
Advanced Programming
Language Features for
Executable Design Patterns
“Better Patterns Through
Reflection”

Gregory T. Sullivan

AI Memo 2002-005 March 2002

© 2 0 0 2 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

@ MIT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The Design Patterns book [GHJV94] presents 24 time-tested patterns that consistently appear
in well-designed software systems. Each pattern is presented with a description of the design
problem the pattern addresses, as well as sample implementation code and design considerations.
This paper explores how the patterns from the “Gang of Four”, or “GOF” book, as it is often
called, appear when similar problems are addressed using a dynamic, higher-order, object-oriented
programming language. Some of the patterns disappear – that is, they are supported directly by
language features, some patterns are simpler or have a different focus, and some are essentially
unchanged.

1

1 Introduction

In [Nor96], Peter Norvig describes design patterns as:

• Descriptions of what experienced designers know (that isn’t written down in the Language
Manual)

• Hints/reminders for choosing classes and methods

• Higher-order abstractions for program organization

• To discuss, weigh and record design tradeoffs

• To avoid limitations of implementation language.

Norvig goes on to classify the levels of implementation that a pattern may have:

• Invisible: So much a part of language that you don’t notice (e.g. when class replaced all
uses of struct in C++, no more “Encapsulated Class” pattern)

• Informal: Design pattern in prose; refer to by name, but must be implemented from scratch
for each use

• Formal: Implement pattern itself within the language. Instantiate/call it for each use.
Usually implemented with macros.

This paper focuses on language features that can move design patterns from the Informal realm
into the Invisible or Formal realms.

Norvig’s summary of implementing the GOF patterns in Dylan or Lisp:

16 of 23 patterns are either invisible or simpler, due to:

• First-class types (6): Abstract Factory, Flyweight, Factory Method, State, Proxy, Chain
of Responsibility.

• First-class functions (4): Command, Strategy, Template Method, Visitor.

• Macros (2): Interpreter, Iterator.

• Method combination (2): Mediator, Observer.

2

• Multimethods (1): Builder.

• Modules (1): Facade.

Peter Norvig’s slides give no more information about how he arrived at these numbers. Part of
what this paper does is to delve more deeply into the implications of implementing the 24 Design
Patterns using a dynamic object-oriented programming language.

1.1 Reflection

Design Patterns are concerned primarily with the coordination of multiple “parts” of a program –
typically instantiated as classes and (virtual) functions. Note how this overlaps with the “crosscut-
ting concerns” of aspect-oriented programming.

Reflection is used to explicitly manipulate program components – sometimes defined in terms of the
state of a language interpreter. It is at that level – the level of an interpreter – that coordination
between program elements (classes, methods) can be directly implemented.

1.1.1 Reflection via Expressed Values (“Firstclassedness”)

Reflection refers to the ability of a program to reason about its own structure and behavior. To
enable reflection, the elements that compose a program must themselves be manipulable – that
is, they must be “expressed values” in the host programming language. In other words, program
elements, such as methods and classes, must be “first class” – able to be bound to variables
and passed as arguments. If having program elements as first class values is one requirement for
reflection, then all higher order programming languages are reflective in this sense.

The sorts of elements that make up typical programs include:

1. Virtual Functions, also known as generic functions.

2. Methods the elements of virtual functions. Methods contain the actual code to be run, given
arguments of the appropriate types.

3. Lines of code Static – doesn’t seem like a good idea to expose source code via reflection.

4. Types Used for specifying the correctness of code, and also for dynamic dispatch – the
selection of applicable methods based on the types of arguments in a function call. Types
are often related by a subtyping relation, which typically must satisfy the “substitutivity”
requirement – if t1 ≤ t2 (t1 is a subtype of t2), then any object that is of type t1 must be
usable in a context in which a t2 is usable.

3

5. Units of Encapsulation such as modules or classes. In many languages, the set of classes
either corresponds to, or is a subset of, the set of types. The inheritance relation between
classes establishes the subtyping relation between corresponding types and also specifies that
subclasses contain all the state elements (aka “fields”, “slots”, or “attributes”) of any ancestor
classes. Furthermore, in some languages, a class is a unit of encapsulation, defining what
operations are visible to other program entities.

It is not at all clear what the operations on these values should be – such decisions can have
huge implementation and performance repercussions; not to mention issues of safety, correctness,
extensibility, and understandability. For example, can we expose and/or manipulate the code
associated with a method object? Can we change the supertypes of a type? Different languages
answer these questions differently; most mainstream languages answer uniformly with “no”.

1.1.2 Reflection via Language Internals

Historically, reflection is sometimes presented in terms of a program being able to access the state of
the interpreter that is currently executing the program [SMI84]. Of course the interpreter is being
interpreted by an interpreter, and so on, thus leading to the “infinite tower of interpreters”. This is
a fun and interesting viewpoint, but not of direct practical importance. More practical is the idea
of metaobject protocols (MOPs), which give an API (Applications Programming Interface) to the
workings and state of any interpreter for a given programming language. Typical dynamic state
exposed by a MOP includes:

1. Bindings / Environment: See Python.

2. Dispatch: Either overriding default method dispatch methods, or insinuating user code into
the dispatch protocol (method combination).

3. Continuations, Stack.

2 GLOS (Greg’s Little Object System)

The example code in this paper is given in Scheme plus a library of macros and functions that
provide some object-oriented programming facilities. The features provided by GLOS (Greg’s
Little Object System) are intended to be representative of those provided by more full-featured
dynamic object-oriented languages such as Dylan and CLOS. This section gives a quick overview
of the features provided by GLOS beyond what is in the base Scheme programming language.

4

2.1 GLOS Types

The primary use of types in Scheme+GLOS is to specialize the allowable types of arguments to
methods, which are described in the next section. Another place that types are used is in the
“typed let” construct, introduced with the keyword tlet. Each binding in a tlet is either a pair
(var exp) as in Scheme’s let or a triple (var type-exp exp) where type-exp must evaluate to a
GLOS type. If a type constraint is given, the value to which exp evaluates is dynamically checked
to satisfy that type, at binding time.

Predicates as Types: In general, boolean-returning, single-argument functions can be used as
type specializers. For example, to indicate that the variable n must be bound to an even integer,
the variable name must be bound to a string, and the variable x can be bound to any value, we
would write:

(tlet ((n even? (foo y))
(name string? (bar y))
(x (baz y)))

. . .)

We test type membership using isa?:

(isa? 42 integer?) ;; => true
(isa? 42 string?) ;; => false

Type Conjunction: “and types” are constructed with the and? constructor:

(define <number> number?)
(define <complex> (and? <number> complex?))
(define <real> (and? <complex> real?))
(define <rational> (and? <real> rational?))
(define <integer> (and? <rational> integer?))

Type Disjunction: Likewise, we can use the or? constructor to create type disjunctions:

(define <callable> (or? <generic> <method> <procedure>))

Subtyping: There is a subtyping relation between types. In the case of type conjunction and
disjunction, subtyping corresponds to logical implication. We use the predicate subtype? to query
that relation:

(subtype? <integer> <number>) ;; => true
(subtype? <generic> <callable>) ;; => true

5

Every type is a subtype of <top>, and the type <bottom> is a subtype of every other type.

Singleton Types: A type that matches exactly one value is constructed with the == constructor:

(define l1 ’(1 2 3))
(define <is-l1> (== l1))
(isa? ’(1 2 3) <is-l1>) ;; => false
(isa? l1 <is-l1>) ;; => true

Record Types: A record type describes allocated objects with 0 or more named fields. The
definition of a record type includes a list of supertypes, which serves the following two purposes:

1. Fields are inherited from supertypes, thus saving the programmer from having to respecify
the inherited fields.

2. The accessor generic functions, that get and set inherited field contents, are updated so that
they can handle instances of the new subtype as well as instances of the inherited types.

The defrectype macro defines new GLOS record types, and has the form

(defrectype typename (supertype . . .)
(fieldspec . . .)
accessor-spec . . .)

where a fieldspec looks like either (fieldname type) or (fieldname type initial-value-expression)
and an accessor-spec looks like either (fieldname getter-name setter-name) or (fieldname
getter-name). Note that the initial-value-expression is embedded in a thunk which is eval-
uated for every new instance.

The following definitions declare record types <point> and <colorpoint>:

(defrectype <point> ()
((x <integer>)
(y <integer>))

(x get-x set-x!)
(y get-y set-y!))

(defrectype <colorpoint> (<point>)
((color <string> "black"))
(color get-color set-color!))

The <point> type has fields named x and y, both of which are constrained to hold integer values.
A total of five names are bound in the top-level environment as a result of the (defrectype <point>
. . .) definition: <point>, get-x, set-x!, get-y, and set-y!. <point> is bound to the new record type. The
name get-x, for example, is bound to the generic function used to get the value of the x field from

6

instances of <point>. Note that any preexisting definitions of <point>, get-x, etc. are overridden by
these new definitions. There is no way in Scheme to check for this situation.

The <colorpoint> type inherits fields x and y from <point>, and adds a new field, color. The color
field has an initial value, "black". If we examine the generic functions get-x, get-y, etc. we
will find that they have two methods each in them – one for instances of <point> and one for
instances of <colorpoint>.

Record Instantiation: To create a new instance of a record type, we can call the constructor
thunk for the type:

(define p1 ((glos-record-type-constructor <point>)))

which returns an instance with fields initialized either to their initial value, if given, or to *undefined*,
an instance of <bottom>, if no initial value was specified.

For the purposes of this paper, we have a simple instantiation protocol, accessed by calling the
function new with the record type and any initialization arguments.

(define cp1 (new <colorpoint> ’x 2 ’y 3)) ;; x=2, y=3, color = ”black” (default)

The new function first calls the make generic function with the record type and any arguments sent
to new, and then calls the initialize generic function with the new instance and also with the
arguments sent to new. The default method on make ignores all arguments but its first (the record
type) and calls the record type’s constructor function (thunk), as described above. The default
method on initialize knows how to handle a list of alternating field names and values, and calls
the utility function set-by-name* with this list.

The new function is an instance of the Factory Method and Template Method patterns.

Record types can be recursive:

(defrectype <mypair> ()
((head)
(tail (false-or <mypair>)))

(head head set-head!)
(tail tail set-tail!))

(gfmethod (initialize (obj <mypair>) x (y (false-or <mypair>)))
(set-by-name∗ obj ’x x ’y y))

(define p1 (new <mypair> ’e1 (new <mypair> ’e2 (new <mypair> ’e3 false))))
(head (tail p1)) ;; => ’e2

The method on initialize, above, allows creation of <mypair> objects without having to send
field names ’head and ’tail to new.

7

2.2 Methods and Generic Functions

Methods: A method is a Scheme procedure with an argument signature and a return type. An
argument signature is a type that must be satisfied by the list of argument values from a call of
this method.

Typically the argument signature type is a signature type. A signature type is a list of required
argument types and a rest type. If a method m1 has an argument signature type of ((t1 t2
t3) rest-type), then every call of m1 must supply at least three arguments, and the first three
arguments must satisfy types t1, t2, t3 respectively. If more than three values are supplied as
arguments to a call to m1, each argument after the third one must satisfy rest-type. If rest-type
is #f, exactly three arguments are required for a call to m1. The method macro, and its name-binding
cousin defmethod, allow specification of argument specializers and rest types as follows:

(define move (method ((p <point>) (x <integer>) (y <integer>))
(set-x! p x) (set-y! p y)))

(defmethod (sum (init-val <integer>) :rest (other-vals <integer>))
(apply + init-val other-vals))

(sum 1 2 3) ;; => 6

Generic Functions: Also known as virtual functions, a generic function is a collection of
methods and a composer function. A composer function takes the generic function being called, a
list of applicable methods, and the list of argument values, and it returns a call context. When a
generic function is called, it performs four actions:

1. A list of applicable methods is selected by calling isa? on each method signature and the
argument value list.

2. A call context is created by calling the generic function’s composer function, and

3. The dynamic variable *call-context* is bound to the new context, and

4. The executor function of the context is invoked.

A call context describes an active generic function invocation, including the generic function
involved, the chain of methods to be executed, a list of applicable “next” methods, the current
method being executed, the argument values, and the “executor” function. The executor function
is a thunk that calls each of the chosen methods in turn.

The composer functions determine what method or methods of the applicable methods will be
called, and, if more than one, in what order. For example, the primary-composer function selects
a single most applicable method, produces a one-element method chain, and produces an executor
thunk that will call that most applicable method.

8

Here is factorial, implemented using a generic function:

(defgeneric fact
(method ((n (and? <int> (== 1))))

1)
(method ((n <int>))

(∗ n (fact (− n 1)))))

As an aside, consider why we needed the specializer on the base case for fact to be the type
conjunction (and? <int> (== 1)). If the specializer had been simply (== 1), then for the call (fact
1), the composer function would not be able to disambiguate between the two applicable methods.
Predicate types (those based on predicate functions) are not comparable (other than with eq?) to
other types, with respect to subtyping.

Method Combination: In CLOS, method combination refers to the ability to add methods before,
after, and around the primary methods. GLOS supports similar functionality, by using different
composer functions. For example:

(defgeneric move
(method ((p <point>) (x <integer>) (y <integer>))

(set-x! p x)
(set-y! p y)))

(add-before-method
move (method ((p <colorpoint>) (x <integer>) (y <integer>))

(format true "before move colorpoint (˜a, ˜a)˜%" x y)))
(add-after-method
move (method ((p <point>) (x <integer>) (y <integer>))

(format true "after move point (˜a, ˜a)˜%" x y)))
(move p1 2 3) ;; ”after move point”
(move cp1 2 3) ;; ”before move colorpoint” ”after move point”

If we explore the move generic function after adding the before and after methods to it, we would find
that the generic consists of three methods - one with the specializer <before>, one with <primary>,
and one with <after>. These specializers are always applicable (arguments always satisfy them),
and they are ordered <before> < <primary> < <after>. The composer function for modified generics
simply calls each applicable method, in order. The <before> method has as its callable part not a
Scheme procedure but another generic function (!). This generic function has a before-composer
composer function, which calls each applicable before method, from least specific to most specific.
The <primary> method has as its callable a generic function with the usual primary-composer
function, and the <after> method has as its callable a generic function with an after-composer
function that invokes each applicable after method from most specific to least specific.

In an after method, the fluid variable *return-value* is bound.

9

There is another method combination, around, which supersedes before and after methods. Adding
an around method to a generic adds a third level to the generic function. After adding around
methods to a generic, the least specific method implements the behavior of the generic before any
around methods were added. The around-composer is identical to the primary-composer in that
it chooses a single most applicable method and calls it. In order to continue with the rest of the
generic function’s methods, the program must invoke call-next-method.

call-next-method accesses the call context established when the generic function was invoked and
recomposes new context values starting with the rest of the chain and the list of next methods.

(defgeneric g1
(method ((i <integer>))

(format #t "g1$<\!\!\itbox{integer}\!\!>$(˜a)˜%" i) i)
(method ((n <number>))

(format #t "g1$<\!\!\itbox{number}\!\!>$(˜a)˜%" n) n)
(method ((s string?))

(format #t "g1string?(˜a)˜%" s) s))
(add-around-method g1

(method ((x <int>))
(format #t "around $<\!\!\itbox{int}\!\!>$˜%")
(call-next-method)))

(add-around-method g1
(method ((x <string>))

(format #t "around $<\!\!\itbox{string}\!\!>$˜%")
’foo))

(g1 2) ;; => ”around <int> ... g1<integer>” ... 2
(g1 "hi") ;; => ”around <string> ’foo

3 The GOF Design Patterns

As a study of how the basic capabilities of reflection and dynamism impact the need for, use of,
and implementation of design patterns, we will survey the “GOF” patterns from [GHJV94]. Each
pattern will be introduced with the Intent as given in [GHJV94].

For most of the design patterns, we present much of the code from the Sample Code section of
the pattern’s chapter in the GOF book alongside code in Scheme+GLOS that provides similar
functionality. One caveat: Scheme+GLOS has no namespace management system, and some of the
brevity of the Scheme+GLOS code with respect to C++ code is related to C++ having separate
sections in class definitions for private, protected, and public class members. If Scheme+GLOS had
better namespace management, the Scheme code would be slightly longer than it is in this paper,
in order to take advantage of the additional functionality.

10

3.1 Abstract Factory

Intent: Provide an interface for creating families of related or dependent objects without
specifying their concrete classes.

The sample code for Abstract Factory in the GOF revolves around creating mazes. The MazeFactory
class is in charge of creating families of consistent maze components and thus has methods named
makeMaze, makeWall, etc. Subclasses of MazeFactory override the default methods.

As discussed in the GOF book, a language such as Smalltalk, with first class classes, can implement
an Abstract Factory as a dictionary with keys as maze elements (#room, #door) and with classes as
table data. Embedding lookup by names in the execution makes optimization more difficult. Using
dynamic multiple dispatch, first class classes, and singleton types, we can use the builtin multiple
dispatch of GLOS. In the following, Smalltalk code from the GOF is on the left, Scheme code is on
the right.

createMazeFactory

^ (MazeFactory new

addPart: Wall named: #wall;

addPart: Room named: #room;

addPart: Door named: #door;

yourself)

make: partName

^ (partCatalog at: partName) new

createMaze: aFactory

| room1 room2 aDoor |

room1 := (aFactory make: #room) number: 1.

room2 := (aFactory make: #room) number: 2.

aDoor := (aFactory make: #door)

from: room1 to: room2.

...

(defgeneric make-maze-element
(method ((f <maze-factory>)

(eltType (== <wall>))) => <wall>
(new <wall>))

(method ((f <maze-factory>)
(eltType (== <room>)) :rest args)

=> <room>
(apply new <room> args))

(method ((f <maze-factory>)
(eltType (== <door>)) :rest args)

=> <door>
(apply new <door> args)))

(define the-factory (new <maze-factory>))
(define room1

(make-maze-element the-factory <room>
’number 1))

(define room2
(make-maze-element the-factory <room>

’number 2))
(define door1

(make-maze-element the-factory <door>
’from room1 ’to room2))

. . .

Using the system’s method dispatch implementation rather than a user data structure such as a
dictionary allows calls such as (make-maze-element the-factory <room> 2) to be more easily
optimized.

11

Summary: Reflection allows for all the variations of the pattern, with tradeoffs as discussed in
the GOF.

3.2 Builder

Intent: Separate the construction of a complex object from its representation so that
the same construction process can create different representations.

The code in Scheme+GLOS is pretty similar to that given in the GOF, in C++. The CreateMaze
protocol calls buildMaze, buildRoom, buildDoor, etc. Subclasses of MazeBuilder override buildMaze,
buildRoom, etc.

class MazeBuilder {
public:

virtual void BuildMaze() { }
virtual void BuildRoom(int room) { }
virtual void BuildDoor(int roomFrom,

int roomTo)
{ }

virtual Maze* GetMaze() { return 0; }
protected:

MazeBuilder();
};
Maze* MazeGame::CreateMaze

(MazeBuilder\& builder) {
builder.BuildMaze();
builder.BuildRoom(1);
builder.BuildRoom(2);
builder.BuildDoor(1, 2);
return builder.GetMaze();

}

(defrectype <maze-builder> () ())
(defgeneric create-maze

(method ((game <maze-game>)
(builder <maze-builder>))

(build-maze builder game)
(build-room builder game 1)
(build-room builder game 2)
(build-door builder game 1 2)
(get-maze builder)))

Suppose we want to play the same abstraction trick as in Abstract Factory – have one buildElement
virtual function that takes a parameter that indicates what type of element you want to add. In a
language with single dispatch, you have to use double dispatching to get to the right code, or, even
worse, the code from the GOF (GOF, pg. 97) in their motivating example of a text conversion
engine:

12

switch t.Type {
CHAR:

builder−>convertCharacter(t.Char);
FONT:

builder−>convertFontChange(t.Font);
PARA:

builder−>convertParagraph();

With multiple dispatch, however, you can write code such as:

(add-method∗ convert
(method ((builder <tex-converter>) (token <char>))

. . . convert TeX character . . .)
(method ((builder <tex-converter>) (token))

. . . convert TeX font change . . .)
(method ((builder <text-widget-converter>) (token <char>))

. . . convert text widget character . . .)
(method ((builder <text-widget-converter>) (token))

. . . convert text widget font change . . .))

The presentation of the Builder pattern is “class-centric” – there is a Director class (Converter
or Game) with an instance variable builder that points to an instance of a Builder class. The
Director’s construct function calls the relevant methods of its builder object.

In a generic function setting, we do not need to have behavior “owned” by a class. We can write
a top-level construct generic function that instantiates a Builder object and calls the relevant
methods on that Builder. In other words, the Builder pattern involves a Director class that has
behavior but no real state. In a generic function setting, we can do without such classes and define
the behavior directly in terms of generic functions.

C++ allows functions to exist outside of classes, but those functions are not dynamically dispatched.

Summary: The idea of a construction protocol that returns the finished product when asked is
universal. Multiple dispatch and first-class classes can be used to abstract the part construction
protocol as in Abstract Factory. Finally, the Builder pattern is somewhat “class-centric”, and in a
setting where dynamically dispatched behavior can be specified independently of classes, we may
be able to do without the Director class of the Builder pattern.

3.3 Factory Method

Intent: Define an interface for creating an object, but let subclasses decide which class
to instantiate. Factory Method lets a class defer instantiation to subclasses.

13

Any language that lets the programmer override the default creation method provides direct support
for the Factory Method pattern. Dylan [Sha97], for example, provides a two-level protocol for
instance creation, and it is not unusual to override the default make method for a class C to return
an instance of some subclass of C. Controlling instance creation is another instance of reflection –
this time more related to metaobject protocols.

Typically, C++ code as from the GOF - on the left below, can be replaced by Scheme code as on
the right below.

class BombedMazeGame : public MazeGame {
public:

BombedMazeGame();
virtual Wall* MakeWall() const

{ return new BombedWall; }
virtual Room* MakeRoom(int n) const

{ return new RoomWithABomb(n); }
};

(gfmethod (make (c (== <wall>)))
(make <bombed-wall>))

(gfmethod (make (c (== <room>)) (n <int>))
(make <bombed-room>))

Note that the programmer does not need to remember to call a distinguished instantiation function
(e.g. makeWall) but can instead use the standard instantiation interface (e.g. new).

Multiple dispatch again comes in useful - this time for implementing what the GOF call “parame-
terized Factory methods”. On the left is code from the GOF, with Scheme code on the right:

Product* Creator::Create (ProductId id) {
if (id == MINE) return new MyProduct;
if (id == YOURS) return new YourProduct;
// repeat for remaining products. . .

}

(add-method∗ make
(method ((c (== <product>)) (id (== ’mine)))

(make <my-product>))
(method ((c (== <product>)) (id (== ’yours)))

(make <your-product>)))

Summary: An extensible instance creation protocol directly supports the Factory Method pattern.
Multiple dispatch is useful to further abstract the instance creation process.

3.4 Prototype

Intent: Specify the kinds of objects to create using a prototypical instance, and create
new objects by copying this prototype.

14

As the GOF (pg. 121) point out,

Prototype is particularly useful with static languages like C++, where classes are not
objects, and little or no type information is available at run-time. It’s less important in
languages like Smalltalk or Objective C that provide what amounts to a prototype (i.e.,
a class object) for creating instances of each class. This pattern is built into prototype-
based languages like Self, in which all object creation happens by cloning a prototype.

The use of Prototype to get around the lack of first-class classes is obviously addressed by basic
reflection.

The Prototype pattern also requires that every object be “cloneable”, which is an addition to what
is provided by first-class classes. Smalltalk provides a standard copy method for this purpose.
With sufficient reflection – that is, being able to query a class for its fields, and also being able to
set fields abstractly (i.e. without hardwiring setter / field names into code) one can write a general
purpose shallow clone method. For example, in GLOS we can write:

(defmethod (clone (obj <object>))
(let∗ ((obj-type (instance-type obj))

(new-obj ((glos-record-type-constructor obj-type))))
(format true "created, now setting.˜%")
(for-each (lambda (field)

((field-spec-setter field) new-obj
((field-spec-getter field) obj)))

(glos-record-type-fields obj-type))
new-obj))

Summary: The main purpose of Prototype is provided in-language by having first-class classes
– a basic feature of reflection. Support for instance copying can be provided by the system, as in
Smalltalk’s copy method, or, with reflection, cloning can be a user-level library function. For more
complex cloning (deep rather than shallow), either the language has to have a more sophisticated
protocol for cloning, or one has to revert to implementing the cloning part of the Prototype design
pattern.

3.5 Singleton

Intent: Ensure a class only has one instance, and provide a global point of access to it.

Similar to the Factory Method pattern, if the language provides an extensible instance creation
protocol, it is straightforward to implement the Singleton pattern so that coding conventions are
not required. Code from the GOF, on the left, can be replaced by code in Scheme, on the right:

15

class MazeFactory {
public:

static MazeFactory* Instance();
// existing interface goes here

protected:
MazeFactory();

private:
static MazeFactory* instance;

};
. . .
MazeFactory* MazeFactory:: instance = 0;
MazeFactory* MazeFactory::Instance () {

if (instance == 0) {
instance = new MazeFactory;

}
return instance;

}

(let ((the-instance ∗undefined∗))
(gfmethod (make (c (== <maze-factory>)))

(if (undefined? the-instance)
(set! the-instance

((glos-record-type-constructor
<maze-factory>))))

the-instance))

Summary: An extensible instance creation protocol enables implementation of the Singleton
pattern without having to introduce a new virtual method and user defined instantiation protocol.
However, requiring the programmer to call a designated method such as instance() to get the
singleton has its benefits – it makes it clear to the programmer that the usual instantiation protocol
is not being used.

3.6 Adapter

Intent: Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn’t otherwise because of incompatible interfaces.

The Adapter pattern, simply put, translates messages from one protocol (“Target”) to another
(“Adaptee”). More generally, it allows the programmer to use functionality from one or more
classes (Adaptees) to fulfill the interface requirements of a new class (Adapter) that is a subclass
of Target.

The GOF point out that one may use multiple inheritance as a mechanism for automatically
incorporating the adaptee into the adapter instance, but this is an implementation/efficiency hack.

The GOF also point out that with first-class functions, as in Smalltalk, it is possible to create
“parameterized adapters”, where the adaptation code is sent as functions to be run by the adapter.

16

This is also reminiscent of nested anonymous classes in Java.

The presentation of the Adapter pattern is class-centric, “how do we get this new class to support
behavior which happens to be largely supported by this other class?”

The generic function model takes a different view: “how do we extend this functionality to work
on elements of this new class?” The example from the GOF is adding a TextShape subclass to
Shape, where TextShape implements the required BoundingBox behavior by adapting (delegating
to) a corresponding TextView object.

In the following, the TextShape class has an instance variable TextView* text initialized by the
constructor.

void TextShape::BoundingBox (
Point& bottomLeft, Point& topRight

) const {
Coord bottom, left, width, height;
text−>GetOrigin(bottom, left);
text−>GetExtent(width, height);

bottomLeft = Point(bottom, left);
topRight = Point(bottom + height,

left + width);
}
bool TextShape::IsEmpty () const {

return text−>IsEmpty();
}

(gfmethod (bounding-box (t <text-shape>)) => <pair>
(let∗ ((the-view (text t))

(bottom (origin-bottom the-view))
(left (origin-left the-view)))

(pair (new <point> bottom left)
(new <point>

(+ bottom (extent-height the-view))
(+ left (extent-width the-view))))))

Summary: In the generic function model, the Adapter pattern has a somewhat different flavor
than in the class-centric model. This is because adding methods to a generic function can be viewed
as extending functionality (such as boundingBox) to cover new domains (such as TextShape).

As discussed in the GOF, first-class functions also make the adapter pattern more abstract.

Note that sophisticated module systems may mitigate the need for the Adapter pattern, allowing
at the very least for renaming of interface elements upon import.

3.7 Bridge

Intent: Decouple an abstraction from its implementation so that the two can vary
independently.

17

The basic pattern of programming in terms of a family of Abstraction classes, and operations
on them, and having a clean interface to one or more Implementor, device-specific classes, seems
universal.

3.8 Composite

Intent: Compose objects into tree structures to represent part-whole hierarchies. Com-
posite lets clients treat individual objects and compositions of objects uniformly.

The Composite pattern is basically the extension of recursive sum and product types to the object-
oriented regime. Since both C++ and Scheme + GLOS support recursive class (resp. record)
types, the implementations are similar (although the Scheme version is somewhat less verbose):

class Equipment {
public:

virtual ˜Equipment();
const char* Name() { return name; }
virtual Watt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();
virtual void Add(Equipment*);
virtual void Remove(Equipment*);
virtual Iterator* CreateIterator();

protected:
Equipment(const char*);

private:
const char* name;

};
class FloppyDisk : public Equipment {
public:

FloppyDisk(const char*);
virtual ˜FloppyDisk();
virtual Watt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();

};

(defrectype <equipment> ()
((name <symbol>))
(name equipment-name set-equipment-name!))

(defgeneric power)
(defgeneric net-price)
. . .
(defrectype <floppy> (<equipment>) ())

18

class CompositeEquipment : public Equipment {
public:

virtual ˜CompositeEquipment();
virtual Watt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();
virtual void Add(Equipment*);
virtual void Remove(Equipment*);
virtual Iterator* CreateIterator();

protected:
CompositeEquipment(const char*);

private:
List equipment;

};
Currency CompositeEquipment::NetPrice () {

Iterator* i = CreateIterator();
Currency total = 0;
for (i−>First(); !i−>IsDone(); i−>Next()) {

total += i−>CurrentItem()−>NetPrice();
}
delete i;
return total;

}
class Chassis : public CompositeEquipment {
public:

Chassis(const char*);
virtual ˜Chassis();

virtual Watt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();

};

(defrectype <composite-equipment> (<equipment>)
((parts <list>))
(parts composite-parts set-composite-parts!))

(gfmethod (net-price (e <composite-equipment>))
(fold (lambda (item total)

(+ total (net-price item)))
0 (composite-parts e)))

(defrectype <chassis> (<composite-equipment>) ())

Note the use of the higher-order fold function in the Scheme code.

Summary: Because recursive datatypes are supported in both C++ and Scheme+GLOS, imple-
mentations of the Composite pattern are similar in both languages.

3.9 Decorator

Intent: Attach additional responsibilities to an object dynamically. Decorators provide

19

a flexible alternative to subclassing for extending functionality.

The idea of method combination in Common Lisp provides direct support for idiomatic behavior
decoration. There are similar ideas in AspectJ, with before and after “advice”. The AspectJ advices
are not first class, and cannot be added or removed dynamically (at runtime). Method combination
allows one to directly express the idea that you want to do one bit of behavior before (or after, or
instead of) doing the primary behavior, and combinations can be combined.

20

class VisualComponent {
public:

VisualComponent();
virtual void Draw();

};
class Decorator : public VisualComponent {
public:

Decorator(VisualComponent*);
virtual void Draw();

private:
VisualComponent* component;

};
void Decorator::Draw () {

component−>Draw();
}
class BorderDecorator : public Decorator {
public:

BorderDecorator(VisualComponent*,
int borderWidth);

virtual void Draw();
private:

void DrawBorder(int);
private:

int width;
};
void BorderDecorator::Draw () {

Decorator::Draw();
DrawBorder(width);

}
Window* window = new Window;
TextView* textView = new TextView;
window−>SetContents(textView);
window−>SetContents(

new BorderDecorator(
new ScrollDecorator(textView), 1

)
);

(defrectype <visual-component> () ())
(defgeneric draw

(method ((comp <visual-component>))
(format true "drawing visual-component˜%"))

(method ((w <window>))
(draw (window-contents w)))

(defmethod (decorate (component <visual-component>)
(decoration <visual-component>))

(add-after-method draw
(method ((c (== component)))

(draw decoration))))
(defrectype <border-decorator> (<visual-component>)

((width <int>))
(width border-width set-border-width!))

(gfmethod (draw (comp <border-decorator>))
(draw-border (border-width comp)))

(define tv1 (new <text-view>))
(define w1 (new <window> ’contents tv1))
(decorate tv1 (new <scroll-decorator>))
(decorate tv1 (new <border-decorator> ’width 4))

In the Scheme code above, we do not need a new Decorator class, because we use the built-in
method combination capability. The decorate method makes the Decorator pattern dynamically
instantiable.

21

Summary: Method combination provides direct support for a common case of decoration. Prototype-
based languages also provide direct support for decoration. Specializing methods on singletons
allows behavior to be extended (specialized) on a per-object basis.

3.10 Facade

Intent: Provide a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use.

By and large, this is simply good coding practice, use of abstraction, and namespace management.

Since namespace management is not considered in this paper, we won’t discuss the Facade pattern
any further.

3.11 Flyweight

Intent: Use sharing to support large numbers of fine-grained objects efficiently.

Hell, the Lisp community practically invented this pattern, except it was given obscure names like
“hash consing” and “interning”, which is why Lisp never caught on, but that’s another story...

More seriously, having access to the object creation protocol is important for implementing Fly-
weight, in much the same way as for the Factory Method and Singleton patterns. As for the
Factory Method and Singleton patterns, the programmer can use the standard object creation pro-
cess (in our case, new) to get instances, and the fact that these objects are shared is invisible. The
sample GOF code for the factory component of the Flyweight pattern is on the left below, with
correpsonding Scheme code on the right:

22

const int NCHARCODES = 128;
class GlyphFactory {
public:

GlyphFactory();
virtual ˜GlyphFactory();

virtual Character* CreateCharacter(char);
virtual Row* CreateRow();
virtual Column* CreateColumn();
// . . .

private:
Character* character[NCHARCODES];

};
GlyphFactory::GlyphFactory () {

for (int i = 0; i < NCHARCODES; ++i) {
character[i] = 0;

}
}
Character* GlyphFactory::CreateCharacter

(char c) {
if (! character[c]) {

character[c] = new Character(c);
}
return character[c];

}

(defrectype <character> ()
((char <char>))
(char get-char set-char!))

(gfmethod (initialize (obj <character>) (char <char>))
(set-char! obj char))

(let ((char-table (make-integer-table)))
(gfmethod
(make (class (== <character>)) (char <char>))
(let ((char-int (char->integer char)))

(cond ((table-ref char-table char-int)
=> identity)

(else
(let ((new-char (call-next-method)))

(table-set! char-table char-int new-char)
new-char))))))

Summary: As in some of the creational patterns, having access to the instantiation protocol
enables more direct and dynamic implementation of the Flyweight pattern.

3.12 Proxy

Intent: Provide a surrogate or placeholder for another object to control access to it.

The GOF list the following kinds of Proxy uses.

[TO DO: replace quoted references with real ones:]

1. A remote proxy provides a local representative for an object in a different address space.
NEXTSTEP [Add94] uses the class NXProxy for this purpose. Coplien [Cop91] calls this
kind of proxy an ”Ambassador.”

23

2. A virtual proxy creates expensive objects on demand. The ImageProxy described in the
Motivation is an example of such a proxy.

3. A protection proxy controls access to the original object. Protection proxies are useful
when objects should have different access rights. For example, KernelProxies in the Choices
operating system [CIRM93] provide protected access to operating system objects.

4. A smart reference is a replacement for a bare pointer that performs additional actions when
an object is accessed. Typical uses include

• counting the number of references to the real object so that it can be freed automatically
when there are no more references (also called smart pointers [EP91]).

• loading a persistent object into memory when it’s first referenced.

• checking that the real object is locked before it’s accessed to ensure that no other object
can change it.

We can insinuate a proxy into the instantiation protocol, as the following code illustrates:

24

class Graphic {
public:

virtual void Draw(const Point& at) = 0;
virtual void Load(istream& from) = 0;
// . . .

};
class Image : public Graphic {
public:

Image(const char* file); // loads from file
virtual void Draw(const Point& at);
virtual void Load(istream& from);

private:
// . . .

};
class ImageProxy : public Graphic {
public:

ImageProxy(const char* imageFile);
virtual void Draw(const Point& at);
virtual void Load(istream& from);

protected:
Image* GetImage();

private:
Image* image;
char* fileName;

};
ImageProxy::ImageProxy (const char* fileName) {

fileName = strdup(fileName);
image = 0;

}
Image* ImageProxy::GetImage() {

if (image == 0) {
image = new Image(fileName);

}
return image;

}
void ImageProxy::Draw (const Point& at) {

GetImage()−>Draw(at);
}
void ImageProxy::Load (istream& from) {

from >> extent >> fileName;
}
class TextDocument {
public:

TextDocument();
void Insert(Graphic*);
// . . .

};
TextDocument* text = new TextDocument;
text−>Insert(new ImageProxy("anImageFileName"));

}

(defrectype <graphic> () ())
(defrectype <image> (<graphic>)

((bits))
(bits image-bits set-image-bits!))

(gfmethod (initialize (obj <image>) (fn <string>))
(set-image-bits! obj (bits-from-file fn)))

(defgeneric draw
(method ((i <image>))

(let ((bits (image-bits i)))
(format true "Drawing image bits ˜a˜%" bits))))

(defrectype <image-proxy> (<image>)
((filename <string>)
(empty? <boolean> true))

(filename image-proxy-filename
set-image-proxy-filename!)

(empty? image-proxy-empty? set-image-proxy-empty?!))
;; hijack instantiation of <image> superclass
(gfmethod (make (class (== <image>)) :rest args)

(make <image-proxy>))
(gfmethod (initialize (obj <image-proxy>) (fn <string>))

(set-image-proxy-filename! obj fn))
(add-before-method
image-bits
(method ((obj <image-proxy>))

(if (image-proxy-empty? obj)
(begin

(set-image-bits! obj
(bits-from-file (image-proxy-filename obj)))

(set-image-proxy-empty?! obj false)))))
(defrectype <text-document> ()

((elts <list> ’()))
(elts text-document-elements

set-text-document-elements!))
(define td1 (new <text-document>))
(insert td1 (new <image> "image.gif"))

25

The hijacking of the instantiation of <image>s above is similar to that of the Scheme version of
the Factory Method pattern, and the C++ code would benefit from a similar use of the Factory
Method pattern. We chose to subclass <image> with the proxy type to avoid having to shadow
every method of <image>.

With decent namespace management, a more straightforward approach is to define, in the scope
where images are to be proxied, the <image> class as the <image-proxy> class is defined above.
Then import the external <image> class, private to the scope of the proxied <image> class, and
directly call the imported, but hidden constructor and other methods.

Note that a protection proxy can be implemented using method combination, without the need
for a separate proxy object. Using around methods, we can check constraints before executing the
primary method.

The GOF remark:

These operations are usually very similar to each other, as the Sample Code demon-
strates. Typically all operations verify that the request is legal, that the original object
exists, etc., before forwarding the request to the subject. It’s tedious to write this code
again and again. So it’s common to use a preprocessor to generate it automatically.

Thus, macros are also a useful avenue for implementing the proxy pattern. For example, one could
extend the defrectype macro to allow a lazy keyword on the field specification that would cause
the field to be memoized.

Lazy imperative languages implement virtual proxies directly.

Summary: The features of method combination, macros, singleton types, and an extensible in-
stantiation protocol can all be used to good effect in implementing the Proxy pattern.

3.13 Chain of Responsibility

Intent: Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the request
along the chain until an object handles it.

If the chain of responsibility is structural, based on a pointed-to-by relation, then either reflection
capabilities provide pointed-to-by information or the application has to maintain it in much the
same way as in the GOF book.

The following are C++ and Scheme implementations of the simple Chain of Responsibility example
in the GOF.

26

typedef int Topic;
const Topic NO HELP TOPIC = −1;
class HelpHandler {
public:

HelpHandler(HelpHandler* = 0,
Topic = NO HELP TOPIC);

virtual bool HasHelp();
virtual void SetHandler(HelpHandler*, Topic);
virtual void HandleHelp();

private:
HelpHandler* successor;
Topic topic;

};
HelpHandler::HelpHandler (

HelpHandler* h, Topic t
) : successor(h), topic(t) { }
bool HelpHandler::HasHelp () {

return topic != NO HELP TOPIC;
}
void HelpHandler::HandleHelp () {

if (successor != 0) {
successor−>HandleHelp();

}
}
class Widget : public HelpHandler {
protected:

Widget(Widget* parent,
Topic t = NO HELP TOPIC);

private:
Widget* parent;

};
Widget::Widget (Widget* w, Topic t)

: HelpHandler(w, t) {
parent = w;

}
class Button : public Widget {
public:

Button(Widget* d, Topic t = NO HELP TOPIC);
virtual void HandleHelp();
// Widget operations that Button overrides. . .

};
Button::Button (Widget* h, Topic t)

: Widget(h, t) { }
void Button::HandleHelp () {

if (HasHelp()) {
// offer help on the button

} else {
HelpHandler::HandleHelp();

}
}

(defrectype <topic> () ((text))
(text topic-text set-topic-text!))

(gfmethod (initialize (obj <topic>) text)
(set-topic-text! obj text))

(defgeneric display-topic
(method ((t <topic>))

(format true "Topic: ˜a˜%" (topic-text t))))
(defrectype <handler> ()

((topic (false-or <topic>) false)
(next (false-or <handler>) false))

(topic handler-topic set-handler-topic!)
(next handler-next set-handler-next!))

(defgeneric handle-help
(method ((handler <handler>))

(cond ((handler-topic handler)
=> display-topic)

((handler-next handler)
=> handle-help)

(else
(format true "No topic found.˜%")))))

(defrectype <widget> (<handler>)
((parent (false-or <widget>) false))
(parent widget-parent set-widget-parent!))

;; handle new widget with only a parent handler,
;; not a parent widget:
(gfmethod (initialize (newobj <widget>)

(parent-handler (false-or <handler>))
(topic (false-or <topic>)))

(set-handler-next! newobj parent-handler)
(set-handler-topic! newobj topic))

(gfmethod (initialize (newobj <widget>)
(parent-widget (false-or <widget>))
(topic (false-or <topic>)))

(set-widget-parent! newobj parent-widget)
(set-handler-next! newobj parent-widget)
(set-handler-topic! newobj topic))

(defrectype <button> (<widget>) ())

27

Continued...

class Dialog : public Widget {
public:

Dialog(HelpHandler* h,
Topic t = NO HELP TOPIC);

virtual void HandleHelp();
// Widget operations that Dialog overrides. . .

};
Dialog::Dialog (HelpHandler* h, Topic t)

: Widget(0) {
SetHandler(h, t);

}
void Dialog::HandleHelp () {

if (HasHelp()) {
// offer help on the dialog

} else {
HelpHandler::HandleHelp();

}
}
class Application : public HelpHandler {
public:

Application(Topic t) : HelpHandler(0, t) { }
virtual void HandleHelp();
// application-specific operations. . .

};
void Application::HandleHelp () {

// show a list of help topics
}
const Topic PRINT TOPIC = 1;
const Topic PAPER ORIENTATION TOPIC = 2;
const Topic APPLICATION TOPIC = 3;
Application* application =

new Application(APPLICATION TOPIC);
Dialog* dialog =

new Dialog(application, PRINT TOPIC);
Button* button =

new Button(dialog,
PAPER ORIENTATION TOPIC);

button−>HandleHelp();

(defrectype <dialog> (<widget>) ())
(defrectype <application> (<handler>) ())
(gfmethod (initialize

(obj <application>) (topic <topic>))
(set-handler-topic! obj topic))

(gfmethod (handle-help (topic <topic>)
(handler <application>))

(format true "Displaying application topics.˜%"))
(define printing-topic (new <topic> "help for printing"))
(define paper-orientation-topic

(new <topic> "help for paper orientation"))
(define application-topic

(new <topic> "help for application"))
(define application

(new <application> application-topic))
(define dialog

(new <dialog> application printing-topic))
(define button

(new <button> dialog paper-orientation-topic))
(handle-help button)

For such a simple setup, we do not get much benefit from advanced language features. With a
more complex chain of responsibility, though, we can use some of these features. For example, the

28

GOF discuss the possibility of different handlers in the chain being able to handle different types
of requests. An outline of the required C++ code is given:

void Handler::HandleRequest (Request* theRequest) {
switch (theRequest−>GetKind()) {
case Help:

// cast argument to appropriate type
HandleHelp((HelpRequest*) theRequest);
break;

case Print:
HandlePrint((PrintRequest*) theRequest);
// . . .
break;

default:
// . . .
break;

}
}

class ExtendedHandler : public Handler {
public:

virtual void HandleRequest(Request* theRequest);
// . . .

};
void ExtendedHandler::HandleRequest (Request* theRequest) {

switch (theRequest−>GetKind()) {
case Preview:

// handle the Preview request
break;

default:
// let Handler handle other requests
Handler::HandleRequest(theRequest);

}
}

This can be handled much more elegantly by setting up a chain of multiply-dispatched generic
functions. In the following, a <handler> maintains both a pointer to its successor (next) and a
generic function local that contains methods specialized by request type. The default method in
the local generic function, which is invoked if there are not other applicable methods, delegates the
request to its successor handler, if there is one.

29

(defrectype <handler> ()
((next (false-or <handler>))
(local generic?))

(next handler-next set-handler-next!)
(local handler-local set-handler-local!))

(defgeneric handle-request
(method ((request <request>) (handler <handler>))

((handler-local handler) request)))
(gfmethod (initialize (this-handler <handler>) :rest args)

;; install local handler generic
(set-handler-local!
this-handler
(make-generic
;; default method defers to next handler in chain
(method ((request <request>))

(if (handler-next this-handler)
(handle-request request

(handler-next this-handler))
(format true "No handler found.˜%")))))

;; get any local handler methods from initialization args
(handle-key ’handler args

(lambda (handler-method)
(add-method (handler-local this-handler)

handler-method))))
. . .
(define d1 (new <dialog> app1

’handler (method ((req <help-request>))
(format true "dialog help˜%"))

’handler (method ((req <preview-request>))
(format true "dialog preview˜%"))))

(define b1 (new <button> d1
’handler (method ((req <help-request>))

(format true "button help˜%"))))

Summary: In the example above, we make use of first class dynamically dispatched functions.
Note that each of the generic functions is, in that example, only singly dispatched.

3.14 Command

Intent: Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.

Simple Commands are directly supported in languages with closures. Below, some of the sample

30

code from the GOF is trivially implemented in Scheme.

class Command {
public:

virtual ˜Command();
virtual void Execute() = 0;

protected:
Command();

};
class OpenCommand : public Command {
public:

OpenCommand(Application*);
virtual void Execute();

protected:
virtual const char* AskUser();

private:
Application* application;
char* response;

};
OpenCommand::OpenCommand (Application* a) {

application = a;
}
void OpenCommand::Execute () {

const char* name = AskUser();
if (name != 0) {

Document* document = new Document(name);
application−>Add(document);

document−>Open();
}

}
// added by gregs:
someMenu−>addMenuItem(

"Open", new OpenCommand(theApp));
. . .
someMenuItem−>Command()−>Excecute();

(define (make-open-command app)
(lambda ()

(let ((name (ask-user)))
(if name

(let ((doc (new <document> name)))
(add app doc)
(open doc))))))

. . .
(add-menuitem some-menu

(make-open-command the-app))
. . .
((menuitem-command some-menuitem))

If a command needs to support unExecute, it may have to be an actual object (user record type)
rather than a native closure.

Summary: Closures directly support the Execute functionality of the Command pattern, without
any undo functionality.

31

3.15 Interpreter

Intent: Given a language, define a representation for its grammar along with an inter-
preter that uses the representation to interpret sentences in the language.

To add support for the “Known Uses” subsection in the Interpreter chapter, we have the following
quote by Phil Greenspun, promulgated by Paul Graham:

Greenspun’s Tenth Rule of Programming: Any sufficiently complicated C or Fortran
program contains an ad hoc informally-specified bug-ridden slow implementation of half
of Common Lisp.

As the discussion in the GOF indicates, Interpreter overlaps heavily with the Composite pattern and
the more general Visitor pattern. Comments from those two design patterns cover the Interpreter
pattern.

3.16 Iterator

Intent: Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation.

The GOF presentation is focused on “external” iterators, implemented in C++, and certainly
every modern OO programming language comes with at least one standard iterator protocol for
abstractly traversing collections.

Less attention is given by the GOF to “internal” iterators. For example, the GOF write:

It’s easy to compare two collections for equality with an external iterator, for example,
but it’s practically impossible with internal iterators.

However, in Scheme, we can simply do

(every eq? l1 l2)

First class functions make internal iterators much easier to use, so we present the GOF sample
code for an internal iterator alongside comparable code in Scheme. The C++ code uses an external
iterator class ListIterator whose definition is not included below.

32

template <class Item>
class FilteringListTraverser {
public:

FilteringListTraverser(List<Item>* aList);
bool Traverse();

protected:
virtual bool ProcessItem(const Item&) = 0;
virtual bool TestItem(const Item&) = 0;

private:
ListIterator<Item> iterator;

};
template <class Item>
void FilteringListTraverser<Item>::Traverse () {

bool result = false;
for (

iterator.First();
! iterator.IsDone();
iterator.Next()

) {
if (TestItem(iterator.CurrentItem())) {

result = ProcessItem(iterator.CurrentItem());
if (result == false) {

break;
}

}
}
return result;

}
// gregs added following
class HighlyPaidEmployees :

public FilteringListTraverser<Employee*> {
public:

HighlyPaidEmployees(List<Employee*>* aList, int n) :
FilteringListTraverser<Employee*>(aList),
min(n) { }

protected:
bool ProcessItem(Employee* const&);
bool TestItem(const Employee&);

private:
int total;
int count;

};
bool HighlyPaidEmployees::ProcessItem

(Employee* const& e) {
count++;

e−>Print();
}
bool HighlyPaidEmployees::TestItem

(Employee* const& e) {
return e−>Salary() > min

}

List<Employee*>* employees;
// . . .
HighlyPaidEmployees pa(employees, 100000);

pa.Traverse();

(define employees (list . . .))
(filter (lambda (e)

(> (employee-salary e) 100000))
employees)

33

** TO DO: ** cover iteration protocols of Dylan, as discussed in Norvig’s talk. **

Summary: With first class functions, much more powerful “internal” iteration idioms are possible,
making for more concise code. The work on polymorphic fold and map in imperative functional
languages shows how powerful and general this approach can be.

3.17 Mediator

Intent: Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other explicitly, and
it lets you vary their interaction independently.

The main complexity in the sample implementation of the Mediator pattern is the WidgetChanged
method of the FontDialogDirector class. It turns out that the primary functions of the Director
class can be handled by a generic function: (1) an object to be notified of events, and (2) a procedure
for controlling interactions between objects.

34

class DialogDirector {
public:

virtual void WidgetChanged(Widget*) = 0;
// . . .
virtual void CreateWidgets() = 0;

};
class Widget {
public:

Widget(DialogDirector*);
virtual void Changed();
virtual void HandleMouse(MouseEvent& event);
// . . .

private:
DialogDirector* director;

};
void Widget::Changed () {

director−>WidgetChanged(this);
}
class ListBox : public Widget {
public:

ListBox(DialogDirector*);
virtual void HandleMouse(MouseEvent& event);
// . . .

};
class EntryField : public Widget {
public:

EntryField(DialogDirector*);
virtual void HandleMouse(MouseEvent& event);
// . . .

};
class Button : public Widget {
public:

Button(DialogDirector*);
virtual void HandleMouse(MouseEvent& event);
// . . .

};
void Button::HandleMouse (MouseEvent& event) {

// . . .
Changed();

}
class FontDialogDirector : public DialogDirector {
public:

// . . .
virtual void WidgetChanged(Widget*);

protected:
virtual void CreateWidgets();

private:
Button* ok;
Button* cancel;
ListBox* fontList;
EntryField* fontName;

};
void FontDialogDirector::CreateWidgets () {

ok = new Button(this);
cancel = new Button(this);
fontList = new ListBox(this);
fontName = new EntryField(this);

// fill the listBox with the available font names
// assemble the widgets in the dialog

}
void FontDialogDirector::WidgetChanged (

Widget* theChangedWidget
) {

if (theChangedWidget == fontList) {
fontName−>SetText(fontList−>GetSelection());

} else if (theChangedWidget == ok) {
// apply font change and dismiss dialog
// . . .

} else if (theChangedWidget == cancel) {
// dismiss dialog

}
}

(defgeneric handle-mouse)
(defrectype <widget> ()

((notify-fn generic? (make-generic)))
(notify-fn widget-notify-fn

set-widget-notify-fn!))
(gfmethod (handle-mouse (obj <widget>))

((widget-notify-fn obj) obj))
(defrectype <list-box> (<widget>)

((list))
(list list-box-list set-list-box-list!))

(gfmethod (initialize (obj <list-box>) lst)
(set-list-box-list! obj lst))

(defrectype <entry-field> (<widget>)
((text))
(text field-text set-field-text!))

(gfmethod (initialize (obj <entry-field>) text)
(set-field-text! obj text))

(defrectype <button> (<widget>)
((label))
(label button-label set-button-label!))

(gfmethod (initialize (obj <button>) label)
(set-button-label! obj label))

(define a-font-dialog
(let ((ok (new <button> ’ok))

(cancel (new <button> ’cancel))
(font-list (new <list-box> ’(1 2 3)))
(font-name (new <entry-field> ’font-name-here))
(notify-fn (make-generic)))

(for-each
(lambda (w)

(set-widget-notify-fn! w notify-fn))
(list ok cancel font-list font-name))

(for-each
(lambda (m) (add-method notify-fn m))

(list
(method ((obj (== font-list)))

(set-text font-name
(get-selection font-list)))

(method ((obj (== ok)))
(format #t "ok button pressed˜%"))

(method ((obj (== cancel)))
(format #t "cancel button pressed˜%")))

. . . display the dialog . . .))

35

Summary: First class dynamically dispatched functions can be used as the core event handling
mechanism in the Mediator pattern.

3.18 Memento

Intent: Without violating encapsulation, capture and externalize an object’s internal
state so that the object can be restored to this state later.

The GOF code has few details related to actually creating mementos, and is mainly concerned with
correct use of the C++ protection keywords (private, public, etc.), so we will not give comparison
code for the Memento pattern.

Logging (an important element of transactions) can be implemented by instrumenting record con-
structors and field mutators using method combination.

Also, as demonstrated in the Prototype pattern, sufficient reflection allows abstract copying of a
record’s state, which could be used to create mementos.

3.19 Observer

Intent: Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

In the GOF Sample Code for the Observer pattern, a subject keeps a list of observers. When the
subject changes, it calls its notify function, which calls the update method of each observer.

In the Scheme version of the Observer pattern, the subject contains a generic function, notify-fn,
to which observers can add methods. When an observer wants an action to be invoked when a
subject changes, the observer adds a method to the update-fn of the subject. So, instead of having
attach and detach methods on Subject, we use add-method and remove-method. Note that the
notify-fn generic has a special composer function, chain-composer. chain-composer simply
calls all applicable methods in the order encountered.

36

class Subject;
class Observer {
public:

virtual void Update(Subject* theChangedSubject) = 0;
// . . .

};
class Subject {
public:

virtual void Attach(Observer*);
virtual void Detach(Observer*);
virtual void Notify();
// . . .

private:
List<Observer*> * observers;

};
void Subject::Attach (Observer* o) {

observers−>Append(o);
}
void Subject::Detach (Observer* o) {

observers−>Remove(o);
}
void Subject::Notify () {

ListIterator<Observer*> i(observers);
for (i.First(); !i.IsDone(); i.Next()) {

i.CurrentItem()−>Update(this);
}

}
class ClockTimer : public Subject {
public:

virtual int GetHour();
// . . .
void Tick();

};
void ClockTimer::Tick () {

// update internal time-keeping state . . .
Notify();

}
class DigitalClock: public Widget, public Observer {
public:

DigitalClock(ClockTimer*);
virtual ˜DigitalClock();
virtual void Update(Subject*);

// overrides Observer operation
virtual void Draw();

// overrides Widget operation;
// defines how to draw the digital clock

private:
ClockTimer* subject;

};
DigitalClock::DigitalClock (ClockTimer* s) {

subject = s;
subject−>Attach(this);

}
DigitalClock:: DigitalClock () {

subject−>Detach(this);
}
void DigitalClock::Update (Subject* theChangedSubject) {

if (theChangedSubject == subject) {
Draw();

}
}
void DigitalClock::Draw () {

// get the new values from the subject
int hour = subject−>GetHour();
// etc.
// draw the digital clock

}
class AnalogClock : public Widget, public Observer {
public:

AnalogClock(ClockTimer*);
virtual void Update(Subject*);
virtual void Draw();
// . . .

};

(defrectype <subject> ()
((notify-fn generic?

(really-make-generic ’update ’()
chain-composer false)))

(notify-fn subject-notify-function
set-subject-update-function!))

(defmethod (notify (s <subject>))
((subject-notify-function s)))

(defrectype <clock-timer> (<subject>)
((data))
(data clock-timer-data set-clock-timer-data!))

;; we imagine that tick gets called by an internal timer
(defmethod (tick (timer <clock-timer>) time-data)

(set-clock-timer-data! timer time-data)
(notify timer)) ;; call the update generic

(defrectype <clock-widget> (<widget>)
((the-timer <clock-timer>))
(the-timer clock-timer set-clock-timer!))

;; New clock-widgets register themselves with their timer.
(gfmethod (initialize (clock <clock-widget>)

(timer <clock-timer>))
(set-clock-timer! clock timer)
(add-method (subject-notify-function timer)

(method ()
(draw clock))))

(defrectype <digital-clock> (<clock-widget>) ())
(gfmethod (draw (clock <digital-clock>))

(format true "Drawing digital clock, time = ˜a˜%"

(clock-timer-data (clock-timer clock))))
(defrectype <analog-clock> (<clock-widget>) ())
(gfmethod (draw (clock <analog-clock>))

(format true "Drawing analog clock, time = ˜a˜%"

(clock-timer-data (clock-timer clock))))

37

One implementation strategy discussed in the GOF allows observers to register with aspects of
interest. At notification time, the subject supplies the changed aspect to its observers as a parameter
to the Update operation. For example:

void Subject::Attach(Observer*, Aspect& interest);
. . .
void Observer::Update(Subject*, Aspect& interest);

The Scheme implementation of Observer encompasses finer-grained notification simply by allowing
specializers on argument(s) to the notify methods to limit applicability.

3.20 State

Intent: Allow an object to alter its behavior when its internal state changes. The object
will appear to change its class.

As mentioned in the GOF book, prototype/delegation-based languages like Self can implement the
State pattern directly.

The change-class capability of CLOS could also be used.

In GLOS, we can maintain a state flag in the connection, as well as all the connection state, and
use predicate types to dispatch:

38

class TCPState;
class TCPConnection {
public:

void Open();
void Close();

private:
friend class TCPState;
void ChangeState(TCPState*);

private:
TCPState* state;

};
class TCPState {
public:

virtual void Open(TCPConnection*);
virtual void Close(TCPConnection*);

protected:
void ChangeState(TCPConnection*, TCPState*);

};
TCPConnection::TCPConnection () {

state = TCPClosed::Instance();
}
void TCPConnection::ChangeState (TCPState* s) {

state = s;
}
void TCPConnection::Open () {

state−>Open(this);
}
void TCPConnection::Close () {

state−>Close(this);
}
void TCPState::Open (TCPConnection*) { }
void TCPState::Close (TCPConnection*) { }
void TCPState::ChangeState

(TCPConnection* t, TCPState* s) {
t−>ChangeState(s);

}
class TCPEstablished : public TCPState {
public:

static TCPState* Instance();
virtual void Close(TCPConnection*);

};
class TCPListen : public TCPState {
public:

static TCPState* Instance();
virtual void Send(TCPConnection*);
// . . .

};
class TCPClosed : public TCPState {
public:

static TCPState* Instance();
virtual void Open(TCPConnection*);
// . . .

};
void TCPClosed::Open (TCPConnection* t) {

// send SYN, receive SYN, ACK, etc.
ChangeState(t, TCPEstablished::Instance());

}
void TCPEstablished::Close (TCPConnection* t) {

// send FIN, receive ACK of FIN
ChangeState(t, TCPListen::Instance());

}

(defrectype <tcp-connection> ()
((status <symbol> ’closed))
(status connection-status

set-connection-status!))
(define <open>

(and? <tcp-connection>
(lambda (c)

(eq? ’open (connection-status c)))))
(define <closed>

(and? <tcp-connection>
(lambda (c)

(eq? ’closed (connection-status c)))))
(defgeneric open

(method ((c <tcp-connection>))
(error "Cannot open connection."))

(method ((c <closed>))
(set-connection-status! c ’open)))

(defgeneric transmit
(method ((c <tcp-connection>) data)

(error "Cannot transmit on connection."))
(method ((c <open>) data)

(format true "Transmitting: ˜a˜%" data)))
(defgeneric close

(method ((c <tcp-connection>))
(error "Cannot close connection."))

(method ((c <open>))
(set-connection-status! c ’closed)))

39

Summary: Predicate types allow one to modify behavior based on internal (or external for that
matter) state of an object.

3.21 Strategy

Intent: Define a family of algorithms, encapsulate each one, and make them inter-
changeable. Strategy lets the algorithm vary independently from clients that use it.

First class functions clearly supply much of what Strategy needs – the ability to parameterize an
object by the function/algorithm it uses to perform a particular task. Closures can be seen as
instances of the Flyweight pattern – a given closure can be shared.

The Compositor classes in the sample code from the GOF,

class Compositor {
public:

virtual int Compose(
Coord natural[], Coord stretch[], Coord shrink[],
int componentCount, int lineWidth, int breaks[]

) = 0;
protected:

Compositor();
};
class SimpleCompositor : public Compositor {
public:

SimpleCompositor();
virtual int Compose(

Coord natural[], Coord stretch[], Coord shrink[],
int componentCount, int lineWidth, int breaks[]

);
// . . .

};
. . .

can clearly be replaced by closures in a functional language.

When the algorithm to be selected depends on context in a regular way, we can use generic function
dynamic dispatch. Generic function dynamic dispatch is all about selecting the right code for the
job.

As Peter Norvig notes, you still may want to encode other aspects of a strategy, but you need only

40

an instance, not a new class for each:

(new Strategy cost: 4 speed: 5)

3.22 Template Method

Intent: Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure.

Again from the GOF:

Template methods are so fundamental that they can be found in almost every abstract
class.

There is very little sample code given for the Template Method pattern, and, because of the
pattern’s universality, the code would not be much different in Scheme.

Protocols, as in metaobject protocols, are template methods.

3.23 Visitor

Intent: Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the elements on
which it operates.

The code in the book relies on the double dispatch idiom, which is tedious. Multiple dispatch
avoids this problem. The GOF write:

Effectively, the Visitor pattern lets you add operations to classes without changing
them. Visitor achieves this by using a technique called double-dispatch. It’s a well-
known technique. In fact, some programming languages support it directly (CLOS, for
example). Languages like C++ and Smalltalk support single-dispatch.

41

class Equipment {
public:

const char* Name() { return name; }
virtual Currency NetPrice();
// . . .
virtual void Accept(EquipmentVisitor&);

protected:
Equipment(const char*);

private:
const char* name;

};
class EquipmentVisitor {
public:

virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);

// and so on for other concrete
// subclasses of Equipment . . .
};
void FloppyDisk::Accept

(EquipmentVisitor& visitor) {
visitor.VisitFloppyDisk(this);

}
void Chassis::Accept(EquipmentVisitor& visitor) {

for (ListIterator i(parts);
!i.IsDone(); i.Next()) {

i.CurrentItem()−>Accept(visitor);
}
visitor.VisitChassis(this);

}
class PricingVisitor : public EquipmentVisitor {
public:

Currency& GetTotalPrice();
virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);
// . . .

private:
Currency total;

};
void PricingVisitor::VisitFloppyDisk

(FloppyDisk* e) {
total += e−>NetPrice();

}
void PricingVisitor::VisitChassis (Chassis* e) {

total += e−>DiscountPrice();
}

(defrectype <visitor> () ())
(defrectype <equipment> ()

((name <symbol>)
(price <number>))

(name equipment-name set-equipment-name!)
(price equipment-price set-equipment-price!))

(defrectype <composite-equipment> (<equipment>)
((parts <list>))
(parts composite-parts set-composite-parts!))

(defgeneric visit
(method ((e <equipment>) (v <visitor>))

true) ; do nothing
(method ((e <composite-equipment>) (v <visitor>))

(for-each (rcurry visit v)
(composite-parts e))))

(defrectype <floppy> (<equipment>) ())
(defrectype <chassis> (<composite-equipment>) ())
(defrectype <price-visitor> (<visitor>)

((total-price <number> 0))
(total-price total-price set-total-price!))

(add-method∗
visit
(method ((f <floppy>) (v <price-visitor>))

(set-total-price! v
(+ 1 (total-price v) (equipment-price f))))

(method ((f <chassis>) (v <price-visitor>))
(call-next-method) ; visit subparts
(set-total-price!
v (+ 2 (total-price v) (equipment-price f)))))

42

While many people dismiss the Visitor pattern as being “nothing more than double dispatch,” there
are still design issues related to how to traverse composite objects in the graph. Having multiple
dispatch available gets rid of some of the tedium of the Visitor pattern, but does not address all
the design and implementation issues.

Note that the Demeter project at Northeastern addresses issues of object graph traversal.

4 Summary

Language features such as reflection, higher-order functions, multiple dispatch, and predicate types
have a positive impact on the implementation of nearly all of the Gang of Four Design Patterns. In
some cases, the need for an explicit pattern nearly disappear; such as the Factory Method pattern
being subsumed by an extensible instantiation protocol. Other patterns become much simpler;
such as the Visitor pattern taking advantage of multiple dispatch. Other patterns, such as the
Template Method pattern, are a universal programming concept, but could be supported by more
sophisticated type systems.

Support for this research has been provided in part by DARPA grant F30602-97-0013.

43

References

[CIRM93] Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madeany. Designing and
implementing choices: An object-oriented system in c++. Communications of the ACM,
36(9):117–126, September 1993.

[Cop91] J. Coplien. Advanced C++: Programming Styles and Idioms. Addison-Wesley, 1991.

[EP91] D. Edelson and I. Pohl. Smart pointers: They’re smart but they’re not pointers, 1991.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Nor96] Peter Norvig. Design patterns in dynamic programming. In Object World 96, Boston,
MA, May 1996.

[Sha97] Andrew Shalit. The Dylan Reference Manual: The Definitive Guide to the New Object-
Oriented Dynamic Language. Addison-Wesley, Reading, Mass., 1997.

[SMI84] B. SMITH. Reflection and semantics in lisp. In Conference Record of POPL ’84: The
11th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 23–35, 1984.

44

Contents

1 Introduction 2

1.1 Reflection . 3

1.1.1 Reflection via Expressed Values (“Firstclassedness”) 3

1.1.2 Reflection via Language Internals . 4

2 GLOS (Greg’s Little Object System) 4

2.1 GLOS Types . 5

2.2 Methods and Generic Functions . 8

3 The GOF Design Patterns 10

3.1 Abstract Factory . 11

3.2 Builder . 12

3.3 Factory Method . 13

3.4 Prototype . 14

3.5 Singleton . 15

3.6 Adapter . 16

3.7 Bridge . 17

3.8 Composite . 18

3.9 Decorator . 19

3.10 Facade . 22

3.11 Flyweight . 22

3.12 Proxy . 23

3.13 Chain of Responsibility . 26

3.14 Command . 30

3.15 Interpreter . 32

3.16 Iterator . 32

3.17 Mediator . 34

45

3.18 Memento . 36

3.19 Observer . 36

3.20 State . 38

3.21 Strategy . 40

3.22 Template Method . 41

3.23 Visitor . 41

4 Summary 43

46

