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Abstract

Statistical shape and texture appearance models are powerful image representations,
but previously had been restricted to 2D or simple 3D shapes. In this paper we present
a novel 3D morphable model based on image-based rendering techniques, which can
represent complex lighting conditions, structures, and surfaces. We describe how to
construct a manifold of the multi-view appearance of an object class using light fields
and show how to match a 2D image of an object to a point on this manifold. In turn
we use the reconstructed light field to render novel views of the object. Our technique
overcomes the limitations of polygon based appearance models and uses light fields
that are acquired in real-time.
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1. Introduction
Appearance models are a natural and powerful way of describing objects of the same
class. Multidimensional morphable models [14], active appearance models [9] and
their extensions have been applied to model a wide range of object appearance. The
majority of these approaches represent objects in 2D and model view change by mor-
phing between the different views of an object. Modeling a wide range of viewpoints
in a single 2D appearance model is possible, but requires non-linear search [18]. Addi-
tionally, object self-occlusion introduces holes and folds in the synthesized target view
which are difficult to overcome.

A polygonal based 3D morphable model was proposed by Blanz and Vetter [5].
With their approach the view is an external parameter of the model and does not need
to be modeled as shape variation. However, this technique is based on a textured polyg-
onal mesh which has difficultly representing fine structure, complex lighting conditions
and non-lambertian surfaces. Due to the accuracy of the 3D surfaces needed in this ap-
proach, the face scans of each prototype subject cannot be captured in real-time and
fine structure such as hair cannot be acquired.

We propose a 3D morphable model using image-based rendering rather than ren-
dering with a polygonal mesh. We use a light field representation, which does not
require any depth information to render novel views of the scene. Although a mor-
phable model may be defined using any image-based rendering technique, we found a
light field representation to be advantageous for this reason. Our approach can easily
model complex scenes, lighting effects, and can be captured in real-time using camera
arrays [23, 22].

With light field rendering each morphable model prototype consists of a set of sam-
ple views of the plenoptic function [1]. A reference prototype is computed and shape
and texture is defined for each sample view relative to that prototype. The resulting
morphable model can be matched to a 2D image of a novel object by searching over
shape and texture parameters. The estimated shape and texture parameters may be used
to synthesize an image-based reconstruction of the object, which in turn may be used
to render novel views of the object.

In this paper we present a light field morphable model of the human head. The
model was built by collecting light fields of 50 subjects using a real-time camera array
[23] (see Figure 1). The light field morphable model is formally described in Section
3. In Section 4 we show how to match a light field morphable model to a single 2D
image. Finally, in Section 5 we demonstrate our head model and in Section 6 provide
concluding remarks and discuss future work.

2. Previous Work
Statistical models based on linear manifolds of shape and texture variation have been
widely applied to the modeling, tracking, and recognition of objects with sets of 2D
features [4, 11, 14]. In these methods small amounts of pose change are typically
modeled implicitly as part of shape variation on the linear manifold. For representing
objects with large amounts of rotation, nonlinear models have been proposed, but are
complex to optimize [18].
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Figure 1: Light field camera array [23].

An alternative approach to capturing pose variation is to use an explicit multi-view
representation which builds a PCA model at several viewpoints. This approach has
been used for pure intensity models [2] as well as shape and texture models [10]. A
model of inter-view variation was also recovered in [10], and missing views could be
reconstructed. However, in this approach views were relatively sparse, and individual
features were not matched across views; images were rendered using only texture from
a single viewpoint.

Shape models with 3D features have the advantage that viewpoint change can be
explicitly optimized while matching or rendering the model. Vetter [5] showed how
a morphable model could be created from 3D range scans of human heads. This ap-
proach represented objects as simply textured 3D shapes, and relied on high-resolution
range scanners to construct a model; non-lambertian and dynamic effects are difficult
to capture using this framework. With some manual intervention, 3D models can be
learned directly from monocular video [12, 16]; an automatic method for computing a
3D morphable model from video was shown in [6]. These methods all used polygonal
mesh modes for representing and rendering shape.

Image-based models have become popular in computer graphics recently; with
these approaches 3D object appearance is captured in a set of sampled views or ray
bundles. Lightfield [15] and Lumigraph [13] rendering techniques provide a method
for creating a new image by resampling the set of stored rays that represent an ob-
ject. These techniques can accurately capture non-lambertian appearance and fine scale
shape. Most recently the Unstructured Lumigraph [7] was proposed, and generalized
the Lightfield/Lumigraph representation to handle arbitrary camera placement and ge-
ometric proxies.

A method to morph two lightfields was presented in [24]; this algorithm extended
the classic Beier and Neely algorithm to work directly on the sampled lightfield rep-
resentation and to account for self-occlusion across views. Features were manually
defined, and only a morph between two (synthetically rendered) light fields was shown
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in this work.
In this paper we develop the concept of a light field morphable model, in which 3

or more light fields are ”vectorized” (in the sense of [4]) and placed in correspondence.
We automatically construct a light field morphable model of facial appearance from
real images, and show how that model can be automatically matched to single static
intensity images. Our model differs from the multi-view appearance model of [10] in
that coefficients between views are explicitly linked, and that we do not model any
pose variation within the shape model at a single view. Additionally we can render
appearances with view-dependent texture effects, and use a densely sampled camera
array. We construct our face model using images of 50 individuals captured in real-
time using a 6x8 camera array.

3. Light Field Manifolds
In this section we present the light field morphable model. We first discuss light field
morphing and how a morph between many light fields may be defined. Next we provide
a formal description of the light field appearance manifold.

As described in [24], a light field morph is defined by the 2D deformation fields
between corresponding views of two light fields. The collection of 2D deformations
constitute a 3D deformation between the objects represented by each light field. The
resulting morphed light field is an object that represents a smooth transition from one
source object to another. We constructed a morph among more than two light fields
by selecting a reference light field and then computing a deformation field between the
views of each light field with that of the reference. The morphed light field is obtained
by blending the aligned views of each source light field.

In a feature based framework [24] the reference may be computed as a polygonal
mesh whose vertices are a weighted combination of those specified for each source
light field. The background edges of the reference are defined in a similar manner. The
geometry of the average light field is specified by an equal weighting of the source
features. Alternatively, when the objects represented by each light field are of the
same class, correspondence may be computed automatically using optical flow [3]. We
have implemented both approaches, and below report results using automatic model
construction with optic-flow correspondence estimation.

A common problem in 2D image morphing is visibility change. This phenomenon
occurs when an object or part of an object is visible in the morphed image but not in one
or both source images and vice versa. Visibility change yields undesirable artifacts in
the morphed image known as holes and folds [8, 20]. In [24], Zhang et al. describe how
to apply visibility processing, which fills holes in certain views of the morphed light
field by looking in other views of the source light field where the part of the object may
be visible. When constructing a morphable model one may compensate for visibility
change by pre-aligning the objects of each source light field, thus eliminating the need
for visibility processing.

The average light field is characterized as having the average shape and texture of a
set of prototype light fields. By definition its difference in shape and texture is minimal
between each of the light field prototypes and therefore it is the preferred reference
light field. Using optical flow, the average light field is computed via the bootstrapping
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(a)

(b)

(c)

Figure 2: Light field pre-processing. (a) 9 of 48 original views of a subject, (b) seg-
mented views, (c) cropped views (for result display only).
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algorithm outlined in [21]. This algorithm placed in the context of light fields is pre-
sented below as Algorithm 1. For efficiency we applied the algorithm independently
on each view of the prototype set.

Once a reference is defined, each source light field may be described in terms of
its shape and texture [14]. The shape of a light field is the collection of 2D deforma-
tion fields between it and the reference. Its texture is a light field that is geometrically
aligned to the reference. The linear combination of texture and shape form an appear-
ance manifold: given a set of light fields of the same object class, the linear combi-
nation of their texture warped by a linear combination of their shape describes a new
object whose shape and texture are spanned by that of the prototype light fields. A
more formal description of this manifold is provided next.

We defineL(u, v, s, t) to be a light field consisting of a set of sample views of the
scene, parameterized by view indices(u, v) and scene radiance indices(s, t) [15]. Let
L1, ..., Ln be a set of prototype light fields with reference light fieldLref . The shape
of each light field,Si is the mapping,

Si : R4 −→ R4 (1)

that specifies for each ray in prototypeLi the corresponding ray in the reference light
field L0. The shape vector,Si, is formed by the concatenation of the deformation fields
defined for each view ofLi.

The texture,Ti is obtained by reverse warping eachLi by S′i. More formally,

Ti(u, v, s, t) = Li(S′i(u, v, s, t)) = Li ◦ S′i(u, v, s, t). (2)

In Equation 2S′i is the inverse deformation ofSi; it specifies the deformation from
the reference to the prototypeLi. Like shape, the texture vector of a light field is the
concatenation of the texture in each of its views.

Using shape and texture, the light field manifold is defined by the set of light fields
Lmodel which satisfy,

Lmodel =

(∑

i

biTi

)
◦

(∑

i

ciSi

)
(3)

Equation 3 is the light field morphable model. It relates each model light field to
a corresponding point on the manifold parameterized by the weight vectorsb andc.
When synthesizing a new light field from a prototypical set one specifies a point on
this manifold. Likewise, when performing analysis one finds the point on the manifold
corresponding to a given light field or 2D image of an object. We outline how a 2D
image can be matched to the manifold in the next section. Two points on the head
manifold, constructed using 50 prototype heads (see Figure 3), are shown in Figure
4. The light fields in these and subsequent figures are displayed in the cropped format
illustrated in Figure 2.

4. Model Matching
Let Si andTi define the shape and the texture of a light field morphable model, speci-
fied by prototypesLi, for i = 1, ..., n. A 2D image is matched to a point on the light
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Algorithm 1 Compute Average Light Field
Let L1, ..., Ln be a set of prototype light fields.
Select an arbitrary light fieldLi as the reference light fieldLref

repeat
for all Li do

Compute correspondence fieldsS′i betweenLref andLi using optical flow.
Backwards warp each view ofLi ontoLref usingS′i.

end for
Compute the average over allS′i andTi.
Forward warp each view ofTaverage usingSaverage to createLaverage.
Convergence test: isLaverage − Lref < limit ?
CopyLaverage to Lref

until convergence

Figure 3: Frontal views of the 50 subjects used to build a light field morphable model
of the human head.
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field manifold by minimizing the non-linear objective function:

E(b, c, ε) =
1
2

∑
x,y

(Inovel − F (Lmodel, ε))
2 (4)

where,Lmodel is as specified in Equation 3 andF is a function that renders poseε of
the model light field [15, 7].

The objective function in Equation 4 compares the novel 2D image to the corre-
sponding view inLmodel in a common coordinate frame. Unlike [14], this is done in
the coordinate frame of the novel image. This is because the shape and texture of the
morphable model are computed only at the discrete views of the light field prototypes
and are not defined in general at any continuous view. Thus at every iteration of the
minimization, given the weight vectorsb andc, a morphed light field is synthesized
and the estimated poseε is used to render the view corresponding to that of the novel
2D image.

We match a novel image to the light field morphable model defined in Equation 3
by estimating the pose using the average light field and then solving a bilinear system
in shape and texture constructed using optical flow. More specifically, given a novel
2D image, the mean squared error between this image and every discrete view of the
average light field is computed and the view exhibiting smallest error with poseε̃, is
used as an approximation to the pose of the image. Optical flow is then computed
between the novel image and the selected view of the average light field resulting in
Snovel, the shape of the novel image. Its textureTnovel is found by warping the novel
image into the coordinate system of the reference via the deformation field defined by
Snovel. Using the computed shape and texture we then findb andc by solving

Tnovel =
∑
i

bε̃,iTε̃,i

Snovel =
∑
i

cε̃,iSε̃,i
(5)

whereTε̃,i andSε̃,i are the shape and texture vectors at the discrete poseε̃ andbε̃ and
cε̃ are the weights computed using this pose.

This bilinear system can be solved using linear least squares. Principle component
analysis may also be applied to better constrain the systems in shape and texture. In
our experiments, using Levenberg-Marquardt [17] for texture gave slightly better re-
sults. We found our flow-based matching algorithm to be robust and reasonably fast
to demonstrate light-field manifold reconstruction; however faster techniques for op-
timized model matching, direct parameter search, and dimensionality reduction may
also be employed [14, 19, 9].

5. Results
We built a light field morphable model of the human head by capturing light fields of
50 subjects using a real-time light field camera array [23]. 48 views (6 x 8) of each
individual were collected and the head was manually segmented from each light field
(see Figure 2). The frontal view of every subject is displayed in Figure 3.
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A multi-resolution Lukas-Kanade optical flow algorithm was used to compute the
shape and texture of each prototype light field. The average face was computed using
the bootstrapping algorithm described in Section 3. Similar to [21], convergence is
tested by observing the average change in pixel gray value in each view of the reference
light field. Ideally this change is zero at convergence, however, we found a limit of 0.01
to be satisfactory in our experiments. Using this limit the algorithm typically converged
within 3 to 5 iterations. The 6x8 average light field is displayed in Figure 4(b)1. Its
shape and texture of the average light field does not favor the characteristics of any one
individual. Also, comparing it with Figure 4(a) demonstrates that it is a convincing
light field of a human head.

Using the manifold constructed with all subjects we rendered a sequence that demon-
strates the expressiveness of a light field morphable model. Images from this sequences
are displayed in Figure 5. In the video, we traverse paths along the manifold between
different prototype subjects, while varying the position of the light field virtual cam-
era. The glasses of the second subject in this video demonstrates the view-dependent
texture effects that may be achieved using our light field morphable model.

A set of randomly selected subjects were matched against a morphable model built
using the remaining 49 subjects to test the models ability to generalize to a novel per-
son. The 2D input to the light field morphable model and the corresponding matched
light field is displayed in Figure 6 for each subject. A comparison to ground truth is
also provided. Note our method built a 3D model from a single 2D image, in which 48
views of the novel subject were inferred. Comparing the matches of Figure 6 one finds
that our coarse algorithm performs well in matching novel 2D images to the head mani-
fold. Namely, the skin color, facial hair, and overall shape and expression of each novel
subject are well approximated. Overall we found our method works well for computing
automatic correspondence between human heads and the majority of examples in our
prototype set were favorably matched.

6. Conclusion and Future Work
We introduced a novel active appearance modeling method based on an image-based
rendering technique. Light field morphable models overcome many of the limitations
presented by current 2D and 3D appearance models. They easily model complex
scenes, non-lambertian surfaces, and view variation. We demonstrated the automatic
construction of a model of the human head using 50 subjects. In future work we hope
to construct a camera array with a wider field of view that utilizes a non-planar cam-
era configuration. We expect our approach to scale directly to the construction of a
dynamic light-field morphable model, since our capture apparatus works in real-time.
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(a)

(b)

Figure 4: Full 6x8 light fields of (a) a prototype subject, (b) the average head.
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(a)

(b)

Figure 5: Images from a rendered video sequence. In this video we traverse paths along
the manifold between different prototype subjects, while varying the position of the
light field virtual camera. The images from the sequence have been cropped and raster
scanned from left to right above. Note the view-dependent texture effects apparent on
the subject’s glasses. (a) Demonstration of camera movement. (b) Traversal through
light field manifold while changing the position of the virtual camera. Please see video
attachment for a complete demonstration.
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Figure 6: Top row shows portions of the light fields of five individuals. For each
individual a 2D image alone (the central view) was used to reconstruct a light field
using a morphable model constructed with that individual left out. The bottom row
shows the reconstructed light fields.
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