
Mobilized Ad-hoc Networks: A
Reinforcement Learning
Approach

Yu-Han Chang, Tracey Ho
and Leslie Pack Kaelbling

AI Memo 2003-025 December 2003

© 2 0 0 3 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w . c s a i l . m i t . e d u

m a ss a c h u se t t s i n st i t u t e o f t e c h n o l o g y — co m p u t e r sc i e n ce a n d a r t i f ic ia l i n t e l l ig e n ce l a b o ra t o r y

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4383834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Research in mobile ad-hoc networks has focused on situations in which nodes have no control over their
movements. We investigate an important but overlooked domain in which nodes do have control over their
movements. Reinforcement learning methods can be used to control both packet routing decisions and node mobility,
dramatically improving the connectivity of the network. We first motivate the problem by presenting theoretical
bounds for the connectivity improvement of partially mobile networks and then present superior empirical results
under a variety of different scenarios in which the mobile nodes in our ad-hoc network are embedded with adaptive
routing policies and learned movement policies.

Acknowledgements

This work was funded in part by a Graduate Research Fellowship from the National Science Foundation.

I. INTRODUCTION

Mobile ad-hoc networking is emerging as an important
research field with a number of increasingly relevant
real-world applications, ranging from sensor networks
to peer-to-peer wireless computing. Researchers in AI
and machine learning have not yet made major contri-
butions to this growing field. It promises to be a rich
and interesting domain for studying the application of
learning techniques. It also has direct applications back
to AI, for example in the design of communication
channels for groups of robots. In this paper, we introduce
mobilized ad-hoc networks as a multi-agent learning
domain and discuss some motivations for this study. We
apply reinforcement learning techniques to two distinct
problems within this domain: packet routing and node
movement. Using relatively straightforward adaptations
of these methods, we are able to demonstrate good
empirical results.
Mobile ad-hoc networks have not traditionally been

considered a multi-agent learning domain partly because
most research in this area has assumed that we have no
control over the node movements, limiting research to
the design of routing algorithms. Each node is assumed
to be attached to some user or object that is moving
with its own purpose, and routing algorithms are thus
designed to work well under a variety of different
assumptions about node mobility patterns.
However, there are many applications in which we

can imagine that some of the nodes would have control
over their own movements. For example, mobile robots
might be deployed in search-and-rescue or military re-
connaissance operations requiring ad-hoc communica-
tion. In such cases it may be necessary for some nodes
to adjust their physical positions in order to maintain
network connectivity. In these situations, what we will
term mobilized ad-hoc networks becomes an extremely
relevant multi-agent learning domain. It is interesting
both in the variety of learning issues involved and in its
practical relevance to real-world systems and technology.
There are several advantages gained by allowing nodes

to control their own movement. Stationary or randomly
moving nodes may not form an optimally connected
network or may not be connected at all. By allowing
nodes to control their own movements, we will show
that we can achieve better performance for the ad-hoc
network. One might view these controllable nodes as
“support nodes” whose role is to maintain certain net-
work connectivity properties. As the number of support
nodes increases, the network performance also increases.

Given better movement and routing algorithms, we can
achieve significant additional performance gains.
It is important to note that there are two levels at

which learning can be applied: (1) packet routing and (2)
node movement. We will discuss these topics in separate
sections in this paper. Packet routing concerns the for-
warding decisions each node must make when it receives
packets destined for some other node. Node movement
concerns the actual movement decisions each node can
make in order to optimize the connectivity of the ad-hoc
network. Even though we will use reinforcement learning
techniques to tackle both these problems, they must
be approached with different mindsets. For the routing
problem, we focus on the issue of online adaptivity.
Learning is advantageous because it allows the nodes
to quickly react to changes in network configuration and
conditions. Adaptive distributed routing algorithms are
particularly important in ad-hoc networks, since there is
no centrally administered addressing and routing system.
Moreover, network configuration and conditions are by
definition expected to change frequently.
On the other hand, the node movement problem is best

handled off-line. Learning a good movement policy re-
quires a long training phase, which would be undesirable
if done on-line. At execution time, we should simply
be running our pre-learned optimal policy. Moreover,
this movement policy should encode optimal action
selections given different observations about the network
state; the overall policy does not change due to changing
network configuration or conditions and thus does not
need to adapt online. We treat the problem as a large
partially-observable Markov decision process (POMDP)
where the agent nodes only have access to local observa-
tions about the network state. This partial observability
is inherent to both the routing and movement portions of
the ad-hoc networking problem, since there is no central
network administrator. Nodes can only observe the local
state around them; they do not have access to the global
network topology or communication patterns. Even with
this limited knowledge, learning is useful because it
would otherwise be difficult for a human designer to
create an optimized movement policy for each network
scenario.

II. RELATED WORK

We draw inspiration for this work from two different
fields: networking and reinforcement learning. In the
networking literature, some work on the effect of node
mobility in ad-hoc networks has been done for applica-
tions in which movement and topology changes are on

the time-scale of packet delivery. Nodes are then able
to act as mobile relays physically transporting packets
from one location to another. Grossglauser and Tse [1]
analyze a strategy in which source nodes send packets
to as many different nodes as possible, which store the
packets and hand them off whenever they get close to
the intended destination nodes. Li and Rus [2] consider
a scenario in which mobile hosts make deviations from
predetermined trajectories to transmit messages in dis-
connected networks. Chatzigiannakis et al [3] consider
the case where a subset of mobile nodes are constrained
to move to support the needs of the protocol, and act as
a mobile pool for message delivery.
Our work is in a different setting, in which topology

changes are on a much longer time scale than packet
delivery delay constraints. Nodes move in order to form
and maintain connected routes, rather than to physically
deliver packets in a disconnected network. Routing is
thus an important aspect of our algorithms that influences
and is informed by movement decisions. Related work on
routing in mobile ad-hoc networks where no control over
node movements is assumed can be found in [4] and [5],
while the issue of preserving a connected topology with
only some proportion of nodes awake at any one time is
addressed in [6].
From the reinforcement learning community, there has

been some interest in applying learning techniques to
improve network performance. Such adaptive algorithms
may be better able to perform well under widely varying
conditions. Boyan and Littman [7] applied reinforce-
ment learning techniques to the problem of routing in
static networks. They showed that a simple adaptive
algorithm based on the Q-learning algorithm [8] can
out-perform a shortest-paths algorithm under changing
load and connectivity conditions. Peshkin [9] used policy
search rather than Q-learning on the same problem,
which allowed the system to search a richer policy space.
By using stochastic routing policies, the system is able to
manage high loads by finding multiple possible source-
destination paths. We extend these ideas to the case of
mobile networks, where node connectivity is constantly
changing.
Moreover, since we assume control over the nodes’

movements, we can also influence these connectivity
changes by learning a good control mechanism for
the node movements. Several papers mentioned above
propose various methods for controlling node and packet
movement under specific assumptions. In the general set-
ting, we wish to select optimal actions at each time step
to maximize the long-term system performance. This

type of problem lends itself to reinforcement learning
techniques [10], where the goal of the learner is to max-
imize long-term reward by learning an optimal behavior
policy through simulation. Stone and Sutton [11] and
Bowling and Veloso [12] studied methods for scaling up
reinforcement learning techniques to complex domains
such as robotic soccer.

III. PROBLEM OVERVIEW

Our mobilized ad-hoc network consists of one or
more source nodes, one or more receiver nodes, and
a number of other wireless nodes within a constrained
area. All nodes are independently initialized according
to a uniform distribution over this area. The sources
generate packets at a constant rate and move according
to a random way-point model. The aim of all nodes
other than the sources and receivers is to transmit the
maximum possible number of packets from the sources
to the receivers. Some of these nodes can move so as to
aid transmission, while the rest are stationary.
Performance is measured by the proportion of packets

successfully transmitted to the receivers. When inter-
node link capacities are limited and buffer sizes are finite,
packet drops may occur due to buffer overflow, thereby
decreasing network performance. When inter-node link
capacities are sufficiently large compared to the source
packet generation rates, an equivalent performance met-
ric is the average proportion of sources connected to the
receivers over time.
The packet transmission success probability achiev-

able in an ad-hoc network depends heavily on various
parameters including the transmission range r, the num-
ber of network nodes n, and the proportion of mobile
nodes m. Alternatively, we may consider what values
of these parameters are sufficient to achieve a desired
success probability. Our following result illustrates these
relationships and gives some sense of the potential
benefits of having controllable mobile nodes in an ad-
hoc network. It builds upon a theorem by Gupta and
Kumar [13] that sets a bound for the minimum (or
critical) range necessary for n nodes in a given area to
be fully connected. They state that for the case of a disk
of area A and n approaching infinity, the critical range

for the network is rn =
√

A(log n+γn)
πn , where γn is a

function of n that grows arbitrarily slowly to infinity as
n → ∞. We extend this result to the case of partiallly
mobile networks.
Theorem 1: Let rn be the minimum, or critical, range

needed for n nodes independently and uniformly dis-
tributed on a given area to form a fully connected

network. If a proportion m = k−1
k , k an integer, of the

nodes are mobile, then a transmission range r = rn√
k
is

sufficient to make it possible for the mobile nodes to
move to form a fully connected network. If the range r
is fixed at rn, with m = k−1

k , k an integer, then a total
number n

k of nodes suffices for full connectivity.
Proof: If a proportion m = k−1

k of the nodes
in a n node network being mobile, these mn nodes
can essentially move around to increase the effective
transmission ranges of the stationary nodes. For each
fixed node, we have k − 1 mobile nodes. Thus, each
stationary node is able to form one link to neighboring
node over a distance of krn using a set of k − 1 mobile
nodes as relays. Since a fully connected network of
n nodes requires only n − 1 links, each link can be
allocated a set of (k−1)n

k(n

k
−1) > k − 1 mobile relay nodes,

allowing each stationary node to transmit a full distance
of krn rather than rn. Since n′ = n

k , from Gupta and
Kumar’s theorem we know that if all the nodes were
stationary, then the critical range for n′ nodes would
be rn′ = rn

k
=

√
A log n′+γn′

πn′ <
√

A log n+γn

π n

k

= rn

√
k.

However, since (k− 1)n nodes are now mobile, making
the transmission range k times the original range, we
only need a range of r = rn

k for each node; thus a
sufficient range for fully connectivity of the partially
mobile network is r = rn√

k
.

Using the same reasoning, it is easy to show the
second part of the theorem. Let us fix the range of the

n nodes in the network to be rn =
√

A(log n+γn)
πn . We

need to show that with n′ = n
k total nodes, of which

mn′ are mobile, each with range rn, we can form a
fully connected network. In this case, we only have
n′′ = n

k2 stationary nodes. Similar to the above, we know
that the critical range for a network with n′′ nodes is√

A(log n

k2 +γn/k2)

π n

k2
< rnk. Since mn′ nodes are mobile,

m = k−1
k , we actually only need a range of rnk

k = rn.

This result shows that as the proportion of mobile
nodes increases, the transmission range r needed for
full connectivity decreases for given n (or the minimum
value of n required given r decreases). These are loose
upper bounds since they allow for up to all links of the
fully connected network being greater than k−1

k of the
maximum link length.
For more realistic settings with smaller fixed n, we can

obtain corresponding empirical results for the minimum
range r necessary for achieving nearly full connectivity
(> 95%). We ran some trials with n nodes, 25 ≤

n ≤ 400, independently initialized according to the
uniform distribution on a unit square. We find that

the approximation r′n =
√

A log n
πn ≈ rn gives a good

estimate of the critical range to within a small decreasing
factor. We also calculated the mean proportion h of links
that were greater than half the critical range.

n critical mean std. dev.
range proportion, h

25 2.0r′n 0.2735 0.1233
50 1.7r′n 0.3265 0.0785
100 1.7r′n 0.2353 0.0647
200 1.6r′n 0.1992 0.0390
400 1.6r′n 0.1588 0.0258

Noting that a substantial proportion of the links are
less than half the critical range leads to the conclusion
that the bounds given above are quite loose, i.e. the
necessary values for each parameter r, n and m, given
fixed values for the other two parameters are lower than
the sufficient values given by Theorem 1. As such, we
would expect potentially better results under conditions
of global knowledge and rapid optimal deployment of
mobile nodes.
In most realistic settings, nodes only possess local

knowledge and movement speed is limited. Thus it
becomes harder to reach the potential optimal network
performance. Nevertheless, we can develop learning al-
gorithms that perform well given these constraints. In
the remainder of the paper, we develop such learning
algorithms for movement and routing, and compare their
performance against both non-learning and centralized
algorithms, where performance is measured by the pro-
portion of packets successfully transmitted under various
network scenarios.

IV. Q-ROUTING

To optimize the performance of the ad-hoc network,
we need to design good control algorithms for the
support nodes. The nodes will need to adapt to changing
conditions and communication patterns using intelligent
routing and movement algorithms. We focus on the
routing problem here and give a brief overview of the
movement problem, for which results will be presented
in greater detail in a forthcoming paper.
Q-routing [7] is an adaptive packet routing protocol

for static networks based on the Q-learning algorithm,
which we adapt for use in mobile ad-hoc networks. The
algorithm allows a network to continuously adapt to
congestion or link failure by choosing routes that require
the least delivery time. When a route becomes congested

or fails, Q-routing learns to avoid that route and uses
an alternate path. Due to its adaptive nature, we might
expect that Q-routing would also work well in the mobile
ad-hoc setting.
Q-routing is a direct application of Watkins’ Q-

learning [8] to the packet routing problem. Q-routing
is a distributed routing scheme where each node in the
network runs its own copy of the Q-routing algorithm.
A node x faces the task of choosing the next hop for
a packet destined for some receiver node d. Using Q-
routing, it learns the expected delivery times to d for
each possible next hop y, where each possible next hop
y is a neighbor node connected to x by a network link.
Formally, Q-routing keeps Q-tables Qx for each node x
and updates these tables at each time period t as follows:

Qx
t (d, y) = (1−α)Qx

t−1(d, y)+α(bx
t +min

z
Qy

t−1(d, z)),

where 0 < α < 1 is parameter that controls the learning
rate, and bt is the time the current packet spent on the
buffer or queue at node x before being sent off at time
period t.
Q-learning estimates the value or cost, V , associated

with each state d, with V = minz Qx(d, z). In our case,
the value of a state is the estimated time for delivery
of a packet from the current node x to destination d
via node z. Once the nodes have learned the values
associated with each state-action pair, they simply ex-
ecute a greedy policy to behave optimally. When a node
receives a packet for destination d, it sends the packet
to the neighbor y with the lowest estimated delivery
time Qx(d, y). In experimental trials, Boyan and Littman
found that fast learning rates (around 0.5) worked well
since it is beneficial for the network to adapt quickly.
Adapting Q-routing to the mobile ad-hoc network

routing domain is fairly straightforward. Neighbor nodes
are defined as the nodes within transmission range. The
main difference is that the neighbor nodes y may appear
and disappear quite frequently due to node mobility.
When a node y moves out of range, we set the estimated
delivery time to d via y to ∞, i.e. Qx(d, y) = ∞. When
a node y moves into range, we optimistically set the
estimated time to 0, i.e. Qx(d, y) = 0. This optimistic
bias encourages exploration. That is, node x will always
try sending packets via a node y that has just come into
range. If this action results in a high estimated delivery
time, then node x will quickly revert to its original
behavior since Qx(d, y) will quickly be updated to its
true value. On the other hand, if this action results in a
good delivery time, then node x will continue to send
packets via node y.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 r
at

e

Buffer size

Directional Routing vs Q-Routing

Directional routing
Q-routing

Fig. 1. A comparison of directional routing vs Q-routing in
a network with 10 sources, 15 mobile agents, and one receiver.
Simulations were run over 20 initialization positions and 5 source
movement scenarios for each different initialization. For each buffer
size, averages over all of these trials are depicted, with error bars
denoting one standard deviation.

V. EMPIRICAL RESULTS

Our empirical results give an indication of the power
of utilizing adaptive learning techniques in designing
movement and routing algorithms for mobilized ad-hoc
networks. The setup is described in Section III. There
are source, receiver, and support nodes in a square grid,
usually 30x30 in size. Each node has a transmission
range of 6. The support nodes may either be fixed
stationary nodes or mobilized agent nodes. There are two
time scales: one for transmission and one for movement.
During each movement time step, the node can choose
one of its movement actions and perform 10 packet
transmissions. Each packet transmission is the result of a
Q-routing decision and update. Sources generate packets
every two transmission time steps, and the number of
packets received by a node in any time period is only
limited by the node’s buffer size.

A. Q-routing vs directional routing

To evaluate the performance of Q-routing, we imple-
ment a global knowledge routing policy that is given
information about the receiver location. This is done for
comparison purposes only; in reality nodes generally do
not have access to such information. With this informa-
tion, nodes can route each packet towards the correct
destination by forwarding the packet to a neighboring
node that is closest to being in the direction of the
receiver. We call this our directional routing policy.
Specifically, our implementation forwards a packet to the

Fig. 2. Using the directional routing policy, packets often become
congested on the trunk of the network tree (Top). Using Q-routing on
the same experimental setup (note that the source and receiver nodes
are in the same position as the both figures), the mobile nodes in the
ad-hoc network spread out to distribute packet load (Bottom). Sources
are shown as squares, mobile nodes are circles, and the receiver is an
encircled square. Both figures show the simulator after 10000 periods,
using the same initialization and movement files.

neighbor that is closest to being in the direction of the
receiver, up to a maximum deviation of 90 degrees. If
no such neighbor exists, then the packet is dropped.

We compared Q-routing with directional routing under
a variety of different scenarios. In almost all cases,
Q-routing performs better than directional routing. Es-
pecially when the nodes are limited by small buffer
sizes, Q-routing performs significantly better. Results
for a typical set of network scenarios are shown in
Figure 1. This is due to the fact that Q-routing will
create alternate paths to the receiver as soon as a path
becomes congested. Thus, packets will be less likely
to be dropped due to buffer overflow caused by path
congestion or limited buffer sizes since alternate paths
will be constructed. In directional routing, on the other

hand, often certain paths will become overloaded with
traffic, causing significant packet drop.
Q-routing outperforms directional routing even in

cases where buffer size is not a direct constraint, such
as the case shown in Figure 1 where the buffer size is
10. This illustrates the underlying problem of network
capacity. Since the total source packet generation rate
exceeds the transmission rate of any one inter-node link,
directional routing may still run into trouble with bottle-
neck links regardless of buffer size. The network capacity
achieved using Q-routing is larger since more alternate
paths are created around such bottlenecks. Furthermore,
directional routing is unable to find circuitous paths from
sources to the receiver. Since it only routes packets to
neighbors that are in the direction of the receiver, any
path that requires a packet to be forwarded away from
the receiver for one or more hops will never be found.
These comparisons are done using a fixed movement

policy we will call our centroidal movement policy.
Under this policy, a node that is holding a connection
will attempt to move to the centroid of its connected
neighbors, which increases the likelihood of preserving
these connections over time. If it is not holding a con-
nection, then it simply moves about randomly searching
for a new connection. Thus, the next hops determined
by the routing policy strongly influence the direction
of movement, since the next hops determine the node’s
connections to its neighbors.
When a random movement policy is used instead of

the centroidal policy, Q-routing exhibits inferior perfor-
mance relative to directional routing. One example is
given in Figure 3, which shows the evolution of average
system performance over time in a typical scenario. The
table below gives averages over 100 different scenarios:

Movement policy Routing policy Average
performance

Centroidal Q-routing .924
Centroidal Directional .896
Random Q-routing .498
Random Directional .519

This phenomenon is due to the fact that Q-routing
influences the centroidal movement policy in a posi-
tive manner, whereas it is unable to influence a ran-
dom movement policy. In some sense, Q-routing with
centroidal movement is able to find circuitous source-
destination paths and rope them in using the centroidal
movement.
Due to this type of influence, Q-routing and direc-

tional routing result in very different configurations for

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000

S
uc

ce
ss

 r
at

e

Time

Running averages of successful tranmission rates

Random + Q-routing
Random + Directional
Centroidal + Q-routing

Centroidal + Directional

Fig. 3. This graph shows a running average of successful trans-
mission rates for a sample network scenario under four cases: Q-
routing with centroidal movement, directional routing with centroidal
movement, directional routing with random movement, and Q-routing
with random movement.

the network when coupled with centroidal movement.
Directional routing tends to form a network backbone,
which usually comprises the most direct route to the
receiver for a large portion of the source nodes. Other
sources send packets towards this backbone, resulting in
a tree-like network configuration, as shown in Figure 2.
Q-routing, on the other hand, always seeks the shortest
path towards the receiver, even when buffer sizes are
not a constraint. This results in a fan-shaped network
configuration, also shown in Figure 2, where each source
has its own shortest path to the receiver as long as
there are a sufficient number of mobile nodes to create
these paths. From this observation, we can begin to see
that there is an interplay between the choice of routing
protocol and the movement policy of the mobile nodes.
This leads to a subtle but telling explanation for

the improved performance of Q-routing over directional
routing. In Q-routing, the mobile agent nodes tend to
become more dispersed, since no network backbone
is created. Thus, as source nodes move about, the Q-
routing ad-hoc network is more likely to be able to
remain connected without drastic reconfigurations. This
interplay between routing and movement forces us to
carefully consider the movement policy we choose to
pair with our selected routing policy.

VI. LEARNING TO MOVE

The problem of learning a good movement policy
is much more difficult. We wish to again apply rein-
forcement learning techniques to this problem. First of
all, the problem of partial observability is much more

pronounced than in the packet routing problem. For
example, when the network is in a disconnected state,
information about the global network topology is im-
possible collect but would be important for determining
movements that would optimize network connectivity.
Moreover, the local observation space could still be quite
large, depending on the observed variables we choose to
encode. Secondly, the choice of action space is unclear.
At the most basic level, the agents could move in any
direction at any specified speed. Or, we could constrain
them to moving at a constant speed North, South, East,
or West, or simply staying put. These action choices
are unsatisfactory: the latter is too constrained, and the
former allows too many degrees of freedom. We will
limit the action choices by designing more complex
actions that incorporate domain knowledge. This allows
the agents to learn complex behaviors while preventing
our action space from growing too large. This section
briefly outlines our application of Q-learning to learn
a reasonable movement policy despite the fact that Q-
learning generally fails in POMDPs.
We proceed by using the observation space as our

assumed state space. That is, we will imagine that our
observations give us a complete picture of our current
state of the world. This can potentially lead to problems
of aliasing, since the world is actually only partially
observable and different underlying states may appear
the same in our observations. We choose our observation
variables carefully in order to attempt to avoid this pitfall.
Since the nodes communicate using a shared wireless
medium, a node can “sniff” packets sent by neighbors
to destinations other than itself. Thus, a node can detect
the presence of neighbor nodes and their connections,
even if it is not involved in any of these connections
itself. Moreover, since the receiver nodes send back
acknowledgement packets along these connections, our
agent node can also collect statistics about these source-
destination paths by sniffing these acknowledgement
packets. Each agent node’s observation space thus in-
cludes the identities of its neighbors, the number of
connections it is currently holding, the number of nearby
connections, and the maximum and minimum average
hop lengths of these source-destination paths.
We also incorporate some domain knowledge into our

design of an appropriate action space. This allows the
agents to learn rich and interesting policies without the
need for exponentially large state and action spaces.
For example, there is little need to train the nodes to
learn a policy for avoiding obstacles along its desired
path of movement. We can pre-program the nodes with

the necessary algorithm to do this. A subset of our
action space is given in the table below. Many of these
actions could take multiple time periods to complete.
We currently get around this problem by allowing the
agents (nodes) to choose to either continue or change
an action during each time period. A more disciplined
approach using the framework of macro actions is also
being developed.

Action Description
stay Stay put; don’t change position.
direction Head in a particular direction.
plug Searches for the sparsest path and

attempts to fill in the largest gap
along that path.

leave Leaves a path and becomes available
for other actions.

circle Circles around a node in search of more
connections. Attempts to retain
connection to the source around
which it is circling.

lead Leads other mobile agents in search
of more connections. Attempts to
stay within range of its followers.

follow Identifies and follows a leader node,
while maintaining connection to
previous hop.

center Moves to the centroid of the neighbors
to which it is connected.

explore Random exploration.

Using this state and action space, learning can thus be
focused on higher-level action selection that is difficult to
pre-program optimally for different environments which
the agents might encounter. One of the main advantages
of using a learning method to generate movement poli-
cies is that we can quickly create new agents optimized
for new environments simply by training them under a
different simulation. By experiencing a simulation of the
environment in which they will be expected to operate,
the agents can learn to piece together pre-programmed
lower-level behaviors to create a good high-level move-
ment policy tailored for those particular environmental
factors.

Finally, the reward given to the nodes during each time
period in the simulation corresponds to the percentage of
successful transmissions during that time period, which
is readily available since we are conducting this training
off-line. This reward signal corresponds to the network
performance measure we have been using in this paper.

A. Movement policy comparisons

We evaluate the performance of our learning algo-
rithm against the centroidal movement policy given in
Section V, a hand-coded policy that uses the same
observation space as the learning algorithm, and a global
knowledge central controller. Under simulation, we give
the central controller access to all the node, source, and
receiver positions, which would usually be unavailable
to the agent nodes. Since our learning algorithm only
has access to local knowledge, the central controller’s
performance should approximate an upper bound for
the learning algorithm’s performance. Moreover, this
performance bound may fluctuate over time as network
conditions change depending on source movement sce-
narios. The central controller also gives us a mechanism
to compare our theoretical performance bounds from
Section III with actual empirical results.
The central controller is designed to approximate an

optimal movement policy given global knowledge about
network conditions. It begins by identifying connected
components among the stationary nodes. If a packet
is received by any node of a connected component,
then all nodes of that component can also receive the
packet. However, if a packet’s destination is in a different
component, then the controller finds the shortest path to
the destination component and recruits mobile nodes to
help construct the necessary links needed to deliver the
packet.
Figure 4 gives the average performance of a sample

network scenario over time using each of these move-
ment policies. As we can see, the learning algorithm
does eventually learn a policy that behaves fairly well,
but it never achieves the performance of the global
knowledge controller. This is expected since the learner
does not have access to the global network topology.
On average, the learned policies perform slightly better
than the hand-coded policy over large sets of network
scenarios. However, in certain scenarios, it never learns
to perform as well, possibly due to aliasing problems.

VII. CONCLUSION AND FUTURE WORK

This paper presents a rich new domain for multiagent
reinforcement learning and establishes several first re-
sults in this area. There is much more work to be done
to create a more robust movement learning algorithm
that deals directly with the partial observability of the
domain. Policy search and Monte Carlo methods are two
techniques that are currently being examined. A well
designed algorithm might also be able to exploit the
interplay between routing and movement.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100000 200000 300000 400000

S
uc

ce
ss

 r
at

e

Time

Running averages of successful transmission rates

Learning
Hand-coded

Central controller
Centroidal

Fig. 4. Graph showing the average performance of various move-
ment policies over time in a typical scenario. The learning policy is
shown during its training phase.

REFERENCES

[1] M. Grossglauser and D. Tse. Mobility increases the capacity
of ad-hoc wireless networks. In INFOCOM, 2001.

[2] Q. Li and D. Rus. Sending messages to mobile users in
disconnected ad-hoc networks. In MOBICOM, 2000.

[3] I. Chatzigiannakis, S. Nikoletseas, N. Paspallis, P. Spirakis, and
C. Zaroliagis. An experimental study of basic communication
protocols in ad-hoc mobile networks. In 5th Workshop on
Algorithmic Engineering, 2001.

[4] C. Perkins and E. Royer. Ad-hoc on-demand distance vector
routing. In MILCOM Panel, 1997.

[5] D. Johnson and D. Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing, volume 353. 1996.

[6] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span:
An energy-efficient coordination algorithm for topology main-
tenance. In SIGMOBILE, 2001.

[7] J. Boyan and M. L. Littman. Packet routing in dynamically
changing networks: A reinforcement learning approach. In
Advances in NIPS, 1994.

[8] C. J. Watkins. Learning with delayed rewards. Ph.D. Thesis,
University of Cambridge, 1989.

[9] L. Peshkin. Reinforcement learning by policy search. Ph.D.
Thesis, MIT, 2002.

[10] L. P. Kaelbling, M. L. Littman, and A. P. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[11] P. Stone and R. S. Sutton. Scaling reinforcement learning
toward RoboCup soccer. In ICML, 2001.

[12] M. Bowling and M. Veloso. Multiagent learning using a variable
learning rate. Artificial Intelligence, 136:215–250, 2002.

[13] P. Gupta and P. R. Kumar. Capacity of wireless networks. In
Stochastic Analysis, Control, Optimization, and Applications.
Birkhauser, 1998.

