SR
lab

@ MIT

massachusetts institute of technology — artificial intelligence laboratory

(Semi-)Predictive
Discretization During Model
Selection

Harald Steck and Tommi S. Jaakkola

Al Memo 2003-002 Feburary 2003



Abstract

In this paper, we present an approach to discretizing multivariate con-
tinuous data while learning the structure of a graphical model. We derive
the joint scoring function from the principle of predictive accuracy, which
inherently ensures the optimal trade-off between goodness of fit and model
complexity (including the number of discretization levels). Using the so-
called finest grid implied by the data, our scoring function depends only
on the number of data points in the various discretization levels. Not
only can it be computed efficiently, but it is also independent of the met-
ric used in the continuous space. Our experiments with gene expression
data show that discretization plays a crucial role regarding the resulting
network structure.
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1 Introduction

Continuous data is often discretized as part of a more advanced approach to
data analysis, like, e.g., structure learning in graphical models. Discretization
may be carried out merely for computational efficiency, or because background
knowledge suggests that the underlying variables are indeed discrete. While it
is computationally efficient to discretize the data in a preprocessing step that
is independent of the subsequent analysis, e.g., [6, 10, 7], the impact of the
discretization policy on the subsequent analysis typically remains unknown in
this approach. For this reason, methods have been developed that optimize
the discretization policy and the graphical model jointly, e.g., [3, 9]. However,
the proposed algorithms are computationally very involved, prohibiting their
application to reasonably large real-world data sets.

We derive a novel scoring function that (1) allows one to optimize the dis-
cretization policy and the structure of the graphical model jointly, and (2) ren-
ders efficient computations possible. We adopt the objective of optimizing pre-
dictive accuracy, as this inherently ensures the optimal trade-off between model
fit and model complexity. The two most common ways of assessing predictive
accuracy are cross-validation [14], and sequential approaches like prequential
validation or stochastic complexity [2, 12]. We derive scoring functions for both
cases in this paper.

In the next section, we present the basic idea of the sequential approach.
Section 3 introduces the finest grid implied by the data, which is pivotal for the
computational efficiency of our approach. In Sections 4 and 5, we derive scoring
functions for (semi-)predictive discretization and discuss their properties. Our
approach based on cross validation is outlined in the Appendix. Finally, we
show in our experiments in Section 6 that discretization can indeed have a
crucial impact on the resulting graph structure.

2 Sequential Approach

In this section, we introduce the basic idea of sequential assessment of predictive
accuracy, together with relevant notation. Let the n continuous variables in the
domain of interest be Y = (17,...,Y%, ..., Y,), and their instantiation y. The
discretization of the continuous variable Y is determined by the discretization
policy A = (A1, ..., Ay,). Concerning each variable Yy, let Ay, = (Ag1, ... Ak,rp—1)
denote the discretization sequence such that Ag ; < A j41 forallj =1,...,r;—2,
where 7, is the number of discretization levels. This determines the mapping
fa Y = X, where X = (X4,..., Xy, ..., X,,) is the corresponding discretized

vector: ]
1 if Y < )\k,l

k) =< G if A1 <yr < Ay for1<j <y (1)
ri if Ap o1 < Uk

For computational efficiency, we assume deterministic discretization throughout
this paper, i.e., each continuous value y is mapped to exactly one discretization
level, T = fAk (Z/k)



In our sequential approach, we pretend that (continuous) i.i.d. data D arrive
in a sequential manner, and then assess predictive accuracy regarding each data
point along the sequence. This is similar in spirit to prequential validation or
stochastic complexity [2, 12]. We recast the joint marginal likelihood of the
discretization policy A and the structure m of a graphical model in a sequential
manner,

N
p(DIA,m) = [[ oy DYV, A,m), (2)

i=1
where DO—D = (y(=1 4(=2) (1)) denotes the data points seen prior to
step 7 along the sequence. Any sequential ordering of the data points may be
chosen for i.i.d. data D, lacking a natural ordering. Eq. 2 shows that high
predictive accuracy is inherently tied to a large marginal likelihood p(D|A, m).
Assuming deterministic discretization, at each step i the predicted density

regarding data point y(?) factors,

py D A m) = p(yD]e®, A) p(z DY m, A), (3)

where z() = fy(y() according to Eq. 1. When learning the structure m
of a graphical model, it is desirable that m indeed captures all the relevant
(conditional) dependences among the variables Y7, ...,Y,,. Assuming that the
dependences among the continuous variables Y}, are described by the underlying
discretized distribution p(X|m, A, D), then any two continuous variables Y}, and
Y; are independent conditional on X,

n

p(yD1z®,A) = ] oy 129, Ag). (4)
k=1

The computational feasibility of this approach depends crucially on the efficiency
of the mapping between the discretized space X and the continuous one, Y. The
simplest approach is obtained by assigning the same density to all the points y
and y' that are mapped to the same discretized state z, cf., e.g., [9]. Obviously,
assuming a uniform probability density is a stringent restriction on Eq. 4, as
the latter requires only independence of the variables Y. When the data points
y are distributed non-uniformly according to y ~ [],_; p(Yk|z, Ax), the use of
uniform density needlessly degrades the predictive accuracy.

Assuming a uniform density may also give rise to ”empty states”, i.e., dis-
cretization levels that do not contain a data point. For example, consider a one-
dimensional continuous variable defined on the interval [0, 3], and data points
that lie uniformly within the intervals [0, 1] and [2, 3]. In order to optimize pre-
dictive accuracy using the uniform assignment, it is obviously best to use three
discretization levels: two of the discrete states refer to the intervals [0, 1] and
[2, 3], respectively, while the third one corresponds to the interval |1,2[. The
latter state is "empty”, i.e., contains no data point, but is beneficial in order
to predict the vanishing density between the two clusters well. Clearly, a more
desirable discretization in this example would yield a binary variable and a
threshold value somewhere between the two clusters.



3 Finest Grid implied by the Data

In this section, we present a simple mapping that (1) retains the desired inde-
pendence properties according to Eq. 4, allowing for non-uniform densities, and
(2) can be computed efficiently. We achieve this by implicitly estimating the
densities p(y,(;)|x(i),Ak) in Eq. 4, using the finest grid implied by the data.

This grid is obtained by discretizing each continuous variable Yy, (k =1, ...,n)
such that there is ezactly one data point in each discretization level.! This grid
depends, of course, on the data. For the moment, let us assume that the finest
grid is based on the entire data set D (with N data points).

We denote the discretization policy associated with the finest grid by Q =
(Q4,....,y,), where the discretization sequence Qf = (wg.1,...,wk,N—1) is such
that, for all j = 1,...,N — 2, we have wy ; < y,(;) < wg,j+1 for exactly one y,(j).
The threshold values wy ; may be chosen to be any value between neighboring
data points.?2 Note that the finest grid is not unique because of this freedom
in the choice of the threshold values. Analogously to Eq. 1, the discretization
policy Q implies a deterministic mapping to a new vector of discrete random
variables, say Z, fq : Y — Z.

Let us introduce further notation for later use: let [zx]o, = [Wk,2e—1, Wk 2|
for each z;, = 1, ..., N denote the intervals (in the continuous space) according to
the finest grid.> Moreover, let |[2x]|q, = |Wk, 2 —1 —Wk, 2, | denote the length of the
interval. Regarding the n-dimensional vector Y, let us analogously denote the
hypercubes? by [z]o = X}_; [zk]a,, and their volumes by |[z]lo = [T,—; [2]]a.-

The discretization policies A and 2 also define the mapping foa : Z — X.
For computational efficiency, we assume that each interval [z;]q, is completely
mapped to exactly one discretization level xy, i.e., all the threshold values of
A coincide with some of Q.5 Note that, if Q is chosen before A, this imposes a
slight restriction on the threshold values permissible for A;® the number of data
points in each of the discretization levels is, however, not affected.

Based on the finest grid implied by the data, we can now obtain an efficient
mapping between Y and X, namely via Z. The probability (density) then maps
like . o '

12D, Ak, ) = p(u” 24, ) (|0, A, ). (5)

When Eq. 5 is substituted into the previous equations, each density p(-) becomes
conditional on (2, i.e., on the finest grid implied by the data.

1Tt is also possible to use a more general d-grid that permits d € IN data points in each
discretization level. Without any conceptual difficulties, one obtains exactly the same scoring
function as in Eq. 10 (up to an irrelevant constant). This approach thus also allows for
discrete variables Y.

2As a special case, e.g., the midpoints may be selected.

3We define wk,0 = ap and wy y = by, when Yy takes on values in the finite interval [ay, b].

4We do not assume that all sides have the same length.

®More formally, for all k = 1,...,n, and all s = 1,...,r; — 1, we have A\ s = wy,; for some
j=1,..,N—1.

SHowever, note that our final scoring function is independent of the threshold values, cf.
Eq. 10.



Regarding the mapping between Y and Z, we allow for any strictly positive
density p(Yi|Zk, Q). In order to efficiently map the probability mass predicted
for (9 to the finest grid (Z) we make one more simplification, namely that the
probability mass predicted for z(¥ is divided evenly among all the hypercubes
[z]o that are mapped to z(?), irrespectively of their possibly different volumes.
This simplification can be motivated as follows: the definition of the finest grid
implied by the data entails immediately that the volumes of the hypercubes [z]q
tend to be larger in those regions of the continuous space where the data points
y") are sparser; hence, this mapping automatically tends to predict a lower
probability for regions with a lower density of data points, which is desirable.
With this assumption, we immediately obtain

p(z"2®, Ay, ) = : (6)

where mgf) = fa,. As (z,(ei)); N(a:;f)) is the number of data points in the discretiza-

tion level mgf). Note that N (mgf)) is identical with the number of intervals [zx]q,
that are mapped to the same mgf) (given data D, there is exactly one data point
in each interval [zx]q, according to the definition of the finest grid).

4 Semi-Predictive Discretization

In semi-predictive discretization, the mapping from X to Y is based on the finest
grid implied by the entire data set D at each step ¢, as introduced in the previous
section. This mapping hence involves not only data D=1 seen prior to each
step i, but also (future) data points y¢) where i’ > i. Allowing for this hindsight
will lead to a (slightly) unfair assessment of predictive accuracy, so that the
(quantitative) balance between model fit and model complexity (here essentially
the number of discretization levels) will be slightly off in the resulting scoring
function. However, note that no hindsight is used for the prediction of the
probability in the discretized space X. Predictive discretization, which is a fair
assessment using no hindsight when predicting the density p(y®|DU=1 A, m)
at each step 7, is outlined in the next section.

Our scoring function for semi-predictive discretization, Lgp(A,m), follows
immediately from the results in the previous section. Having chosen a finest
grid based on the entire data D, we can score all the discretization policies A
that comply with that finest grid (cf. footnote 5). Combining the above Egs.
2-6, we obtain

p(DIA,m, ) = p(Dxlm) - (H H )

zlkl

N n
-(HHp (12", 0 >>, (7)

i=1 k=1



where z,(ci) = fa, (y,(:)). Some comments on each of the three terms are in order.

The first term,
N

p(Dalm) = [[ p(=? D=1, A, m), (8)
i=1
is the marginal likelihood of the graph m in light of the data D, discretized
according to A. In a Bayesian approach, it can be calculated easily for various
graphical models, e.g., see [1, 8] concerning discrete Bayesian networks.
The second and third terms in Eq. 7 are due to the mapping from X to
Z and from Z to Y, respectively. Obviously, the second term can be rewritten
in terms of the maximum likelihood of the empty graph mempty, as the latter
represents independence among the variables,

N n -1
1 ) Nn
(H W) = p(DAlf, Mempty) - N7 ™. 9)
=1 k—1 N(zy,)

The factor NV is due to the normalization of the maximum likelihood estimates
of the model parameters, 6,, = p(zx) = N(zx)/N. The factor NV is irrelevant
for determining the optimal discretization policy, as it is independent of both A
and m.

The third term in Eq. 7 is the only one that depends on the metric in the
continuous space as well as on the particular threshold values chosen in the finest
grid. However, this term is independent of both A and m, and is hence irrelevant
when comparing different discretization policies. Ignoring the irrelevant terms
(summarized as ¢), we hence obtain the following semi-predictive (log) scoring
function,

Lsp(A,m) = logp(DIA,m,Q) —c

Ing(DA|m) - lng(DA |éa mempty)

log p(Dalm) + N>~ H(H(X¢))- (10)
k=1

In the last line, the maximum likelihood of the empty graph is recast in terms
of the entropy H of the empirical distributions p(X}) regarding each variable
Xk.

This scoring function has several interesting properties: First, the difference
in the log likelihoods between the regularized graph m and the empty graph
with unregularized parameter estimates € determines the trade-off dictating the
optimal number of discretization levels, threshold values and graph structure.
As both likelihoods increase with a diminishing number of discretization levels,
the second term can be viewed as a penalty for small numbers of discretiza-
tion levels. Second, as expected for i.i.d. data, the resulting scoring function
Lsp(A,m) is independent of the particular ordering chosen in our sequential
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Figure 1: Assume the data points are uniformly distributed in each of the shaded
rectangles.
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Figure 2: Based on the eight data points (a, ..., h), Yp and Y7 are dependent in
both graphs.

approach. Third, Lsp(A,m) depends on the number of data points in the dif-
ferent discretization levels only. This has several interesting implications. First,
and most important from a practical point of view, it renders efficient compu-
tations possible. Second, and more interesting from a conceptual perspective,
Lsp(A,m) is independent of the particular choice of the finest grid. Third, this
approach includes as a special case quantile discretization, namely when all the
variables are independent of each other (m = Mempty). The number of states
is then chosen to optimize predictive accuracy (one state being optimal unless
constraints are imposed).

Fourth, Lsp(A,m) is independent of the metric in the continuous space. It
is thus invariant under monotonic transformations of the continuous variables.
Obviously, this can lead to considerable loss of information, particularly when
the (Euclidean) distances among the various data points in the continuous space
govern the discretization (cf. left graphs in Figs. 1 and 2). On the other hand,
the results of our scoring function are not degraded if the data is given w.r.t.
an inappropriate metric.

In fact, the optimal discretization w.r.t. our scoring function is based on sta-
tistical dependence of the variables, rather than on the metric. This is illustrated
in Fig. 1: when the variables are independent, our approach may not find the
discretization suggested by the clusters; instead, our approach assigns the same
number of data points to each discretization level (with one discretization level



being optimal). Note that discretization of independent variables is, however,
quite irrelevant when learning graphical models: the optimal discretization of
each variable Y} depends on the variables in its Markov blanket, and Y}, is (typi-
cally strongly) dependent on those variables. When the variables are dependent
in Fig. 1 (right graph), our scoring function favours the ”correct” discretization
(solid lines), as this entails best predictive accuracy (even when disregarding the
metric). However, dependence of the variables itself does not necessarily ensure
that our scoring function favours the ”correct” discretization, as illustrated in
Fig. 2 (as a constraint, we require two discretization levels): given low noise
levels (left graph), our scoring function assigns the same number of data points
to each discretization level. The right graph in Fig. 2 illustrates, however, that
a sufficiently high noise level in the data can actually be beneficial, permitting
our approach to find the ”correct” discretization (solid lines); this is because a
different discretization (dashed lines) degrades predictive accuracy, as the points
c and e are assigned to ”wrong” bins.

Finally, in cross validation the finest grid implied by the training data can
similarly be employed when measuring predictive accuracy in terms of KL di-
vergence, cf. Appendix. The invariance of the KL divergence under monotonic
transformations, one of its key properties, is then automatically guaranteed.

5 Predictive Discretization

In predictive discretization, the density at data point y(* is predicted strictly
without hindsight at each step i, i.e., only data D=1 is used. For this reason,
this leads to a fair assessment of predictive accuracy. Predictive discretization
is conceptually slightly more involved than semi-predictive discretization: the
finest grid changes along the sequence, as it is based on data D(~1) seen prior
to each step i.

Our objective is to assess the predictive accuracy of the pair (A, m) vs. the
pair (A';m'). We use two different finest grids, each of which pertaining to
(A,m) and (A’,m'), respectively. In the following, we specify how fo*l), ie.,
the finest grid pertaining to (A, m), evolves along the sequence (i = 1,..., N);
the other grid, and hence Q%,_ 1), is defined analogously.

At i = 1, i.e., before any data is seen, let the finest grid pertaining to the
pair (A, m) be identical to the grid implied by A, i.e., QE\O) = A. Note that there
is now exactly one hypercube [Z]QE\O) that is mapped to each z, although there

is no data point in any of the hypercubes [Z]Q(o) at this point.
A

)

As we proceed along the sequence, we update Qg\i*l in order to obtain QX)

as follows: if y,(j) lies in an interval [zy] ot-n that already contains a data point,
Ak
then a new threshold value is introduced that splits [Zk]Q(i—l) into two new
Ak

intervals, [z] and [z},] each of which containing ezactly one data point

o, 20 Eilogo,
(for all £ = 1,...,n). Again, there is the freedom of choosing any particular
threshold value between the neighboring data points, so that we can select that



value as follows: if we can choose a threshold value that coincides with one of
the threshold values of the other discretization policy A’, we do so; otherwise,
we choose any, but the same threshold value for both QX) and fo,) Due to
this choice of threshold values, there exists a (rather small) ip < N such that
Q%) = 0 for all i > 19, while Q%) # 0 for i = 1,...,i0 — 1. Obviously,
the value of iy depends on the particular sequential ordering of the data points.
Since i.i.d. data lack an inherent sequential ordering, we may choose a particular
ordering of the data points. This is similar in spirit to stochastic complexity
[12], where also a particular sequential ordering is used. Our aim is to choose
such a sequential ordering that minimizes ip when we compare the pairs (A, m)
and (A’,m') to each other: we require that, during a short initial phase, at
least one data point is assigned to each discretization level pertaining to the
joint discretization policy AY of A and A'.""®Hence, we have the bound iy <
maxg (| Xg|a) +maxy (| Xg|ar), where |5 /5- denotes the number of discretization
levels of Xy, due to A and A’, respectively. With the further assumption that the
number of discretization levels is bounded from above, we have ig < N given
a reasonably large data set D. For i > ¢y, we permit an arbitrary sequential
ordering, as we have Qf\i) = fo,)

Despite these conceptual differences to semi-predictive discretization, we ob-
tain an equation that resembles Eq. 7. In the following, we outline each of
the three terms regarding predictive discretization. The marginal likelihood
p(Da|m) is the same in both cases (cf. Eq. 8), as it is unaffected by the
different mapping from the discretized space to the continuous one.

Regarding the mapping from Z to Y (analogous to the last term in Eq. 7),
we obtain the decomposition

N ] io . ' .
( 11 p<y<’>|z<’>,n(;”)> : (Hp<y<’>|z<l>,92 ”)>, (11)
i=1

i=ip+1

which depends on the exact sequential ordering. However, the first term (i > i)
is identical regarding both A and A’, and is hence irrelevant when comparing
those two discretization policies to each other. Due to the second term in Eq. 11,
our predictive scoring function hence depends only on the sequential ordering
during a (short) initial phase (i < ip). Because of ip < N, the second term in
Eq. 11 becomes negligible compared to the terms that grow with N for large
N. Given a reasonably large data set (maxy (| Xg|a) + maxy (| Xx|a) < N), we
can thus obtain a good approximation by ignoring the second term in Eq. 11
as well.

Let us now consider the mapping from X to Z (analogous to the second
term in Eq. 7). Like before, we have to determine the number of hypercubes
[2]9%71) that are mapped to 9 at each step i. Similarly to Eq. 9, this number

TFor k=1,...,n: Ay comprises the threshold values of both A and Aj,.
8This entails a (slight) restriction on A and A’, as they have to be such that there is at
least one data point in each bin pertaining to their joint discretization policy A“.



is given by

n

1 n 1 B
. IEW—EEW—G(D,A) (12)

2

=

where NG~ (.) denotes the counts based on the discretized data Dl(\i_l) seen

before step i. This is because the finest grid, and hence QE\’_l), is based on
D=1 Furthermore, N, (z;) = max{1, N(x;)} arises from the fact that, at
small ¢ < ig, there is at least one hypercube mapped to each x, even if it does
not contain a data point (yet).® Note that the Gamma function, I'(N(z)) =
[N(z)—1]!, is well-defined because N(zy) = Ny (xr) > 1 due to our assumption
in footnote 8.

Finally, we now obtain the (approximate) predictive scoring function,

Lp(A,m) =logp(Dalm) —log G(D, A), (13)

which is independent of the specific sequential ordering chosen for each pair
of discretization policies A and A’. Moreover, Eq. 13 represents an absolute
scoring function of (A,m), i.e., it is independent of (A’,;m'). This allows us to
compare several discretization policies directly to each other, irrespective of the
underlying fact that each pair is possibly compared with respect to a different
sequential ordering.

As a consequence, this property allows us to choose A’ as the discretization
policy that assigns exactly one state to each variable; this resolves the restriction
noted in footnote 8, and we can hence assign a score to any discretization policy
A that does not give rise to an "empty state”. All discretization policies that
lead to the same number of data points in each discretization level, but possibly
differ in the particular threshold values, are assigned the same score (and are
hence equivalent w.r.t. our scoring function).

Obviously, the predictive scoring function in Eq. 13 is very similar to the
semi-predictive one (cf. Eq. 10). While the previous discussion concerning
all the (qualitative) properties of the semi-predictive scoring function carries
over, there are also (minor) quantitative differences between our semi-predictive
and predictive scoring function. While the marginal likelihood of the graph
is identical in both Eq. 10 and 13, the terms penalizing small numbers of
discretization levels differ. However, given a sufficiently large data set (N (zy) >
1 for all z), this difference reads (Stirling approximation):

10g p(DA |8, Mempty) — log G(D, A) (14)

1 n
~ Nnlog N + 3 Z ZlogN(mk) + O(const)

k=1 xp

The leading-order term that depends on the discretization is O(log N). As this
is the same order as the one of the complexity penalty implicitly present in

9Note that this is different from using a prior (e.g., unlike in [1, 8]).
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logp(Dp|m), the difference between semi-predictive and predictive discretiza-
tion is relevant. Eq. 14 also reveals that the predictive scoring function favours
(slightly) more discretization levels compared to semi-predictive discretization.
This follows immediately by induction over the number of discretization levels:
consider a discretization level z;, being split into two new levels zj, and z};
regarding the counts, we thus have N(z}) + N(z}]) = N(zr). Then the new
difference is larger than the old one (cf. Eq. 14): log(N(z})) + log(N(z})) >
log(N (zy)) if N(z},), N(z}) > 2; and strictly if N(z},), N(z})) > 3. The semi-
predictive scoring function hence penalizes large numbers of discretization levels
more severely, and hence favours fewer discretization levels.

6 Preliminary Experiments

In computational biology, regulatory networks are often modeled by Bayesian
networks, and their structures are learned from discretized gene-expression data,
see, e.g., [6, 11, 7]. Obviously, one would like to recover the ”true” network struc-
ture underlying the continuous data, rather than a degraded network structure
due to a suboptimal discretization policy. Typically, the expression levels have
been discretized in a preprocessing step, rather than jointly with the network
structure, [6, 11, 7]. In our experiment, we employed our predictive scoring
function (cf. Eq. 13) and re-analyzed the gene expression data concerning
the pheromone response pathway in yeast [7], comprising 320 measurements
concerning 32 continuous variables (genes) as well as the mating type (binary
variable). Based on an error model concerning the micro-array measurements, a
continuously differentiable, monotonic transformation is typically applied to the
raw gene expression data in a preprocessing step. Since our (semi-)predictive
scoring function is invariant under this kind of transformation, this has no im-
pact on our analysis, so that we are able to work directly with the raw data.

Instead of using a search strategy in the joint space of graphs and discretiza-
tion policies — the theoretically best, but computationally most involved ap-
proach — we optimize the graph m and the discretization policy A alternately
in a greedy way for simplicity: given the discretized data Dy, we use local search
to optimize the graph m, like in [8]; given m, we optimize A iteratively by im-
proving the discretization policy regarding a single variable given its Markov
blanket at a time. The latter optimization is carried out in a hierarchical way
over the number of discretization levels and over the threshold values of each
variable. Local maxima are a major issue when optimizing the (semi-)predictive
scoring function due to the (strong) interdependence between m and A. As a
simple heuristic, we alternately optimize A and m only slightly at each step.

The marginal likelihood p(Dj|m), which is part of our scoring function,
contains a free parameter, namely the so-called scale-parameter « regarding the
Dirichlet prior over the model parameters, e.g., cf. [8]. As outlined in [13], its
value has a decisive impact on the resulting number of edges in the network,
and must hence be chosen with great care. Assessing predictive accuracy by
means of 5-fold cross validation (cf. Appendix), we determined « = 25.

11
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Figure 3: This graph is compiled from 320 delete-30 jackknife samples (cf. [7]
for the color-coding).

Fig. 3 shows the composite graph we learned from the used gene expression
data, employing our predictive scoring function, c¢f. Eq. 13.'° This graph is
compiled by averaging over several Bayesian network structures in order to ac-
count for model uncertainty prevailing in the small data set. Instead of exploring
model uncertainty by means of Markov Chain Monte Carlo in the model space,
we used a non-parametric re-sampling method, as the latter is independent of
any model assumptions. While the bootstrap has been used in [5, 4, 6, 11], we
prefer the jackknife when learning the graph structure, i.e., conditional inde-
pendences. The reason is that bootstrap samples can contain multiple copies of
identical data points, which in turn imply strong statistical dependences among
the variables when given a small data set D. As a consequence, the resulting
network structure can be considerably biased towards denser graphs. The jack-
knife avoids this problem. We obtained very similar results using three different
variants of the jackknife: delete-1, delete-30, and delete-64. Averaging over
320 delete-30 jackknife sub-samples, we found 65.7 & 8 edges. Fig. 3 displays
65 edges: the solid ones are present with probability > 50%, and the dashed
ones with probability > 34%. The orientation of an edge is indicated only if
one direction is at least twice as likely as the contrary one. Apart from that,
our predictive scoring function yielded that most of the variables have about 4
discretization levels (on average over the 320 jackknife samples), except for the
genes MCM1, MFALPHA1, KSS1, STE5, STE11, STE20, STE50, SWI1, TUP1
with about 3 states, and the genes BAR1, MFA1, MFA2, STE2, STE6 with ca.
o states.

In Fig. 3, it is apparent that the genes AGA2, BAR1, MFA1, MFA2, STE2,

10We imposed no constraints on the network structure in Fig. 3. Unfortunately, the results
we obtained when imposing constraints derived from location data have to be skipped due to
lack of space.
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and STE6 (magenta) are densely interconnected, and so is the group of genes
MFALPHA1, MFALPHA2, SAG1 and STE3 (red). Moreover, both of those
groups are directly connected to the mating type, while the other genes in the
network are (marginally) independent of the mating type. This makes sense
from a biological perspective, as the former genes (magenta) are only expressed
in yeast cells of mating type A, while the latter ones (red) are only expressed in
mating type ALPHA; the expression level of the other genes is rather unaffected
by the mating type. Due to lack of space, a more detailed (biological) discussion
has to be omitted here.

The crucial impact of the used discretization policy A and scale-parameter
a on the resulting network structure becomes apparent when our results are
compared to the ones reported in [7]: their network structure resembles a naive
Bayesian network, where the mating type is the root variable. Obviously, their
network structure is notably different from ours in Fig. 3, and hence has very
different (biological) implications. Unlike in [7], we have optimized the dis-
cretization policy A and the network structure m jointly, as well as the scale-
parameter a. As the value of the scale-parameter a mainly affects the number of
edges present in the learned graph [13], this suggests that the major differences
in the obtained network structures are actually due to the discretization policy.

7 Conclusions

We have shown that the discretization method can substantially impact the
resulting graph structure. This highlights the importance of principled yet
efficient methods for finding the resolution at which to represent continuous
observations. Our discretization approach relies on predictive accuracy in the
prequential sense and employs the so-called finest grid implied by the data as the
basis for finding the appropriate levels. Our (semi-)predictive scoring functions
are both simple and computationally efficient.
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Appendix: Cross Validation

In cross validation [14], data D is split into training data D' and validation
data DV. After graph m and discretization policy A are learned from the
training data, the KL divergence can be used to measure predictive accuracy by
comparing the density pT predicted by m and A to the density p¥ implied by
validation data DV. Using the finest grid implied by the (entire) training data,
represented by Q7 for both'! pT and pV, we obtain

T
pT(y|m7A7DT79T) = M p(m|m,A,DT) (15)

a HZ:l N, AT (k)
where z = fa(y) and z = for(y); Ni(-) are the counts due to the training
data DT discretized according to A; like before, we allow for an arbitrary, but
strictly positive p(y|z, Q1) = [Tp—, p(yklzk, U ); and

Ny (2)
Rare) Ly, am) (16)
where z = for (y); N?{T(-) are the counts implied by the validation data DV

w.r.t. the finest grid implied by the training data, QT; p(y|z, Q) is identical to
the one in Eq. 15. This yields immediately

p¥(y|DY, Q") =

Vi T Vs PV
KL(p"[lp )Z/dyp IOgP—T
p(z|m, A, DY)

- +c 17
(x|07mempty7A7DT) ( )

=—Y_p(z|A,DV)log
= p

where p(z|A, DV) = NY (2)/NV; p(x]8, Mempty, A, DT) = [Tr—; NX (zx)/NT;
NY () and N (-) are the counts implied by DV and DT, respectively, discretized
according to A. The constant ¢ is independent of A and m, and hence irrele-
vant when comparing different discretization policies and graphs in light of the
same data. The KL divergence depends only on the counts in the discretized
domain, like our (semi-)predictive scoring functions (cf. Eqs. 10 and 13). It is
hence independent of the metric in the continuous space and invariant under
monotonic transformations of the variables. The KL divergence in Eq. 17 is
a weighted sum of the log ratios involving the regularized graphical model and
the unregularized empty graph model, which is very similar to Eq. 10. While
this ratio is based on the training data, the weights of the sum are determined
by the validation data.

1 Again, the same grid is used for computational efficiency.
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