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Abstract

Binary image classification is a problem that has received much
attention in recent years. In this paper we evaluate a selection
of popular techniques in an effort to find a feature set/classifier
combination which generalizes well to full resolution image data.
We then apply that system to images at one-half through one-
sixteenth resolution, and consider the corresponding error rates.
In addition, we further observe generalization performance as it
depends on the number of training images, and lastly, compare the
system’s best error rates to that of a human performing an identical
classification task given the same set of test images.
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1 Introduction

The classification of images into one of several cat-
egories is a problem which arises naturally under a
wide range of circumstances. Tumor diagnosis [1],
photographic developing, and visual image querying
have each received considerable attention. Binary
classification of images based on scene information
is one particular case where there is no definitive lan-
guage with which to describe scenes depicted in an
image. Various attempts have been made to extract
global [3] and local [2] cues from an image, in an
effort to construct features that can accurately cap-
ture the essence of a scene type. Classification per-
formance thus hinges mainly on the accuracy and re-
liability of the feature set in representing the various
scene classes.

In the vast majority of prior work, it is assumed
that images are available at a suitably high resolu-
tion. Low resolution representations on the other
hand reveal significant additional distortions. Harsh
negative artifacts might be unavoidable in some ap-
plications, where storage or capture constraints en-
force strict scaling/compression requirements. Thus,
features which might have done well in the presence of
ample scene information, may prove to be no longer
suitable at very low resolutions.

It is this question that is the focus of the paper.
We attempt to classify indoor-outdoor scenes, given
grayscale image data only. Using features which work
well on full resolution images, we observe classifica-
tion performance as images are scaled downwards lin-
early to 1/16th resolution in the worst case. We ad-
ditionally make comparisons to human classification
accuracy over a similar set of resolutions, using an
identical collection of test images. And lastly we eval-
uate system performance as it depends on training set
size.

2 Classifier

For purposes of comparison, two classifiers were cho-
sen to discriminate between indoor and outdoor im-
ages on the basis of a vector of features. The Support
Vector Machine [4] was utilized in order to achieve

high generalization performance. SVMs with both
polynomial and Gaussian kernels were investigated.
This allowed for exploration of higher order interac-
tions amongst the existing features without having
to explicitly compute additional feature vector ele-
ments. Gaussian kernels give radial basis function
classifiers, where the centers, weights, and thresh-
old are provided implicitly [5]. SVMs with Gaus-
sian RBF kernels have been shown to be superior
compared to RBF networks trained using classical
methods (e.g. K-means clustering plus error back-
propagation) [6]. In addition, new examples are com-
pared to only those training points which double as
support vectors, rendering a speedy verdict. To lo-
cate optimal kernel parameters, the SVM was sep-
arately trained in the polynomial case using orders
n = 1, . . . , 20, while for Gaussian kernels the vari-
ance was located using a heuristic search method not
unlike bisection.

A K-nearest neighbors classifier was also examined,
as a basis of comparison for the SVMs and also be-
cause it is popular in the literature. At each resolu-
tion, KNN performance was evaluated using two or
three of the following distance metrics:

d1(x,y) = ‖x− y‖1

d2(x,y) = ‖x− y‖2
2

dh(x,y) =
N∑

i=1

(xi − min(xi, yi))

Where we have respectively the sum of the abso-
lute differences, the squared Euclidean length, and
the histogram intersection norm proposed in [7] and
adopted by [2]. A distance resembling Pearson’s χ2

statistic is used in [5], however that metric gave ex-
ceptionally poor performance during initial trials and
was subsequently omitted from further comparisons.

3 Features

3.1 Image Database

The images used in this experiment were drawn pri-
marily from the Corel stock photo collection. Three
hundred indoor and outdoor images each were hand
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picked from 200 possible pre-labeled categories and
further subdivided into training and testing sets of
size 460 and 140 images respectively (with equal pro-
portions of each scene category). The full resolu-
tion images were 80-by-120 pixels. Sample images
are shown in Figure 1.

3.2 Image Features

The extraction of meaningful features forms the key
difficulty in classifying images according to scene. In
addition to reducing the dimensionality of the feature
vectors, it was our goal to reduce redundant informa-
tion and noise present in the images while imposing
translational, rotational and scale invariance.

3.2.1 Wavelet Decomposition

In an effort to form a lower dimension representa-
tion, approximation coefficients were taken from the
2D wavelet decomposition [8]. Experiments were
conducted using the Haar “mother wavelet” and the
9/7 biorthogonal wavelet (also used in the JPEG2000
specification).

3.2.2 Histograms

Global graylevel features were captured by way of
grayscale histograms using 32,16,8,6,4,3 and 2 bins.
The histograms are naturally invariant to transla-
tions and rotations in the image.

3.2.3 DCT/DFT Corner

Following work done in [2], frequency information
was collected by taking the 2D DCT of the 2D DFT
magnitude. The DFT is shift invariant and reveals
periodic textures in an image (e.g. grass, ocean,
walls), while the DCT combines related frequencies
into one value and conveniently focuses energy into
the top left corner of the resultant image. Trian-
gles with side lengths n = 2, 4, 8, 12 were taken from
the top left and “flattened” into feature vectors with
length n(n+1)

2 .

3.2.4 Edge Direction Histograms

To represent shape information present in an image,
histograms of the edge directions were formed [9].
Edges were detected using either the Prewitt or the
Sobel operator, with no prior Gaussian smoothing
applied to the image. Sobel filters performed slightly
better and were thus chosen for the final system. The
fact that Sobel’s approximation rendered an improve-
ment over Prewitt’s is not completely alarming in
light of the fact that Sobel kernels are generally more
isotropic in their response.

For either choice, if hy and hx = hT
y represent

the horizontal and vertical convolution kernels, and
we apply them to an image to get gy and gx re-
spectively, then the edge directions are defined as
φ ≡ arctan(−gy/gx). Quantization into 72 bins of 5◦

each is recommended by [9], however we observe re-
sults while employing 16,8, and 4 bins as well. Eight
bins corresponding to 45◦ levels proved to be by far
the most effective, as we shall see below.

As pointed out by [9], edge direction histograms
are translation invariant with respect to objects in
an image. Scale invariance is achieved by normaliz-
ing the histogram by the number of edge points in the
image of interest. To reduce rotational effects in an
image, [9] further advises a smoothing scheme which
amounts to a non-causal moving average. Smoothing
was indeed carried out, however it proved to ham-
per rather than enhance system performance in some
cases. This might be explained by the fact that in-
door and outdoor images simply do not have many
objects common to a class which might be subject to
rotation across images. The final configuration does
however attempt to impose this additional rotational
invariance anyhow.

3.3 Scaling Methods

At each resolution, training and testing images alike
were scaled down and then subsequently enlarged to
the original resolution using one of nearest-neighbor,
bilinear, or bicubic interpolation. This was done so
as to extract features through a process identical to
that of the full resolution case. The results presented
below show that performance at some resolutions was
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Figure 1: Sample indoor/outdoor images.

significantly better given one particular interpolation
method over the others; a simple nearest-neighbor
approach did not always yield the best performance.
An illustration of the various scaling methods in ac-
tion is shown in Figure 2.

4 Full Resolution Feature Per-
formance

Summarized in Table 1, performance given Wavelet
approximation coefficients is not particularly encour-
aging. Graylevel histograms (without equalization)
also perform rather poorly on their own, as shown in
Table 2. KNN with distance metrics d1, d2 performed
poorly and is not included. It is interesting to note,
however, that even with two histogram bins the SVM
is able to do substantially better than chance.

Classification with DFT/DCT features worked
rather well, achieving less than 20% error in most
cases. Results are given in Table 3. Edge direc-
tion histograms showed slight improvement over the
DFT/DCT corners, and performance is noted in Ta-
ble 4. Edge direction results were generated using
the Sobel operator which generally performed better
than Prewitt’s approximation.

Given the good generalization of SVMs with edge
direction and DFT/DCT features, the final system
was based on a combination of the two with param-
eter settings equal to the best performing value for
the individual case (DCT/DFT corner edge length
12, 8 edge direction bins). System performance based
on selections of the edge finding filter and histogram
smoothing function is shown in Table 5. The addition
of additional features did not improve performance,

Wavelet SVM KNN: d1 KNN: d2

9/7 0.48 0.32 0.31
Haar 0.42 0.37 0.37

Table 1: Wavlet Classification Error

Bins SVM KNN: dh

32 0.31 0.31
16 0.31 0.30
8 0.31 0.28
4 0.26 0.26
2 0.26 0.34

Table 2: Histogram Classification Error

and in some cases made the error rate substantially
worse. The system thus utilized only DFT/DCT fea-
tures and edge direction histograms. It was addition-
ally determined that the number of misclassifications
was the same or very nearly so for both polynomial
and Gaussian SVM kernels, given optimal kernel pa-
rameter settings. Given the parameter search meth-
ods described above, the search for an optimal poly-
nomial kernel order is normally faster than locating
a good Gaussian kernel variance. The final imple-
mentation therefore used a polynomial kernel, and
searched for an optimal order 1 ≤ n ≤ 20.

5 Low Resolution Performance

The system detailed above was trained given im-
ages at each resolution 1, . . . , 1/16, and for each scal-
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Figure 2: Scaling Methods
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Corner Size SVM KNN: d2

16 0.18 0.24
12 0.17 0.27
8 0.18 0.31
4 0.19 0.29
2 0.29 0.26

Table 3: DFT/DCT Classification Error

Bins SVM KNN (metric)
100 0.15 0.165 (dh)
72 0.15 0.136 (d2)
32 0.143 0.18 (d2)
16 0.143 0.21 (dh)
8 0.136 0.21 (dh)
4 0.17 0.17 (d2)

Table 4: Edge Direction Histogram Classification Er-
ror

SVM Error Edge Filter/Smoothing
0.129 (Prewitt/None)
0.114 (Sobel/None)
0.107 (Prewitt/Smoothing)
0.100 (Sobel/Smoothing)

Table 5: Combined Feature Classification Error

ing method. At each scaling/resolution combination,
KNN performance was also computed using the two
best performing distance metrics d2, and dh for com-
parison. The combination yielding minimal error was
then selected as the final classifier for the correspond-
ing resolution.

Results for each of the three interpolation methods
are shown in Figure 3.

5.1 Man vs. Machine

The set of test images used to gauge classification
performance was chosen to be identical to that used
by [10] in their study of human classification accu-
racy at resolutions following an exponential curve:
1, 1/2, 1/4, 1/8, 1/16. Five images from each cate-
gory which were possibly ambiguous to a human
viewer were thrown out, and the remaining 140 in-
door/outdoor images retained. But it was not ex-
pected that this would have a significant effect on
performance. A comparison of the machine classifi-
cation system at its best versus human performance
observed in [10] is shown in Figure 4. The point at
which both perform similarly is roughly one-quarter
resolution, while the system’s performance is far su-
perior for resolutions below this threshold. Human
vision at full resolution is still significantly better
than this machine implementation.

5.2 Training Set Size

Test error was also observed as a function of the train-
ing set size. Selecting four resolutions, we have noted
best possible system performance as the training set
is reduced to as low as 5 images. As the number of
images is decreased, the error does not correspond
monotonically. This indicates that the error is highly
sensitive to which particular 5 images the system is
trained upon. If we are training the system on n im-
ages, then a better generalization estimate might be
based on the mean performance over all

(
460
n

)
possible

image selections. For the purposes of this experiment
however, averaging was not pursued.
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Figure 3: Scaling Results.
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Figure 4: Human Error Vs. System Error.
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6 Conclusions

6.1 Findings

We have evaluated the performance of a binary im-
age classifier given low resolution training and test-
ing data. At best, the system is able to achieve a
10% misclassification rate given full resolution im-
ages, to roughly 22% error with one-sixteenth res-
olution images. Compared to human performance
given a nearly identical test set, the system vastly
outperforms human discrimination ability at resolu-
tions 1/4 and lower. We additionally showed that
the system’s dependence on training set size does not
progress monotonically as the set is decreased, and
that even with as low as 5 or 10 training images the
system is able to capture meaningful structure.

6.2 Problems

Compared to similar studies, this experiment made
use of relatively small training and test sets. Images
numbering in the thousands would have given a more
accurate estimate of test performance, and could re-
lieve overfitting. The process by which features are
computed is also computationally taxing. Extracting
edges, computing DCT’s and generating histograms
is by no means a “fast” process. Preparing features
and training the SVM comprises the bulk of the com-
putational burden.

Previous work achieved slightly better error rates:
[2] produced 9.7% error at best on a nearly iden-
tical classification task. [9] achieved 6% error
given city/landscape images (with color information),
and 5.5% error a for mountain/forest versus sun-
rise/sunset classification task (also with color).

6.3 Possible Improvements

It is likely that performance can be increased fur-
ther given the incorporation of additional features.
Pixels which have high mutual information with the
labels [11] is one selection method with promise.
Other methods with potential include Non-Negative
Matrix Factorization [12] and oriented bandpass fil-
tering [13].
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