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Abstract

In a Communication Bootstrapping system, peer components with dif-
ferent perceptual worlds invent symbols and syntax based on correlations
between their percepts. I propose that Communication Bootstrapping can
also be used to acquire functional definitions of words and causal reason-
ing knowledge. I illustrate this point with several examples, then sketch
the architecture of a system in progress which attempts to execute this
task.

1 Introduction

Communication Bootstrapping is a phenomenon in which two language acqui-
sition algorithms converge rapidly to a shared symbol-set and grammar via
feedback and shared observations. Knowledge of this phenomenon derives from
work by Kirby on language evolution, in which he demonstrated a population
of grammar induction machines synthesizing an efficient grammar for express-
ing a simple shared semantics over the course of many generations. [Kirby1998]
Further work by Kirby and others [Kirby2000, Kirby and Hurford2001] in the
field of iterated language acquisition has expanded the original work to cover
compositional grammars and a more precise understanding of the mechanisms
which apply selection pressure to symbols in a grammar.

Communication Bootstrapping systems apply the ideas from iterated lan-
guage acquisition to the problem of communication between heterogenous com-
ponents. In particular, I have been interested in how different components
in a cognitive system might learn to coordinate. There are strong arguments
from neuroscience for the existence of modules in the human brain, such as
the fusiform face area [Kanwisher et al.1997] and the parahippocampal place
area [Epstein and Kanwisher1998] which are visual recognition specialists. More-
over, phenomena like the late integration of color cues into spatial reorien-
tation [Hermer and Spelke1996] suggest strongly that communication between
modules is a learned phenomenon critical to constructing human-level intelli-
gence, which advises attention from any builder of cognitive systems who wishes
to replicate human capabilities. Following these ideas, I have previously demon-
strated a Communication Bootstrapping system which rapidly acquires a set of
shared symbols and inflections capable of communicating thematic role frames
between a pair of peer components with similar percepts. [Beal2002a, Beal2002b)]

An important note, however, is that the critical requirement for Communi-
cation Bootstrapping is not identical percepts, but well correlated percepts (how
tightly correlated depends on parameters of the bootstrapping algorithm). This
can be leveraged to allow learning of more complex concepts, such as how to
recognize a picture of a cup or what “tennis ball” means, in which percepts in
the two peers have a relation other than identity.

In this paper, I will briefly review Communication Bootstrapping and show
how it can be used to learn simple compound definitions. I will then explore
two illustrative examples of learning complex concepts — functional definitions
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Agent: Bob
Patient: Mary
Action: Hit

Figure 1: In communication bootstrapping, two agents receiving equivalent in-
puts from the world invent a shared language allowing them to communicate
thematic role frames robustly over a thick bundle of twisted wires. In this
illustration, the situation ”Bob hit Mary” is being conveyed from A to B.

of words and causal reasoning — then sketch the architecture of a system in
progress to realize this.

2 Bootstrapping Environment

In Communication Bootstrapping [Beal2002a, Beal2002b], two components are
connected by a thick, twisted bundle of wires (i.e. there is some unknown permu-
tation between the components). Each wire can be driven by either component
and carries a bit, which reads as 1, 0, undriven, or conflict.

The components are presented with a semantics consisting of a set of (object, role)
pairs. For example, “John hit Mary” is represented as:

{(John,agent)(Mary, patient)(hit, predicate) }

Each object is mapped to a symbol expressed as a set of (initially random) wires,
while roles are expressed as the proportion of 1s on a symbol’s wires (Figure 1).
In a system with plentiful wires, sparseness allows a rapid convergence of the
two components to an identical set of object and roles mappings, provided that
their input semantics are identical.



Agent A Dictionary: Agent B Dictionary:
{12,29,96} <—> "bob" {12,29,96} <—> "bob"
{38,63,5}<—>"mary" {38,63,5}<—>"mary"

(a) Dictionary Interpretation

A/B Table of Relations:
{12,29,96}: A-"bob" <-> B-"hob"
{38,63,5}: A-"mary"<->B-"mary"

(b) Relation Interpretation

Figure 2: Communication Bootstrapping can be interpreted either as a problem
of matching dictionaries or of finding relations. Previous work in Communica-
tion Bootstrapping has produced identity relations between the instances of an
object in different agents.

In [Beal2002a], I interpret the vocabulary developed by the two components
as a pair of dictionaries, which are considered to be correct when each compo-
nent’s copy is equivalent under mapping between the two perceptual worlds.
An alternate way of interpreting the system state, however, is as relations be-
tween two sets of objects, which happen to be in different agents. Under this
interpretation, Communication Bootstrapping (as implemented in [Beal2002a])
establishes binary identity relations, and each component’s interpretation of a
relation specifies one member of the identity (Figure 2).

In the following sections, I will discuss Communications Bootstrapping sys-
tems where each component represents a major mental faculty corresponding
loosely to a section of the mammalian brain: e.g. a vision component, a speech
I/O component, a non-linguistic auditory component, a kinesthetic component,
etc. The components are, in general, connected to one another pairwise in a
complete graph, with a Communications Bootstrapping system running on each
paired connection.

3 Learning Simple Definitions

In addition to merely knowing a set of communicable symbols, we would like
to have our system learn something of their definitions. For example, we might
want to learn that a tennis ball is a small green ball, or that a robin is a red
bird.

It turns out that these sorts of definitions are supported very simply by
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(a) Recognizing a Tennis Ball

Agent A Dictionary: Agent B Dictionary:
{72,99,26,38,27,18} {72,26} <—> "pall"
<—> tennishall {18,38}<—>"small"
{99,27}<—>"green"

(b) Symbol Dictionaries defining “Tennis Ball”

Figure 3: The conjunction of three visual attributes (“green”, “small”, and
“ball”) stimulates the linguistic phrase “tennis ball”. Each visual attribute’s
symbol is mapped to a distinct portion of the wires for the phrase symbol, so
that only objects which are small and green and ball will be recognized as tennis
balls.

Communication Bootstrapping. In [Beal2002b], I note that when a single object
A presented to one component is presented to the other as a pair of objects By
and Bs, the system, unsurprisingly, creates a symbol which is interpreted as the
A in one and B; and B> in the other.

This relation can be either an AND or and OR, depending on how the
wires are allocated. If the symbol wires are all mapped to both By and B, then
transmitting either By or Bs will stimulate reception of A, and the relation is
an OR. If, on the other hand, half the wires are allocated to By and the other
half to By, then if only By or B is transmitted, the stimulus threshold for A
will not be met — in other words, the relation is an AN D. Between these two
extremes are a continuous range of functions, so that one could create a symbol
that stimulated A when, for example, 6 out of 8 B; symbols were transmitted.

These sorts of combinatoric relations can be used to learn about tennis balls
and robins. Consider a Communications Bootstrapping with two intelligence
domains, vision and language. The vision system is presented with the image of
a small green ball in conjunction with the language system being told “tennis
ball”, but small red balls, big green squares and other near-miss counterexamples
are not described as tennis balls. A Communications Bootstrapping system
should be able to learn a symbol encapsulating an AN D relation (Figure 3).

These combinations of features can be viewed as a propositional logic. For
example, our tennis ball symbol may be reinterpreted as a equivalence state-



ment:
tennisball <> green A small A ball

. This presents obvious difficulties in situations with multiple objects: a small
fuzzy mouse next to a big green melon should not be recognized as a tennis
ball. This problem can be partially abated through the use of roles, which can
transform the situation into something more like a limited universe first order
logic. Implications also present difficulties, although they can be created via
manipulation of the wire allocations.

With some small modifications, however, the relations can instead be bi-
nary relations expressing containment and class — the is-a and has-a relations
forming the basis of frame systems. The tennis ball example could then be de-
scribed in frame terms as “an instance of ball, with properties size=small and
color=green.”

4 Learning Functional Structural Descriptions

I will now step forward into a slightly more speculative domain. In this section
and the next, I will show scenarios illustrating how difficult concepts can be
exposed for capture by Communications Bootstrapping. First, let us consider
learning functional descriptions of objects.

Our description of a tennis ball isn’t quite satisfactory yet: we would re-
ally like to capture the idea that tennis balls are used for playing tennis. In
other words, we want to add functional elements to its description, which
has advantages demonstrated clearly by the MACBETH system. [Winston1982,
Winston and Rao1990] Unfortunately, many useful functional predicates are not
easily expressed in English — for example, in the MACBETH cup example, some
key properties are “capable of carrying liquids”, “upward pointing concavity”
and “light enough to be lifted”, none of which are easy to define. In a system
with visual and motor components, however, these functional properties are
exposed for learning via Communication Bootstrapping.

To illustrate this, consider the following scenario, where we are trying to
teach a system with three intelligence domains — vision, motor, and language
— about cups.

Following in the footsteps of MACBETH, we decide to teach the system about
cups by first exposing it to a brick, a glass, a briefcase, and a bowl. Unlike in
the MACBETH system, however, we don’t provide any linguistic input, and just
let the system play with the four objects using a manipulator arm.

Moving things around and feeling with its manipulator arm, plus camera
input tracking the arm, gives two sources of correlated world data and stimulates
symbol learning in the Communication Bootstrapping system between the vision
and motor components.

First the system tries to pick up the brick and finds that it’s too heavy to
move. It can slide it around though, and the brick, being heavy and flat, doesn’t
change orientation. The glass, on the other hand, falls over when the brick runs
into it, and the system, curious, shifts its attention to it and discovers that it



can pick it up — in the process, learning a new symbol that means “upward
motion” to the vision component and “low weight” to the motor — in other
words, “light enough to be lifted”.

Seizing the moment, we pour water into the bowl and the glass, which is
being held upright at the moment. Water is something we’ve taught the system
about earlier — it has a “water” symbol which translates to “cold and pressure
everywhere” in motor and a stereotypical texture in vision — so it recognizes
that there is water associated with both these objects. When it turns its ma-
nipulator, however, the water dumps out of the glass, inciting its curiosity. A
few more messy experiments, however, and it has new symbols for “upward
pointing concavity” (the tactile sensation from sticking its manipulator inside
linked with distance information from vision) and “capable of carrying water”
(“upward pointing concavity” and a lack of visible holes).

Finally, playing with the briefcase and the bowl, it discovers that the brief-
case is much easier to pick up, provided that it grasps the right part, and thus,
through a similar process, learns “handle” and “easy to grasp”.

Now, with all the predicates in place, we give the system a coffee cup with
a cheesy slogan, a handle-less tin cup for camping, and a disposable styrofoam
cup, telling the language component “cup” for each one. The vision and motor
systems tell all sorts of symbols to the language component, including “metal”,
“squishy”, “shiny”, “breakable”, and “#1 Dad”. The only ones in common
to all three cups, however, are “light enough to be lifted”, “upward pointing
concavity”, “capable of carrying water”, and “easy to grasp”. Thus, the word
“cup” becomes linked with symbols describing it as something easy to grasp,
light enough to be lifted, with an upward pointing concavity capable of carrying
water — and easily tested predicates in the vision and motor domains that can
verify whether an object is, in fact, a cup.

Thus the system learns a functional description of cups, as per [Winston1982],
but its description is composed of non-linguistic symbols exposed and easily
learned by the combination of vision and motor components.

5 Learning Causal Knowledge

Another relation that can be exposed to learning by Communication Boot-
strapping is causal knowledge. In this case, the relation is implication, with one
component’s interpretation being the cause and the other being the effect.

To illustrate an example of how we could learn causation, consider the fol-
lowing scenario, where a system with two intelligence domains — vision and
motor — is playing in a classic blocks world.

At first, it flails around like a human infant, waving its manipulator arm
randomly. Already, it can begin learning the simple cause and effect rules of
hand-eye coordination: when I make this motion, the image changes that way.
From this it starts to create symbols describing these couplings — symbols that
we might interpret as, for example, “go left” or “go up”. Then something big
happens: the arm hits a tower of blocks and knocks it over! (Figure 4)



Figure 4: A system of two components, vision and motor, learns hand-eye co-
ordination by waving its arm around randomly. When the arm accidentally
crashes into a tower of blocks and knocks it over, the system learns a new
symbol meaning “my arm hits something” to motor and “blocks go flying ev-
erywhere” to vision. The combination of this symbol across the two systems
can be interpreted as a rule.

Hitting the tower wasn’t intentional — at this point, the system is still just
waving its arms around and seeing what that looks like — but it happens any-
way, and now the system learns something very different, a symbol which means
“my arm hits something” in motor and “blocks go flying everywhere” in vision.
Now correlation becomes causation: this new symbol is, in fact, a constraint de-
scribing world dynamics that can be viewed as two complementary rules: “If my
arm hits something, then blocks go flying everywhere” and “If blocks go flying
everywhere, then my arm hit something.” (The second one happens to be less
often true than the first, and censors can be added to constrain its application)
This piece of knowledge doesn’t exist in either the vision or the motor system
— it is the result of having a symbol which means something different to the
two different systems.

Once the system has a symbol for knocking over a tower with its arm, it has
the power to predict when it will happen and choose whether or not it wants
that result. To see this, we fast-forward to some time much later in the system’s
development, when it has developed wants and goals. Now there is a four-block
tower, on one side of which is the arm, and on the other side is a fifth block
(Figure 5). The motor system has decided it wants a tower five blocks high
— more precisely, it wants to have its arm simultaneously five blocks high and
resting on something (which requires a five-block tower, but can be stated in
purely motor terms).

The motor system, learning from the vision system that there is a four-high



Figure 5: The arm needs to move and pick up the block on the left without
knocking over the tower. When the motor system describes its naive motion
to the vision system, the vision system says it will encounter the tower, which
the motor system re-describes as the “my arm hits something” symbol. The
vision system interprets it as “blocks go flying everywhere”, which will thwart
the plan.

tower and fifth block to its left, goes to pick it up, naively choosing the straight
path. As it begins moving, the motor system says “going left.” In the vision
system, “going left” means the image of the arm moves left into the tower, a
situation which it recognizes and describes as “arm contact on right.” In the
motor system, the combination of “arm contact on right” and “going left” add
up to “my arm hits something.” That symbol, of course, means “blocks go flying
everywhere” in the vision system, which means it has to rescind the four-high
tower it earlier told the motor system about — balking the motor system’s goal.

At this point the system may become frustrated and start waving its arm
around angrily, or it might know enough to negotiate the alternative route over
the the top of the tower. In either case, the act of communicating the crashing
symbol has produced causal reasoning behavior.

6 Mechanisms for Implementation

As is obvious in the examples above, the Communication Bootstrapping mecha-
nism in [Beal2002b] alone is not sufficient. In addition, a system needs function-
ality to learn and transmit is-a and has-a relations, test symbols with near-miss
learning, and impel it to explore its environment.

To this end, I am in the process of building a system where each component
has a set of six additional mechanisms which, in combination with Communica-
tion Bootstrapping, will provide the missing functionality. The six mechanisms
are, as follows: first, a general memory system, which serves as a repository
for experiences and a provides services for constructing and manipulating is-a
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Figure 6: Proposed architecture for a component, coordinating episodic learn-
ing (long-term memory), abstraction generation (namer module), and Com-
munication Bootstrapping to convey complex concepts between very dissimilar
representations.

and has-a relations, which are the basic representation of all other components.
Second, short-term memory, which serves as an attention mechanism and holds
the current view of the world, and is also the view which Communication Boot-
strapping is attempting to transmit. Third, a sensory/motor interface, coupling
short-term memory with the system’s sensors and actuators. Fourth, a reflex
package, prioritizing reaction to stimuli and impelling the system to action when
there is nothing to react to. Fifth, a naming mechanism, which uses proximity
heuristics to invent new vocabulary, and finally a garbage collector, which han-
dles forgetting. In the following sections, I give a brief sketch of each mechanism,
and how it will fit into the larger scheme.

6.1 Relational Memory

All subsystems of a component operate on a common infrastructure of combi-
natorial atoms composed into NASH (Non-Axiomatic Structureless Heterarchy)
diagrams, a loose representational infrastructure derived from standard frames
systems and NETL.[Fahlman1979)

The basic element of a NASH diagram is an atom, which is simply an object
with a unique identifier. Atoms are linked together to form a graph via directed
“is-a” and “has-a” links. Links of type “is-a” create an inheritance web, and
links of type “has-a” represent three types of structural relation, with the type
determined by the tail atom in the relation: equality, membership, and sequence.




There are no syntactic constraints enforced on the arrangement of atoms
within a NASH diagram. Instead, constraints are heuristically imposed by the
mechanisms which construct and operate on a NASH diagram. Thus, for ex-
ample, “is-a” relations will generally be arranged in a heterarchy, because a
heterarchy is a good tool for capturing inheritance relationships, but there may
be some violations of heterarchal structure.

In effect, NASH diagrams are a fairly standard frames system, with a syn-
tax weakened to preference in order to reduce fragility and consistency main-
tainence overhead. The price of this weakening is a loss of consistency guar-
antees, but I believe that, much like the loosening of networking guarantees
in amorphous computing systems, accepting a low level of inherent impreci-
sion will enable more robust systems which degrade slowly rather than failing
directly.[Abelson et al. 1999]

6.2 Short-Term Memory

Short-term memory has three roles in my system: it represents attention, caches
recent knowledge, and performs shallow inference. Of these three, attention is
the focal point around which the other functionality is built.

The short-term memory system is composed of three classes: attention,
world state, and communication state. Attention is represented by a sequence
atom. The attention atom’s “has-a” links point to all of the items currently
being attended to, in order of preferential attention.

6.3 Sensory/Motor Interface

The interface between the “real world” and a component is a constraint system
which maintains correspondence between sequences of events in the NASH dia-
gram (which hold past, present, and predicted events in a special doubly-linked
chain structure) and the state of the sensors and actuators which are connected
to the component. For sensors, changes in sensory input advance the sequence
of events, while for actuators, changes in the sequence of events induce behavior
of the actuators.

The event sequences are ladder-like structures of states and changes rep-
resenting the history and predicted future of a variable, similar to the shift-
registers used by Yip and Sussman. [Yip and Sussman1998] The states are
atoms in the NASH diagram whose semantic content is determined by the “is-
a” links which point to them, and the changes are the other half of the ladder,
bridging between successive events. Finally, there are three summary objects
which tie up the structure, a list of states, a list of changes, and a pointer to
the present moment, which may be either a state or a change.

6.4 Reflex Package

There are two purposes served by the reflex package. First is to provide a
default drive which prevents the system from ever being entirely quiescent. The
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second is to shift the focus of attention to “attention-grabbing” events. The
purpose for the default drive is to allow the system to act and learn in the
absence of outside stimulus which would force it to. Reflex attention rules,
on the other hand, are a collection of simple rules which describe “attention-
grabbing” stimuli like flashing lights, fast-moving objects, sudden loud noises,
or tactile pain. When a sensory event sequence matches the stimulus pattern for
an attention rule, the rule places the it at the front of the attention sequence.

6.5 Namer

The namer is the abstraction mechanism by which a component reifies portions
of its NASH diagram. The purpose of this subsystem is twofold: translation
and reflection. The translation function is a necessity created by the highly het-
erogenous sensory /motor domains of different components. Abstraction creates
less sense-specific symbols which should be easier to add to the Communication
Bootstrapping shared vocabulary. Reflection, on the other hand, is an intra-
component process by which the component can identify patterns in its own
actions. This information can then be applied to debugging itself, as in Suss-
man’s HACKER system, [Sussman1973] to produce more “intelligent” behavior,
and in combination with the pruning done by Communication Bootstrapping,
can implement near-miss learning of the sort described in [Winston1970].

6.6 Garbage Collector

Memory cannot be infinite, and so there needs to be some mechanism for purg-
ing un-needed information. Moreover, there is some evidence that forgetting
may play a role in human generalization of experience, similar to Kirby’s dis-
covery that killing off experience aids in the learning of more general struc-
tures. [Kirby1998] In either case, the system needs a garbage collector to prune
the long-term memory. The garbage collector runs over the entire NASH di-
agram contained in the system and garbage collects the portions which are
deemed least relevant by criteria of age, elapsed time since last attended and
number of incoming and outgoing links.

7 Contributions

I have described how a Communication Bootstrapping system can be leveraged
to learn non-trivial information such as causal relationships and functional def-
initions of words, and sketched a system in development to demonstrate my
claims. The ability to acquire these types of relations from multi-modal in-
put is an important step towards building cognitive systems with human-level
capabilities.
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