
RAMBONODES for the
Metropolitan Ad Hoc Network

Jacob Beal and Seth Gilbert

AI Memo 2003-027 December 2003

© 2 0 0 3 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w . c s a i l . m i t . e d u

m a ss a c h u se t t s i n st i t u t e o f t e c h n o l o g y — co m p u t e r sc i e n ce a n d a r t i f ic ia l i n t e l l ig e n ce l a b o ra t o r y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

We present an algorithm to store data robustly in a large, geographically distributed network by
means of localized regions of data storage that move in response to changing conditions. For exam-
ple, data might migrate away from failures or toward regions of high demand. The PERSISTENTNODE

algorithm[2] provides this service robustly, but with limited safety guarantees. We use the RAMBO

framework[17, 11] to transform PERSISTENTNODE into RAMBONODE, an algorithm that guarantees
atomic consistency in exchange for increased cost and decreased liveness. In addition, a half-life anal-
ysis of RAMBONODE shows that it is robust against continuous low-rate failures. Finally, we provide
experimental simulations for the algorithm on 2000 nodes, demonstrating how it services requests and
examining how it responds to failures.

1 Introduction

As wireless devices proliferate and multiply in numbers, it will become increasingly impractical to admin-

ister them on a per-device level. An attractive alternative is to have the devices self-organize intoad hoc

computing platforms.

A key problem that must be addressed for any such platform is data storage. If a user is to entrust her data

to a distributed system, she must be able to trust that her data will not be lost, will remain readily accessible,

and will be consistent. This is not only a user-level issue: robust, atomic memory is a fundamental building

block of many distributed algorithms and facilitates the construction of higher level services.

The PERSISTENTNODE algorithm[2] implements a virtual mobile node that travels through the static

network, servicing read/write memory requests. Each PERSISTENTNODE is a key/value pair replicated

on a set of topologically close members of the network. Once created, a PERSISTENTNODE engages in

self-repair and migrates through the network in response to changing conditions — for example, a PERSIS-

TENTNODE may be programmed to avoid regions where failures have occurred, or to move toward regions

where its data is in demand. PERSISTENTNODE is designed with large, geographically distributed networks

(e.g., a MetropolitanAd HocNetwork) in mind. It operates correctly, however, in general networks, albeit

poorly in networks of low diameter.

The problem with PERSISTENTNODE is that while the data is robust and remains live under extreme

failure conditions, the atomicity guarantee holds only under certain, specific conditions. In this paper, we

augment PERSISTENTNODE using the RAMBO framework[17, 11], trading increased communication cost

∗The first author is partially supported by DARPA grant ONR N00014-02-1-0721. The second author is partially supported
by NSF ITR Grant 0121277, AFOSR Contract #F49620-00-1-0097, DARPA Contract #F33615-01-C-1896, NSF Grant 64961-CS,
and NTT Grant MIT9904-12.

1

and decreased liveness for unconditional atomicity, and calling the resulting algorithm RAMBONODE. An

important contribution of this work, then, is examining the trade-off between consistency and availability in

the MAN setting.

The RAMBONODE algorithm is also the first implementation of a RAMBO-based algorithm which in-

cludes all reconfiguration details. Prior work on RAMBO left out several practical components of the algo-

rithm necessary for a real implementation of atomic memory. For example, it was assumed that an external

service determined who the current owners of the data should be and when reconfigurations should occur.

As a result, in devising RAMBONODE, we answered a number of open questions presented in [11] regarding

the practical implementation of a RAMBO algorithm.

As a result, we are able to make stronger performance guarantees than are possible in the prior RAMBO

papers. In particular, we focus on showing that the RAMBONODE algorithm can tolerate continuous, ongo-

ing failures, as long as the rate of failures in any region of the network is not too high. This type of failure

analysis, while immensely useful in understanding the real-world applications of an algorithm, is relatively

rare among formally analyzed algorithms, and therefore is an important property of our new algorithm.

In this paper, then, we present and analyze the RAMBONODE algorithm. First, in Section 2, we provide

a brief overview of the MAN setting and the general network model. In Section 3, we summarize the PER-

SISTENTNODE algorithm and the RAMBO algorithm. In Section 4 we describe the RAMBONODE algorithm

in more detail, and in Sections 5 and 6 we provide a formal analysis of the algorithm, proving atomicity and

conditional performance guarantees. We also compare the theoretical performance of RAMBONODE with

PERSISTENTNODE, in order to understand the cost of consistency. We then present experimental results

from simulations on 2000 nodes in Section 7, confirming our theoretical results.

2 The MAN System Model

In this section, we first describe the challenges posed by the MetropolitanAd HocNetwork (Section 2.1).

We then present, more formally, the network model used in this paper (Section 2.2). Finally, we compare

the MAN setting to other related types of networks, and discuss how our work compares to algorithms

developed for these networks (Section 2.3).

2

2.1 The MetropolicanAd HocNetwork

In the MAN scenario[22] we consider a large city, populated by millions to billions of computational devices,

each connected to its nearby neighbors by short-range wireless links. The MAN setting introduces several

difficult challenges, and a key contribution of this paper is an algorithm capable of handling these issues:

• Locality: Short-range communication links imply that the network has a high diameter, and thus the

cost of communication will be dominated by the number of hops a message must travel. This also

means that many tasks, for example, memory coherence, are significantly cheaper for geographically

local algorithms.

• Continuous Failure: With millions or billions of nodes, it is unrealistic to talk about a certainnumber

of failures during execution of the algorithm. Rather, we consider therate of failure within a unit of

geographic area.

• Immobility: The sheer number of nodes in the network implies that most nodes can be assumed to

be immobile most of the time. (We assume that the most nodes are only moved by the actions of

humans.)

• Self-Organization: Direct administration of a network this large is impractical (to say the least), partic-

ularly under assumptions of continuous failure. Accordingly, these systems must be self-organizing,

requiring minimal human intervention, and they must adapt robustly to changes in the network topol-

ogy.

• No Infrastructure: We make no dependence on any pre-organized network structure, notably including

routing, naming, and coordinate services. While much research has been done on these infrastructural

services, it still remains quite challenging, especially in practice, to reliably provide these services in

such a difficult environment.

Other usage of the MAN setting includes Beal’s prior work with the PERSISTENTNODE algorithm in [2]

and in [3], where persistent nodes are used to partition the network into clusters that can be grouped together

to form a hierarchical partition of the network suitable for tasks like routing.

3

2.2 Formal Details

More formally, the MAN consists of an unknown, though bounded, number of partially synchronous nodes.

Nodes may fail by stopping (crashing). A node that has failed may restart, as long as it chooses a new unique

process identifier (and reinitializes its state).

The nodes are placed on a two-dimensional plane,1 and they are connected by a network that allows any

node to send a message to any other nearby node (i.e., any node within a fixed, small distance). For the

purposes of correctness, no assumption is made as to how long a message takes to be delivered, or whether

it is lost in transit.

2.3 Relation to Sensor Networks

The study of networks with some of the properties of a MetropolitanAd Hoc Network has often fallen

under the rubric of “sensor networks” (e.g., [12, 20, 5]). There are a number of aspects that differentiate

the MetropolitanAd HocNetwork setting from traditional sensor network applications. While the results

described in this paper are equally applicable in more typical sensor networks, we were motivated by the

example of the MAN, and the PERSISTENTNODE and RAMBONODE algorithms were designed with that in

mind.

Much of the research on sensor networks is organized around the collection and propagation of sensor

data. Consider, for example, a typical sensor network application, the TinyDB project[19], that has imple-

mented a real-time database that stores consistent data. The database allows a special designated “root”

node to access distributed sensor data, by issuing complex queries. In our model, there is no special root

node, and any node can access the shared memory. In general, we want to enable a MAN to support higher

level distributed computation, not just to collect and process data from real-time sensors.

Another aspect typical of sensor networks research is the severe resource constraints imposed by the

tiny, lightweight sensor devices: the tiny motes have small batteries and small processors. In contrast, nodes

in the MAN environment are not necessarily as resource limited: MAN nodes are not necessarily small, and

may be connected to power sources.

As in sensor networks, however, communication bandwidth is a limited resource. With billions of nodes

all attempting to participate in the algorithm, it is important to limit the amount of data transmitted between

1Note that this is significantly stronger than the assumptions necessary for the results presented in this paper.

4

nodes.

3 Background

In this section, we discuss two prior algorithms, PERSISTENTNODE and RAMBO. Components of both

of these algorithms play an important role in the new algorithm, and it is therefore useful to review these

algorithms.

PERSISTENTNODE In an earlier memo [2], Beal began considering the problem of geographically-optimized

atomic memory in the MAN setting, and developed the PERSISTENTNODE algorithm. In this algorithm, a

cluster of nodes is designated to maintain replicas of the atomic data. This cluster can be thought of as a

“virtual mobile node” that travels around the network according to certain movement rules. The PERSIS-

TENTNODE moves by occasionally choosing a new set of nearby replicas (generally almost identical to the

current set) and sending the data to these new nodes. By choosing the new nodes according to its movement

rules, the PERSISTENTNODE is able to maintain the data far away from failed regions of the network and

near to where the data is needed.

The PN algorithm is the direct predecessor of the algorithm presented in this paper. While the PER-

SISTENTNODE algorithm implements an atomic shared memory, data consistency is timing dependent: if

too many messages between nodes are delayed or lost, atomic consistency is no longer ensured. Our goal,

then, is to guarantee atomic consistency, regardless of whether the network is delivering messages rapidly

or reliably.

RAMBO We transform the PERSISTENTNODE algorithm using the RAMBO framework (Reconfigurable

Atomic Memory forBasicObjects), an algorithm developed by Lynch, Shvartsman, and Gilbert to provide

atomic memory in highly dynamic networks.[17, 11] They show that RAMBO guarantees atomic consistency

in all executions, regardless of all forms of asynchrony and failures: delayed messages, lost messages, failed

nodes, etc.

The RAMBO algorithm, however, is presented in a fairly abstract form, and is missing many components

needed for a practical implementation. In particular, it does not specify what configurations (i.e. quorums

of replicas) should be used; nor does it specify when to initiate reconfiguration. Also, RAMBO assumes an

5

all-to-all communication network, and therefore does not operate well in the MAN setting. A contribution

of this work, then, is the design of an algorithm using the RAMBO framework that is adapted to the MAN

setting.

The RAMBO algorithm uses replicas to provide fault tolerance. In order to ensure consistency among

replicas, each write operation is assigned a unique tag, and these tags are then used to determine which value

is most recent.

The RAMBO algorithm usesconfigurationsto maintain consistency. Each configuration consists of a set

of participants and a set ofquorums, where each pair of quorums intersect. Quorums were first used to solve

the problem of consistency in a replicated data system by Gifford [8] and Thomas [23] and much research

has followed from this. Of particular note, Attiya, Bar-Noy and Dolev [1] use majorities of processors to

implement consistent atomic memory, and their approach is extended by the RAMBO algorithm.

The RAMBO algorithm allows the set of replicas to change dynamically, allowing the system to respond

to failures and other network events. The algorithm supports a reconfiguration operation that chooses a new

set of participants and a new set of replica quorums. Other earlier algorithms also address the reconfiguration

problem (e.g. [6, 13, 21, 7, 4]), but RAMBO provides more flexibility, and is therefore more suitable for our

application. In particular, it decouples the read and write operations from the reconfiguration process, so

that even during a long reconfiguration, read and write operations can complete rapidly. For more details

comparing these algorithms, see the full RAMBO paper [18].

Each node maintains a set of active configurations. When a new configuration is chosen, it is added

to the set of active configurations, and when a configuration upgrade operation occurs (upgrading the most

recent active configuration), old configurations can be removed from the set of active configurations.

When a node wants to perform a read or a write operation, it performs a two phase operation. In each

phase, the node communicates with one quorum from each active configuration. Since all pairs of quorums

in a configuration intersect, this ensures atomic consistency.

An important feature of RAMBO is the decoupling of the reconfiguration mechanism and the read/write

mechanism: a separate service is used to generate and agree on new configurations, and the read/write

mechanism uses all active configurations. In order to determine an ordering on configurations, a separate

consensus service, implemented using Paxos [14], for example, is used.

6

Figure 1: Screenshot from a simulation of RAMBONODE on a 2000 node MAN. Black nodes at the center
are in the configuration. Medium gray nodes surrounding the center participate in gossip communication,
but are not members of the configuration. Light gray nodes are non-participating. Light gray lines indicate
communication links.

RAMBO NODE vs. PERSISTENTNODE The use of RAMBO improves on the PERSISTENTNODE algorithm by

guaranteeing consistency, while maintaining the ability to tolerate significant and recurring failures. On the

other hand, the new algorithm is more expensive, requiring significantly more state and communication, and

provides reduced availability: the PERSISTENTNODE algorithm can return a response if even one replica

remains active and timely. Since it is impossible to guarantee a consistent, available, partition-tolerant

atomic memory [10], this work allows us to explore the trade-off between consistency and availability in

the MAN setting: the new algorithm guarantees consistency, but is only available when the network is

well connected; the PERSISTENTNODE algorithm guarantees availability at all times, but only guarantees

consistency when the network is well connected.

4 RAMBONODES

The RAMBONODE algorithm consists of a PERSISTENTNODE configuration service combined with the

read/write mechanism in RAMBO and the Paxos consensus esrvice. See Figure 2 for a high level descrip-

tion of the algorithm. We first discuss some general issues related to communication, then we present the

RAMBONODE reconfiguration algorithm, and finally present the read/write algorithm.

7

Read/Write Operations:

For a write operation at nodei:

1. Gossip until nodei receives tag/value from a majority of nodes in active configurations.

2. Choose new tag.

3. Gossip until nodei receives acknowledgments that a majority of nodes in active configurations have received new
tag/value.

For read operation at nodei:

1. Gossip until nodei receives tag/value from a majority of nodes in active configurations.

2. Begin second phase.

3. Gossip untili receives acknowledgments that a majority of nodes in active configurations have received tag/value.

Reconfiguration:

If nodei is the center, or a neighbor ofi fails:

1. Designate a neighbor to initiate a reconfiguration.

If a neighbor designatesi to initiate a reconfiguration:

1. Initiate broadcast/convergecast to choose new members.

2. Initiate Paxos consensus to agree on the new configuration.

3. Add configuration outputted by Paxos to the set of active configurations.

Configuration Upgrade:

If there is more than one active configuration:

1. Gossip untili receives a tag/value from a majority of nodes in all old configurations.

2. Note largest tag/value.

3. Gossip until nodei receives acknowledgments that a majority of nodes in the new configuration have received the
tag/value.

4. Mark old configuration as removed.

Figure 2: High level description of the RAMBONODE algorithm for nodei.

4.1 Communication

RAMBO as previously specified depends on gossip-based, all-to-all communication: every so often, every

node sends portions of its state to every other node. The gossip based nature of RAMBO makes it conducive

to the MAN setting; however the algorithm must be adapted to require only local communication, rather than

all-to-all communication. To this end, we implement a local communication gossip service. The local gossip

flows through all active participants, plus all other nodes withink hops of an active participant, allowing

communication across small gaps between active participants.

Much of the algorithm proceeds in phases. In each phase, the initiating node begins gossiping with its

neighbors. When it learns that a majority of nodes have received gossip messages from that phase, then the

8

phase is complete.

4.2 Reconfiguration

At any given time, there exists a tight cluster of nodes maintaining replicas of the atomic data. Therefore,

the active participants in our algorithm are a set of nodes within a radius,P , of the last node to successfully

complete a reconfiguration. We refer to the node that initiated the last reconfiguration as thecenterof the

configuration. Later, when analyzing the performance of the algorithm, for the sake of simplicity we assume

a bound on the maximum density of the network in order to limit the number of active participants. Alternate

mechanisms to limit the number of participants (such as decreasingP during times of high density) could

easily be developed.

Every so often, a reconfiguration occurs, choosing a new center and a new set of participants. In the nor-

mal case, when the center does not fail and the messages sent by the center are delivered, the center chooses

one of its neighbors to be the new center, based on an arbitrary distributed heuristic function calculated by

gossip among the members of the configuration (as in the PERSISTENTNODE algorithm). This function

may be used to bias the direction in which the data moves; for example, the function may attempt to choose

a direction in which fewer nodes have failed or from which more nodes send read and write requests. The

chosen neighbor then runs a broadcast/convergecast to generate a proposal for a new configuration.

On the other hand, if failures occur and some arbitrary node in the current set of participants notices

that a neighbor has failed (in particular, if a parent in the spanning tree rooted at the center fails), then the

node anoints one of its neighbors to try to become the new center. This chosen neighbor then also runs a

broadcast/convergecast to generate a proposal for a new configuration.

As a result, in the common case, only one node attempts to start a new configuration. In the case where

there are failures, many nodes may attempt to become the center of the new configuration. Either way, it is

guaranteed that at least one node attempts to start a new configuration.

This mechanism essentially implements an eventual leader-election service sufficient to guarantee the

liveness of the Paxos consensus algorithm. Each prospective configuration is then submitted to the Paxos

consensus service, which ensures that only one of the potentially many prospective leaders succeeds.

The Paxos protocol involves two rounds of gossip (i.e., two phases) in order to agree: in the first, a

majority of the old configuration is told to prepare for consensus; in the second, a majority of the old

9

x

(a) Old Configuration

x

(b) Request Heuristic

x

(c) Accumulate Heuristic

xx

(d) Discover Members (e) Gossip Consensus

x

(f) New Configuration

Figure 3: Changes to a new configuration (and location) occur via the following sequence. From the old
configuration [a] the centermost node (shown by an x) sends out a poll [b] requesting “goodness” estimates
from everything within distance 2r of the node. These are accumulated to the center [c] which uses it to
chooses a high-value nearby node as candidate to become the new center. The new center candidate runs a
convergecast to discover what nodes will be in the new configuration [d] and gossips for Paxos consensus on
the new configuration [e]. If consensus succeeds, then the new configuration is installed [f]. Under failure,
this process runs identically, except that it may be multiplied by many nodes believing they are centermost
and some processes dying.

10

configuration is required to vote on the new configuration. (See [14] for more details on Paxos.) When

this is complete, the new configuration is added to the list of active configurations; this information spreads

through gossip to members of the old and new configurations.

4.3 Configuration Upgrade

In order to remove old configurations from the set of active configurations, anupgradeoperation occurs

that upgrades the new configuration, transferring information from the old configurations to the new con-

figuration. The upgrade operation requires two phases. In the first phase, a node gossips to ensure that it

has a recent tag and value. When it has contacted a majority of the nodes in every old configuration, the

second phase begins. In the second phase, the node ensures that a majority of nodes in the new configuration

receive the recent tag and value. When a majority of nodes in the new configuration have acknowledged

receiving the tag and value, the upgrade is complete and the old configurations can be removed. The removal

information spreads through gossip to all participants.

4.4 Read/Write Operations

Each read or write operation consists of two phases. In each phase, the node initiating the operation commu-

nicates with majorities for all active configurations. For the moment, we assume that every node initiating a

read or write operation is near some member of an active configuration. If this is not the case, some alternate

routing system is used to direct messages to a node that is nearby, which can then perform the read/write

operation: in the MAN setting, we focus on local solutions to problems.

We first consider a write operation. In the first phase of the operation, the initiator attempts to determine

a new unique tag. The initiating node begins gossiping, collecting tags and values from members of active

configurations. When the initiator has received tags and values from a majority of nodes in every active

configuration, the first phase is complete. The node then chooses a new, unique tag larger than any tag

discovered in the first phase. At this point, the second phase begins. The initiating node begins gossiping

the new tag and value. When it has received acknowledgments from a majority of nodes from every active

configuration, the operation is complete.

A read operation is very similar to a write operation. The first phase again contacts a majority of nodes

from each active configuration, and thus learns the most recent tag and value. The second phase is equivalent

11

to the second phase of a write operation: the discovered value is propagated to a majority of nodes from

every active configuration. This second phase is necessary to help earlier write operations to complete; if

the initiator of an earlier write operation fails or is delayed, the later read operation is required to help it

complete. This is necessary to ensure atomic consistency.

5 Atomic Consistency

In this section, we show that the RAMBONODE algorithm guarantees atomic consistency in all executions.

The RAMBONODE algorithm was developed using the RAMBO framework, and therefore the proof of

atomic consistency closely follows that presented in [9]. We sketch the important ideas here.

In order to show that an algorithm guarantees atomic consistency, it is sufficient to show that for every

execution,α, of the algorithm, there exists a partial ordering,≺, of the read and write operations with the

following properties: (i) the partial order,≺, totally orders all write operations inα, (ii) the partial order,

≺, orders every read operation inα with respect to every write operation inα, (iii) for each read operation,

if there is no preceding write operation in≺, then the read operation returns the initial value; otherwise,

the read operation returns the value of the unique write operation immediately preceding it in≺, and (iv) if

some operation,π1, completes before another operation,π2, begins, thenπ2 does not precedeπ1 in ≺. If π2

is a write operation, thenπ1 ≺ π2. (See Lemma 13.16 in [16].)

In our case, we choose a partial ordering that is consistent with the sequence tag associated with each

operation. Properties (i)–(iii) are self-evident; we discuss Property (iv) in further detail.

Lemma 5.1 Assumeπ1 andπ2 are two read or write operations such thatπ1 completes beforeπ2 begins.

Thentag(π1) ≤ tag(π2), and as a result,π2 ⊀ π1; if π2 is a write operation, thentag(π1) < tag(π2), and

as a result,π1 ≺ π2.

Proof (sketch). If the sets of active configurations overlap, then this lemma follows from the quorum

intersection property. That is, if there is some configuration,c, active both during the second phase ofπ2

and the first phase ofπ1, thenπ1 must have updated a write-quorum ofc, andπ2 queried a read-quorum of

c. As a result,tag(π1) ≤ tag(π2), and ifπ2 is a write then the inequality is strict.

Let s1 be the largest configuration active during the second phase ofπ1. Let s2 be the smallest configu-

ration active during the first phase ofπ2. Assume thats1 < s2. Otherwise, it must be the case that there is

12

some configuration that was active during both operations.

Then there must exist some sequence of configuration-upgrade operations,γ1, γ2, . . . , γk that occur

betweenπ1 andπ2 and remove all the configuration that are smaller thans2 and≥ s1. (Otherwise, configu-

rations1 would still be active whenπ2 began.)

We can find such a sequence wheretag(γ1) ≤ tag(γk), i.e., each upgrade operation passes on the tag

to the next operation. It is also not difficult to show thattag(γk) ≤ tag(π2) (and the inequality is strict if

π2 is a write operation), sinces2 is the smallest active configuration duringπ2. Similarly, we realized that

tag(π1) ≤ tag(γ1).

We therefore conclude thattag(π1) ≤ tag(γ1) ≤ tag(γk) ≤ tag(π2), and ifπ2 is a write operation the

inequality is strict. �

Having shown that the partial ordering meets the four requirements for atomicity, we can state the following

theorem:

Theorem 5.2 TheRAMBONODE algorithm guarantees atomic consistency in all executions, regardless of

the number of failures, messages lost or delayed, or other asynchronous behavior.

6 Conditional Performance Analysis

We next consider the liveness properties of our implementation. In this section, we show that as long as the

rate of failure is not too high, read and write operations will always complete rapidly (and the RAMBONODE

will not fail). We first present some additional assumptions needed to guarantee liveness (Section 6.1), and

then we prove that if these conditions are met, we realize good performance (Section 6.2). Finally, we

discuss some of the implications of the theoretical results (Section 6.3).

6.1 Assumptions

Good performance of our algorithm depends on four additional, reasonable, assumptions about the way in

which failures occur and the network on which the algorithm runs:(a)Half Failure, (b) Partition Freedom,

(c) Reliable Message Delivery, (d) Maximum Network Density,

13

Half-Failure The Half-Failure assumption is the most important additional assumption. It requires that

the rate of failure in any given part of the network not be too high. If too many nodes in one area can fail,

then no localized algorithm can hope to succeed, and an alternate global algorithm must be used to maintain

the data.

We say that a timed execution satisfies(P,H)-Half-Failure if for all balls of radiusP , for every interval

of time of lengthH, fewer than half the nodes in the ball fail during the interval.

The Half-Failure assumption is a generalization of the bounded half-life criteria, introduced by Karger,

Balakrishnan, and Liben-Nowell [15]. They require that over a specified half-life, fewer than half the active

nodes fail, and no more than twice the nodes join. The smaller the half-life of an algorithm, the higher rate

of failure it can tolerate.

We modify their definition by focusing on a localized region of the network (i.e., any ball of radiusP),

and we ignore the limitations on joining (as that has no negative effect on our algorithm).

Partition-Freedom ThePartition-Freedomassumption ensures that nearby nodes are really able to com-

municate efficiently with each other. If a partition occurs in the network, our algorithm continues to guar-

antee consistency; however it is impossible to guarantee fast read and write operations. We require first that

there are no partitions in the network. We also require that the route between any two nearby nodes does not

grow too long: if two nearby nodes are forced to communicate through a long chain of intermediate nodes,

then it is effectively a “local” partition and read and write operations may be delayed.

We say that a timed execution guarantees(P, k)-Partition-Freedomif for all nodesi andj that are within

2P distance units of each other, there is always a route fromi to j of length less than4kP hops2.

Reliable Message Delivery Assume thati andj are two nodes in the network, and that the distance fromi

to j is less than the communication radiusr. We assume that every message sent byi to j is received within

timed. (In practice, we can tolerate some messages being lost or delayed, as long as information arrives by

some channel within the necessary time bounds.)

Network Density Lastly, we assume that nodes are not too densely distributed anywhere on the network.

We say that a network is(P,N)-Denseif for every ball of radiusP in the network, there are no more than

2The algorithm is more robust when implemented withk larger; for the analysis we will assumek = 1

14

2N nodes in the ball.

In practice, this is not a particularly severe restriction. It is always possible to chooseP smaller, in order

to reduce the density. Alternatively, excess nodes could always sleep, saving energy.

6.2 Liveness Analysis

In this section, we present our theoretical performance results, and a few of the ideas in the proof. Details

have been omitted due to lack of space.

For the rest of this section, we assume that the requirements of Section 6.1 hold. We show that read and

write operations are guaranteed to terminate rapidly.

Chooseδ = 4Pd, the time in which any two nodes in a configuration of radiusP can communicate.

As in all quorum-based algorithms, liveness depends on a quorum (i.e., a majority) of the nodes in

active configurations remaining alive. The primary difficulty in ensuring that operations complete rapidly is

actually in ensuring that enough nodes remain alive in each configuration for the operations to complete at

all:

Lemma 6.1 If π is a read or write operation, and throughout the duration ofπ a majority of nodes in each

active configuration fail, thenπ terminates in8 · δ.

In order to show that a majority of nodes in a configuration remain alive, we need to determine how

long it takes for a new configuration to be fully installed. The key part of this proof is showing that Paxos

terminates quickly, outputting a new configuration. Notice that Paxos itself will only complete if a majority

of nodes in the prior configuration remain alive. Therefore we must assume that the half-life,H, of the

algorithm is large enough to allow Paxos to terminate.

Lemma 6.2 If H > (40 + 22 ·N) · δ, then Paxos will output a decision within time11 · δ ·N .

We can then prove the main result by combining Lemmas 6.1 and 6.2:

Theorem 6.3 AssumeH > (40 + 22 · N) · 4 · P · d. Then every read and write operation initiated at a

non-failing node that remains a participating node completes within time8δ = 32 · P · d.

The argument here is similar to that in [18], Theorem 8.17, which shows that as long as the algorithm

guarantees enough configuration viability, then read and write operations terminate rapidly.

15

Maximum Failures per 10 Minutes

-5

5

15

25

35

45

55

0 10 20 30 40 50 60 70 80 90 100

Maximum Density per Square Unit of Distance

M
ax

 F
ai

lu
re

s
p

er
 1

0
M

in
u

te
s

Radius 2
Radius 4
Radius 8

(a) Constant Minimum Density

Maximum Failures per 10 Minutes

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

Radius (in units of distance)

M
ax

 F
ai

lu
re

s
p

er
 1

0
M

in
u

te
s

(b) Minimum Density Equals 1/100 Maximum Density

Figure 4: Theoretical maximum rate of failure that the RAMBONODE algorithm can tolerate, when each
node communicates with its neighbors once per millisecond. Graph (a) assumes a constant minimum den-
sity, i.e., that regions remain populated by at least a few nodes at all times. As long as the maximum
density is not too large, or the radius of the RAMBONODE is not too big, then a reasonable rate of failures
is tolerated. Graph (b) assumes instead that there is a bounded ratio between the minimum density and
the maximum density, i.e., that the density stays within a predetermined range. In this case, the maximum
density has little effect on the allowable rate of failure. The radius of the RAMBONODE is the important
parameter. As long as the radius is not too large, a reasonable rate of failures is tolerated.

6.3 Discussion

In order to put the numbers in perspective, imagine anad hocsensor network in which nodes are deployed

with a density of ten units per square meter. (For example, imagine a smart dust application.) Choose a

radius of six meters for a configuration, and assume that adjacent nodes can communicate in one millisecond.

Then Theorem 6.3 requires only that no more than 50 units fail every five minutes. Except in a catastrophic

scenario, this rate of failure is extreme. In smaller configurations, it becomes even easier to satisfy the

Half-Failure property; in the same system, with configuration of radius one, it is only necessary to ensure

that no more than half the units fail in a 1.6s interval. Similarly, decreasing the density only helps reduce

the Half-Failure interval, though also decreasing the allowable failure rate. (Figure 4 graphs the permitted

failure rates.)

16

Configuration Time per Theoretic Worst Time per
Radius Read/Write Case Read/Write Recon
Rambo
2 hops 7.91 64 81.2
3 hops 11.59 96 113.5
4 hops 16.45 128 149.3
PersistentNode
2 hops 6 6 26
3 hops 9 9 34
4 hops 12 12 42

Figure 5: Comparison of RAMBONODE and PERSISTENTNODE latencies, for configurations of varying
radius. Average time per operation and average time per reconfiguration in the failure-free case, along with
theoretic worst-case latency for read/write and recon operations in failure-prone executions, in units ofd,
whered is the maximum time for a message to travel between two neighboring nodes, andN is the expected
number of nodes in a configuration.

350 400 450 500 550
*

* *
*

*

*

*

*

*
*

*

* *
*

*

*

*

*
*

*
*

*

*

*

*
*

*

* *
*

*

*
*

*

*

*

*

*

*
*

*

*

*

Write Ops
TIME
Read Ops

Figure 6: Experiments simulating 2000 particles produce atomic traces of a radius three RAMBONODE.
This diagram shows serialization points (asterisks) for 43 operations, excerpted from a 316 operation trace
(including events for operations not completely contained in the trace).

7 Experimental Results

We implemented the RAMBONODE algorithm in order to verify that it behaves as predicted.3 See Figure 1

for a screenshot of a simulation in progress. As expected, every execution of RAMBONODE is atomic.

We ran experiments to determine the effect of node diameter and error rate on performance. These experi-

ments demonstrate the robustness of the algorithm, but also illustrate the expenses incurred by guaranteeing

consistency.

We ran the implemented algorithm in a partially synchronous, event-based simulator with 2000 particles

distributed randomly on a unit square. Communication channels link all particles within 0.04 units of one

another, yielding a network graph approximately 40 hops in diameter. At the beginning of a run a random

particle is selected to create the initial configuration. During the experiment particles involved in an active

3Code written by Jacob Beal is available online at:
http://www.swiss.ai.mit.edu/projects/amorphous/Dynamic/demos/hlsimJ/

17

configuration randomly invokereadandwrite operations. Failures are simulated by deleting a particle and

filling its place with a new one — this happens to any given particle in any given round with probabilitypk.

We verified the correctness of the algorithm by serializing events into a sequence of atomic operations.

As expected, all runs preserved atomicity, even with quite high rates of failures. (Of course, when the failure

rates were too high, operations did not complete; however consistency was never violated.) Figure 6 contains

a typical fragment of an event trace. This excerpt (from a radius three RAMBONODE) contains 32 events, of

which 24 event comprise 12 complete operations and eight are part of operations not completely contained

in the timespan considered. The serialization points have been inserted for the entire 337 operation sequence

to verify atomicity.

Read and Write Latency In Figure 5, we present data on the latency of various operations. The simulation

data in this figure comes from failure free executions of the algorithm on 2000 nodes. (Simulations with

small rates of failure were quite similar.) Read and write operations take, on average, time proportional to

twice the diameter of the configuration. This is a result of the two phase operations: in each phase, the

initiating node must communicate with other nodes that are, on average, half the diameter’s distance away;

round-trip communication with these nodes takes time proportional to the diameter of the configuration.

(See Appendix A for more detailed execution data.)

It is also interesting to note that the worst case latency for read and write operations is significantly

worse. This can be attributed to two main factors. First, failures can significantly increase the time an

operation takes. The Partition-Failure assumption allows failures to occur in such a way as to double the

cost of communication. Also, the pattern of failures may ensure that only the most distant nodes in a

configuration remain alive. Second, inopportune reconfiguration can also have some effect on read and write

latencies; in particular, if a reconfiguration completes just before an operation completes, the operation must

now contact a quorum from the new active configuration.

Reconfiguration Latency Choosing a new configuration requires more phases than a read or write opera-

tion, and thus takes significantly longer. Even so, the latency of reconfiguration in the simulation is an order

of magnitude faster than the theoretic worst-case latency. This reflects the difference between randomized

and adversarial failures. The consensus operation has the potential to take a very long time to complete:

each failure can significantly postpone the termination of consensus, requiring the process to essentially

18

restart. In practice, however, this rarely happens.

Comparison to PERSISTENTNODE One of the goals of this paper is to examine the costs of atomic consis-

tency in a MAN, and therefore we compare RAMBONODE to PERSISTENTNODE, an algorithm that does

not guarantee consistency. The first thing to note is that, in general, read and write operations are only

slightly slower using RAMBONODE. Worst case read and write times are significantly worse, and this accu-

rately represents the cost of handling the failures in an atomicity preserving manner. Reconfiguration, on the

other hand, is significantly more expensive when using RAMBONODE. The need for consensus significantly

slows down the reconfiguration operations, and leads to the significantly slower worst case times. These

comparisons in some ways justify the design goals of RAMBO: the burden for consistency is placed on the

reconfiguration service, allowing read and write operations to continue as usual.

Configuration Size As the radius of a configuration increases, the time to execute an operation and the

time to reconfigure are expected to increase linearly in failure-free executions: each phase of an operation

requires communication with a majority of nodes in a configuration. The farther away these nodes are, the

longer a phase takes. The data we obtained for configurations of radius two, three, and four suggests that

this is, in fact, the case. For configurations with radius greater than four, however, the configurations begin

to contain many particles, and the simulation becomes quite slow.

In order to complete an operation or a reconfiguration, RAMBO requires the initiator to collect informa-

tion on a majority of members of the configuration. This, in turn, requires every particle in a configuration

to maintain information about the other particles in the configuration and the ongoing operations. A naive

gossip implementation leads to large amounts of storage (O(N2) per particle), which in turn causes the

simulation to become untenable for large simulations whenP ≥ 5. An improved implementation would

reduce the storage (toO(N) per particle); nevertheless, it is worth noting that the RAMBONODE algorithm

is only efficient whenP , the radius of a configuration, is relatively small, and therefore a configuration does

not contains too large a number of replicas, i.e.N is not too large. PERSISTENTNODE, by contrast, requires

only O(1) storage per node.

Node Failures Finally, we ran simulations with varying rates of failure, rangingpk from zero to an ex-

pected 20% failure during a single reconfiguration (based on actual, not worst-case, reconfiguration times).

19

As long as the failure rate was low enough so that no more than half the nodes failed during a single half-

life (i.e., H), the algorithm continued indefinitely to respond to read and write requests, as predicted by

Theorem 6.3. We expected to find a sharp transition from 100% success to complete failure of read and

write operations, and were not disappointed. From 0-2% failure rate (per expected reconfiguration time),

radius three RAMBONODEs showed no significant change in time per operation, or number of operations

completed. Above 10% failure rate, nodes generally died after a few reconfigurations. The behavior of any

given test, on the other hand, varies greatly.

8 Conclusion

We have combined the PERSISTENTNODE and RAMBO algorithms to produce the RAMBONODE algorithm

which captures the safety properties of RAMBO and the locality and mobility properties of the PERSIS-

TENTNODE algorithm. We have shown that the new algorithm guarantees atomic consistency in all execu-

tions, and that the algorithm performs well, as long as the rate of failure is not too high. The RAMBONODE

algorithm is especially suitable for deployment inad hocnetworks, like a MAN. The algorithm is highly

localized, tolerates continuous failures, and requires no network infrastructure.

The MAN setting motivates a number of interesting open problems related to building and understanding

the primitive services for distributed computation in a MAN. In this paper, we have examined the cost of

atomic consistency in the MAN setting. Are there efficient implementations of other strong primitives,

such as atomic broadcast and group communication? Gossip-based communication seems quite promising

for the MAN setting, however naive implementations lead to expensive memory requirements for strongly

consistent algorithms. What problems can be solved efficiently using gossip-based protocols in a MAN?

There are also open questions related to the current PERSISTENTNODE and RAMBONODE algorithms.

The efficiency of the implementation can be improved. There are questions of how we can use these algo-

rithms, in combination with routing and clustering services, to provide higher-level resilience to correlated

failures. Finally, it might be interesting to see how these types of algorithms could be used in more traditional

sensor network applications. Can these algorithms for persistent data be used to enhance the fault-tolerance

of a data-collection network?

20

References
[1] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems.Journal of the ACM,

42(1):124–142, 1995.

[2] Jacob Beal. Persistent nodes for reliable memory in geographically local networks. Technical Report AIM-2003-11, MIT,
2003.

[3] Jacob Beal. A robust amorphous hierarchy from persistent nodes. Into appear in CSN 2003, 2003.

[4] Ken Birman and Thomas Joseph. Exploiting virtual synchrony in distributed systems. InProceedings of the 11th ACM
Symposium on Operating Systems Principles, December 1987.

[5] M. Demirbas, A. Arora, and M. Gouda. A pursuer-evader game for sensor networks. InSixth Symposium on Self-Stabilizing
Systems, June 2003.

[6] A. El Abbadi, D. Skeen, and F. Cristian. An efficient fault-tolerant protocol for replicated data management. InProc. of the
4th Symp. on Principles of Databases, pages 215–228. ACM Press, 1985.

[7] B. Englert and A.A. Shvartsman. Graceful quorum reconfiguration in a robust emulation of shared memory. InProceedings
of the International Conference on Distributed Computer Systems, pages 454–463, 2000.

[8] David K. Gifford. Weighted voting for replicated data. InProceedings of the seventh symposium on operating systems
principles, pages 150–162, 1979.

[9] Seth Gilbert. RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks. Technical Report LCS-TR-890,
M.I.T., 2003.

[10] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.
Sigact News, 2001.

[11] Seth Gilbert, Nancy Lynch, and Alex Shvartsman. RAMBO II:: Rapidly reconfigurable atomic memory for dynamic net-
works. InProc. of the Intl. Conference on Dependable Systems and Networks, pages 259–269, June 2003.

[12] J. Hill, R. Szewcyk, A. Woo, D. Culler, S. Hollar, and K. Pister. System architecture directions for networked sensors. In9th
International Conference on Architectural Support for Programming Languages and Operating Systems, November 2000.

[13] S. Jajodia and David Mutchler. Dynamic voting algorithms for maintaining the consistency of a replicated database.Trans.
on Database Systems, 15(2):230–280, 1990.

[14] Leslie Lamport. The part-time parliament.ACM Transactions on Computer Systems, 16(2):133–169, 1998.

[15] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution of peer-to-peer systems. InProceedings
of the Twenty-First Annual Symposium on Principles of Distributed Computing, pages 233–242. ACM Press, 2002.

[16] Nancy Lynch.Distributed Algorithms. Morgan Kaufman, 1996.

[17] Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic networks. InProc. of
the 16th Intl. Symp. on Distributed Computing, pages 173–190, 2002.

[18] Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic networks. Technical
Report LCS-TR-856, M.I.T., 2002.

[19] Samuel R. Madden, Robert Szewczyk, Michael J. Franklin, and David Culler. Supporting aggregate queries over ad-hoc
wireless sensor networks. InWorkshop on Mobile Computing and Systems Applications, 2002.

[20] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, and David Culler. Wireless sensor networks for habitat monitoring. In
2002 ACM International Workshop on Wireless Sensor Networks and Applications, September 2002.

[21] Roberto De Prisco, Alan Fekete, Nancy A. Lynch, and Alexander A. Shvartsman. A dynamic primary configuration group
communication service. InProc. of the 13th Intntl. Symposium on Distributed Computing, pages 64–78, September 1999.

[22] Tim Shepard. Personal Communication.

[23] Robert H. Thomas. A majority consensus approach to concurrency control for multiple copy databases.Transactions on
Database Systems, 4(2):180–209, 1979.

i

A Execution Data

Excerpt from an experimental trace, showing 43 read and write operations.

Time Particle UID Event Value

343 0.7176 start write 0.2927
344 0.8858 start read
353 0.7176 end write
354 0.8858 end read 0.7969
360 0.6779 start read
362 0.4234 start write 0.5990
362 0.9121 start read
363 0.3304 start read
368 0.6779 end read 0.2927
370 0.1527 start read
370 0.4234 end write
372 0.9121 end read 0.2927
374 0.3304 end read 0.5990
375 0.9033 start write 0.5304
382 0.7742 start read
382 0.5729 start read
384 0.1527 end read 0.5990
384 0.9033 end write
388 0.5729 end read 0.5304
389 0.7742 end read 0.5304
390 0.1530 start write 0.5531
400 0.3463 start read
403 0.1530 end write
411 0.3463 end read 0.5531
412 0.8858 start read
418 0.6958 start write 0.9094
418 0.5729 start read
420 0.8858 end read 0.5531
422 0.5541 start read
427 0.5729 end read 0.5531
429 0.6958 end write
429 0.6827 start write 0.9085
433 0.6692 start read
434 0.5541 end read 0.9094
435 0.5541 start write 0.0646
436 0.3265 start read
438 0.6827 end write
441 0.1244 start write 0.7466
445 0.3265 end read 0.9085
446 0.6692 end read 0.9085
446 0.5541 end write
447 0.8858 start write 0.9352
451 0.9496 start write 0.1217
455 0.1244 end write
459 0.8858 end write
462 0.9496 end write

Time Particle UID Event Value

469 0.3265 start write 0.2420
469 0.7742 start read
470 0.2794 start write 0.0307
474 0.3998 start write 0.4478
480 0.7742 end read 0.1217
481 0.3265 end write
481 0.2794 end write
483 0.9033 start read
487 0.3998 end write
494 0.9033 end read 0.4478
506 0.8641 start read
508 0.3271 start read
511 0.1527 start read
512 0.7176 start write 0.3067
517 0.8641 end read 0.4478
517 0.1244 start write 0.7057
520 0.1527 end read 0.4478
522 0.3271 end read 0.4478
523 0.0653 start write 0.1060
523 0.7176 end write
529 0.1276 start write 0.0150
530 0.1410 start read
530 0.3271 start write 0.7464
531 0.1244 end write
531 0.0982 start read
532 0.8858 start read
534 0.0653 end write
537 0.8241 start read
540 0.1276 end write
541 0.6496 start write 0.3561
542 0.5054 start write 0.7986
543 0.1276 start read
544 0.1410 end read 0.1060
544 0.8858 end read 0.01502
545 0.3271 end write
545 0.0629 start read
547 0.0982 end read 0.7464
549 0.3998 start write 0.2434
551 0.8241 end read 0.7464
555 0.1276 end read 0.7464
556 0.5541 start read
558 0.6265 start write 0.2072
558 0.6496 end write
560 0.0982 start write 0.3324
561 0.0629 end read 0.3561

ii

