
Learning with Deictic
Representation

Sarah Finney, Natalia H. Gardiol,
Leslie Pack Kaelbling and Tim Oates

AI Memo 2002-006 April 2002

© 2 0 0 2 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

@ MIT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Most reinforcement learning methods operate on propositional rep-
resentations of the world state. Such representations are often in-
tractably large and generalize poorly. Using a deictic representation
is believed to be a viable alternative: they promise generalization
while allowing the use of existing reinforcement-learning methods.
Yet, there are few experiments on learning with deictic representations
reported in the literature. In this paper we explore the effectiveness
of two forms of deictic representation and a näıve propositional repre-
sentation in a simple blocks-world domain. We find, empirically, that
the deictic representations actually worsen performance. We conclude
with a discussion of possible causes of these results and strategies for
more effective learning in domains with objects. 1

1This report describes work done within the Artificial Intelligence Lab at Massachusetts
Institute of Technology. The research was sponsored by the Office of Naval Research
contract N00014-00-1-0298, by the Nippon Telegraph & Telephone Corporation as part of
the NTT/MIT Collaboration Agreement, and by a National Science Foundation Graduate
Research Fellowship.

1

1 Introduction

Humans speak, and probably think, of the world as being made up of objects,
such as chairs, pencils, and doors. Individual objects have features, and sets
of objects stand in various relations to one another. If artificial agents are to
successfully interact with our world, they will need to represent and reason
about objects, their features, and relations that hold among them. We are
interested in how agents embedded in inherently relational environments,
such as physically embodied robots, can learn to act.

What learning algorithms are appropriate? What representations are appro-
priate? The answers to these questions interact. First order logic (FOL)
immediately comes to mind as a possible representation due to its compact-
ness and ability to generalize over objects via quantification. It is likely that
we will have to develop learning algorithms that use truly relational repre-
sentations, as has been done generally in inductive logic programming [19],
and specifically by Dzeroski et al [10] for relational reinforcement learning.
However, before moving to more complex mechanisms, it is important to
establish whether, and if so, how and why, existing techniques break down
in such domains. In this paper, we document our attempts to apply rela-
tively standard reinforcement-learning techniques to an apparently relational
domain.

One strategy from AI planning [13], for example, is to propositionalize re-
lational domains. That is, to specify a (hopefully small) finite domain of
objects, and to describe the domain using a large set of propositions rep-
resenting every possible instantiation of the properties and relations in the
domain. This method may be inappropriate for learning because it does not
give any representational support for generalization over objects.

Starting with the work of Agre and Chapman [1], and gaining momentum
with the debate over the fruitcake problem in the late 1980’s (see the Win-
ter, 1989 issue of AI Magazine for the culmination of this debate), arguments
have been made for the viability of deictic representations in relational do-
mains. Such representations point to objects in the world and name them
according to their role in ongoing activity rather than with arbitrary iden-
tifiers, as is typically the case with first order representations [3]. Despite

2

the fact that deictic representations lack quantification, they allow for some
of the generalization that FOL affords without the attendant computational
complexity. Perhaps most importantly, they can be used with some existing
reinforcement learning algorithms.

Even though deictic representations appear to be attractive, there has been
no systematic investigation of the circumstances under which they result in
better performance compared to naive propositional representations when
the underlying domain is relational. This paper presents the results of a
set of experiments in which two forms of deictic representations are com-
pared to propositional representations with respect to a learning problem in
a blocks-world domain. Results for two reinforcement learning algorithms are
described: neuro-dynamic programming [5], and Chapman and Kaelbling’s
G algorithm [7].

The remainder of the paper is organized as follows. Section 2 briefly re-
views reinforcement learning and the impact that the choice of representa-
tion has on the nature of the learning problem. Section 3 reviews deictic
representations and the impact they have as well. Section 6 describes a
set of experiments aimed at understanding when deictic representations are
advantageous, and section 7 reviews related work and concludes.

2 Reinforcement Learning and Representa-

tions

The term reinforcement learning (RL) is used to denote both a set of prob-
lems and a set of algorithms. Reinforcement learning problems are framed in
terms of an agent, an environment, and rewards. The agent can observe the
environment and can affect the environment by taking actions. Each time
the agent takes an action it receives a scalar reward signal that indicates how
good it was to have taken that particular action given the current state of
the environment. The task facing the agent is to learn a mapping from ob-
servations (or histories of observations) to actions that maximizes the reward
that it receives over time.

3

The mapping learned by the agent is called a policy and is denoted π(s, a),
where s is an observation and a is an action; the value of π(s, a) is the prob-
ability of taking action a given observation s. Observations are often called
states, thus the use of the symbol s, but they may or may not correspond to
underlying states of the environment. If an agent’s perceptions are in reliable
one-to-one correspondence with states of the environment, the environment
is said to be fully observable. Often, however, observations are in a one-to-
many correspondence with states and multiple distinct states appear to be
the same to the agent. Such environments are said to be partially observable.
They yield much more difficult learning problems when the optimal action
or value for two conflated states differs.

There are many different ways to represent states, each with its own advan-
tages and disadvantages. To make the discussion concrete, consider a blocks
world in which each block can be one of three different colors and can be on
another block or a table.

One way of representing states is atomically, with one atom for each unique
configuration of the blocks. It might then be possible to learn, for exam-
ple, that taking action a2 in state 2397 yields a reward of 0.5 and leads to
state 78512. This representation is simple in the sense that a single number
can represent an entire state and learning can be implemented using tables
indexed by states. The price to be paid for this simplicity is high. First,
atomic representations can be intractably large, even for small numbers of
objects. Given n blocks, there are 3n possible assignments of colors to blocks
and O(n!) ways to stack the blocks. Second, because there is no way to de-
termine whether two states are similar, there is no way to generalize to learn,
for example, that if action a2 is the best one to take in state 2397 then it is
probably also the best one to take in state 78512.

Factored representations meliorate some of the problems with atomic repre-
sentations. For example, the state could be represented as the set of propo-
sitions that are currently true, such as block2-is-red or block12-is-on-block8.
The distance between states can be measured in terms of the number of
bits that are different in their encodings. This makes generalization pos-
sible through the use of learning algorithms based on, for example, neural
networks and decision trees.

4

The term propositional representation will be used throughout this paper
to denote a naive propositionalization of a relational domain. For example,
given n blocks there would be 3n propositions to specify the colors of the
blocks and n2 propositions to specify how the blocks are stacked.

Though propositional representations afford some opportunities for general-
ization, they must refer to objects by name (e.g., block12 and block8) and are
therefore unable to perform an important type of generalization. In many
domains, objects of a given type are fungible: the identity of an object is
unimportant as long as it has some particular property. For example, if the
goal of the blocks-world agent is to pick up green blocks, it might want to
learn the following rule expressed in first order logic:

if ∃xcolor(x, green) ∧ ∀y¬on(y, x) then pickup(x).

That is, if there is a block that is green and there is nothing on top of it,
that block should be picked up. This rule applies regardless of the number
of blocks in the environment, yet the size of the propositional equivalent to
this rule is a polynomial function of the number of blocks. The propositional
version contains a disjunction over all blocks to cover the existential quan-
tification, and each disjunct contains a conjunction over all blocks to cover
the universal quantification.

There is almost no work in RL on learning in domains where states are repre-
sented as expressions in FOL. This is partly because dealing with uncertainty
in FOL is problematic. Also, because existing work has largely assumed
atomic or propositional state representations, work on combining RL and
FOL has required the introduction of novel data structures and learning al-
gorithms [9]. This is unfortunate given the wealth of theory and algorithms
that apply to the more standard representations. Deictic representations
have the potential to bridge this gap, allowing much of the generalization
afforded by FOL representations yet being amenable to solution (even in
the face of uncertainty) by existing algorithms. Deictic representations are
therefore the subject of the next section.

5

3 Deictic Representations

The word deictic derives from the Greek deiktikos, which means “able to
show”. It is used in linguistics, and was introduced into the artificial intelli-
gence vernacular by Agre and Chapman [1], who were building on Ullman’s
work on visual routines [22]. A deictic expression is one that “points” to
something; its meaning is relative to the agent that uses it and the context
in which it is used. “The book that I am holding” and “the door that is in
front of me” are examples of deictic expressions in natural language.

Two important classes of deictic representations are derived directly from
perception and action relations between the agent and objects in the world.
An agent with directed perception can sensibly speak of (or think about)
the-object-I-am-fixated-on. An agent that can pick things up can name the-
object-I-am-holding. Given a few primitive deictic names, such as those just
suggested, we can make compound deictic expressions using directly percep-
tible relations. So, for example, we might speak of:

• the-object-on-top-of(the-object-I-am-fixated-on)

• the-color-of(the-object-to-the-left-of(the-object-I-am-fixated-on)).

Benson [4] describes an interesting system for synthesizing complex deictic
expressions on demand.

Central to our use of deictic representations is the notion of a marker —
an attentional resource under the control of the agent. The agent can mark
objects (i.e. attend to them) and move markers about (i.e., shift its foci of
attention). Perceptual information, both features and relations, is available
only for those objects that are marked. All other objects are effectively
invisible to the agent. Markers also influence activity, because only marked
objects can be manipulated by the agent.

There are many ways that the perceptions and actions of an agent can be
structured within the general framework of deictic representations. At one
extreme, an agent with one marker for each object in its environment ef-
fectively has a complete propositional representation. At another extreme,

6

an agent with one or two markers has a very limited perceptual window on
its world. Though the environment may be fully observable given enough
markers, it is only partially observable from the standpoint of the agent.

Two points on this spectrum might be characterized as focused deixis (FD)
and wide deixis (WD). In FD there is a special marker called the focus and
some number of additional markers. Perceptual information is only available
about the object marked by the focus. There are perceptual actions for
moving the focus about, moving one of the other markers to the object
marked by the focus, and moving the focus to an object marked by one of the
other markers. Also, only objects marked by the focus can be manipulated
by the agent. WD is just like FD, except perceptual information is available
about all objects that are marked, regardless of whether they are marked by
the focus or one of the other markers.

There are a number of practical differences between focused deixis and wide
deixis. There is less information about the state of the environment available
with FD than with WD. This means that the space required by FD repre-
sentations can be much less than that of WD representations, but it can also
mean that the agent has to learn long sequences of perceptual actions to
gather sufficient information about the state of the environment to behave
effectively. This may require access to short state histories so the learner can
in effect remember what it has seen and done in the recent past.

Our starting hypothesis was that deictic representations would ameliorate
the problems of full-propositional representations. Some of the advantages
include:

• focused partial observability: Though the agent only gets to see
objects that are marked, those objects typically include ones that play
some role in the current activity and are thus most likely to be relevant
to whatever reward is ultimately received. Also, if irrelevant aspects of
the world are not easily observed then learning is made easier because
there is no need to generalize over them.

• passive generalization: Despite their lack of quantification, deictic
representations are able to generalize over objects. For example, if
I know what to do with the-cup-that-I-am-holding, it doesn’t matter

7

whether that cup is cup3 or cup7.

• biological plausibility: Objects are named by the role they play in
the agent’s current activity. It is conjectured that deixis plays a role in
the way humans represent the world [3].

In most deictic representations, and especially those in which the agent has
significant control over what it perceives, there is a substantial degree of
partial observability: in exchange for focusing on a few things, we lose the
ability to see the rest. As McCallum observed in his thesis [16], partial ob-
servability is a two-edged sword: it may help learning by obscuring irrelevant
distinctions as well as hinder it by obscuring relevant ones.

The thing that is missing in the literature is a systematic evaluation of the
impact of switching from propositional to deictic representations with respect
to learning performance. The next sections reports on a set of experiments
that begin such an exploration.

4 The Experimental Domain: Blocks World

Our learning agent exists in a simulated blocks world and must learn to
use its hand to remove any red or blue blocks on a green block so that
block may be lifted. The choice of this problem domain was not arbitrary.
Whitehead and Ballard [23] introduced it in their pioneering work on the use
of deixis in relational domains. They developed the Lion algorithm to deal
with the perceptual aliasing (partial observability) that resulted from using
a deictic representation by avoiding the aliased states. McCallum [17] used
the same domain to demonstrate that the number of markers required to
solve the problem can be reduced by keeping a short history of observations.
Finally, Martin [15] used the domain to motivate and evaluate an algorithm
for learning policies that generalize over initial configurations.

8

4.1 Whitehead and Ballard’s blocks world

Whitehead and Ballard’s blocks world [23] differs from ours in several ways.
First, Whitehead’s representation has two markers, one for perceptual infor-
mation and one for taking action. In our representation, there is only one
marker which the agent can move arbitrarily, and this marker is used both
for gaining perceptual information and for performing actions. Whitehead’s
algorithm required two separate perception and action markers to allow the
agent to avoid ambiguous states, a restriction that did not apply to our al-
gorithms. Since we did not need separate markers for action and perception,
we combined the two to give that agent the advantage of naturally focusing
on areas of the world that are relevant to current activity (see Section 3).

Second, Whitehead’s action set includes primitives for looking to the top and
bottom of a stack. We gave our agent a more basic primitive action set for
moving its focus of attention in the hopes that it would learn to put them
together in meaningful search actions according to the needs of the task. Our
hope was that with a more general action set, we could arrive at a learner
that would be able to solve a more diverse set of tasks in the domain.

Lastly, rather than dealing with ambiguous states by trying to avoid them, as
did Whitehead and Ballard, we added history to our perceptual space. This
assumes that the agent is always able to differentiate ambiguous states by
looking back in history, but for the tasks we were interested in, this property
was true.

4.2 McCallum’s blocks world

McCallum’s blocks world [17], in which he tested his Utile Suffix Memory
algorithm, was based on Whitehead and Ballard’s, and differed only in the
addition of history for differentiating ambiguous state, as does ours, and
in having only one marker, again like ours. Our world contains additional
“memory” markers to allow the agent to solve more complex tasks, but like
McCallum’s has only one that can be moved around arbitrarily.

McCallum’s use of the world, however, includes Whitehead’s Learning by

9

Watching technique, in which is agent acts according to a teacher policy
with some probability. This is used only to direct the exploration, however,
and does not influence the agent’s decisions. We believed that our agent
should be able to arrive at the optimal policy on its own so we did not advise
it during learning. Finally, the action set used by McCallum was slightly
less general than ours and more specific to Whitehead’s “pick up the green
block” task.

4.3 Our blocks world

The experimental setup described here differs from previous empirical work
with deictic representations in two important ways. First, our goal is to
understand the conditions under which one representation (deictic or propo-
sitional) is better than the other. That is, we want to systematically compare
the utility of propositional and deictic representations rather than evaluate
any given learning algorithm designed to operate with one or the other rep-
resentation. Second, we have not tuned the perceptual features or training
paradigm to the task. Despite its apparent simplicity, reinforcement learn-
ing does not seem to work in this domain without the use of perceptual
features that are very finely tuned to the specific task faced by the learning
agent [15, 23] or without frequent examples of correct actions provided by a
teacher [17]. We tried to develop a set of perceptual features that seemed
reasonable for an agent that might be given an arbitrary task in a blocks
world, and we provide no information to the agent beyond its observations
and rewards.

4.4 Two Deictic Representations

While a deictic name for an object can be conceived as a long string like the-
block-that-I’m-holding, the idea can be implemented with a set of markers.
For example, if the agent is focusing on a particular block, that block becomes
the-block-that-I’m-looking-at; if the agent then fixes a marker onto that block
and fixes its attention somewhere else, that block becomes the-block-that-I-
was-looking-at.

10

For our experiments, we developed two flavors of deictic representation.

In the first case, focused deixis, there is a focus marker and one additional
marker. The agent receives all perceptual information relating to the focused
block: its color (red, blue, green, or table), and whether the block is in
the agent’s hand. In addition, the agent can identify the additional marker
if it is bound to any block that is above, below, left of, or right of the focus.
The focused deixis scenario imposes a narrow focus of attention and requires
deliberate care when deciding what to attend to.

The second case, wide deixis, is like focused deixis with some additional
information. Perceptual information (color and spatially proximal markers)
is available for all marked blocks, not just the focused block. In addition,
because information is available about spatially proximal blocks for all pairs
of marked objects, only the identity of markers below and to the right of any
given marker is returned. Information about blocks that are above and to
the left of a marker would be redundant in this case.

The action set for both deictic agents is:

• move-focus(direction): The focus cannot be moved up beyond the top
of the stack or down below the table. If the focus is to be moved to
the side and there is no block at that height, the focus falls to the top
of the stack on that side.

• focus-on(color): If there is more than one block of the specified color,
the focus will land randomly on one of them.

• pick-up(): This action succeeds if the focused block is a non-table block
at the top of a stack.

• put-down(): Put down the block at the top of the stack being focused.

• marker-to-focus(marker): Move the specified marker to coincide with
the focus.

• focus-to-marker(marker): Move the focus to coincide with the specified
marker.

11

4.5 Full-Propositional Representation

In the fully-observable propositional case, arbitrary names are assigned to
each block, including the table blocks. The agent can perceive a block’s color
(one of red, blue, green, or table), the location of the block as indicated by
the index of its horizontal position on the table, and the name of the block
that is under the block in question. In addition, there is a single bit that
indicates whether the hand is holding a block. The propositional agent’s
action set is:

• pick-up(block#): This action succeeds only if the block is a non-table
block at the top of a stack.

• put-down(): Put down the block at the top of the stack under the hand.

• move-hand(left/right): This action fails if the agent attempts to move
the hand beyond the edge of the table.

5 Choice of Algorithms

In these experiments, we took the approach of using model-free, value-based
reinforcement learning algorithms, because it was our goal to understand
their strengths and weaknesses in this domain. In the conclusions, we discuss
alternative methods.

Because we no longer observe the whole state in the deictic representation,
we have to include some history in order to make the problem more Marko-
vian. The additional information requirement renders the observation space
too large for an explicit representation of the value function, like a look-up
table. Thus, we required learning algorithms that can approximate the value
function. we now have to include some history in order to make the problem
Markovian.

We chose Q-learning with a neural-network function approximator (known
as neuro-dynamic programming [6], or NDP) as a baseline, since it is a com-
mon and successful method for reinforcement learning in large domains with

12

feature-based representation. We hoped to improve performance by using
function approximators that could use history selectively, such as the G al-
gorithm [7] and McCallum’s U-Tree algorithm [16]. After some initial ex-
periments with U-Tree, we settled on using a modified version of the simpler
G algorithm. In neuro-dynamic programming, neural networks are used to
approximate the Q-value of each state-action pair. G and UTree both look
at reward distributions to determine which observation bits are relevant to
predicting reward and divide the state space up accordingly.

We believed that G and UTree would have the advantage over neuro-dynamic
programming in two respects. We hypothesized first that G and UTree would
be able to learn faster by virtue of their ability to discern which parts of
the observation vector were irrelevant to the task and ignore them, thereby
decreasing the amount of distracting information. After some initial experi-
ments with U-Tree, we settled on using a modified version of the simpler G
algorithm.

5.1 Description of Neuro-Dynamic Programming

Our baseline for comparison was the neuro-dynamic programming (NDP)
algorithm described by Bertsekas and Tsitsiklis [5].

In our NDP setup, we used one two-layer neural network for each action in
the action set. The number of input nodes to each network was equal to
the length of the current percept vector plus the past few pairs of actions
and percept vectors as specified by the history parameter h. The number
of hidden nodes was the number of input nodes divided by four. There was
a single output unit whose value indicates the approximate Q-value of the
corresponding action.

The learning rate was 0.1 and the discount factor was 0.9. We used sarsa(λ)
to update the Q-values, with λ = 0.7. As has been observed by others [21, 2,
20], we found that sarsa led to more stable results than Q-learning because
of the partial observability of the domain.

13

5.2 Description of the G Algorithm

The G algorithm makes use of a tree structure to determine which elements
of the state space are important for predicting reward. The tree is initialized
with just a root node which makes no state distinctions whatsoever, but
has a fringe of nodes beneath it for each distinction that could be made.
Statistics are kept in the root node and the fringe nodes about immediate
and discounted reward received during the agent’s lifetime, and a statistical
test (the Kolmogorov-Smirnov test) is performed to determine whether any
of the distinctions in the fringe are worth adding permanently to the tree. If
a distinction is found to be useful, the fringe is deleted, the distinction nodes
are added as leaves, and a new fringe is created beneath all of these new leaf
nodes. Q-values are stored and updated in the leaf nodes of the tree.

Because our domains were not fully observable, we had to modify the original
G algorithm. To begin with, we had to allow the fringe to include historical
distinctions. However, at the beginning of a trial, the agent has no history,
so the first few experiences will not match to a leaf node, which substantially
complicates the bookkeeping. To solve this, we started each episode with as
many observations in the past as our history window allowed the agent to
consider in making splits. We then added a bit to our observation vector that
indicated whether or not the agent was alive at the time of each observation,
and appended a buffer of the necessary number of non-alive experiences to
the beginning of each trial. The rest of these observation vectors were filled
arbitrarily. Also because of the partial observability of the domains, we used
sarsa both for arriving at Q-values and for generating the sampled Q-values
used to determining when a split was important.

Lastly, we did not use the D statistic used in the original G algorithm [7].
Rather, we kept vectors of immediate and one-step discounted reward for
the state represented by each leaf and fringe node, both for the state as a
whole, and divided up by outgoing action. These vectors are compared to
the vectors of the parent node in examining a possible split rather than to
the other children, since our percept vectors include features with more than
two possible values.

In our experiments, the learning rate was 0.1 and the discount factor was
0.9.

14

5.3 Issues with the UTree Algorithm

There were two main reasons we decided not to use the UTree algorithm.

The first has to do with the use of the Kolmogorov-Smirnov (KS) test when
executing a fringe test. The objective of the fringe test, as in G, is to deter-
mine if there is a set of nodes representing an additional distinction whose
Q-values differ significantly from their parent leaf-node. Basically, the fringe
test compares the utility of making an additional distinction vs. not making
the distinction.

For the fringe test, the KS test looks at the Q-values of each instance origi-
nally stored in the parent and compares them to the Q-values of the instances
tentatively stored in a particular fringe node. The Q-values for each instance
are calculated as

qIt = rIt + γUIt+1 ,

where qIt is the the Q-value for the instance recorded at time t, rIt is the
immediate reward received at time t, γ is the discount factor, and UIt+1 is the
utility of the tree node corresponding to the instance recorded at the next
time step. Sampling the instances’ Q-values (instead of directly using the
Q-value calculated for each tree node, which already is a point-summary of
the instances’ Q-values) and then using a statistical test is an attempt to find
significant differences while taking into account uncertainty in the learning
problem.

However, there are really two kinds of uncertainty when learning with in-
cremental state-representation algorithms such as UTree. First, there is the
uncertainty about the values of and transition probabilities between states
of the true underlying MDP. But also, there is uncertainty about values and
transition probabilities between states in the approximated state representa-
tion encoded by the tree. The use of the statistical test as described above
tries to get ahold of the uncertainty present in the problem, but it comingles
the two types of uncertainty. We feel that the KS test, used in this way, may
not be answering the right question.

The second reason we did not use UTree has to do with how the Q-values are
calculated during the fringe test. In UTree, the fringe is dynamically created

15

every time a fringe test is to be carried out. As we understood it from the
text of McCallum’s thesis, the steps in the fringe test are:

1. Under a particular leaf node, expand the fringe to a fixed depth with
some combination of actions and observations.

2. Deposit each of the leaf’s instances into the corresponding fringe. Up-
date the fringe node’s Q-values accordingly.

3. Compare the Q-value distribution of the instances in each fringe node
with that of the parent’s. Keep the new distinction if the distributions
differ by some threshold; otherwise, try a new combination.

The difficulty here is that the sampled Q-value of each instance in the fringe,
depends on the utility of the next state, as represented by some node in the
tree. It is possible, however, that the utility of this other node depends, in
turn, on a node in the newly created fringe. The problem is that the statistics
for other nodes in the tree are not updated during the fringe test. This may
result in incorrect values in the Q-value distributions being compared. The
problem is especially acute in the early stages of learning, when the tree is
relatively small and the likelihood of an outside node depending on the fringe
is significant.

The correct approach is to recompute the Q-values for the entire tree with
each fringe test and then compare the original values of the parent to the
new values of the fringe. Unfortunately, this is extremely computationally
expensive. The resulting performance hit was severe enough to render UTree
impractical for our purposes.

With the modifications made to the G algorithm described above, G becomes
essentially the same as U-Tree for the purposes of selective perception. The
major distinction between them remains that U-Tree requires much less ex-
perience with the world at the price of greater computational complexity: it
remembers historical data and uses it to estimate a model of the environ-
ment’s transition dynamics, and then uses the model to choose a state to
split.

16

6 Experiments

Propositional representations yield large observation spaces and full observ-
ability. Deictic representations yield small observation spaces and partial
observability. Which makes learning easier? That is the question that this
section explores empirically with experiments in two different blocks-world
starting configurations (Figure 1).

6.1 Comparing the Sizes of the State and Action Spaces
for Each Representation

We first compute the size of the underlying state space for the full-propositional
and deictic representations. The size of this state space is computed as:

State Space = (#Configurations)× (#Ways to name the blocks)

×(Am I Awake)× (Is My Hand Full)

where

Configurations =
Ways to arrange blocks

Ways to arrange blocks of each color
,

Am I Awake = true or false,

and
Is My Hand Full = true or false.

Furthermore, in the full propositional case,

Ways to name the blocks = (#blocks)!,

and in the deictic case,

Ways to name the blocks = (#blocks)(#markers).

17

In blocks1, there are five blocks in three colors. The number of configurations
is 12. In blocks2, with six blocks, there are 60 configurations.

Thus, the underlying state space in the full-propositional is 5760 ground
states in blocks1 and 172,800 in blocks2. The underlying state space in the
deictic case, with two markers, is 1200 ground states in blocks1 and 8640 in
blocks2.

Next, we compute the size of the observation spaces for the full-propositional
and deictic representations.

In the full-propositional case, the agent observes the two boolean-valued Am
I Awake and Is My Hand Full features. Furthermore, for each block, it
observes:

• The block’s color: four possible values, red, blue, green, or table.

• The name of the block underneath it: n+1 values, (#blocks)+(noblock))

• The position of the stack its in: three values, 0, 1, or 2.

The size of this observation space outpaces the number of ground states
dramatically: roughly 10 billion in blocks1 and roughly 3 trillion in blocks2.1

In both deictic cases, the agents observe the two boolean-valued Am I Awake
and Is My Hand Full features. Furthermore, in the wide case, the agent
observes, for each marker:

• The marked object’s color: four values, red, blue, green, or table.

• The identity of any marker underneath it: m+ 1 values,
(#markers) + no marker

• The identity of any marker to the right of it: m+ 1 values,
(#markers) + no marker

1Note that this observation space corresponds to the size needed for a look-up table,
and it includes many combinations of percepts that are not actually possible.

18

• Whether the marked object is in the agent’s hand: two values, true or
false.

In the focused the case, the agents observes:

• The focused object’s color: four values, red, blue, green, or table.

• The identity of any marker underneath it: m values,
(#non-focus markers) + no marker

• The identity of any marker to the right of it: m values,
(#non-focus markers) + no marker

• The identity of any marker to the left of it: m values,
(#non-focus markers) + no marker

• The identity of any marker to the below it: m values,
(#non-focus markers) + no marker

• Whether the focused object is in the agent’s hand: two values, true or
false.

The size of these observation spaces is constant in both domains: the size
of the focused deictic observation space is 512, and that of the wide deictic
observation space is 4096.

The action set for the deictic representations (see Section 4.4) does not change
with additional blocks, so it is constant at 12 actions. The full-propositional
action set (see Section 4.5) requires a pickup() action for each block, so it
has five possible actions in blocks1 and six in blocks2.

6.2 Experimental Setup

The learning task was to pick up a green block that was covered with a red
block. The first domain, blocks1, consists of a three-block long table, a green
block, and a red block. The second domain, blocks2, has an additional blue
block as a distractor.

19

T T T T TT

R

G

R

GB

a) b)

Figure 1: The two blocks-world configurations: a) blocks1 and b) blocks2. The
table on which the blocks are positioned is made up of unmovable table-
colored blocks.

The agent receives a reward of 5.0 whenever it picks up a green block, a
reward of -0.2 if it takes an action that fails (e.g., attempting to move its
hand off the left or right edge of the world, or attempting to pick up the
table), and a reward of -0.1 otherwise.

The performance of the learning algorithms was measured as follows. Given
a configuration of blocks, the assignment of names to blocks was randomized
in the fully observable case and the assignment of markers to blocks was
randomized in the deictic cases. The agent was then allowed to take 200
actions while learning. If at any time the agent picked up the green block, the
original configuration was restored and the names/markers were reassigned.
At the end of each epoch of 200 actions the state of the learning algorithm
was frozen and the agent took 100 additional actions during which the total
accumulated reward was measured.

The results were plotted as follows. Because of the different lengths of the
optimal action sequences for the deictic and propositional agents, we scale
each result to reflect the optimal performance with respect to each agent. A
data point for an agent is computed by taking its accumulated reward over
the 100 testing steps, adding the maximum penalty that could be obtained
by consistently executing the worst possible action (so that “0” is the worst
possible score) and then dividing it by the maximum possible reward that
could be obtained by the optimal policy in 100 steps. So, for each curve in
the figures, a consistently optimal agent would score a “1.0” on every trial,
and a consistently terrible agent would score “0.0” on every trial.

20

6.3 Initial Results

Here are the learning curves for each algorithm and each representation. The
figures show that the NDP propositional (non-deictic) learner performed the
best (Figure 2 and Figure 3).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G algorithm

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks1" Domain in Millions

focused deictic

wide deictic

full propositional

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NDP

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks1" Domain in Millions

full propositional

focused deictic

wide deictic

Figure 2: Learning curves for both algorithms in blocks1 domain.

Our original hypothesis was that the additional block would distract the
propositional learner, which had to represent the block explicity, more than
it would the deictic learner, which did not. Even in the case of NDP, if
the performance of the non-deictic learner was better than the deictics’ in
blocks1, according to our hypothesis any gap should certainly get smaller in
blocks2. In fact, at some point, after the addition of sufficiently many blocks,
the learning curves should “cross over” once the deictic learner’s reduced
observation space gave it the upper hand. The figures tell another story,
however.

Given that its task is the same in each configuration and that the size of
the observation space is the same even with the additional block, why would
learning performance in NDP in the second configuration be so degraded
with the deictic representation? The next section explores this question.

21

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G algorithm

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks2" Domain in Millions

focused deictic

full propositional

wide deictic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NDP

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks2" Domain in Millions

full propositional

wide deictic

focused deictic

Figure 3: Learning curves for both algorithms in blocks2 domain.

Furthermore, despite our hypothesis that G would perform better than NDP,
we discovered that the opposite was true. Clearly, the agent using the G
algorithm learns more slowly than the agent using NDP once the distractor
block is added. More importantly, in both domains, the G agent is never
able to reach a solution that is optimal in all cases, unless the tree is allowed
to get very large (the trees plotted Figures 2 and 3 were capped at 10,000
nodes, including fringe nodes). Section 7.2 investigates why the trees need
to be so large.

7 Discussion

The next two sections dissect our two counter-intuitive results and present
explanations for them.

22

7.1 Comparing Deictic and Propositional Representa-
tions with NDP

Initially, we hypothesized that a deictic representation, because of its com-
pact observation space and its ability to focus in on interesting parts of
the state space, would have an advantage over a propositional representa-
tion. Furthermore, we conjectured that this advantage would grow more
pronounced as the amount of distractive state information increased. Fig-
ures 2 and 3 show clearly, however, that our hypothesis was not true.

To really understand the trade-off between deictic and non-deictic represen-
tations, then, we need to understand how the problem gets harder with the
addition of distractor blocks. Our starting hypothesis is that, as blocks are
added, the exploration problem becomes much more difficult for the deictic
learner. Even though its space of observables stays the same across configu-
rations, the true space— which consists of the block configurations and the
locations of all the markers—-grows quickly. Furthermore, the deictic actions
are different from the non-deictic actions in that they are very conditional
on which blocks the markers are bound to. Because the deictic learner does
not have direct access to the focus location, an increase in complexity in this
important, yet inaccessible, part of the state space might reduce its likelihood
of arriving at a solution through exploration.

We set out to quantify, for each representation, how long it would take a
random agent to stumble upon a solution. Our metric was a quantity called
mean time-to-goal, which tries to quantify the difficulty of the exploration
problem by counting the number of actions taken by the random agent to
arrive at the goal. We measured the mean time-to-goal in the following
way: for each representation (non-deictic, wide-deictic, and focused-deictic),
we set up an agent to take actions randomly. We increased the number of
distractor blocks each time by placing an additional blue block to either side
of the original stack of green and red. For various block configurations, the
time-to-goal was measured as the number of steps the random agents took to
reach the goal. The results were averaged across 10,000 trials for each agent
and each configuration.

As the left graph in Figure 4 shows, the number of steps taken to randomly

23

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5
x 10

4

Number of Additional Blue Blocks

A
ve

ra
ge

 N
um

be
r

of
 S

te
ps

 to
 R

ea
ch

 G
oa

l w
ith

 R
an

do
m

 W
al

k

focused deictic
non−deictic

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5
x 10

4

Number of Additional Blue Blocks

A
ve

ra
ge

 N
um

be
r

of
 S

te
ps

 to
 R

ea
ch

 G
oa

l w
ith

 R
an

do
m

 W
al

k

focused deictic
non−deictic
non−deictic longer action sequence

Figure 4: The mean time-to-goal for the various representations as the num-
ber of distractor blocks is increased. All agents start with the blocks1 config-
uration, and blue blocks are successively added to either side of the original
stack.

arrive at the solution in the deictic case outpaces the non-deictic case dra-
matically. If its exploration task gets so much harder with each extra block,
it’s little wonder then that its learning performance worsens, too.

Our next set of experiments involve trying to pin down how the choice of
action sets affects the exploration difficulty.

The first experiment investigated how the length of the optimal action se-
quence affects the exploration difficulty. In the original action set, the deictic
agent required six steps, in the best case, to reach the goal. The non-deictic
agent, on the other hand, required only four steps to reach the goal. To
even out the number of actions required to reach the goal, we tested the
non-deictic agent with a task that required seven steps to reach the goal.
The task was to pick up a green block initially covered by two red blocks.
We expected to see, with this longer optimal action sequence, that the mean
time-to-goal in the non-deictic case would now grow as in the deictic case.
The right graph in Figure 4 shows that, while the time-to-goal grew some-
what faster than before, it was certainly not by the same order of magnitude
as in the deictic case. We concluded it was not merely the length of the
optimal action sequence that caused the difficulty of the problem to increase
so much in the deictic case.

24

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5
x 10

4

Number of Additional Blue Blocks

A
ve

ra
ge

 N
um

be
r

of
 S

te
ps

 to
 R

ea
ch

 G
oa

l w
ith

 R
an

do
m

 W
al

k

focused deictic
non−deictic
deictic with reduced action set

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Additional Distractor Blocks

A
ve

ra
ge

 N
um

be
r

of
 S

te
ps

 to
 R

ea
ch

 G
oa

l w
ith

 R
an

do
m

 W
al

k

deictic
full propositional
modified deictic

Figure 5: The mean time-to-goal for each representations as the number of
distractor blocks is increased, now with different action sets.

The second experiment investigated the how the size of the action set (that
is, the number of possible actions) affects exploration difficulty. To this end,
we removed two actions from the deictic action set that we believed were
distracting to the deictic agent: focus-to-marker() and marker-to-focus().
We compared a random deictic agent with this new action set (called the
reduced action set, consisting of 10 actions rather than 12) to a random non-
deictic agent with the original non-deictic action set (consisting of 8 actions).
The left side of Figure 5 shows the result for this experiment. The rate of
growth was very slightly slower, but it still seemed to go up by the same
order of magnitude as before.

In the last experiment, we changed both the deictic and the non-deictic action
sets in order to zero-in on the characteristic of the deictic action set that was
making exploration so difficult. We created two new action sets (called the
modified action sets). The idea was to modify the non-deictic action set so
that it also suffered from what we thought was a difficult characteristic of the
deictic action set: the division between focusing on a block and picking it up
– the original non-deictic action set, on the other hand, had pick-up(block#),
which essentially did both tasks in one swoop. Here are the actions in the
modified action set. For deictic 2:

2Interestingly, this modified action set is similar to the set used by McCallum in his
blocks-world experiments [17].

25

• focus(direction): move the focus up, down, left or right. This version
of the action is stricter than in the original set. If there is no block in
the specified direction for the focus to land on, the focus will stay put.

• look(color): focus on a green, red, blue, or table colored block.

• pick-up-top(): pick up the block at the top of the stack being marked
by the focus, rather than the exact block being focused on.

• put-down(): put down the block being held on top of the stack being
marked by the focus.

For non-deictic:

• move-hand(block#): move the hand over the stack containing the spec-
ified block.

• move-hand(direction): move the hand left or right.

• pick-up-top(): pick up the block at the top of the stack that is under-
neath the hand.

• put-down(): put down the block being held on top of the stack that is
underneath the hand.

The right graph of Figure 5 shows the result. Surprisingly, instead of the non-
deictic agent’s time-to-goal growing like the deictic’s, the opposite happened:
both modified action sets’ time-to-goal grew roughly at the same rate as the
original non-deictic set. What changed?

The main difference between the two deictic action sets is as follows: The
modified action set, via the pick-up-top() action, reduces a great deal of the
dependence of the actions on the focus location. The focus location is crucial,
yet it is not observeable by the agent – indeed, as the number of distractor
blocks increases, this unobserveable part of the state space grows exponen-
tially. Removing the strict dependence on the focus location increases the
likelihood that the agent can use exploration to make progress. With the
modified action set, the probability of choosing successful actions increases,

26

and the probability of choosing harmful actions decreases. Please see the ap-
pendix for an informal analysis of the relative “distractability” of the various
action sets.

Follow-up learning experiments (see Figure 6) with the modified action sets
show the deictic agents learn comparably with the full-propositional agent in
blocks1 and even slightly faster than the full-propositional agent in blocks2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NDP

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks1" Domain

full propositional

wide deictic

focused deictic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NDP

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks2" Domain

focused deictic

wide deictic

full propositional

Figure 6: Learning curves for the three representations in blocks2, where
the two deictic agents are using the modified action set. Compare to the
right-hand sides of Figures 2 and 3.

Our over-arching conclusion is that if one wants to use a deictic represen-
tation, either the set of actions must be chosen carefully or a reasonable
action-set bias must be provided. It was unsatisfying to note that in order
to render the deictic action set tractable, we had to remove the dependence
on what made deictic representations initially so appealing—the focus of at-
tention. One option for providing the necessary structure might be to use
hierarchical or temporally extended actions. Indeed, using a clever action
hierarchy can do much to abstract away the partial observability that ex-
ists at the level of atomic actions [11]. Hierarchical or temporally-extended
actions might also provide a more appropriate level at which to make deci-
sions, by virtue of abstracting away exploratory “blips” (see next section)

27

and providing a more nearly deterministic action space [14].

7.2 Comparing Neuro-dynamic Programming and G

In order for the G agent to learn a policy that is optimal in all cases, our
initial results showed that it must grow a tree that seems unreasonably large
(5,000-10,000 nodes). The trees seemed to keep growing without reaching a
natural limiting state. For this reason, to avoid running out of memory, we
had to add an arbitrary cap on the size of the trees. After observing these
results, we developed the following theory as to why the trees need to be so
large.

The G tree needs to have enough nodes to distinguish all the states that are
different from one another with respect the reward received. That is, all the
states which have a different value should be represented as a distinct leaf in
the tree. However, since the policy that is being followed changes throughout
the learning process, the tree must grow to be large enough to include leaves
for all the states with distinct values in all of the policies followed during
learning. A simple mazeworld example should make the problem clear. The
next section considers the simple maze shown in Figure 7.

11

3322

77

44

55 66

START

GOAL

Figure 7: Mazeworld example. State 1 is the start state, and state 6 is the
goal state.

28

7.2.1 Unnecessary Distinctions

In this simple maze, the agent can only observe whether there is a wall in
each cardinal direction, so this environment is partially observable; states 2
and 5 look identical, but they require different actions to reach the goal. At
each time step, the agent receives a new percept vector and may move in one
of the four directions. The agent is rewarded for reaching the goal, penalized
for each step that did not lead to the goal, and penalized slightly more for
attempting to move into a wall.

In one trial, the G algorithm made distinctions in the following way. The first
split distinguishes states based on whether south is clear or blocked. This
separates states 1,2,4 and 5 from states 3 and 7 (state 6 is never actually
observed by the agent, since the trial is restarted). The first of these sub-
groups is then further split according to whether east is blocked, separating
states 2 and 5 from states 1 and 4. Since a large reward is received for going
east from state 5, the leaf for states 2 and 5 contains a policy for going east.
Figure 8 shows the tree at this point during the learning process. Clearly
this policy is not optimal, since we have not yet learned to tell states 2 and
5 apart.

No Distinctions

South:CLEAR
States: 1,2,4,5

South:BLOCKED
States: 3,7

Policy: WEST

East:CLEAR
States: 2,5

Policy: EAST

East:BLOCKED
States: 1,4

Policy: SOUTH

Figure 8: Example G tree after first two splits.

Intriguingly, the next distinction is made on the previous action under the
node for states 3 and 7, as shown in Figure 9. At first glance, this looks like
a meaningless distinction to make: the only additional information it seems
to yield is about the previous state. We already know that we are in state
3 or 7, and knowing the last action merely gives us information about the
preceding state: if we went east and we are now in state 3 or 7, then we might
have been in states 2, 3, or 7 previously, whereas a south action means we
were in states 3, 5, or 7 previously, etc. There seems to be no utility to this

29

knowledge, since subsequent policy decisions will depend only on the current
state.

No Distinctions

South:CLEAR
States: 1,2,4,5

South:BLOCKED
States: 3,7

East:CLEAR
States: 2,5

Policy: EAST

East:BLOCKED
States: 1,4

Policy: SOUTH

Last Action:
NORTH

Possible States:
3,7

Probably in: 3
Policy: WEST

Last Action:
EAST

Possible States:
3,7

Probably in: 3
Policy: WEST

Last Action:
SOUTH

Possible States:
3,7

Probably in: 7
Policy: NORTH

Last Action:
WEST

Possible States:
3,7

Probably in: 7
Policy: NORTH

Figure 9: Example G tree after the first three splits.

However, by examining the policy in effect when the agent makes this split,
the distinction begins to make sense. When the agent is in state 2, the
policy says to go east. Thus, unless it explores, it will go into state 3. Once
in state 3, it will oscillate from west to east until exploration leads the agent
south into state 4. Thus, when the agent visits state 3, it has generally just
performed an east action. On the other hand, when the agent is in state 7,
it has most likely performed either a south or a west action. Thus, splitting
on the previous action, with the current policy, actually disambiguates with
high probability states 3 and 7 and yields a reasonable policy, one that goes
north from state 7, as shown in Figure 9.

Once we have made a distinction based on our history, our policy may then
lead the algorithm to make more distinctions in an attempt to fully represent
the value function under this new policy. For example, if we are executing
the policy shown in Figure 10, we do in fact need two different values for
state 2, depending on whether we are visiting it for the first or second time.
This is how the trees become much larger than they would need to be if they
were only required to store the value function for the optimal policy.

The last experiment we did to confirm our explanation for the large trees
was to fix the policy of the agent and allow the tree to grow. As expected,
we obtain trees that contain few or no unnecessary splits for representing
the value function for the fixed policy. While we cannot avoid making the
occasional bad split due to the statistical nature of the problem, this is not
the underlying cause of the very large trees. Note that this problem will
almost certainly be exhibited by U-Tree, as well.

30

11

3322

77

44

55 66

Figure 10: A sample policy that may complicate trees.

This problem of G growing unreasonably large trees in POMDPs seems very
difficult to address. There is, fundamentally, a kind of “arms race” in which
a complex tree is required to adequately explain the Q values of the current
policy. But the new complex tree allows an even more complex policy to
be represented, which requires an even more complex tree to represent its Q
values.

We believe that the reason that this wasn’t encountered as a serious problem
in previous work using G is that those problems did not require the addition of
history in order to differentiate between states, so there was not the enormous
explosion of names for the same state that we see when we add history.
Furthermore, McCallum, when he used U-Tree on the New York Driving task
[16], required history; but, he did not seem to end up with trees that were
terribly large. One reason for this is that he terminated the training rather
arbitrarily – he states that the trees would have grown larger had training
continued. In any case, McCallum indeed also remarks that his trees were
larger than he anticipated, and in fact the trees were larger (although better
performing) than hand-written trees he used for comparison.

One possible way to solve the tree-size problem would be adopting an ac-
tion/critic approach, alternating between developing a policy and and learn-
ing the value function for that policy from the beginning rather than trying
to tack all the value functions together in one tree. We have not, however,
explored this.

31

7.2.2 Redundant Leaves

There is another notable reason for trees growing large in pomdps. Given the
ability to characterize the current state in terms of historic actions and obser-
vations, the learning algorithm frequently comes up with multiple perceptual
characterizations that correspond to the same underlying world state. For
instance, the set of states described by the focus was on a green block and
then I looked up is the same as those described by the focus was on a green
block and then I looked down, then up, then up, etc.

Of course, it is clear to us that multiple action and observation sequences
can indicate a single underlying state, but it is not so to the algorithm. It
cannot agglomerate the data it gets in those states, and it is doomed to build
the same sub-tree underneath each one. This leads us to conclude, below,
that actual identification of the underlying world dynamics, is probably a
prerequisite to effective value-based learning in pomdps.

8 Conclusion

In the end, none of the approaches for converting an inherently relational
problem into a propositional one seems like it can be successful in the long
run. The näıve propositionalization grows in size with (at least) the square
of the number of objects in the environment; even worse, it is severely redun-
dant due to the arbitrariness of assignment of names to objects. The deictic
approach also has fatal flaws: the relatively generic action set leads to hope-
lessly long early trials. Intermediate rewards might ameliorate this, but as-
signing intermediate values to attentional states seems particularly difficult.
Additionally, the inherent dramatic partial observability poses problems for
model-free value-based reinforcement learning algorithms. We saw the best
performance with NDP using a fixed window of history; but as the neces-
sary amount of history increases, it seems unlikely that NDP will be able to
select out the relevant aspects and will become swamped with a huge input
space. And, as we saw in the last section, the tree-growing algorithms seem
to be precariously susceptible to problems induced by interactions between
memory, partial observability, and estimates of Q-values.

32

It seems that we will have to change our approach at the higher level. There
are three strategies to consider, two of which work with the deictic proposi-
tional representation but forgo direct, value-based reinforcement learning.

One alternative to value-based learning is direct policy search [24, 12], which
is less affected by problems of partial observability but inherits all the prob-
lems that come with local search. It has been applied to learning policies
that are expressed as stochastic finite-state controllers [18], which might work
well in the blocks-world domain. These methods are appropriate when the
parametric form of the policy is reasonably well-known a priori, but probably
do not scale to very large, open-ended environments.

Another strategy is to apply the pomdp framework more directly and learn a
model of the world dynamics that includes the evolution of the hidden state.
Solving this model analytically for the optimal policy is almost certainly
intractable. Still, an online state-estimation module can endow the agent
with a “mental state” encapsulating the important information from the
action and observation histories. Then, we might use reinforcement-learning
algorithms to more successfully learn to map this mental state to actions.

A more drastic approach is to give up on propositional representations (though
we might well want to use deictic expressions for naming individual objects),
and use real relational representations. Some important early work has been
done in relational reinforcement learning [10], showing that relational rep-
resentations can be used to get appropriate generalization in complex com-
pletely observable environments. Given states represented as conjunctions
of relational facts, the TILDE-RT system is used to induce a logical regres-
sion tree that tests first order expressions at internal nodes and predicts Q
values at the leaves. Internal nodes can contain variables and thus gener-
alize over object identities. Though there is some recent work on applying
inductive logic programming techniques (of which TILDE-RT is an exam-
ple) to stochastic domains, it is unclear how TILDE-RT would work in such
cases. Recent work by Driessens et al [8] has adapted the G algorithm to the
TILDE-RT system, allowing their relational reinforcement learner to be in-
cremental. This is promising work. As they show, however, problems like we
encountered with tree-based systems (i.e. committing to a less-than-optimal
split early on and being forced to duplicate more useful subtrees under these
splits) to are still in effect, despite the relational representation. Furthermore,

33

in relational domains, it seems the complexity of the learning problem now
shifts to the query-generation mechanism—a problem not present in propo-
sitional domains where proposed splits are generally just the next attribute
in line.

Ultimately, it seems likely that we will have to deal with generalization over
objects using relational representations, and deal with partial observability
by learning models of the world dynamics. We plan to continue this work
by pursuing such a program of indirect reinforcement learning—learning a
model and doing state estimation—using relational representations with de-
ictic names for objects in the world.

Acknowledgments

This work was funded by the Office of Naval Research contract N00014-00-
1-0298, by the Nippon Telegraph & Telephone Corporation as part of the
NTT/MIT Collaboration Agreement, and by a National Science Foundation
Graduate Research Fellowship.

34

A Informal Analysis of the Different Action

Sets

The next figures informally analyze the difficulty of using three action sets
(original non-deictic, original deictic, and modified deictic) to move through
the space of state configurations towards the goal. The first column shows the
configurations of blocks seen by each agent on its way through the optimal
policy to the goal. The next column lists the available actions, out of all
the actions available in its action set (see Sections 4.4, 4.5, and 7.1 for a
description of the action sets) that would move the agent strictly forward on
its trajectory. Next to the list of forward-moving actions is the approximate
probability of randomly selecting one of those actions (out of all possible
actions in the action set). The last full column lists the available actions
that would move the agent strictly backward (i.e. further from the goal),
along with the probability of randomly selecting one of those actions.

Note that the probabilities listed in the figure are approximate; they are
intended mainly to illustrate differences between the three action sets.

The take-home message here is that, in the original deictic action set, the
likelihood of randomly choosing the right actions to advance with is very
low. Compare this with the likelihoods of the full-propositional action set
and the modified deictic action set. It is for this reason that using exploration
becomes so difficult with the original deictic action set.

35

pickup(red#) 0.13 (none) 0.0
G

R

TT T

G

TT T

R

G

TT T

R R

G

TT T

R R

put_down() 0.130.25

hand_right()

hand_left()

0.130.13

0.130.13

put_down() hand_left()
hand_right()

pickup(green#) pickup(red#)

start: (probability 1.0)

advancing actions likelihood regressing actions likelihood

1.

2.

3.

4.

World Configuration Likelihood of Advancing Likelihood of Regressing

Figure 11: Trajectory for non-deictic agent and its original action set.

GR T
T

T

GR T
T

T

G T
T

T

R

1 5

1 4

(n
on

e)
0.

0
0.

08
8

lo
ok

(r
ed

)

fo
cu

s2
m

ar
ke

r(
)

fo
cu

s_
up

()

2 3

1 5

R G T
T

T

G T
T

T

R
R

G T
T

T

R
R

pi
ck

up
()

0.
83

fo
cu

s_
do

w
n(

)
fo

cu
s_

le
ft

()
fo

cu
s_

ri
gh

t(
)

lo
ok

(g
re

en
)

0.
48

lo
ok

(t
ab

le
)

0.
08

3
0.

22

fo
cu

s_
ri

gh
t(

)
lo

ok
(t

ab
le

)

fo
cu

s_
le

ft
()

pu
t_

do
w

n(
)

st
ar

t:
(p

ro
ba

bi
lit

y
0.

2)
1b

.

2.

st
ar

t:
(p

ro
ba

bi
lit

y
0.

8)
1a

.

ad
va

nc
in

g
ac

tio
ns

lik
el

ih
oo

d
re

gr
es

si
ng

 a
ct

io
ns

lik
el

ih
oo

d

L
ik

el
ih

oo
d

of
 A

dv
an

ci
ng

L
ik

el
ih

oo
d

of
 R

eg
re

ss
in

g
W

or
ld

 C
on

fi
gu

ra
tio

n

ad
va

nc
in

g
ac

tio
ns

lik
el

ih
oo

d
re

gr
es

si
ng

 a
ct

io
ns

lik
el

ih
oo

d

L
ik

el
ih

oo
d

of
 A

dv
an

ci
ng

L
ik

el
ih

oo
d

of
 R

eg
re

ss
in

g
W

or
ld

 C
on

fi
gu

ra
tio

n

0.
32

0.
08

3
pu

t_
do

w
n(

)

lo
ok

(g
re

en
)

lo
ok

(t
ab

le
)

lo
ok

(r
ed

)
fo

cu
s2

m
ar

ke
r(

)
fo

cu
s_

le
ft

()
fo

cu
s_

ri
gh

t(
)1 3

3 5
1 2

1 2

(n
on

e)
0.

0
0.

1

lo
ok

(g
re

en
)

fo
cu

s2
m

ar
ke

r(
)

0.
48

0.
08

3
pi

ck
up

()

fo
cu

s2
m

ar
ke

r(
)

4 5

fo
cu

s_
ri

gh
t(

)
fo

cu
s_

le
ft

()
fo

cu
s_

do
w

n(
)

lo
ok

(t
ab

le
)

lo
ok

(r
ed

)

4a
.

3. 4b
.

Figure 12: Trajectory for deictic agent with its original action set

G T
T

T

R

R G T
T

T

G T
T

T

R
R

G T
T

T

R
R

GR T
T

T

GR T
T

T

G T
T

T

R

2 3 1 2
1 2

2 3

1 2
1 2

1 2
1 2

1 3
pi

ck
up

_t
op

()
0.

17
0.

33

0.
17

0.
28

pu
t_

do
w

n(
)

st
ar

t:
(p

ro
ba

bi
lit

y
0.

6)
1b

.

2a
.

st
ar

t:
(p

ro
ba

bi
lit

y
0.

4)
1a

.

ad
va

nc
in

g
ac

tio
ns

lik
el

ih
oo

d
re

gr
es

si
ng

 a
ct

io
ns

lik
el

ih
oo

d

L
ik

el
ih

oo
d

of
 A

dv
an

ci
ng

L
ik

el
ih

oo
d

of
 R

eg
re

ss
in

g
W

or
ld

 C
on

fi
gu

ra
tio

n

ad
va

nc
in

g
ac

tio
ns

lik
el

ih
oo

d
re

gr
es

si
ng

 a
ct

io
ns

lik
el

ih
oo

d

L
ik

el
ih

oo
d

of
 A

dv
an

ci
ng

L
ik

el
ih

oo
d

of
 R

eg
re

ss
in

g
W

or
ld

 C
on

fi
gu

ra
tio

n

0.
5

0.
17

pu
t_

do
w

n(
)

lo
ok

(r
ed

)

0.
17

0.
22

lo
ok

(g
re

en
)

0.
44

0.
17

4a
.

3. 4b
.

(n
on

e)
0.

0
0.

46
lo

ok
(t

ab
le

)
lo

ok
(r

ed
)

lo
ok

(g
re

en
)

2b
.

0.
28

0.
5

fo
cu

s_
le

ft
()

fo
cu

s_
do

w
n(

)

lo
ok

(t
ab

le
)

pu
t_

do
w

n(
)

lo
ok

(g
re

en
)

fo
cu

s_
up

()

lo
ok

(t
ab

le
)

pi
ck

up
_t

op
()

fo
cu

s_
le

ft
()

fo
cu

s_
ri

gh
t(

)

fo
cu

s_
ri

gh
t(

)
fo

cu
s_

le
ft

()

lo
ok

(t
ab

le
)

fo
cu

s_
le

ft
()

lo
ok

(g
re

en
)

lo
ok

(r
ed

)

pi
ck

up
_t

op
()

fo
cu

s_
ri

gh
t(

)1 3 1 5
1 5

1 3
1 3

1 3

fo
cu

s_
ri

gh
t(

)
lo

ok
(t

ab
le

)

fo
cu

s_
le

ft
()

fo
cu

s_
ri

gh
t(

)

lo
ok

(t
ab

le
)2 3

Figure 13: Trajectory for deictic agent with modified action set

References

[1] Philip E. Agre and David Chapman. Pengi: An implementation of a
theory of activity. In Proceedings of the Sixth National Conference on
Artificial Intelligence, 1987.

[2] Leemon C. Baird. Residual algorithms: Reinforcement learning with
function approximation. In 12th International Conference on Machine
Learning, 1995.

[3] Dana H. Ballard, Mary M. Hayhoe, Polly K. Pook, and Rajesh P.N.
Rao. Deictic codes for the embodiment of cognition. Behavioral and
Brain Sciences, 20, 1997.

[4] Scott Benson. Learning Action Models for Reactive Autonomous Agents.
PhD thesis, Stanford University, 1996.

[5] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, Belmont, Massachusetts, 1995. Volumes 1 and 2.

[6] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, Belmont, Massachusetts, 1996.

[7] David Chapman and Leslie Pack Kaelbling. Input generalization in de-
layed reinforcement learning: An algorithm and performance compar-
isons. In Proceedings of the International Joint Conference on Artificial
Intelligence, Sydney, Australia, 1991.

[8] Kurt Driessens, Jan Ramon, and Hendrik Blockeel. Speeding up re-
lational reinforcement learning through the use of an incremental first
order decision tree learner. In European Conference on Machine Learn-
ing, 2001.

[9] S. Dzeroski, L. de Raedt, and H. Blockeel. Relational reinforcement
learning. In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 136–143. Morgan Kaufmann, 1998.

[10] Saso Dzeroski, Luc De Raedt, and Kurt Driessens. Relational reinforce-
ment learning. Machine Learning, 43, 2001.

39

[11] Natalia H. Gardiol and Sridhar Mahadevan. Hierarchical memory-based
reinforcement learning. In 13th Advances in Neural Information Process-
ing Systems, 2000.

[12] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the
convergence of stochastic iterative dynamic programming algorithms.
Neural Computation, 6(6), November 1994.

[13] Henry A. Kautz and Bart Selman. Planning as satisfiability. In 10th
European Conference on Artificial Intelligence, 1992.

[14] Terran Lane and Leslie Pack Kaelbling. Nearly deterministic abstrac-
tions of markov decision processes. In 18th National Conference on
Artificial Intelligence, 2002. (to appear).

[15] Mario Martin. Reinforcement Learning for Embedded Agents facing
Complex Tasks. PhD thesis, Universitat Politecnica de Catalunya,
Barcelona, Spain, 1998.

[16] Andrew K. McCallum. Reinforcement Learning with Selective Percep-
tion and Hidden State. PhD thesis, University of Rochester, Rochester,
New York, 1995.

[17] R. Andrew McCallum. Instance-based utile distinctions for reinforce-
ment learning with hidden state. In Proceedings of the Twelfth Inter-
national Conference Machine Learning, pages 387–395, San Francisco,
CA, 1995. Morgan Kaufmann.

[18] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R.
Cassandra. Solving POMDPs by searching the space of finite policies.
(manuscript, submitted to UAI99), 1999.

[19] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. Journal of Logic Programming, 1994.

[20] Richard S. Sutton. Open theoretical questions in reinforcement learning.
In 4th European Conference on Computational Learning Theory, 1999.

[21] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-
difference learning with function approximation. IEEE Transactions on
Automatic Control, 1997.

40

[22] Shimon Ullman. Visual routines. Cognition, 18:97–159, 1984.

[23] Steven D. Whitehead and Dana H. Ballard. Learning to perceive and
act by trial and error. Machine Learning, 7(1):45–83, 1991.

[24] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8(3):229–256,
1992.

41

