View metadata, citation and similar papers at core.ac.uk brought to you bnyORE

provided by DSpace@MIT

SR
lab

@ MIT

massachusetts institute of technology — artificial intelligence laboratory

A Robust Amorphous
Hierarchy from Persistent
Nodes

Jacob Beal

Al Memo 2003-012 April 2003

© 2003 massachusetts institute of technology, cambridge, ma 02139 usa — www.ai.mit.edu

https://core.ac.uk/display/4383825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

For a very large network deployed in space with only nearby nodes able to talk to each other, we want
to do tasks like robust routing and data storage. One way to organize the network is via a hierarchy,
but hierarchies often have a few critical nodes whose death can disrupt organization over long distances.
I address this with a system of distributed aggregates called Persistent Nodes, such that spatially local
failures disrupt the hierarchy in an area proportional to the diameter of the failure. I describe and analyze
this system, which has been implemented in simulation.

1 Introduction

There are many ways to build hierarchies; why does the world need another one, and what is special about
the one which I am building? In a word: stability.

In a world of pervasive computing, we need systems that will organize themselves without human interfer-
ence, and maintain a reasonably stable organization despite failures — possibly even in very large networks
and during very large failures. Hierarchies are often a useful tool for organizing, but generally have critical
nodes whose disruption can produce long-range effects.

In this paper, I present an algorithm that contains the effects of failures to an area proportional to the
size of the failure. This algorithm expects to run in a geographically local network — a network embedded
in space, with only short-distance links (e.g. an ad-hoc wireless network with limited transmission range).
First I lay out my networking model and a motivation in the form of a real-world application example. Next
I describe the PNHIERARCHY algorithm. Finally, I show the response of the algorithm to localized stopping
failures, and present brief experimental results demonstrating that PNHIERARCHY works in simulation.

2 Amorphous Computing Model

One useful model for studying geographically local networks is two-dimensional amorphous computing.[1]
An amorphous network is generated by distributing n particles uniformly randomly over a unit square (or
other 2D region) and placing edges between all pairs of particles less than distance d apart. The resulting
graph has spatially local connectivity but no long-distance links. The amorphous matriz for a given network
refers to the spatial embedding of the network graph.

Each particle has a clock which drifts at a rate |r| < e per tick, yielding timing uncertainty L = ifi On
each particle, we run an identical partially synchronous algorithm, subject to the following restrictions:

1. Particles receive no geometric information or coordinates
2. Particles receive no time synchronization information
3. Each particle’s clock is initialized to a random time

Any of a wide variety of communication models may be applied. For purposes of this paper, I assume
send/receive communication over links with reliable message delivery in maximum time ty,.

2.1 Application: Gigascale Wireless Networks

A real life example of an amorphous network is dense urban peer-to-peer wireless systems. For example,
consider the city of Boston a few years from now, when every building has several wireless base-stations.
If the base-stations communicate directly with nearby base-stations, then the city forms a geographically
local network with approximately 107 nodes and a diameter of around 103 hops. If, in addition, we assume
a pervasive computing scenario where most electrical devices communicate via wireless as well, then the
density of the network skyrockets to on the order of 10'° nodes. Unlike most ad-hoc networking scenarios,
there are so many more nodes than people in this scenario that it is safe to assume almost all of the nodes
are stationary almost all of the time.

Controlling this sort of gigascale wireless network presents serious challenges. A robust decentralized
hierarchy generation system such as the one described in this paper can be used to address problems of

naming and routing without making strong assumptions of global coordinate or time synchronization systems.
Another application is to use the tree created by the hierarchy as a storage data structure, in which case the
bounded response to failure can be used to address atomicity problems.

3 The PNHIERARCHY Algorithm

The PNHIERARCHY algorithm is a fairly straightforward application of Persistent Nodes.[4] The key idea
is to use Persistent Nodes with a variant congestion control heuristic to partition space evenly. We run an
independent partition for each level of the hierarchy, with coarser granularity for higher levels, and wire the
partitions into a hierarchy induced by the node centers.

From this simple procedure, we produce a surprisingly stable and robust hierarchical partition of space.
The robustness properties of Persistent Nodes guarantee that the space partitions always rapidly converges
toward a consistent state, and hysteresis in the hierarchy creation process enables the higher levels of the
hierarchy to change extremely infrequently. Furthermore, failures cause noticeable effects only in a region
proportional to the diameter of the failed region, so local failures do not cause global re-organization.

In the following sections, I will describe in detail the PNHIERARCHY algorithm. First, I review some
properties and terminology of Persistent Nodes. Next, I describe how to produce a space partition using
Persistent Nodes. Finally, I describe how a hierarchy is produced from a set of space partitions, and analyze
properties of the hierarchy produced.

3.1 A Brief Review of Persistent Nodes

Most of the functionality of Persistent Nodes is actually not used by PNHIERARCHY: this section will sketch
only their anatomy and movement. For an in-depth treatment of the PERSISTENTNODE algorithm, see [4].

Persistent Nodes, as used by the PNHIERARCHY algorithm, are named spherical regions of a geographi-
cally local network. A Persistent Node IV begins life centered at a single particle and expands to incorporate
all the particles within r hops. Thereafter, it slowly shifts its center according to a potential function @,
moving N through the amorphous matrix.

The particles near a Persistent Node are grouped into three sets based on the estimated distance to the
center of the node hy(p). Particles with hy(p) < r are in the node proper. Particles less than 2r are in
the reflector — the region which controls movement direction. Particles within kr are in the umbra, the
informational “shadow” of particles that know about node N.! (See Figure 1)

3.2 Partitioning Space

The space partitioning process, PN Partition(r, p, D) is a subprocess of three parameters invoked by the
PNHIERARCHY algorithm. The three parameters specify the node radius r to be used, and the estimated
density p and dimensionality D of the amorphous matrix on which the PN Partition process is running.
The latter two parameters are assumed: they can be calculated once for a given matrix and used for all
PN Partition processes on that matrix.

The goal of the PN Partition process is assign every particle to a group G; such that the groups have
diameter O(r) and the diameter of the biggest group is only a constant factor bigger than the smallest group
(We obtain bounds 7r > diam(G;) > r). The PN Partition process achieves this by generating a population
of Persistent Nodes and spreading them evenly through the matrix such that no two nodes are too close
together and no particle is too far from any node.

Nodes are spread evenly by a potential function ® which causes nodes in the same partition process to
repel each other. For a node N, let [be the number of reflectors for PN Partition(r) nodes? other than N
to which a particle belongs, and let K (p) =) ;c piraren(p) 0(¢), the sum of heuristic values at the children of
the particle. Then we define the potential function piecewise as:

In [4] k = 3. In this paper, however, we adjust k up to 8. Since particles in the umbra play no computational role in the
node, this does not change any results from [4].

2This specifically excludes nodes used by all other processes, including partition processes with different values of r, in order
to preserve independence between partitionings.

Reflector

Figure 1: Anatomy of a persistent node. The innermost circle is the node proper (blue), where data can
be read or written. Every particle within middle circle is in the reflector (yellow), which holds data and
calculates which direction the node will move. The outermost circle (red) is the umbra (k=3 in this example),
which knows the identity of the node, but nothing else.

By (p) = {gg(:po))—l)/(l(K(P)-i-l))(lZO)

This function produces a rough approximation of repulsion between charged particles, tending to spread
the nodes evenly through space. It only remains, then, to see that there are not too many or too few nodes.

Overpopulation of nodes is controlled by killing off a node whenever two nodes collide. When a particle
is a member of two nodes, it invokes a KILL operation on the node with the lesser ID. This gives us a
simple constraint: no two node centers can be closer than 27 hops.

Under-population of nodes is controlled by randomly seeding new nodes in areas distant from any node
center. Every particle running process PN Partition(r, p, D) which is at least 2.5 from the nearest node
center has probability P, at every round of creating a new node with a random name. This probability is
set so that an unpopulated matrix volume of radius 1.5r is expected to create one new node during 1.5r
rounds. The radius is set to 1.5 so that the initial population will be spread rather than packed tightly,
and the time-stretch allows time for the construction of a new node to inhibit creation of other new nodes.
Approximating the volume as an n-cube, we thus set the creation rate to:

2

e = Seno

From this population of nodes, every particle can is assigned to a group G; affiliated with a particular
node, or the unassigned group Go. Let R, be the set of nodes N for which hn(p) < 3.57. At each step,
then, let P, be the current assignment of p and IV, be the nearest node in R, or Gy if R, is empty. We
then set P, to be N, if N, is G or if hy,(p) + 7 < hp,(r). This produces an assignment to closest node,
with hysteresis, forming a partition of the particles into groups. Note that the subnet for a group is not
necessarily connected, though its embedding in the matrix is (except for Gy).

3.2.1 Properties of PN Partition

Here I will examine some of the key properties of the PN Partition method. In general, I will assume
that density and dimensionality are consistent throughout the matrix, and consider only interior regions
(boundary cases complicate the analysis greatly and only effect the constants).

First, recall that the PERSISTENTNODE algorithm is expected to move a node’s center at most every
4r /L rounds in the failure-free case. This extremely slow rate of motion means that the velocity distortion
of a node may be disregarded.

Figure 2: PN Partition run with r = 4 on a matrix of 2000 nodes and communication radius 0.04. Thick
black lines show the approximate boundary between groups.

As a consequence, particles go a quadratic period between reassignments. For a particle p which has just
joined G; # Gy, it must be the case that no node N; is closer than N;. If N; moves away and some other N;
moves toward p at maximum velocity, then /2 moves of their centers are required to change p’s group to
G;. Each move takes 4r/L rounds, so at least 2r? /L rounds elapse between reassignments of a given particle
p. A collision between nodes can reassign a particle faster, but this is an exception case which happens even
more infrequently due to the load-balancing effect of the potential function.

The case of a node joining Gy must be dealt with separately. That event is unlikely once the matrix has
reached steady state, and cannot persist for long. We will start by analyzing how long a particle can remain
in Go. Consider a particle p which joins Gy: this particle has hn(p) > 3.5r for every node N, which means
that every particle within r hops is eligible to create a new node. Assuming a two-dimensional matrix, this

means that there are p(32—r)3 prr? = 2277; nodes expected to be created in the region each round that p remains
unlabelled. In the time for a node to move one step, then, there is an expectation of at least 287—’2 ~ 0.93/L

nodes created — so some node will be created in O(rL) rounds with high probability. Note that this analysis
covers the startup transient as well.

Once a node is created in this region, p will be within r of the new node, and therefor unable to join G
again for at least 10r? /L rounds. Moreover, the likelihood of p joining Gy again at all is extremely small for
large r: for the last r?/L rounds before p joins Gy, there must be a region of radius r/2 particles eligible for
node creation around p, which are expected to produce p(;—r)g pﬂ'% = £ nodes per round, or an expected
z1r " nodes. The probability that no node is generated during this time, by the Poisson distribution, is
e~ 5z", which quickly drops toward zero with rising r.

In practice performance will generally be much better than these time bounds, as the movement of nodes
more closely approximates the random walk of particles in a Brownian gas than the worst-case linear motions
used in this analysis. I will not, however, analyze this further in this paper.

Finally, note that the number of nodes is proportional to the area, and that the diameter of the set of
particles in a node is bounded above and below: for any node N, its diameter diam(N) < 7r because only
particles within 3.5r hops of the center can be labelled N. Conversely there is a lower bound of diam(N) > r
for an interior node,® because no two node centers can be closer than 2r, so with a hysteresis of magnitude
r every particle within r/2 hops of the center of N; must be belong to G;.

3A node near the edge of the matrix may, of course, be constricted further by lack of space.

3.3 Generating a Hierarchy

Using the PN Partition process, we can generate a space partitioning for any given characteristic radius.
We use this to generate a set of log(diam) space partitions and form logical connection between layers such
that we have a hierarchy that covers the entire area. The partitions are run with exponentially increasing
node sizes: level zero is simply the individual particles; the first level uses nodes of radius r; = 2, and each
level thereafter doubles in radius (e.g. level 10 would have radius 719 = 1024 nodes?).

There are two issues in building a hierarchy from these exponentially increasing partitions: how do we
determine how many partitions we need (log(diam)) and how do we connect successive partitions in order
to form a hierarchy?

3.3.1 Finding log(diam)

The simplest way to find log(diam) would be to simply poll for the diameter. However, failures and additions
in the matrix could radically change this during run-time, so we need a cheap dynamic calculation instead.
For this, we use the fact that the top of a hierarchy is a single root — so therefor the top level should have
a single node large enough that no other node can be created at that level. Thus, we have a constraint that
precisely one partition, the top level, should have one node.

To test this constraint, the center of every node polls for neighbors at an expected rate of once every kr
rounds.? If any particle in the node is in the umbra of another node, then there are neighbors. The result
of the poll is broadcast throughout the umbra, allowing particles to adjust their estimate of log(diam): if
every existing level has neighbors, a new level is added; if some level has no neighbors, then that level is set
to be the top level. In practice, this means that we start with a single partition, which then builds upwards
as successive partitions become populated.

3.3.2 From Partitions to Hierarchy

This is actually a very simple process: at the base of the hierarchy, every particle is a leaf. The parent of
each leaf (particle) is its label in the first partition. To recurse upward, the particle at the center of a level
node N; chooses its i+ 1 parent to be its group G4 in the level i + 1 partition, with ;1 hops of hysteresis.®
It then broadcasts its parent and every particle with ith parent G; takes that for its i + 1 parent.

This procedure clearly generates a hierarchy: all particles with ith parent G; will adopt the same i + 1st
parent G;y1, every particle is a unique leaf at the base level (by assumption), and every particle has the
same root at some level O(log(diam)) (when there is a single node whose group covers all space). Finally,
there can never be a naming collision, because if two nodes with the same name adopt the same parent, then
they must be close enough for their umbras to touch, which will cause the underlying PERSISTENTNODE
algorithm to delete one of the conflicting nodes.

3.3.3 Properties of PNHIERARCHY

Distance/Address Relationship Particle p, is a neighbor of p; at level i if p, is in the umbra of py’s
ith parent node, N;. We can bound neighbor relations with the distance between the particles d(pqa, ps), and
vice versa.

If p, is a level i neighbor of py, that means it is within 8r; hops of the center of N;. The center of N; is
at most 3.5r; hops from the center of V;_1, which is at most 3.5r;_; hops from the center of N;_s and so on.
Summing all the distances, we obtain a maximum distance of 15r; = 15 % 2! between two nodes which are
neighbors at level i. Conversely, d(p,, py) bounds the minimum level at which the two particles can become
neighbors: no earlier than level i = [lg %].

We can also obtain tidy minimum distance and maximum level bounds. For two nodes which are neighbors
at level ¢, but not at any level j < i, they cannot be any closer than 5 = 2¢=1 hops distant from each other,
or else they would be neighbors at ¢ — 1. Conversely, for two nodes at distance d(pa,ps), they must be
neighbors at every level i > [lgd(pa, ps)].

41 will use r; as shorthand for the radius of ith level nodes, 2¢.
5Experiments used the arbitrary value k=10.
6i.e. if G;41 is not its old parent, it keeps its old parent unless G;41 is 2! hops closer.

Figure 3: A hierarchy of three levels of nodes. Larger circles are higher-level nodes, and arrows show
parentage relations between a nodes.

Construction Time Starting from scratch, PNHIERARCHY constructs a hierarchy in O(diam - L) time:
the level partitions are constructed serially, with level i taking O(r; L) rounds to construct. This is dominated
by the last level, which has radius O(diam).

Communication Cost For communication cost, we will consider communication density rather than
message cost. Communication density measures the amount of bandwidth consumed per particle: a particle
in a network with n particles which multicasts a k-word message to its immediate neighbors costs k/n.

The communication cost for PNHIERARCHY is O(log(diam)) density: there are three components to the
cost — cost of running the PN Partition processes, cost of polling for neighbors, and cost of maintaining
the hierarchy tree. A PN Partition process costs based on the number of node umbras that a particle is
participating in, which is limited to O(1) by sphere packing.” The converge-cast used to poll for neighbors
can be extremely costly, up to O(r?), but since the poll is only expected to occur once per node in every
kr rounds, the final density is only O(1) per level. Finally, transmitting parent information throughout a
node costs by number of nodes, just as PN Partition, so maintaining the hierarchy costs O(1) per level. So
the cost for each level is O(1) and there are O(log(diam)) levels, yielding a final communication density of
O(log(diam)).

Stability of Hierarchy Particles change parents slowly, and large-scale changes happen extremely infre-
quently. The parents of an individual particle p change every time they adopt a different level 1 parent: this
class of change, however, is cheap and tightly localized, no matter how many parents of p are different after
the change. When a level ¢ node adopts a new ¢ + 1 parent, however, the region which must be updated is
much larger, affecting O(r?) particles. Accordingly, we want changes at the bottom levels of the hierarchy
to dominate.

To see that this is the case, consider the parentage of a level ¢ node in the hierarchy tree. The parent
is determined by the level i and level ¢ + 1 partitions: labels from level ¢ + 1 and the locus of decision at
the (shifting) center of the level i node. The label of a particle in PN Partition keeps the same label for at
least 2r2/L rounds, but when the center of the level i node moves, it may be to a particle with a different

7This does not hold for an arbitrary graph, but does for spatially embedded networks such as in an amorphous matrix.

d(A)>=x+r-z
label(p_i)=A d(C)>d(A)-r
d(C)<=x+2y-r+z

z hops

label(p_k)=C 1 hop

®
y hops label(p j)=B
d(B)<=x+y abed((%_)Jz)X
d(C)<=x+y-r d(A)>=x+r

Figure 4: Displacement between three successive changes in parentage (A,B, and C) is at least r;;1/2 for
a static set of nodes. Each transition involves a differential of r;;; hops distance, due to hysteresis in the
hierarchy assignment process, but the distance between the first and third transitions must be high enough
that that the first transition point can be labelled A.

label. The hysteresis in choosing labels, however, throttles the rate at which changing labels can change the
hierarchy, because the distance must be instantaneously better as well.

For a static arrangement of level ¢ + 1 nodes and a level i node moving through the matrix, the node’s
center is displaced an average of at least ”Lli hops between changes of parentage. This is because each change
in label requires a differential of r;;1 hops. Consider three consecutive changes of parentage for a node N;: to
A to B and to C, occurring at particles p;, p;, and pg. At pj, the distance to B is d;(B) = x, and the distances
to pr and p; are y and z respectively. Hysteresis then implies d;(A) > « + rit1, and dp(C) < ¢+ y — riq1.
Translating these distances to p; gives d;(4) > « + ;41 — z and d;(C) < © + 2y — rj41 + z. Finally, since
p; has label A, we know that d;(C) > d;(A) — r;;1 assuming A # C8. Combining these three constraints
and solving for (y + z) yields (y + z) > r;+1/2: thus every pair of transitions is separated by movement of
at least ;11 /2 hops, yielding an average bound of r;1 /4.

Translating this to the dynamic case, where the 7 + 1 nodes are moving translates the distance bound into
a relative distance bound, leaving us still with an expected time of Q(r?,, /L) = ©(2* /L) rounds between
changes of the hierarchy at level i. As desired, the low-level changes dominate.

4 Recovery From Stopping Failures

The real desirability of the PNHIERARCHY algorithm is that stopping failures only disrupt an region linear
in their diameter. In effect, the natural fluidity of the hierarchy provides a “noise floor”, and a stopping
failure causes disruption above this noise floor only in a local area.

To investigate this, we will consider a stopping failure F' of diameter f (i.e. a set of failing nodes where
the distance between any two is at most f hops on the amorphous network). How much effect will F' have
on the hierarchy tree?

First, note that the hierarchy is, in fact, guaranteed to converge: the hierarchy is derived from the parti-
tion, which is based on Persistent Node constructs, which will either be completely destroyed or reconstructed
within 3Lr rounds of a failure. So within O(diam - L) rounds some hierarchy will have been reconstructed.
This is a very loose bound, however, and fails to address the question of how different the new hierarchy will
be from the old hierarchy.

8If A = C, then z > r;41, or hysteresis would prevent the transition back to A.

Amorphious Experiment -l AvoousEmpement M| AvophousEgenmemt [||

(a) Level 1 (b) Level 2 (c) Level 3

Figure 5: A typical run of PNHIERARCHY for 2000 particles with communication radius 0.04. There are five
levels in the resulting hierarchy. The top and bottom levels of the hierarchy are uninteresting, as the top
has every particle in the same group and the bottom has every particle in a different group; these images
show the middle three levels of the hierarchy, with each ith level node a different color, and thick black lines
showing the approximate boundaries. The logical tree is shown in Figure 6.

A stopping failure can cause a change in the parentage of a node at level ¢ if some level i node ends up
with its center having a different partition label which overcomes hysteresis. This can be effected by some
combination of shifting the center of a node at level i, and shifting or destroying level 7 + 1 nodes such that
the labels of particles are changed. Note that either way, the critical operation is moving the center of a
level i node.

Now here is a problem: even a single particle failure might cause an arbitrarily large change, if the
particle which fails is the center of a level ¢ node and its death shifts the center across a hysteresis boundary.
Salvation comes from the fact that this happens very rarely — rarely enough, in fact, that we will be able
to shift the effect under the noise floor for high levels.

Recall that in the non-failing case, a node’s center must have a relative motion of at least 2!~ hops
between three successive transitions. A stopping failure of diameter f, then, simply introduces an instanta-
neous additional displacement of up to 7w f hops, which can only cause a level ¢ change in hierarchy if the
relative motion since the next-to-last transition is at least 2°~' — 7 f — in other words, in a small window of
vulnerability when a change could happen shortly anyway.” When 2¢ is large, then, the relative size of the
vulnerability can be bounded to arbitrarily small fraction e, below which the changes caused by the failure
are considered indistinguishable from failure-free hierarchy changes.

Thus a stopping failure of diameter f causes distinguishable changes in only the bottom O(log f) levels of
the hierarchy. Additionally, since these changes involve only nodes of radius O(f), the hierarchy will converge
again within O(f - L) rounds, having affected only particles within O(f) hops of the region of failure.

5 Experiments

I have implemented the PNHIERARCHY algorithm and tested that it behaves as expected in an amorphous
matrix with 2000 particles and a communication radius of 0.04 (i.e. approximately 40 hops in diameter). As
expected, the nodes converge rapidly to a hierarchy which changes very slowly, and shows disruption linear
in the diameter of stopping failures. The results of a typical run of PNHIERARCHY are show in Figure 5.
The hierarchy tree structure for this run is shown in 6.

9Tt could also cause a collision in a window of vulnerability similarly bounded, involving immediate level ¢ neighbors as well
and increasing disruption by no more than a constant factor.

I * O

Figure 6: The hierarchy tree produced by the run of PNHIERARCHY shown in Figure 5. The random
numbers are the names of nodes in the top three levels; the level 1 nodes are shown as black dots and the
2000 leaf nodes are not explicitly enumerated.

My greatest frustration while running experiments to confirm the results in this paper was that the
implemented version of PNHIERARCHY could not be persuaded to misbehave badly enough to approach the
bounds showed in this paper. Case in point is the frequency of transitions in the hierarchy. The following
table shows the results of running PNHIERARCHY for 300,000 rounds:

‘ Level ‘ Transitions 3%)20,%0
0 276222 300000
1 3140 75000
2 570 18750
3 0 4688
4 0 1172

The hierarchy produced has four levels, though no changes occurred in the top two levels after creation
— they were too stable. Unfortunately, this also means that there is not enough data to satisfactorily verify
the 22¢ bound predicted in Section 3.3.3, though the results are, in fact, well within the predicted range.
As expected, however, the relabellings of the bottom nodes vastly outweighed the relabellings of the higher
level nodes.

Determining the range of disruption also turned out to be difficult. Many failures produce very little
disruption, and only by targeting failures at the centers of nodes was it possible to obtain long-range effects.
The following table shows the effects of sample targeted disruptions of different diameters:

| diam(f) | Farthest Disruption (hops) | Convergence Time (rounds) |

1 0 N/A
2 1 15
3 0 N/A
4 6 45
5 4 30
6 7 60
7 7 45
9 14 100
10 18 140

As expected, the data is roughly linear, but the constant is smaller than might be expected, evidence of
the difficulty in producing maximal disruptions, likely due to effects of hysteresis and collision-avoidance.

6 Contributions

The PNHIERARCHY algorithm uses Persistent Nodes to build a rapidly converging hierarchical partition
of space. The hierarchy produced changes exponentially slowly with height, producing a “noise floor” of
expected changes. Stopping failures produce disruption above the “noise floor” only within a region linear
in the diameter of the failure, and reconvergence takes place within linear time. Experiments in simulation
confirm that the algorithm performs as expected.

This hierarchical partitioning can be applied as a basis for routing, naming, or data storage in gigascale
localized networks, such as metropolitan ad-hoc peer-to-peer wireless networks.

6.1 Related Work

Previous work on hierarchy building in the Amorphous Computing model ([6] [11] [12]) has focused on
construction of a hierarchy, without addressing maintenance or recovery from failure of critical nodes.

Much work has been done on hierarchy systems for geographically local networks in the context of packet
radio, such as Tsuchiya’s Landmark routing system[13], which can produce an unbounded radius change due
to the death of a particle being used as a high level landmark, or Baker and Ephremides[2] LCA algorithm,
which shows similar vulnerabilities when invoked recursively. More recently, ad-hoc networking algorithms
have used clustering to produce hierarchical structures (as, for example, in [8] [7] [3] [9]) which similarly
either assume networks small enough to use only a constant number of clustering levels or fail to address
bounding of changes produced by small changes in topology.

7 Acknowledgements

Thank you to Tim Shepard for the idea of applying amorphous computing to gigascale wireless and the
Boston scenario. Thanks also to Hal Abelson, Radhika Nagpal, and Gerry Sussman for editing and for
challenging questions.

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman
and R. Weiss. Amorphous Computing. AT Memo 1665, August 1999.

[2] D.J. Baker and A. Ephremides, ”The Architectural Organization of a Mobile Radio Network via a
Distributed Algorithm,” IEEE Trans. Comm., vol. 29, no. 11, pp. 1694-1701, Nov. 1981.

[3] S. Basagni, ”Distributed Clustering for Ad Hoc Networks,” Proceedings of the IEEE International Sym-
posium on Parallel Architectures, Algorithms, and Networks (I-SPAN), Perth, Western Australia, June
1999, pp. 310-315.

[4] Jacob Beal. Persistent Nodes for Reliable Memory in Geographically Local Networks. MIT AI Memo
2003-011.

[5] Daniel Coore. Establishing a Coordinate System on an Amorphous Computer. MIT Student Workshop
on High Performance Computing, 1998.

[6] Daniel Coore, Radhika Nagpal and Ron Weiss. Paradigms for structure in an amorphous computer. MIT
AT Memo 1614.

[7] B. Das, E. Sivakumar, and V. Bhargavan, ”Routing in ad-hoc networks using a spine,” in IEEE Interna-
tional Conference on Computer Communications and Networks "97, 1997.

[8] M. Gerla and T.-C. Tsai. Multicluster, mobile, multimedia radio network. Wireless Networks, pages
255-265, 1995.

10

[9] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A cluster-based approach for routing in
dynamic networks. ACM SIGCOMM Computer Communication Review, pages 49—65, April 1997.

[10] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc, San Francisco, California,
1996. Chapter 8, pages 199-234.

[11] Radhika Nagpal. Organizing a Global Coordinate System from Local Information on an Amorphous
Computer. MIT AT Memo 1999

[12] Radhika Nagpal and Daniel Coore. An Algorithm for Group Formation in an Amorphous Computer.
Intl Conf on Parallel and Distributed Computing Systems (PDCS’98), 1998

[13] Paul F. Tsuchiya. The landmark hierarchy: A new hierarchy for routing in very large networks. In
Proc. of the SIGCOMM ’88 Symposium on Communications Architectures and Protocols, Stanford, CA,
August 1988.

11

