ob-

ject detection and multiclass classifiers. We describe the

joint boosting algorithm in Section III, and illustrate its

performance on some artificial data sets. In Section IV,

we show how the algorithm can be used to detect different

classes and views of objects in real world images.

II. PREVIOUS WORK

We first discuss work from the computer vision liter-

ature, and then discuss work from the machine learning

community.

A. Multi-class object detection

As mentioned in the introduction, it is helpful to distin-

guish four categories of work: object recognition (which

assumes the object has been segmented out from the

background) vs object detection (which assumes the object

is buried in a cluttered scene); and class-level (e.g., all cars)

vs instance-level (e.g., my red Toyota). In this paper, we

are concerned with class-level object detection in clutter.

Fei-Fei, Fergus and Perona [8] propose a model based

on the geometric configuration of parts; each part is

represented as a local PCA template. They impose a prior

on the model parameters for each class, which encourages

each class to be similar, and allows the system to learn
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from small sample sizes. However, the parts themselves

are not shared across classes.

Blanchard and Geman [3] use decision trees to build a

hierarchical multi-class classifier. Our work differs from

this since we do not create a hierarchy. Hence we can

partition the classes into multiple overlapping sets, and

compute features for each such partition. This is important

as objects share features in more complicated patterns than

a tree (See Figure 1).

Amit, Geman and Fian [2] describe a system for mul-

ticlass and multi-pose object detection based in a coarse-

to-fine search. They model the joint distribution of poses

between different objects in order to get better results than

using independent classifiers.

Krempp, Geman and Amit [15] present a system that

learns to reuse parts for detecting several object categories.

The system is trained incrementally by adding one new

category at each step and adding new parts as needed. They

apply their system to detecting mathematical characters on

a background composed of other characters. They show

that the number of parts grows logarithmically with respect

to the number of classes, as we have found. However, they

do not jointly optimize the shared feature, and they have

not applied their technique to real-world images.

B. Multi-class classification

The algorithm proposed in this paper relates to a general

framework developed by Dietterich and Bakiri [6] for

converting binary classifiers into multiple-class classifiers

using error-correcting output codes (ECOC).

The idea is to construct a code matrix µ with entries

in {−1, 0, +1}. There is one row per class and one

column for each subset being considered. We fit a binary

classifier for each column; the 1’s in the column specify

which classes to group together as positive examples,

and the −1’s specify which classes to treat as negative

examples; the 0 classes are ignored. Given an example

v, we apply each column classifier to produce a bit-vector,

(f1(v), . . . , fn(v)), where n is the number of columns. We

then find the row which is closest in Hamming distance

to this bit-vector, and output the corresponding class (row

number).

The goal is to design encodings for the classes that are

resistant to errors (misclassifications of the individual bits).

There are several possible code matrices: (1) µ has size

C × C, and has +1 on the diagonal and −1 everywhere

else; this corresponds to one-against-all classification. (2)

µ has size C ×

(

C
2

)

in which each column corresponds

to a distinct pair of labels z1, z2; for this column, µ has

+1 in row z1, −1 in row z2 and 0 in all other rows;

this corresponds to building all pairs of i vs j classifiers

[12]. (3) µ has size C × 2C − 1, and has one column for

every non-empty subset; this is the complete case. (4) µ is

designed randomly and is chosen to ensure that the rows

are maximally dissimilar (i.e., so the resulting code has

good error-correcting properties).

Allwein et. al. [1] show that the popular one-against-all

approach is often suboptimal, but that the best code matrix

to use is problem dependent. Although our algorithm

starts with a complete code matrix (all possible subsets),

it learns which subsets are actually worth using. It is

possible to do a greedy search for the best code (see

Section III-C); thus our algorithm effectively learns the

code matrix, by alternating between fitting the column

(subset) classifiers, and searching for good subsets, in a

stage-wise fashion. The “bunching” algorithm in [5] also

attempts to simultaneously learn the code matrix and solve

the classification problem, but is more complicated than

our algorithm, and has not been applied to object detection.

A difference between our approach and the ECOC

framework is how we use the column (subset) classifiers. In

ECOC, they classify an example by running each column

classifier, and looking for the closest matching row in

the code matrix. In our algorithm, we add the output of

the individual column (subset) classifiers together, as in a

standard additive model (which boosting fits).

Another set of related work is called “multiple task

learning” [4]. This is also concerned with training clas-

sifiers for multiple classes simultaneously, and sharing

features amongst them. However, as far as we know, this

has not been done for boosting, or for the object detection

task.

III. THE JOINT BOOSTING ALGORITHM

Boosting [25], [10] provides a simple way to sequen-

tially fit additive models of the form

H(v, c) =

M
∑

m=1

hm(v, c),

where c is the class label, and v is the input feature vector.

In the boosting literature, the hm are often called weak

learners. It is common to define these to be simple decision

or regression stumps of the form hm(v) = aδ(vf > θ)+b,

where vf denotes the f ’th component (dimension) of the

feature vector v, θ is a threshold, δ is the indicator function,

and a and b are regression parameters (note that b does not

contribute to the final classification). We can estimate the

optimal a and b by weighted least squares, and can find

the optimal feature f and threshold θ by exhaustive search

through the data (see Section III-A for details).

Boosting was originally designed to fit binary classifiers.

There are two common approaches to extend boosting to

the multi-class case. The simplest is to train multiple sepa-

rate binary classifiers (e.g., as in one-vs-all, or using some
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G12 G1

G123 G13 G2

G23 G3

Fig. 2. All possible ways to share features amongst 3 classifiers. In
this representation, each classifier H(v, c) is constructed by adding,
only once, all the nodes that connect to each of the leaves. The leaves
correspond to single classes. Each node corresponds to a different
grouping of classes.

kind of error-correcting output code). Another approach is

to ensure the weights at each stage m define a normalized

probability distribution over all the classes [10]. However,

even in the latter case, the weak-learners are class-specific.

We propose to share weak-learners across classes. For

example, if we have 3 classes, we might define the

following classifiers:

H(v, 1) = G1,2,3(v) + G1,2(v) + G1,3(v) + G1(v)

H(v, 2) = G1,2,3(v) + G1,2(v) + G2,3(v) + G2(v)

H(v, 3) = G1,2,3(v) + G1,3(v) + G2,3(v) + G3(v)

where each GS(n)(v) is itself an additive model of the

form GS(n)(v) =
∑Mn

m=1 hn
m(v). The n refers to a node in

the “sharing graph” (see Figure 2), which specifies which

functions can be shared between classifiers. S(n) is the

subset of classes that share the node n. In the example

shown in Fig. 5, we have S(1) = {1, 2, 3}, which means

that the additive model GS(1) is useful for distinguishing

all 3 classes from background; similarly, S(3) = {1, 3},

which means that the additive model GS(3) is useful

for distinguishing classes 1 and 3 from the background

(the background may or may not include class 2 — see

discussion below). If we allow all possible subsets, the

graph will have 2C −1 nodes, but the algorithm will figure

out which subsets are most useful.

The decomposition is not unique (different choices of

functions GS(n)(v) give the same functions H(v, c)). But

we are interested in the choices of GS(n)(v) that minimize

the computational cost. We impose the constraint that
∑

n Mn = M , where M is the total number of functions

that have to be learned. So the total of constructed func-

tions is equal to the number of rounds of boosting.

If the classifiers are trained independently, then M =
O(C). By jointly training, we can use a number of features

that is sub-linear in the number of classes.

For instance, suppose we have C classes, and, for each

class, the feature vectors reside within some sphere in a

D-dimensional space. Further, suppose the weak classifiers

are hyperplanes in the D-dimensional space. If the classes

are arranged into a regular grid, then, by sharing features,

we need M = 2DC1/D hyperplanes to approximate the

hyperspherical decision boundary with hypercubes.

Note that asymptotically (provided enough complexity

and training samples) a multi-class classifier might con-

verge to the same performance as a classifier that shares

features across classes. However, we are interested in the

complexity needed to achieve a particular performance

with a reduced set of training data.

The natural structure of object categories and the regu-

larities in the building blocks that compose visual objects

(edges, parts, etc.) makes the problem of object detection

a good candidate for applying multiclass procedures that

share features across classifiers.

A. The joint boosting algorithm

The idea of the algorithm is that at each boosting

round, we examine various subsets of classes, S ⊆ C,

and considering fitting a weak classifier to distinguish

that subset from the background. We pick the subset that

maximally reduces the error on the weighted training set

for all the classes. The best weak learner h(v, c) is then

added to the strong learners H(v, c) for all the classes

c ∈ S, and their weight distributions are updated.

We decide to optimize the following multiclass cost

function:

J =

C
∑

c=1

E
[

e−zcH(v,c)
]

(1)

where zc is the membership label (±1) for class c. The

term zcH(v, c) is called the “margin”, and is related to

the generalization error (out-of-sample error rate).

We chose to base our algorithm on the version of

boosting called “gentleboost” [11], because it is simple

to implement, numerically robust, and has been shown

experimentally [18] to outperform other boosting variants

for the face detection task. The optimization of J is done

using adaptive Newton steps [11] which corresponds to

minimize a weighted squared error at each step. At each

step m, the function H is updated as: H(v, c) := H(v, c)+
hm(v, c), where hm is chosen so as to minimize a second

order Taylor approximation of the cost function:

arg min
hm

J(H+hm) ≃ arg min
hm

C
∑

c=1

E
[

e−zcH(v,c)(zc − hm)2
]

(2)

Replacing the expectation with an empirical expecta-

tion over the training data, and defining weights wc
i =

e−zc
i H(vi,c) for example i and class c, this reduces to

minimizing the weighted squared error:

Jwse =

C
∑

c=1

N
∑

i=1

wc
i (z

c
i − hm(vi, c))

2. (3)
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1) Initialize the weights wc
i = 1 and set H(vi, c) = 0, i =

1..N , c = 1..C.
2) Repeat for m = 1, 2, . . . , M

a) Repeat for n = 1, 2, . . . , 2C
− 1

i) Fit shared stump:

hm(v, c) =

{

aδ(vf
i > θ) + b if c ∈ S(n)

kc if c /∈ S(n)

ii) Evaluate error

Jwse(n) =

C
∑

c=1

N
∑

i=1

wc
i (z

c
i − hm(vi, c))

2

3) Find best sharing by selecting n = arg minn Jwse(n), and
pick the corresponding shared feature hm(v, c).

4) Update
H(vi, c) := H(vi, c) + hm(vi, c)

wc
i := wc

i e
−zc

i hm(vi,c)

Fig. 3. Joint boosting with regression stumps. vf
i is the f ’th feature of

the i’th training example, zc
i ∈ {−1, +1} are the labels for class c, and

wc
i are the unnormalized example weights. N is the number of training

examples, and M is the number of rounds of boosting.

The resulting optimal function at round m, hm, is

defined as:

hm(v, c) =

{

aδ(vf
i > θ) + b if c ∈ S(n)

kc if c /∈ S(n)
(4)

with parameters (a, b, f, θ, n, kc), for each c /∈ S(n),
i.e., a total of 5 + C − |S(n)| parameters. Here δ(x)
is the indicator function, and n denotes a node in the

“sharing graph” (Figure 2), which corresponds to a subset

of classes S(n). By adding a shared stump, the complexity

of the multi-class classifier increases with constant rate,

independent of the number of classes sharing the stump.

Only the classes that share the feature at round m will

have a reduction of their classification error.

The minimization of (3) gives the parameters:

b =

∑

c∈S(n)

∑

i wc
i z

c
i δ(v

f
i ≤ θ)

∑

c∈S(n)

∑

i wc
i δ(v

f
i ≤ θ)

, (5)

a + b =

∑

c∈S(n)

∑

i wc
i z

c
i δ(v

f
i > θ)

∑

c∈S(n)

∑

i wc
i δ(v

f
i > θ)

, (6)

kc =

∑

i wc
i z

c
i

∑

i wc
i

c /∈ S(n) (7)

For all the classes c in the set S(n), the function

hm(v, c) is a shared regression stump. For the classes

that do not share this feature (c /∈ S(n)), the function

h(v, c) is a constant kc different for each class. This

constant prevents sharing features due to the asymmetry

between positive and negative samples for each class.

These constants do not contribute to the final classification.

Fig. 3 summarizes the algorithm.

As we do not know which is the best sharing S(n), at

each iteration we search over all 2C − 1 possible sharing

patterns to find them one that minimizes eq. (3). Obviously

this is very slow. In Section III-B, we discuss a way to

speed this up by a constant factor, by reusing computation

at the leaves to compute the score for interior nodes of the

sharing graph. In Section III-C, we discuss a greedy search

heuristic that has complexity O(C2) instead of O(2C).

B. Efficient computation of shared regression stumps

To evaluate the quality of a node in the sharing graph, we

must find the optimal regression stump which is slow, since

it involves scanning over all features and all N thresholds

(where N is the number of training examples). However,

we can propagate most of the computations from the leaves

to higher nodes, as we now discuss.

At each boosting round, and for each isolated class (the

leaves of the graph), we compute the parameters a and

b for a set of predefined thresholds and for all features,

so as to minimize the weighted square error. Then, the

parameters a and b for each threshold and feature at any

other internal node can be computed simply as a weighted

combination of the errors at the leaves that are connected

with the node. The best regression parameters for a subset

of classes S is:

bS(f, θ) =

∑

c∈S bc(f, θ)w+
c (f, θ)

∑

c∈S w+
c (f, θ)

(8)

with w+
c (f, θ) =

∑N
i=1 wc

i δ(v
f
i > θ). Similarly for aS . For

each feature f , and each threshold θ, the joint weighted

regression error, for the set of classes S(n), is:

Jwse(n) = (1 − â2
s)

∑

c∈S(n)

w+
c + (1 − b2

s)
∑

c∈S(n)

w−

c +

+
∑

c/∈S(n)

N
∑

i=1

wc
i (z

c
i − kc)2 (9)

with âs = as + bs. The first two terms correspond to the

weighted error in the classes sharing a feature. The third

term is the error for the classes that do not share a feature

at this round. This can be used instead of Eq. 3, for speed.

C. Approximate search for the best sharing

As currently described, the algorithm requires comput-

ing features for all possible 2C −1 subsets of classes, so it

does not scale well with the number of classes. Instead of

searching among all possible 2C −1 combinations, we use

best-first search and a forward selection procedure. This

is similar to techniques used for feature selection but here
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1 2

3

Fig. 4. Illustration of joint boosting (top row) and independent
boosting (bottom row) on a toy problem in which there are three
object classes and one background class. 50 samples from each
class are used for training, and we use 8 rounds of boosting. Left:
The thickness of the lines indicates the number of classes sharing
each regression stump. Right: whiter colors indicate that the class
is more likely to be be present (since the output of boosting is
the log-odds of class presence [10]).

G
123

G
12

G
1

G
23

G
3

G
13

G
2

Fig. 5. Decision boundaries learned by all the nodes in the sharing
graph of Figure 2 for the problem in Figure 4

we group classes instead of features (see [14] for a review

of feature selection techniques).

At each round, we have to decide which classes are

going to share a feature. We start by computing all the

features for the leaves (single classes) as described in the

previous section. We select first the class that has the best

reduction of the error. Then we select the second class that

has the best error reduction jointly with the previously

selected class. We iterate until we have added all the

classes. We select the sharing that provides the largest

error reduction. The complexity is quadratic in the number

of classes, requiring us to explore C(C + 1)/2 possible

sharing patterns instead of 2C − 1. We can improve the

approximation by using beam search considering at each

step the best Nc < C classes. We found empirically that

using this approximate optimization (with Nc = 1) the

performance of the final classifier did not differ from an

exhaustive search (Fig. 6).

The experimental results in Section IV on object detec-

tion show that the algorithm scales well with the dimen-

sionality of the feature vector and the number of object
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Fig. 6. Comparison of number of stumps needed to achieve the
same performance (area under ROC equal to 0.95) when using
exact search, best-first, best pair, random sharing and no sharing
at each round. We use a toy data set with C = 9 classes plus a
background class in D = 2 dimensions. Both exact search and
the approximate best-first search provide the lower complexities.
The differences increase as more classes are used (Fig. 7).

classes.

D. Example of joint boosting on a toy problem

To illustrate the benefits of joint boosting, we compared

joint boosting with independent boosting on a toy data

set, which consists of C spherical “clouds” of data in D
dimensions, embedded in a uniform “sea” of background

distractors. Some results are shown in Fig. 4. This clearly

illustrates the benefit of sharing features when we can only

afford to compute a small number (here, 8) of stumps1. In

this case, the first shared function has the form G123(v) =
∑3

m=1 h123
m (v), meaning that the classifier which separates

classes 1,2,3 vs. the background has 3 decision boundaries.

The other nodes have the following number of boundaries:

M123 = 2, M12 = 2, M23 = 2, M13 = 0, M1 = 1,

M2 = 0, M3 = 1, so there are no pure boundaries for

class 2 in this example.

Fig. 6 illustrates the differences between the exact search

of the best sharing, the best first approximate search,

the best pairs only, a random sharing and one-vs-all (no

sharing). For this experiments we use only two dimensions,

25 training samples per class, and 8,000 samples for the

background. For each search algorithm the graph shows

the number of stumps needed to achieve a fixed level of

performance (area under the ROC = 0.95). In this result

1In this 2D example, the feature vectors are the projection of the
coordinates onto lines at 60 different angles coming from the origin.
For the higher dimensional experiments described below, we use raw
coordinate values as the features.
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Fig. 7. Complexity of the multiclass classifier as a function of
the number of classes. The complexity of a classifier is evaluated
here as the number of stumps needed for achieving a predefined
level of performance (area under the ROC of 0.95).

we use C = 9 classes so that it is still efficient to search

for the best sharing at each round using exact search. First

we can see that using the exact best sharing or the one

obtained using the approximate search (best first) provides

similar results. The complexity of the resulting multiclass

classifier (17 stumps) is smaller than the complexity of a

one-vs-all classifier that requires 63 stumps for achieving

the same performance.

Fig. 7 illustrates the dependency of the complexity of

the classifier as a function of the number of classes when

using different sharing patterns. For this experiments we

use 2 dimensions, 25 training samples per class, and

40,000 samples for the background. As expected, when

no sharing is used (one-vs-all classifier), the complexity

grows linearly with the number of classes. When the

sharing is allowed to happen only between pairs of classes,

then the complexity is lower that the one-vs-all but still

grows linearly with the number of classes. The same thing

happens with random sharing. A random sharing will be

good for at least two classes at each round (and for D

classes in D dimensions). It also performs better than

one-vs-all but still complexity grows linearly with respect

to the number of classes. However, when using the best

sharing at each round (here using best-first search), then

the complexity drops dramatically and the dependency

between complexity and number of classes follows a

logarithmic curve.

IV. JOINT BOOSTING APPLIED TO MULTICLASS OBJECT

DETECTION

Having described the joint boosting algorithm in gen-

eral, we now explain how to apply it to object detection.

Fig. 8. Each feature is composed of a template (image patch on the left)
and a binary spatial mask (on the right) indicating the region in which
the response will be averaged. The patches vary in size from 4x4 pixels
to 14x14.

22 21 3 432 3

Fig. 9. Each feature is approximated by a linear combination of separable
filters. The top-row shows the original patches, the middle row is the order
of the approximation required to have |ĝT

f
gf | > 0.95, and the bottom

row is the reconstruction of the patch. Using patches of 14 ∗ 14, each
convolution requires 196 operations per pixel and per feature on average.
The separable approximation requires 70 operations per pixel and per
feature on average.

The need for sharing features arises in several situations

in object detection:

1) Multi-class object detection: we want to share fea-

tures that are common to different types of objects.

2) Multi-view object detection: several points of views

of an object may share common visual appearances. For

example, a ball is very similar under different points of

view. On the other hand, the appearance of an object such

as a car or flat-panel monitor will change dramatically from

different viewpoints, requiring that different features be

used.

3) Location and scale invariant object detection: we want

to scan the image in location and scale to find the target.

Hence we have to apply the same classifier many times

in the image. If we can share computations at different

locations and scales, the search will be more efficient.

In this section, we concentrate on the first problem

(view-specific, multi-class detection).

A. Dictionary of features

In the study presented here we used 21 object categories

(13 indoor objects: screen, keyboard, mouse, mouse pad,

speaker, computer, trash, poster, bottle, chair, can, mug,

light; 7 outdoor objects: frontal view car, side view car,

traffic light, stop sign, one way sign, do not enter sign;

and also heads and pedestrians.).

First we build a dictionary of image patches by ran-

domly extracting patches from images of the 21 objects

that we want to detect. The objects were normalized in
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size in order to be centered in a square window of 32x32

pixels. To each patch we associated a spatial mask that

indicates the location from which the patch was extracted

from the original image (see Figure 8 for some examples

of the features). We generated a total of 2000 patches.

For each image region of standardized size (32x32

pixels), we compute a feature vector of size 2000. The

vector of features computed at location x and scale σ is

given by:

For each image region of standardized size (here 32x32),

we compute a feature vector of size 2000. Here we slightly

modify the notation from before, to make explicit the

location in the image at which the features are computed:

vf (x, σ) = (wf ∗ |Iσ ⊗ gf |
p)

1/p
(10)

where ⊗ represents the normalized correlation between

the image Iσ and the patch/filter gf , and ∗ represents the

convolution operator. wf (x) is a spatial mask/ window.

v(x, σ) is the vector of features computed at location

x and scale σ, and vf is the f ’th component of the

vector. Features corresponding to different scales σ are

obtained by scaling the image. The exponent p allows us

to generate different types of features. For example, by

setting p = 1, the feature vector encodes the average of

the filter responses, which are good for describing textures

([21]). By setting p > 10, the feature vector becomes

vf ≃ maxx∈Sw
{|Iσ ⊗ gf |}, where Sw(x) is the support

of the window for a feature at the location x. This is

good for template matching [30]. By changing the spatial

mask, we can change the size and location of the region

in which the feature is evaluated. This provides a way of

generating features that are well localized (good for part-

based encoding and template matching) and features that

provide a global description of the patch (good for texture-

like objects, e.g. a bookshelf).

For the experiment presented in this section we set p =
10, and we took the window wn to be localized around the

region from where the patch was extracted in the original

image, c.f., [30].

During training we extract thousands of patches from

training images and we have to compute the convolution

of each patch with each of the whole training images. The

computational cost can be reduced by approximating each

patch gf with a linear combination of 1D separable filters:

ĝf =

r
∑

n=1

unvT
n (11)

where un and vn are 1D filters and r is the order of

the approximation. This decomposition can be obtained

by applying SVD to the matrix gf [29], [16]. For each

filter, we chose r so that |ĝT
f gf | is larger than 0.95.

Fig. 9 shows examples of patches 14x14 pixels and their

separable approximations. Using patches of 14x14, each

Fig. 10. Examples of correct detections of several object detectors
trained jointly (screen, poster, cpu, bottle, trash, car frontal, car side,
stop sign, mug).

convolution requires 196 operations per pixel and per

feature on average. The separable approximation requires

70 operations per pixel and per feature on average.

Convolution with the masks wf can be implemented in

a small number of operations using the integral image trick

[31].

B. Results on multiclass object detection

For training we used a hand-labeled database of 2500

images. We train a set of 21 detectors using joint and

independent boosting. In both cases, we limit the number

of features to be the same in order to compare performance

for the same computational cost. Each feature is defined

by the parameters: {f, a, b, θ}, where f specifies an entry

from the dictionary, {wf (x), gf (x), pf}, and the parame-

ters {a, b, θ} define the regression stump.

Figure 10 shows some sample detection results when

running the detectors on whole images by scanning each

location and scale. Figure 11 summarizes the performances

of the detectors for each class. For the test, we use an

independent set of images (images from the web, and

taken with a digital camera). All the detectors have better

performances when trained jointly, sometimes dramatically

so.

Note that as we reduce the number of features and

training samples all the results get worse. In particular,

when training the detectors independently, if we allow

fewer features than classes, then some classifiers will have

no features, and will perform at chance level (a diagonal

line on the ROC). Even for the classifiers that get some
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Fig. 11. ROC curves for 21 objects (red (lower curve) = isolated detectors, blue (bottom curve) = joint detectors). For each object we show the ROC
obtained with different training parameters. From left to right: i) 70 features in total (on average 70/21 ≃ 3.3 features per object) and 20 training
samples per object, ii) 15 features and 20 training samples, and iii) 15 features and 2 training samples.

features, the performance can be bad — sometimes it is

worse than chance (below the digonal), because there is

not enough data to reliably pick the good features or to

estimate their parameters. Conversely, the jointly trained

detectors perform well even as we reduce the amount of

computation time and training data.

Figure 12 shows how the performance of the multiclass

detectors improve as we add rounds to the multiclass

boosted classifier and compares with respect to inde-

pendent boosted classifiers. The horizontal axis of the

figure corresponds to the number of features (rounds of

boosting) used for all the object classes. The vertical axis

shows the area under the ROC for the test set, averaged

across all object classes. When enough training samples

are provided, and many boosting rounds are allowed, then

both joint and independent classifiers will converge to

the same performance, as both are equivalent additive

classifiers. However, when only a reduced number of

rounds are allowed (in order to reduce computational cost),

the joint training outperforms the isolated detectors (see

also Fig. 11).

As more and more objects are trained jointly we expect

a larger improvement with respect to independent training,

as it will be possible to find more object sets that share

relevant features. We are currently increasing our database

to work with more objects.

C. Feature sharing

By training the objects using joint boosting, at each

round we find what is the feature that best reduces the total

multiclass classification error. Figure 13 shows an example

of a feature shared between two objects at one of the

boosting rounds. The selected feature can help discriminate

both trashcans and heads against the background, as is

shown by the distribution of positive and negative samples

a long the feature dimension. As this feature reduces the

error in two classes at once, it has been chosen over other

more specific features that might have been performed

better on a single class, but which would have result in

worst performance when considering the multiclass loss

function.

Figure 14 shows the evolution of the number of objects

sharing features for each boosting round.

Figure 15 shows the final set of features selected (the

parameters of the regression stump are not shown) and

the sharing matrix provided by jointBoosting that specifies
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Fig. 12. Evolution of classification performance of the test set as a
function of number of boosting rounds (or features). Performance is
measured as the average area below the ROC across all classes. Chance
level is 0.5 and perfect detection for all objects correspond to area= 1.
Both joint and independent detectors are trained using up to 70 features
(boosting rounds), 20 training samples per object and 21 object classes.
The dashed lines indicate the number of features needed when using joint
or independent boosting for the same performance.

how the different features are shared across the 21 object

classes. Each column corresponds to one feature and each

row shows the features used for each object. A white entry

in cell (i, j) means that object i uses feature j. The features

are sorted according to the number of objects that use

each feature. From left to right the features are sorted

from generic features (shared across many classes) to class-

specific features (shared among very few objects).

D. Specific vs. generic features

One important consequence of training object detectors

jointly is in the nature of the features selected for multi-

class object detection.

When training objects jointly, the system will look for

features that generalize across multiple classes instead on

focusing on class-specific features. The features selected

jointly are closer to edges and generic features typical of

many natural structures. Those features generalize better

and reduce considerably the computational cost of an

algorithm for multi-class object detection.

Other studies have argued about the superiority of class-

specific features against generic features (e.g., [30]). Object

detection algorithms based on the configuration of parts

(e.g., [30], [13], [9]) usually find parts that are class
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Fig. 13. Example of a shared feature (obtained at round 4 of joint
boosting) between two objects (heads and trash-cans) when training 8
objects jointly. The shared feature is shown at the bottom of the figure.
It is defined by an image feature (template and mask) and a regression
stump (a, b and θ). For each object, the blue graph shows an empirical
approximation to p(vf |zc = 0) (negative examples), and the red graph
shows p(vf |zc = 1) (positive examples). The x-axis represent the feature
indices f on an arbitrary scale.

specific. For instance, faces are decomposed into parts

that look like eyes, mouth, etc.; car detectors generally

identify parts that correspond to meaningful object parts

such as wheels. However, we argue that those parts are too

specific for building efficient multiclass object detection

algorithms that can scale to large number of objects with

low computational cost.

The human visual system is able to detect such mean-

ingful parts such as eyes, wheels, etc. In our framework,

those parts can also be detected as we can detect single

objects. There is no special status for a part. A wheel is

detected in the same way that we detect a car. Of course,

different objects can interact contextually. In that sense,

a wheel detector will improve the performances of a car

detector. But the car detector will not rely directly on the

wheel detector as in a part-based detection approach.

Fig. 16 illustrates the difference between class-specific

and generic features. In this figure we show the features

selected for detecting a traffic sign. This is a well-defined

object with a very regular shape. Therefore, a detector
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Fig. 15. Matrix that relates features to classifiers, which shows which features are shared among the different object classes. The
features are sorted from left to right from more generic (shared across many objects) to more specific. Each feature is defined by
one filter, one spatial mask and the parameters of the regression stump (not shown). These features were chosen from a pool of 2000
features in the first 40 rounds of boosting.
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Fig. 14. This graph shows how many objects share the same feature at
each round of boosting during training. Here we train 21 objects jointly
using 20 training samples for each object. Note that a feature shared
among 10 objects is in fact using 20 ∗ 10 = 200 training samples.

based on template matching will be able to perform

perfectly. Indeed, when training a single detector using

boosting, most of the features are class-specific and behave

as a template matching detector (see fig. 16b). But when

we need to detect thousands of other objects, we cannot

afford to develop such specific features for each object.

This is what we observe when training the same detector

jointly with 20 other objects. The new features (fig. 16c)

are more generic (configuration of edges) which can be

reused by other objects. Although the features are less

optimal for a particular object, the fact that we can allocate

more features for each object results in better performance

(fig. 11).

E. Computational cost

One important consequence of feature sharing is that the

number of features needed grows sub-linearly with respect

to the number of classes. Fig. 17 shows the number of fea-

tures necessary (vertical axis) to obtain a fixed performance

as a function of the number of object classes to be detected

(horizontal axis). When using C independent classifiers,

the complexity grows linearly as expected. However, when

joint boosting is used, the complexity is compatible with
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a) Object

b) Selected features by a single detector

c) Selected features when trained jointly

Fig. 16. Specific vs. generic features for object detection. (a) An
object with very little intra-class variation. (b) When training an
independent detector, the system learns template-like filters. (c)
When training jointly, the system learns more generic, wavelet-
like filters.

log(C). (A similar result has been reported by Krempp,

Geman and Amit ([15]) using character detection as a test

bed.) In fact, as more and more objects are added, we can

achieve good performance in all the object classes even

using fewer features than objects.

F. Learning from few examples

Another important consequence of joint training is that

the amount of training data requires is reduced. Fig. 11

shows the ROC for the 21 objects trained with 20 samples

per object, and also with only 2 samples per objects. When

reducing the amount of training, some of the detectors

trained in isolation perform worse than chance level (which

will be the diagonal on the ROC), which means that the

selected features were misleading. This is due to the lack

of training data, which hurts the isolated method more.

G. Grouping of object categories

We can measure similarity between two objects by the

number of features that they have in common. Figure 18
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Fig. 17. Number of features needed in order to reach a fix level of
performance (area under the ROC equal to 0.9). The results are averaged
across 8 training sets (and different combinations of objects). The error
bars show the variability between the different runs.

shows the result of a greedy clustering algorithm using this

similarity measure. Objects that are close in the tree are

objects that share many features, and therefore share most

of their computations. The same idea can be used to group

features (results not shown).

H. Loss function for multiclass object detection

We have given the same weight to all errors. But some

mislabelings might be more important than others. For

instance, it is not a big error if a mug is mislabeled as

a cup, or if a can is mislabeled as a bottle. However,

if a frontal view of a car is mislabeled as a door that

could be hazardous. Changing the loss function will have

consequences for deciding which objects will share more

features. The more features that are shared by two objects,

the more likely it is that they are going to be confused at

the detection stage. We leave exploring this issue to future

work.

V. MULTIVIEW OBJECT DETECTION

An important problem in object detection is to deal with

the large variability in appearances and poses that an object

can have in a scene. Most object detection algorithms deal

with the detection of one object under a particular point

of view (e.g., frontal faces). When building view invariant

object detectors, the standard approach is to discretize the
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Fig. 18. Clustering of objects according to the similarity induced by the joint Boosting procedure. Objects that are close in the tree are
objects that share many features and therefore, share most of the computations when running the classifiers on images. This clustering
is obtained by training jointly 21 objects, using 70 stumps and 50 training samples per object.
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Fig. 19. Examples of pose variations for cars and screens (the angles are approximate).

a) Multiview car detection with independent boosting for each view.

b) Multiview car detection with joint boosting.

Fig. 20. View invariant car detection (dashed boxes are false alarms, and solid boxes are correct detections). The figure shows a comparison of car
detections with a battery of binary classifiers for each view trained individually (a), and jointly (b). The joint training provides more robust classifiers
with the same complexity. In both cases, the classifiers were trained using 20 samples per view (12 views), and use 70 stumps in total. Both classifiers
are set in order to provide 80% detection rate. The independent training of each view provides poor results with over 8 false alarms per image. When
training the classifiers using joint boosting, the detector has 1 false alarm per image on average. Images are about 128x128 and contain more than 17000
patches to be classified.
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space of poses, and to implement a set of binary classifiers,

each one tuned to a particular pose (e.g., [26]).

In the case of multiple views, some objects have poses

that look very similar. For instance, in the case of a car,

both frontal and back views have many common features,

and both detectors should share a lot of computations.

However, in the case of a computer monitor, the front

and back views are very different, and we will not be

able to share features. By sharing features we can find a

good trade-off between specificity of the classifier (training

on very specific views) and computational complexity (by

sharing features between views).

One problem when discretizing the space of poses is to

decide how fine the discretization should be. The finer the

sampling, the more detectors we will need and hence the

larger the computational cost. However, when training the

detectors jointly, the computational cost does not blow up

in this way: If we sample too finely, then the sharing will

increase as the detectors become more and more correlated.

Figure 20 shows the results of multiview car detectors

and compares the classifiers obtained using independent

boosting training for each view and joint boosting. In

both cases, we limit the number of stumps to 70 and

training is performed with 20 samples per view (12 views).

Both classifiers have the same computational cost. The top

row shows typical detection results obtained by combining

12 independent binary classifiers, each one trained to

detect one specific view. When the detection threshold

is set to get 80% detection rate, independent classifiers

produce over 8 false alarms per image on average (average

obtained on 200 images not used for training). The bottom

row shows the results obtained when trained jointly the

twelve view specific classifiers. For 80% detection rate, the

joint classifier results in 1 false alarm per image. Images

for the test were 128x128, which produced more than

17000 patches to be classified. The detector is trained on

square patches 24x24 pixels. Fig. 21 summarizes the result

showing the ROC for both detectors.

We trained a set of classifiers H(v, c, θi), for each class

c and pose θi (with some tolerance). For those patches

in which the detector is above the detection threshold,

maxi {H(v, c, θi)} > th, we can estimate the pose of the

object as θ = argmaxθi
{H(v, c, θi)}. For some objects,

it is very difficult to estimate the direction (for instance,

for cars, the error is centered around π), so we might get

ties in the pose detector outputs. Figure 22 shows some

results in the estimation of the pose of a car.

VI. FEATURE SHARING APPLIED TO FACE DETECTION

AND RECOGNITION

Feature sharing may be useful in systems requiring

different levels of categorization. If we want to build a

system performing both class detection (e.g. chairs vs.
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Fig. 21. ROC for view invariant car detection. The graph compares the
ROC for the multiview classifier trained using joint boosting for 12 views
and using independent boosting for each view. In both cases, the classifier
is trained with 20 samples per view and only 70 features (stumps) are
used.

background) and instance-level categorization (e.g., recog-

nition of specific chairs), a common approach is to use

a two stage system: the first stage is built by training

a generic class detector (to detect any chair), and the

second stage is built by training a dedicated classifier to

discriminate between specific instances (e.g., my chair vs.

all others).

By applying the feature sharing approach, we can train

one set of classifiers to detect specific instances of objects.

The algorithm will find the commonalities between the

object instances deriving: 1) generic class features (shared

among all instances), and 2) specific class features (used

for discriminating among classes). This provides a natural

solution that will adapt the degree of feature sharing as a

function of intra-class variability.

One example of multiple level of categorization is in the

field of face detection and recognition. Most systems for

face recognition are built using two stages: the first stage

performing object detection and the second one performing

face recognition on the patches classified as faces. The

face detection stage is built by training a classifier to

discriminate between all faces and the background.

To illustrate the feature sharing approach, we have

trained a system to do face detection and emotion recog-

nition (the same approach will apply for other intra-class

discriminations like person recognition, gender classifica-

tion, etc.). We use the MacBrain Face Stimulus database

(Fig. 23). There are 16 emotions and 40 faces per emotion.

We use 5 faces of each class to build the feature dictionary

(2000 features). For training we used 20 additional faces
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Fig. 22. Examples of estimation of pose of cars. The polar plot
corresponds to H(v, θi).

AngryCloseAngryOpenCalmCloseCalmOpenDisgustCloseFearCloseFearOpen

HappyCloseHappyExtreme

DisgustOpen

HappyOpenSurprisedOpen SadCloseSadOpen NervousCloseNervousOpen

Fig. 23. Example of the emotions used. Development of the MacBrain
Face Stimulus Set was overseen by Nim Tottenham and supported by the
John D. and Catherine T. MacArthur Foundation Research Network on
Early Experience and Brain Development. Please contact Nim Tottenham
at tott0006@tc.umn.edu for more information concerning the stimulus set.

and 1000 background patches selected randomly from

images. The test is performed on the remaining faces

and additional background patches. The joint classifier is

trained to differentiate the faces from the background (de-

tection task) and also to differentiate between the different

emotions (recognition task).

Fig. 24 shows the features selected and the sharing

between the different emotion categories by applying

joint boosting. The first 5 features are shared across all

classes. Therefore, they contribute exclusively to the task

of detection and not to the recognition. For instance, the

smiling-face detector will have a collection of features that

are generic to all faces, as part of the difficulty of the

classification is in the localization of the face itself in a

cluttered scene. The training of a specific class detector

will benefit from having examples from other expressions.

Note that the features used for the recognition (not shared

among all classes) also contribute to the detection.

Fig. 25 summarizes the performances of the system on
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Fig. 25. This figure evaluates the performances of the joint classifier
by splitting both tasks, detection and recognition. (Top) ROC for face
detection, and, (Bottom) confusion matrix for emotion classification with
30 rounds of joint boosting and 15 emotion categories. The numbers
correspond to percentages.

detection and emotion recognition. The efficiency of the

final system will also be a function of the richness of

the dictionary of image features used. Here we use image

patches and normalize correlation for computing image

features as in the previous sections.

VII. SHARING FEATURES ACROSS LOCATIONS AND

SCALES

In object detection, the classifier is a function

H(v; x, σ, c), which returns +1 when the object class c is

present at location x and with scale σ, and -1 otherwise.

If the classifier only uses features that are local to a par-

ticular location/scale, it can be written as H(v; x, σ, c) =
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Fig. 24. Sharing matrix for face detection and emotion classification. This matrix shows the features selected using 30 rounds of boosting. The (face)
generic features are used to distinguish faces from non-faces (detection task), while the intra-class specific features perform both detection (distinguish
faces from the background) and recognition (distinguish among face categories).

H(v(x, σ); c). We will call this a “pointwise classifier”.

However, we can imagine using non-local features that

are shared across many locations and scales, as well as or

instead of being shared across classes. Hence we can write

H(v; x, σ, c) =
∑

m∈Sx,σ,c
hm (v), where Sx,σ,c denotes a

partition on classes, locations and scales.

We can build a graph for feature sharing across the

different partitions. A pointwise classifier will correspond

to one in which the set Sx,σ,c contains only features

that apply at location x, σ. At the other extreme we can

have features that are associated with a set that contains

all locations and scales in the image. Just as a feature

that is shared across all object classes is relatively cheap

computationally, so is a feature that is shared across all

locations and scales. Such global features can be used to

do contextual priming of objects [28]. As locations are

more numerous than object classes, having features that are

shared across many locations will provide a considerable

computational advantage.

VIII. CONCLUSION

We have introduced a new algorithm, joint boosting, for

jointly training multiple classifiers so that they share as

many features as possible. The result is a classifier that

runs faster (since it computes fewer features) and requires

less data to train (since it can share data across classes)

than independently trained classifiers. In particular, the

number of features required to reach a fixed level of

performance grows sub-linearly with the number of classes

(for the number of classes that we explored), as opposed

to the linear growth observed with independently trained

classifiers.

We have applied the joint boosting algorithm to the

problem of multi-class, multi-view object detection in clut-

ter. The jointly trained classifier significantly outperforms

standard boosting (which is a state-of-the-art method for

this problem) when we control for computational cost (by

ensuring that both methods use the same number of fea-

tures). We believe the computation of shared features will

be an essential component of object recognition algorithms

as we scale up to large numbers of objects.
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