
Learning Classes Correlated to
a Hierarchy

Lawrence Shih and David Karger

AI Memo 2003-013 May 2003

© 2 0 0 3 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

@ MIT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Trees are a common way of organizing large amounts of informa-
tion by placing items with similar characteristics near one another
in the tree. We introduce a classification problem where a given tree
structure gives us information on the best way to label nearby ele-
ments. We suggest there are many practical problems that fall un-
der this domain. We propose a way to map the classification prob-
lem onto a standard Bayesian inference problem. We also give a
fast, specialized inference algorithm that incrementally updates rel-
evant probabilities. We apply this algorithm to web-classification
problems and show that our algorithm empirically works well.

Work funded by the Oxygen Partnership, NTT, and the Packard
Foundation.

1 Introduction

Hierarchies are constructed to organize and categorize similar items into common
areas of a tree. The semantics of a strict hierarchy are that all elements in any sub-
tree share some attribute, while the remaining elements do not have that attribute.

The attributes in a hierarchy often convey human-oriented meanings beyond that
of the attribute itself. For example, consider the biological hierarchy of organisms.
One sub-tree might be full of animals with the attribute “dog.” That attribute
“dog” also comes with many characteristics that are not direct attributes of the
hierarchy: “have four legs” or “my friend likes them.” These characteristics are
not exclusive to dogs, and are not attributes of the hierarchy, but are correlated
with the location of an element within the hierarchy. “Four-legged animals” are
probably in a small number of subtrees in the organism hierarchy. This paper is
about learning those characteristics that are correlated with a given hierarchy.

We pose our research as a machine learning problem: given that certain organisms
in a hierarchy have four legs, predict which other organisms in the hierarchy have
four legs. We propose a Bayesian model of the problem, which reflects intuitions
about hierarchies and their correlated characteristics. We follow with an efficient
algorithm for performing inference on this problem.

Hierarchies are extremely common organizational tools, so there are ample sources
of hierarchical data. Corporate structures, organisms and web directories are exam-
ples of diverse domains that are frequently organized into hierarchies. A tremendous
amount of work has been invested by human beings in creating hierarchies that cap-
ture important attributes of data. While it is clear that hierarchies are common, it
is worthwhile emphasizing why they are a particularly good source of data. Most
hierarchies are created by humans, for humans, for the express purpose of organi-
zation and classification. We can take advantage of these existing hierarchies to
improve classification on problems that correlate with the hierarchy.

We have applied our algorithm to some web classification problems. We show
how the URLs of web documents can be viewed as a hierarchy and show how
our algorithm can learn to automatically distinguish between advertisements and
content links. Our algorithm achieves accuracy comparable to a commercial tool.
Unlike other systems, including the commercial tool, our ad-blocker can function
without human input or labeling, meaning it can adapt to new advertisements
(e.g., text ads, or new banner sizes) without the need for time-consuming hand-
made software updates. We also briefly discuss the Daily You, a web application
that uses the classifier in this paper to recommend interesting web pages to a user.

1.1 Related Work

Hierarchies already play a large role in machine learning. For some, the learning
problem is the structure and placement of nodes in the tree itself, such as the
sub-field of decision trees (Quinlan, 1987). Others use a pre-defined hierarchy,
like the Yahoo! directory, and try to place objects, like a web page, within them
(McCallum et al., 1998). Still others use hierarchies to boost an existing algorithm’s
performance by creating simpler sub-problems according to the hierarchy (Koller &
Sahami, 1997). A theoretical examination of hierarchical features in the context of
VC dimension is found in Haussler (Haussler, 1988).

Our work is different from the past work. We are given a tree. Like Haussler, we
specify an object’s position in a tree, and assume that the position in the tree is
relevant to our classification problem. Unlike Haussler’s work, our contribution is to

pets

fishcat
dog

bird

poodle
retriever

corgi lab manx siamese

Tends to dislike pets
Tends to

dislike birds

Tends to like dogs:
Poodles, Corgis, etc…

a) b) c)

?

?

?

d)

1-θ
θ

parent

child
1-ф
ф

root

1

2 3 4 5

6 7 8 9 10 11

ф

ф + θ
θ

ф + θ

Figure 1: Various stages in the conversion from hierarchy semantics to machine
learning problem. A) Hierarchies have semantics that a node is in a subtree iff it
has a certain attribute (attributes in labels next to nodes). B) Some characteristics,
like “my friend tends to like this type of pet” may be correlated with the hierarchy.
Here we show one person’s true preference: they dislike pets in general (white
nodes), but like most dogs (black nodes). The edge between “pets” and “dogs” is
a mutation: where a general dislike for pets becomes a general liking for dogs. C)
The machine learning problem is to learn the person’s pet preferences (coloration
of unlabeled leaves), given that they like various species of dogs (black leaves), but
dislike fish and various species of cats (white leaves). D) The formal model, prior
to any evidence, sets prior probabilities at the roots and “mutation” probabilities
which set the conditional probability tables between elements.

create an appropriate Bayesian model that captures our intuitions about hierarchies,
and to provide an efficient algorithm for training and testing over that model.

Many other machine learning techniques are based on probabilistic models, most
famously the naive Bayes model (Duda et al., 2000). The naive Bayes model ex-
plicitly assumes that features, like sets of words in a document, are conditionally
independent from one another, given the class. In the next section, we describe our
model of tree learning.

2 A Generative Classifier for Trees

Hierarchies are trees whose nodes have special semantics. In Figure 1a), we show
a portion of the pet hierarchy. The meaning of the sample hierarchy is familiar:
we can see that every dog is a pet, and every Corgi is a dog, but that no dogs are
cats. A node is in a subtree if and only if it shares an attribute with all the other
nodes in that subtree. These attributes are taken to be human-oriented and often
human-created. The figure places the attributes for the pet hierarchy next to the
node that roots the subtree.

Suppose the hierarchy is a tree with m nodes, N1 . . . Nm, such that each node
except the root has exactly one parent. We adopt the convention that parent nodes
will have lower-numbered indices than children nodes, so the root is always N1.
Semantically, each node i in a hierarchy specifies some attribute Ai. Any node in
the subtree rooted by Ni has attribute Ai, and any node outside of that subtree
does not have attribute Ai.

It is trivially possible to construct a hierarchy. For example, a different pet hierar-
chy might be based on the length of the animal’s scientific name. However, most
hierarchies are constructed with the intention of conveying human-oriented informa-
tion beyond the attributes themselves. Dogs have certain common characteristics
that most humans can readily define and describe: they are loyal, bark, have four

legs and mostly have good senses of smell.

These characteristics are correlated with the hierarchy: if we know the attribute
“dog” we can infer most sub-trees of dog have the “four-legged” characteristic. They
are not attributes of the hierarchy: both cats and dogs are four-legged. They are
still correlated; we expect siblings on the tree to have a tendency towards having
(or not having) four legs. Many types of characteristics might be correlated with
a hierarchy. The attribute might be subjective and idiosyncratic: “do you like this
type of animal?” Or, it might be objective but in multiple portions of the hierarchy:
“Does this animal usually have four legs?”

Figure 1b) shows a mapping from the original pet hierarchy onto a human-oriented
problem of subjective preferences. This shows one person liking most dogs but dis-
liking most other types of pets. Other people would have different pet preferences,
with black and/or white nodes possibly spanning more than one sub-tree.

Assume we are investigating a characteristic y ∈ 0, 1 that is correlated with the
hierarchy. The internal nodes of the figure define whether an attribute Ai found
at node Ni is correlated with (black) or against (white) the characteristic yi. For
example, this person does not generally like pets, so a white color is placed at the
root. Correlations can “mutate” between a parent and child attribute: this person
does like dogs, while not generally liking pets.

2.1 Learning over Hierarchies

In this paper, our goal is to predict whether an element has a characteristic based
on its position in a hierarchy. We will formulate this as a standard machine learning
problem. A learning algorithm receives a set of nodes in the original hierarchy, along
with labels indicating whether it has the chosen characteristic. We want to predict
whether other unlabeled nodes have that characteristic.

Figure 1c) gives a simple example of a machine learning problem in this domain. In
keeping with our assumption that attributes are correlated with the characteristic
(e.g., elements close to one another in the tree are likely to have the same labels), a
plausible solution would be to label N6 black and to label N11 white. Our shorthand
notation for representing that a node i has a label k will be Ni = k. We want to
predict the labels for unlabeled test nodes.

2.2 Vector Models for Classification

One potential way to solve the tree-learning problem is to represent elements of the
domain in a vector space, and to attack the problem with standard machine learning
algorithms. However, as we will show, the generality of these methods means they
cannot take proper advantage of the given tree structure.

To formulate this problem in a vector space, we would be given the tree structure
along with n pieces of training data, corresponding to leaf node indices (x1...xn)
with their corresponding labels y1...yn ∈ 0, 1.

In a vector representation, one would want to maintain information about all the
attributes that a particular node has. Thus, a simple vector representation would
be a bit-string indicating which attributes, A1 . . . Am, a particular leaf has. The
bit-string would then have a value of “1” at position i if the path from the root to
the chosen leaf included node Ni (and hence attribute Ai), and a “0” otherwise.

Consider the sample problem in Figure 1c). If we use a standard linear classifier, like
the linear-SVM or naive Bayes, the final decision rule can be written in terms of a

weight vector and a scalar threshold. Decisions are made by taking the dot product
of the weight vector and the test bit-string and comparing it with the threshold.
Consider the test example for N2, whose bit-string is 1100000000, indicating it
passes through nodes one and two. The bit-string renders most of the weight vector
meaningless; only positions one and two are non-zero. However, nodes one and
two have no information in them. The weight vectors for nodes one and two are,
respectively, nodes that incorporate every training path and no training paths. Thus
the dot-product of the weight vector and the bit-string does not have information
relative to our specific test problem; the same is true for the unchanging threshold
constant. The best the classifier can do is predict a label equivalent to the majority
label of all the training points; but this decision rule can be wrong. In our example,
there are more black leaves than white, but the fact that N2 is a sibling of N5

suggests we might want to label N2 as white.

2.3 A Model of Characteristic in a Hierarchy

One challenge for this paper is to create a formal model that reflects our intuition
that the hierarchy’s attributes are correlated with our chosen characteristic, and
hence that nearby nodes in the tree should have similar characteristics. Our trans-
lation between intuition and model will consist of steps that will convert the tree of
nodes into a Bayesian network.

The random variable for a node i in our problem space is the tendency for elements
with attribute Ai to have a characteristic ji ∈ 0, 1. Tendency is the appropriate
word here: we are interested in problems where the attribute is correlated with the
characteristic, not where the attribute absolutely implies the characteristic. The
canonical example in the AI literature is that “birds tend to fly,” but “penguins
do not fly.” In order to capture those nuances of differences between parent and
children, we need to use the word “tendency.”

The way we formalize this concept of tendency in the model is to use the notion
of mutations. Mutations are areas of the tree in which one attribute is positively
correlated with our characteristic, but the parent’s attribute is negatively correlated,
or vice versa. Mutations are generally a rare event, making parent’s and children’s
correlation with the chosen characteristic as similar as possible. Suppose that Ni is
Nj ’s parent, then:

p(Nj = 1|Ni = 0) = θ; 0 < θ <
1
2

(1)

p(Nj = 0|Ni = 1) = φ; 0 < φ <
1
2

(2)

Thus the probability of a “forward mutation”—shifting from a negative to a positive
correlation between attributes and a characteristic is θ, and the probability of a
“backward mutation” is φ. Both parameters have a probability below 1

2 , which
means that mutations are a rare event.

The ratio of forward to backward mutations has an analog with diffusion models:
the non-evidence probability of a deep tree leaf having a characteristic is exactly
θ/φ + θ. If we had enough data, we might choose to estimate θ and φ based on
that data. This also suggests a natural probability for the root’s prior. If we set
p(N1 = 1) = θ

φ+θ then any node in the tree will have a probability of having the
chosen characteristic of θ/φ + θ, prior to any evidence.

In standard Bayesian terms, evidence nodes are those nodes whose characteristics
are given to us. Thus, our goal is to predict whether node i has a characteristic, given
the evidence nodes: p(Ni = 1|evidence). We use maximum likelihood to predict the

presence of the characteristic: if p(Ni = 1|evidence) ≥ 1
2 then we predict it does;

otherwise we predict it does not. Of course, other thresholds may be preferable, for
example, to minimize the number of false positives.

At this point, we have converted the original, intuitive problem into a formally
specified Bayes net with simple assumptions as outlined in Figure 1d).

2.4 A Generative Classifier for Trees

In order to classify a new query, we simply need to do the standard inference
procedure, which is to calculate argmaxc p(Ni = c|evidence), the probability of
having a characteristic given the evidence.

In this section, we will discuss a fast algorithm specialized for several unusual aspects
of our learning problem. First, new nodes—evidence or queries—might appear at
any time, which is atypical in Bayesian networks. For example, a new species
might be discovered, or a web site might add new page. Therefore, our focus
is on fast incremental updates rather than one slower pass across an entire fixed
network. Second, hierarchies typically have a large number of nodes, but a relatively
small (or constant) depth. Our algorithm therefore provides an update rule that is
proportional to the depth of the tree.

Two common inference procedures are described in Russell and Norvig (1994).
Backward chaining is simpler, and recursively moves from the query node outwards
to the evidence nodes. Forward chaining is more complicated, and moves from the
evidence nodes to the query node, caching reusable probabilities. Our algorithm is
similar to forward chaining, but is specialized for the classification problem we have
presented.

The main unit of calculation we will use is the probability of a collection of evidence;
we can also use this to calculate conditional probabilities. Let Ei indicate the
evidence nodes in the sub-tree rooted at node Ni, and let p(Ei) be the probability
of those evidence nodes. We will repeatedly calculate the conditional probability of
the evidence given a node’s value. We use shorthand to represent this:

pik ≡ p(Ei|Ni = k) (3)

where i indexes the node, and k can be 0 or 1 corresponding to correlations of
attribute Ai with the characteristic. The independence assumptions embedded in
the Bayesian network, gives us the following recursive relationship by summing over
values of the children:

pi0 =
∏

j∈children(i)

∑

k∈0,1

pjkp(Nj = k|Ni = 0) (4)

pi1 =
∏

j∈children(i)

∑

k∈0,1

pjkp(Nj = k|Ni = 1). (5)

We can expand this out replacing the conditional probabilities with the mutation
parameters:

pi0 =
∏

j∈children(i)

pj0(1 − θ) + pj1θ (6)

pi1 =
∏

j∈children(i)

pj0φ + pj1(1 − φ). (7)

If we recursively move from the leaves to the root applying this recursive definition,
at the root N1 we will have calculated p10 and p11 or the probability of all the

function Calculate Evidence(�L, tree)
1: Initialization: mark all evidence nodes found in �L
2: Upward pass from leaves to root:
3: for node index i = max(i) to 1 do
4: if Node Ni has a descendant (other than itself) with evidence then
5: calculate and save pi1 and pi0 (see eq. 6, 7)
6: end if
7: end for
8: return p(E1) = p10φ

φ+θ + p11θ
φ+θ

evidence conditioned on the root’s prior. We multiply out the prior, and get the
probability of all the evidence E1:

p(E1) = p10p(N1 = 0) + p11p(N1 = 1) (8)

=
p10φ

φ + θ
+

p11θ

φ + θ
(9)

The pseudo-code for calculating the probability of all evidence is below.

Suppose that an application wants to query a node. We have already calculated
the evidence, so it’s easy to use this form of the conditional:

p(Nt = 1|E1) =
p(Nt = 1, E1)

p(E1)
. (10)

We could calculate the numerator, p(Nt = 1, E1) using the Calculate Evidence
procedure, which would require another full pass through the tree. But notice that
calculating p(E1) and p(Nt = 1, E1) are very similar; we can re-use some of the
saved data to make the algorithm more efficient.

Recalling that p(Ei) is the probability of evidence that are descendents of node Ni,
the only values of pi0 that require updating are when the test node t is a descendant
of i. In other words, we can update the tree’s probabilities by simply updating all
the probabilities on the path between the test node and the root.

The updated probabilities p′i0 and p′i1 can be written in terms of the cached prob-
abilities from the Calculate Evidence procedure, combined with the contribution
stemming from new node t. Let g index nodes along the path from Nt’s parent to
N1 (the root) and let Nj be Ng’s child. Then the algorithm moves from leaf to root
with the following update rule:

p′g0 = pg0(p′j0(1 − θ) + p′j1θ)/(pj0(1 − θ) + pj1θ) (11)

p′g1 = pg1(p′j0φ + p′j1(1 − φ))/(pj0φ + pj1(1 − φ). (12)

This says you can update the probability in the tree by multiplying in the “new”
contribution of Nj on Ng, and dividing out the “old” contribution of Nj on Ng. This
same technique can either update a new piece of evidence or to find the conditional
probability of a test node given evidence.

Consider the algorithmic time bounds for the standard inference algorithm com-
pared with the caching, incremental algorithm we propose. If there are n nodes
in the tree and m queries, then a standard backward-chaining algorithm will tra-
verse through all n nodes for each new query, so it takes time O(nm). With our
proposed algorithm, calculating the evidence node requires traversing through each
node once; then each test node requires a further pass up the tree. Assuming the

?

6 7 8 9

3

?

6 7 8

3

p(E3|N3=0)=p(N7=1,N8=1,N9=1|N3=0)= Ө 3

Ө
Ө Ө

1-
1-ф1-ф

p(E3|N3=1)=p(N7=1,N8=1,N9=1|N3=1)= Ө 3

Figure 2: The algorithm iteratively calculates p(Ei|Ni = 1) for various nodes from
the leaves to the root. Shown are the graphical representations and probability
calculations for i = 3.

tree’s maximum depth is d, then our algorithm takes time O(n + dm). In many
hierarchies, d is a low, fixed constant. The phylogenetic tree classifies all known
organisms into a tree seven nodes deep; the Yahoo hierarchy classifies numerous
web pages into a tree perhaps ten nodes deep. Therefore, in many problems where
the hierarchical depth is a constant, our algorithm only takes O(n+m) as compared
to backward-chaining which would take O(nm).

2.5 Extensions

Since our model is probabilistic, we can easily add assumptions to the model to
fit our specific problem. Such assumptions would not significantly change the al-
gorithm, but would allow us flexibility in creating domain-specific models. We are
not constrained to having one θ and φ; we are free to assume different mutation
rates for different links. For example, we might have the mutation rate a function
of the node depth, causing the solution to prefer changes near the root of the tree.
We might make assumptions about probable (but not observed) values for certain
leaf nodes. That might be useful when there is non-conclusive evidence for a leaf
having a certain value.

For a subjective learning problem like preferences, we might use a learning technique
based on past user’s preferences. Given past data, it is simple to calculate a prior
(empirical) probability on each of the links. For example, past data might indicate
that forward mutations are common along the “dog” - “Corgi” edge, indicating
that many people like Corgis even when they do not like other dogs. In this way,
prior mutation probabilities can be placed throughout the tree so that learning for a
new user would be weighted towards the empirical probability distributions of past
users.

3 Applications of Tree Learning

3.1 Data Sources

Corporate structures, organisms and web directories are examples of diverse do-
mains that are frequently organized into hierarchies. Our experimental results will
focus on one easily accessed hierarchical domain—the domain of URLs on the world
wide web.

URLs have human-oriented meanings that are useful for recommendation problems.
URLs are more than simply pointers: authors and editors assign important seman-
tics to URLs, and readers make inferences from them. We can infer from a URL
that a document serves a particular function (that nytimes.com/adx/ contains an
ad); or relates to a topic (cnn.com/tech/). We parse the URL into features by using

Ad
Not Ad

nytimes.com

reuters
adx

aponline

2003

Training Learned Ad Location

nytimes.com

reuters
adx

aponline
2003

Figure 3: (Top) A portion of the parsed New York times hierarchy, as applied to the
ad blocking problem. Notice that a portion of the real news (Aponline) is incorrectly
labeled as an ad. (Bottom) Shown is the algorithm’s maximum likelihood guess
of the color of internal nodes. Despite some mis-lablings, the algorithm quickly
identifies the “Adx” sub-directory as filled with ads.

the ’/’ or ’?’ to delimit between different levels of the tree.

3.2 The Daily You

We have implemented a content recommendation system (“The Daily You”) for the
web that uses several hierarchies to learn about user interests. The Daily You is
available for public use: http://falcon.ai.mit.edu.

For space reasons, we cannot describe the full functionality of the Daily You. How-
ever, a brief overview of the system helps describe multiple human-oriented domains
for our tree learning algorithm. One portion of the system uses the layout infor-
mation of a web page—codified as tree structured “table” tags—to find regions of
a web page that interest the user. The intuition is that most pages are templated
so that important sections (i.e., top stories, sports) appear in the same place every
day. When we learn over the table tree, we can understand something about the
user’s interests, without needing to understand anything about the actual content.
Similarly, we can use the URL to find user interests, like a preference for users
to click on articles under the “nytimes.com/business” URL. We will give detailed
results for another aspect of the Daily You, ad-blocking, in the next sub-section.

3.3 Ad Blocking

Many web sites make revenue by placing distracting advertisements throughout
their site. In response, several projects and companies like WebWasher1 and Muffin2

have sought to block those ads. In this section, we try to show the empirical efficacy
of our tree-learning approach by building an ad-blocker based on the URL feature.
We do not claim our approach is full proof; a sufficiently motivated company could
design new ads in response to this or any other ad-blocking algorithm.

Conventional wisdom says blocking ads is as simple as blocking certain fixed aspect
ratios on incoming images. This is simplistic, and belies the fact that entire compa-
nies have formed around the problem of ad-blocking—and advertising. Advertisers
constantly change the form of advertisements: they are becoming larger, shaped
more like traditional images, or even come in the form of text or colored tables. A
static ad-blocker goes out of date in so-called “Internet time.” The typical way to
adapt to advertising changes is to have humans write new rules blocking the new

1http://webwasher.com
2http://muffin.doit.org/

ad image sizes, new IP addresses that serve ads, and so forth.

Our research is different: machine learning finds the new rules, eliminating the need
for human input whatsoever. Our goal is to see whether an entirely self-directed
computer can achieve accuracies comparable to teams of humans working on the
identical problem. If so, our ad-blocker can learn new rules nightly, adapting daily
to new ad forms.

Our work is similar in spirit to the AdEater system which also learns ad-blocking
rules (Kushmerick, 1999). AdEater got a remarkable 97% accuracy on their ad
blocking experiments, though it requires 3,300 hand labeled images to achieve that
accuracy. AdEater uses humans to perform the relatively simple task of simply
labeling images as ads or not; the machine learning takes on the more difficult
task of discovering rules. However, AdEater suffers in the same way that most
ad-blocking programs do: it takes considerable human effort to produce an update;
hence its accuracy decreases as new ad forms surface.

We want to label our data for training our classifier. One alternative is to use
human labeled data, the way AdEater does. However, this is time consuming and
mitigates the benefits of having the computer learn ad-blocking rules. Instead,
we use a heuristic called Redirect to label the data. Redirect labels ads if a link
goes to one site then redirects to a third-party site. Note that Redirect cannot be
used for real-time ad blocking because it takes minutes to follow all the links on
a page. Similarly, a real-time system using the text of the advertisements would
also be implausible. We have chosen the redirect heuristic because it matches the
normal process that advertisers use: tracking the click, then sending the user to the
advertising site. Notice that this is much more of a “content” based heuristic than
image sizes which are “form” heuristics.

In practice, click through tracking requires back-end infrastructure like databases
and CGI scripts. Therefore, they tend to be located together under a small number
of URL directories per site (i.e. under xyz.com/adserver). We use our tree learning
algorithms to associate existing URLs with an ’ad’ or ’not ad’ label provided by the
Redirect heuristic. Then the learning model predicts whether new URLs are ’ads’
or ’not.’ Figure 3 shows how our algorithm might find ads on the New York Times
web site.

What follows is an experiment that shows the performance of our ad-blocker versus
a commercial system. We compared two control ad-blocking ’trainers’ with two
ad-blocking ’learners.’

• WebWasher is a commercial product with handwritten rules that uses many
features like the dimensions of the ad, the URL and the text within an image. It is
in use by four million users.

• Redirect is the simple heuristic mentioned above that monitors third party redi-
rects.

• Learn-WW is our tree-based URL algorithm, trained on WebWasher. We want
to show its single feature can learn WebWasher’s complex rules.

• Learn-RD is our tree-based URL algorithm, trained on Redirect. We suggest this
is a very adaptable ad-blocker, because it learns from Redirect, so can be trained
automatically each night.

We generated a dataset from Media Metrix’s largest 25 web properties, Jan 20023.
Empirical evidence shows the average user spends all their time on a small number

3
http://www.jmm.com/xp/jmm/press/MediaMetrixTop50.xml

Table 1: Ad-Blocking Experiments (accuracy)
Top 25 Sites weather look euniverse

smart

Web-Wash 93.5 (.136) 90.7 85.7 51.7
Learn-WW 93.1 (.118) 86.0 100 51.7
Redirect 93.3 (.08) 84.2 85.7 100
Learn-RD 93.4 (.08) 83.7 100 100

Table 2: shown are the web blocking accuracies for several web sites, along with
standard deviation information for the top 25 web sites.

of the largest sites. We felt that blocking ads of the largest 25 web properties would
be both representative and beneficial to many, if not most, users.

We crawled through a given web site, randomly picking eleven pages linked off the
front page. Those eleven pages, along with the front page, were divided randomly
into a six-page training and a six-page test set. Each web site went through the
random training and testing twice, for statistical significance reasons.

WebWasher and Redirect classified each linked image in the training group, and
those classifications, along with the link URL, were used to train Learn-WW and
Learn-RD respectively.

Next, all four classifiers were applied to the linked images on the test group. If all
four classifiers agreed that an image was either an ad or all agreed it was not an ad,
they were all deemed to have classified the image correctly. Otherwise, a human
was used to judge whether the image was really an ad or not.

In total, 2696 images were classified, and, surprisingly, all four classifiers ended up
with an average classification accuracy across all sites of within a quarter percent of
93.25% (see Table 1). Errors were much more likely to be false positives (labeling
something an ad when it wasn’t) then false negatives; but overall false negative and
false positive rates (approximately 26% and 1%, respectively) were fairly consistent
between all the classifiers.

Table 1 also shows data for specific sites. The first column contains average er-
ror rates for the 25 sites, with standard deviations in parenthesis. On various
sites, trainers beat learners (weather.com); and learners beat their trainers (looks-
mart.com) Thus learners are not exact imitations of their trainers, but on average
end up with the same accuracy rates.

The confidence intervals of the four classifiers are relatively large because errors
tend to cluster around a few web sites. WebWasher, for example, does poorly
marking ads on euniverse.com, which uses different dimensions for its ad images
than many sites. Redirect does poorly on portals and internal ads, such as the
Times advertisement for a paper subscription.

In some cases, Learn-WW (the learner) does better than its own trainer, Web-
Washer. It generalizes all of WebWasher’s many features down to one location
in a tree, which at times is a perfectly predictive feature, such as when it labels
everything under /adserver.cgi/ as an ad, for example on the looksmart.com site.

We wish to make two points about our results. First, our Learn-RD algorithm
achieved performance comparable to a commercial ad-blocker, without needing com-
plex, hand-written rules. In fact our system performs better in some respects. Most
ad-blocking systems do not remove text-based ads (ads, for example, placed within

search engine results), while our system removes them by identifying their URL
and removing the link. Second, we argue that our ad-blocking classifier will adapt
in the long term better than a static version of WebWasher, since it can update
rules nightly without any human input. Of course, in the adversarial world of ad-
vertisements, it is probable that this system, too, would be defeated if it became
widespread: an advertiser could deliberately obfuscate their URLs.

3.4 Redirect Learning

Our next experiment tries to show that shifting from the ’independent features’ view
of naive Bayes to a ’hierarchical features’ view of the world can improve classification
power on a simple classification problem.

To keep our experiments objective, we had two algorithms predict whether a URL
redirects or not, over the top 25 web sites. This was simply a follow-up experiment
to the previous subsection, without needing a human to judge correctness. The
first classifier simply uses the hierarchical URL classifier; the second is a naive
Bayes classifier that assumes each ’word’ in the URL is independent.

Both classifiers were given the exact same feature data-the ordered ’words’ in the
URL, and the same training data. Furthermore, both classifiers were probabilistic.
The sole differences were the underlying models: one uses the hierarchy explicitly,
and the other assumes independence between the features.

Overall the hierarchical model performs significantly better than the naive Bayes
model. Overall classification accuracy-percentage of all links classified correctly-
was 93% (.09 standard deviation) for the hierarchical model vs. 40% (.28 standard
deviation) for naive Bayes.

Our results showed that naive Bayes classified every element in the same way on
23 of the 25 sites in this experiment, using a maximum likelihood decision process.
These results strongly suggest that naive Bayes performs poorly on the tree-learning
problem.

4 Conclusions

Hierarchies are a common way of organizing information, and this paper poses a
classification problem where features indicate an element’s position in a tree. We
introduced a generative model that accommodates our intuition that nearby nodes
in a tree will have similar properties. We then converted the model into a Bayesian
Network and gave an efficient algorithm for solving arbitrary classification problems.

In general, our approach can take advantage of the fact that hierarchies are common
and contain information about certain classification problems. In our paper, we
have looked at problems that discriminative learners might have on such a domain;
have used our algorithm to mimic commercial ad blocking software; and showed an
example where the algorithm outperforms naive Bayes.

Acknowledgements The authors wish to thank Leslie Kaelbling, Yu-Han Chang,
Jason Rennie and Terran Lane for their helpful comments, and the Oxygen Part-
nership, NTT, and the Packard Foundation for funding.

References

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. Wiley-Interscience.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and valiant’s
learning framework. Artificial Intelligence, 36, 177–221.

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few
words. Proceedings of the 14th International Conference on Machine Learning (ICML-
97) (pp. 170–178).

Kushmerick, N. (1999). Learning to remove internet advertisement. Proceedings of the
Third International Conference on Autonomous Agents (Agents’99) (pp. 175–181). Seat-
tle, WA, USA: ACM Press.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., & Ng, A. Y. (1998). Improving text
classification by shrinkage in a hierarchy of classes. Proceedings of ICML-98, 15th In-
ternational Conference on Machine Learning (pp. 359–367). Madison, US: Morgan
Kaufmann Publishers, San Francisco, US.

Quinlan, J. R. (1987). Generating production rules from decision trees. Proc. of the 10th
IJCAI (pp. 304–307). Milan, Italy.

Russell, S. J., & Norvig, P. (1994). Artificial intelligence: A modern approach. Prentice
Hall.

