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The image of an object can vary dramatically depending on lighting, specularities/reflections and shad-
ows. It is often advantageous to separate these incidental variations from the intrinsic aspects of an image.
Along these lines this paper describes a method for photographing objects behind glass and digitally
removing the reflections off the glass leaving the image of the objects behind the glass intact. We describe
the details of this method which employs simple optical techniques and independent components analysis
(ICA) and show its efficacy with several examples.
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1 Introduction

The image of an object can vary dramatically depend-
ing on lighting, specularities/reflections and shadows,
and yet our recognition of objects is amazingly robust
despite these incidental variations. Our visual system
seems to separate the various components that con-
tribute to the formation of an image, yielding stable and
reliable percepts. One commonly occurring example is
that of reflections from dielectric surfaces (e.g., glass)
where our visual system seems to easily ignore reflec-
tions when, for example, viewing a painting framed
behind glass. To facilite such tasks as object recogni-
tion, visual-based navigation, and scene segmentation
we would like to design computer systems that have a
similar ability to separate the incidental from the intrin-
sic aspects of an image. Along these lines, this paper
describes a method for photographing objects viewed
through glass and digitally removing the reflections off
the glass leaving the image of the objects behind the
glass intact. Although we will concentrate on this par-
ticular problem we believe that the general methods
used may be useful for a broader class of image separa-
tion problems.

Light reflected off glass at an oblique angle is par-
tially polarized suggesting that the strength of the re-
flection can be manipulated with a linear polarizer. The
reflection can however only be completely eliminated
when the viewing angle to the glass is at the Brewster’s
angle, typically a severe angle resulting in significant
geometric distortions [1]. Consider the pair of images
in Figure 1 of Renoir’s On the Terrace framed behind
glass with a reflection of a mannequin (“Sheila”). These
images were photographed through a linear polarizer
oriented to maximize the reflection (left) and minimize
the reflection (right). The camera was oriented approx-
imately 30�from frontal parallel. Note that even at the
minimal orientation the reflection is quite salient.

There is somehistory in the computer vision commu-
nity of trying to remove specular reflections from im-
ages. In these cases, researchers concerned themselves
with non-planar reflective surfaces where the reflection
is highly localized and poses a problem for various com-
puter vision algorithms such as stereo and motion esti-
mation. These approaches fall into one of several gen-
eral categories: imposing a Lambertian assumption [2],
color-based [3, 4, 5], polarization-based [6, 7] and com-
binations thereof [8]. Here we concern ourselves with
the problem of removing reflections from a planar sur-
face and take a completely different computational ap-
proach than previously suggested. Another important
distinction is that in removing the reflections off the

Figure 1: Renoir’s On the Terrace with a reflection
of Sheila photographed through a linear polarizer at
orthogonal orientations, maximizing and minimizing
the reflection.

glass we leave the image of objects behind the glass
intact.

Let’s first look more closely at the simple physics of
reflections from planar surfaces. Shown in Figure 2 is an
idealized example of a photograph of a painting behind
a plate of glass. The final image is a linear combination
of the light that is reflected by the painting and the light
that is directly reflected by the glass. 1 The reflection
from the glass will itself be an image of the scene in
which the painting is viewed. The amount of light at a
single point in the image can be expressed as:

y1 = aP + bR; (1)

where P and R are the amount of light contributed
by the painting and reflection, and a and b are multi-
plicative constants. We would like to remove the con-
tribution of the reflection R from the image y1, but the
above equation only provides a single constraint in four
unknowns. Additional constraints may be added by
exploiting the fact that reflections are partially polar-
ized and that a linear polarizer can be used to adjust
the relative strength of the reflection. With respect to
Equation (1), the linear polarizer has the effect of ma-
nipulating the relative contributions of the painting and
reflection. The second image takes the form:

y2 = cP + dR: (2)

The above equation provides another constraint, but
two new unknowns have also been introduced, leav-
ing us with a total of two constraints in six unknowns,
and little hope of a solution without making further as-
sumptions. It would of course be possible to manually

1In actuality, light is reflected off both the front and back face of
the glass. In our conditions the pair of reflected images are nearly
aligned so we assume the simplified model of an infinitely thin piece
of glass with a single reflection.
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Figure 2: A photograph of a painting behind glass
contains a superposition of the light that is reflected
by the painting, and the light that is reflected directly
off the glass.

find the amount of image y2 that needs to be subtracted
from y1 to remove the reflectionR, but we are interested
in an automatic procedure for accomplishing this.

In order to separate the reflection from the desired
image we first photograph a scene through a linear po-
larizer at two distinct orientations. To solve the un-
derconstrained set of equations we make the modest
assumption that the image of the painting and reflec-
tion are independent. Intuitively this means that for
each spatial position the pixel intensity in one image
provides no predictive information about the pixel in-
tensity in the second image. This is a reasonable as-
sumption since there is no reason to expect a correlation
between the image of objects behind the glass and the
image of objects reflected by the glass. Given the linear
model of image formation and this assumption of inde-
pendence we perform independent components anal-
ysis (ICA) (e.g, [9, 10]) to separate the reflection from
the desired image. In the next section the details of this
statistical technique are outlined, and in the following
section several examples of its efficacy are given.

2 Separating Images

The general problem of image separation can be stated
as follows: given N distinct linear combinations of N
images determine the original N images. For our ap-
plication we can restrict ourselves to the case of just
two images. Denoting these images in row vector form
as x1 and x2, the linear mixing of these images can be
expressed in matrix form as follows:�

y1
y2

�
=

�
a b

c d

��
x1
x2

�

Y = MX (3)

S

R2

R1

X

Y

Mixing

Y

X
~

R2
−1

R1
−1

S
−1

Separation (ICA)

Figure 3: Shown at the bottom left is an idealized joint
probability distribution for a pair of independent im-
ages. The linear mixing of these images, Equation (3),
transforms this distribution, via a rotation, scaling,
and rotation, from a square into a parallelogram (left
column). The goal of ICA is to transform this paral-
lelogram back into a square, thus yielding the original
independent images (right column).

where the matrix M embodies the linear mixing. Note
that with this model it is assumed that the linear mixing
is uniform over the entire image. The mixed images
in Y each contain a linear combination of the source
images in X. Our job is to recover the sources images
from the mixed images. Of course given the full rank
(i.e., invertible) matrix M it would be trivial to estimate
the source images by left multiplying the mixed images
with the inverse mixing matrix:

X̃ = M
�1
Y (4)

But we don’t typically know the mixing matrix, so our
job will be to estimate it from the mixed images only.

Equation (3) provides two constraints in six unknowns
and so cannot be solved without further assumptions.
The first assumption we make is that the pair of source
images are independent. Denoting X1 and X2 as the
random variables from which the pixel intensities of
source images x1 and x2 are drawn, this assumption
can be expressed asP (X1; X2) = P (X1) �P (X2) (i.e., the
joint probability distribution is separable). Although
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the constraint is expressed in terms of these continuous
random variables we will typically work with the his-
tograms of sampled images that, because of the dense
sampling, are good approximations to the continuous
probability distributions. The second modest assump-
tion is that the mixing matrix M is full rank. With
these two assumptions the general estimation problem
is known as independent components analysis (ICA)
of which there is a large and varied literature. Early
contributors include [11, 9, 10, 12, 13, 14, 15, 16]. We
present an analytic version of ICA based on higher-
order statistical moments most similar to that of [9]. We
provide a different formulation based on maximizing a
series of error functions and give a simple and intuitive
geometric interpretation of these steps.

We begin by attempting to gain some insight into
the structure of the mixing matrix by decomposing it
according to the singular value decomposition (SVD):

M = R1SR2; (5)

where R1 and R2 are orthonormal (rotation) matrices
and S is a diagonal (scaling) matrix. Shown in Fig-
ure 3 is a geometric interpretation of the effects of each
of these matrices on the joint probability distribution
of the source images X. According to our assump-
tion of independence this distribution should be sepa-
rable; for illustration purposes consider the case when
the marginal distributions are uniform, then the joint
distribution is a square. The mixing matrix rotates,
scales, and again rotates this distribution transform-
ing the square into a parallelogram. Notice that the
mixed images Y are no longer independent. The es-
timation of the independent source images reduces to
determining how to transform the parallelogram back
into a square. Or more generally, transforming the two-
dimensional joint distribution into a separable product
of one-dimensional distributions. As Figure 3 suggests
this may be accomplished by applying the opposite ro-
tations and scalings in reverse order.

The first step in separating the images is to apply
a rotation that aligns the long and short axis of the
parallelogram with the primary axis (Figure 3). These
axes are easily determined since they are the axes with
the maximal/minimal variance. Assuming zero mean
measurements, the variance at an arbitrary orientation
is given by:

E(�1) =

NX
i=1

��
y1(i) y2(i)

�� cos(�1)

sin(�1)

��2

: (6)

The axis of maximal variance is determined by finding
the angle �1 that maximizes this error function (Fig-

ure 4). The axis of minimal variance will be orthogo-
nal to this axis oriented at �1 � �=2. These axes corre-
spond to the principle axis as determined by principle
components analysis (PCA). Since this error function is
quadratic in its unknown it can be maximized analyti-
cally by differentiating with respect to �1, setting equal
to zero and solving (Appendix A), to yield:

�1 =
1
2

tan�1

"PN

i=1 r
2
(i) sin(2�(i))PN

i=1 r
2(i) cos(2�(i))

#
; (7)

where, because it takes on a particularly simple form,
the solution is given in polar coordinates r(i) = y1(i)

2
+

y2(i)
2 and �(i) = tan�1

(y2(i)=y1(i)). Then, the first ro-
tation matrix in the separation is:

R̃1 =

�
cos(�1) sin(�1)

� sin(�1) cos(�1)

�
: (8)

Following the first rotation, the now aligned par-
allelogram needs to be transformed into a diamond
(Figure 3). More precisely, the axes need to be inde-
pendently scaled so that the variance is rotationally
invariant. The scaling of each axis is determined by
first computing the variance along the axis of maximal
and minimal variance, i.e., the axis oriented at �1 and
�1 � �=2:

s1 =

NX
i=1

��
y1(i) y2(i)

�� cos(�1)

sin(�1)

��2

(9)

s2 =

NX
i=1

��
y1(i) y2(i)

�� cos(�1 � �=2)
sin(�1 � �=2)

��2

;(10)

and then the scaling matrix is constructed by placing
the inverse variances along the diagonal:

S̃ =

�
s
�1
1 0
0 s

�1
2

�
: (11)

Combined, the first rotation and scaling are equiva-
lent PCA plus whitening. But notice from Figure 3
that this is insufficient for separating the mixed images
into their independent components (the mixed images
are only decorrelated, a necessary but insufficient con-
dition). That is, in this example the joint probability
distribution is in the shape of a diamond (i.e., is not
separable), a final rotation is required to transform this
diamond into a square, yielding the independent com-
ponents (i.e., separability).

One approach to the determination of this final ro-
tation is to find the orientation �2 that maximizes the
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Figure 4: Shown is the variation in the second mo-
ment (variance) as the joint probability distribution is
rotated and projected onto the horizontal axis (Equa-
tion (6)). The variance is minimal along the short axis
of the parallelogram and maximal at the orthogonal
orientation. Note that this error function is a 2-cycle
sinusoid.

fourth statistical moment (Figure 5). The fourth mo-
ment at an arbitrary orientation is given by:

E(�2) =

NX
i=1

��
y
0

1(i) y
0

2(i)
�� cos(�2)

sin(�2)

��4

; (12)

where y01 and y
0

2 are the result of rotating and scaling the
initial mixed imagesy1 andy2 according to Equations (8)
and (11). Note that the above error function cannot
be solved analytically. But, the following normalized
fourth moment does lend itself to an analytic solution:

E
0
(�2) =

1
jjy01jj

2 + jjy02jj
2E(�2): (13)

The axis where the fourth moment is maximal is deter-
mined by finding the angle �2 that maximizes this error
function (Figure 5). As before, we differentiate with
respect to �2, set equal to zero and solve (Appendix B)
yielding the maximal solution:

�2 =
1
4

tan�1

"PN

i=1 r
2
(i) sin(4�(i))PN

i=1 r
2(i) cos(4�(i))

#
; (14)

again, for convenience, expressed in polar coordinates.
The final rotation matrix then takes the form:

R̃2 =

�
cos(�2) sin(�2)

� sin(�2) cos(�2)

�
: (15)

The estimation of the source images X from the
mixed images Y is now a simple matter of applying
the three matrices in Equations (8), (11), and (15):

X̃ = (R̃2S̃R̃1)Y (16)
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Figure 5: Shown is the variation in the fourth moment
as the joint probability distribution is rotated and pro-
jected onto the horizontal axis (Equation (13)). The
fourth moment is maximal at the orientation required
to transform the diamond into a square, which in turn
yields the independent images. Note that this error
function is a 4-cycle sinusoid.

There are two inherent ambiguities in the recovery
of the independent components. First is the ordering
ambiguity, that is, the following mixings are indistin-
guishable:�

a b

c d

��
x1
x2

�
=

�
b a

d c

��
x2
x1

�
(17)

Second is a scale ambiguity, that is the independent
components can only be determined within a scale fac-
tor since, for example, the following mixings are also
indistinguishable.�

a b

c d

��
x1
x2

�
=

�
a= b=�

c= d=�

��
x1
�x2

�
(18)

For our purposes, the first of these ambiguities is not
critical, and the second is dealt with by scaling the final
images to fill the full intensity range.

3 Results

3.1 Synthetic

Our first experiment is intended to show the general
efficacy of the image separation outlined in the previ-
ous section. Shown along the top row of Figure 6 are
a pair of images and their normalized joint histogram
(i.e., sampled joint probability distribution). In the next
row are a pair of images formed by applying a random
2�2 mixing matrix as in Equation (3). In the subsequent
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x1 x2 Original

y1 y2 Mix

Rotate 1

Scale

x̃1 x̃2 Rotate 2

Figure 6: Along the top row are the original images
of Einstein and Mandrill and their normalized joint
histogram. The second row contains the mixed images
and shown below are the intermediate steps leading
to the separation of the mixed images. See also Table 1.

Actual Estimated

M

�
1:00 �0:49
0:50 �0:66

� �
1:00 �0:63
0:49 �0:79

�

�1 35.7� 37.4�

s1=s2 4.41 4.55
�2 35.4� 41.4�

Table 1: Results from the separation of Einstein and
Mandrill, Figure 6.

0 25 50
40
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Figure 7: Separating Einstein and Mandrill in the pres-
ence of uniform zero-mean white noise. Shown is the
root mean square (RMS) error between the separated
and original images plotted as a function of the signal
to noise ratio (SNR).

three rows are the results of applying the rotations and
scalings specified by Equations (8), (11), (15) and (16) to
this pair of images. As desired, the mixed images have
been separated into their original independent compo-
nents. Note also the similarity in the transformations
of the normalized joint histogram with the idealization
of Figure 3. Shown in Table 1 are the initial and es-
timated parameters of the mixing matrix. The pair of
rotations are determined correctly within 1.7�and 6�,
and the scaling within 3%.

To measure the sensitivity to noise, varying amounts
of uniform zero-mean noise were added to the mixed
images y1 and y2 before separating the independent
components. Shown in Figure 7 is the root mean square
(RMS) error between the separated and original images.
The RMS errors are averaged over one hundred inde-
pendent trials.

3.2 Natural

In the next set of experiments we photographed a paint-
ing framed behind glass with the reflection of a man-
nequin (“Sheila”), Figure 8. The painting with reflection
was photographed twice through a linear polarizer ori-
ented so that the reflection was maximized, and then at
the orthogonal direction to minimize the reflection. We
chose the maximum and minimum orientations to rein-
force the fact that a linear polarizer alone is insufficient
for removing the reflection. In general, any two dis-
tinct orientations could be used that are not symmetric
about the polarization angle of the reflected light. We
used a color digital video camera (Canon Optura DV,
Canon Inc.) whose video signal was digitized through
a S-video connection onto a Silicon Graphics computer.
The camera was calibrated to ensure a linear response.
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Figure 8: Renoir’s On the Terrace, Sheila and Sheila’s
reflection.

Each scene was photographed for one-third of a second
(10 frames) these frames were averaged in order to re-
duce sensor noise. The final three channel (RGB) color
images have a spatial resolution of 640� 480 pixels. In
our results the entire three channel image was used in
computing the independent sources.

Results are shown in Figures 9 and 10. Shown along
the top row of each of these figures are the initial images
and shown along the bottom row are the results of sepa-
rating the independent components. In between are the
intermediate steps leading to the separation as specified
by Equations (8), (11), (15) and (16). Note how the nor-
malized joint histogram (third column) transforms from
a parallelogram to a square similar to the idealization
of Figure 3, thus yielding the independent components
- the painting and the reflection of Sheila. In the last
experiment the reflections in the photograph of a store-
front window are removed, shown in Figure 11 are the
initial and separated images.

4 Discussion

We have developed a simple and effective method for
separating reflections from images. This technique be-
gins with a pair of images taken through a linear po-
larizer at two distinct orientations. The reflection is
separated from the image by applying an analytic ver-
sion of independent components analysis (ICA) based
on higher-order statistical moments. A real-time imple-
mentation may be realized by synchronizing the image
capture of alternate or even/odd frames with a liquid
crystal polarizer (e.g, [17]).

There are of course several natural extensions of our
work that will undoubtedly generalize its applicabil-
ity. Most notably, the linear mixing model of Equa-

Input (y1, y2)

y1 y2 Mix

Rotate 1

Scale

x̃1 x̃2 Rotate 2

Output (x̃1, x̃2)

Figure 9: Along the top row are a pair of images of
Renoir’s On the Terrace with a reflection of Sheila pho-
tographed through a linear polarizer at orthogonal ori-
entations. Along the bottom row are the independent
components. Also shown are the intermediate steps
leading to the separation of the independent compo-
nents. The third column shows the normalized joint
histogram of the pair of images to its left.
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Input (y1, y2)

y1 y2 Mix

Rotate 1

Scale

x̃1 x̃2 Rotate 2

Output (x̃1, x̃2)

Figure 10: Along the top row are a pair of images of
Renoir’s Lunching on the Boating Party with a reflection
of Sheila photographed through a linear polarizer at
orthogonal orientations. Along the bottom row are
the independent components. Also shown are the
intermediate steps leading to the separation of the in-
dependent components. The third column shows the
normalized joint histogram of the pair of images to its
left.

Figure 11: Shown along the top row are the pair of
images photographed through a linear polarizer at
orthogonal orientations, and shown along the bottom
row are the separated components.

tion (3) assumes a spatially uniform linear combination
of source images that is unlikely to be true. The mixing
will vary spatially because the polarization of reflected
light depends on the angle to the camera, and this an-
gle varies across the field of view. To account for this
variation, our basic approach could be used in con-
junction with a mixture model approach to fit multiple
linear models [18]. Another possible extension would
be to employ a more generic version of ICA that allows
for a redundant system with more measurements than
unknowns (e.g., [19]). In our case, this would mean
photographing a scene at multiple polarization angles.
Note though that since the polarization of a scene is
fully characterized by three distinct orientations, there
will be a point of diminishing returns. And lastly, our
separation method could be applied selectively, for ex-
ample when photographing a scene that is not com-
pletely behind glass. In this case, the pair of images can
be subtracted, and only regions with significant differ-
ences will be considered to have a reflected component.

This technique may also be useful in other domains.
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For example, reflections from the windshield of an au-
tonomous vehicle with inboard cameras may cause prob-
lems for visually guided navigation systems. Another
possible application is in the field of surveillance where
activities behind a reflective window may be revealed.
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Appendix A

The second statistical moment (variance) at an arbitrary angle �1 is given by:

E(�1) =

NX
i=1

��
y1(i) y2(i)

�� cos(�1)

sin(�1)

��2

=

NX
i=1

�
y1(i) cos(�1) + y2(i) sin(�1)

�2

=

NX
i=1

y
2
1(i) cos2

(�1) + 2y1(i)y2(i) cos(�1) sin(�1) + y
2
2(i) sin2

(�1): (19)

The angle that maximizes the variance can be determined by first differentiating this error function:

dE(�1)

d�1
=

NX
i=1

�2y2
1(i) sin(�1) cos(�1) + 2y1(i)y2(i)(cos2

(�1)� sin2
(�1)) + 2y2(i)

2 sin(�1) cos(�1)

= 2
NX
i=1

(y
2
2(i) � y

2
1(i)) sin(�1) cos(�1) + y1(i)y2(i)(cos2

(�1)� sin2
(�1))

= 2
NX
i=1

(y
2
2(i) � y

2
1(i))(

1
2 sin(2�1)) + y1(i)y2(i)(

1
2(1 + cos(2�1))�

1
2(1 � cos(2�1)))

=

NX
i=1

(y
2
2(i) � y

2
1(i)) sin(2�1) + 2y1(i)y2(i) cos(2�1); (20)

setting equal to zero and solving:

dE(�1)

d�1
= 0

sin(2�1)

cos(2�1)
=

�2
PN

i=1 y1(i)y2(i)PN

i=1 y
2
2(i)� y

2
1(i)

�1 =
1
2

tan�1

"
�2

PN

i=1 y1(i)y2(i)PN

i=1 y
2
2(i) � y

2
1(i)

#
: (21)

And finally converting into polar coordinates with y1(i) = r(i) cos(�(i)) and y2(i) = r(i) sin(�(i)) yields the maximal
solution as in Equation (7):

�1 = tan�1

"
�2

PN

i=1 r(i) cos(�(i))r(i) sin(�(i))PN

i=1 r
2(i) sin2(�(i)) � r2(i) cos2(�(i))

#

= tan�1

"
�2

PN

i=1
1
2r

2
(i) sin(2�(i))PN

i=1 r
2(i)( 1

2 (1 � cos(2�(i))) � 1
2 (1 + cos(2�(i))))

#

=
1
2

tan�1

"PN

i=1 r
2
(i) sin(2�(i))PN

i=1 r
2(i) cos(2�(i))

#
: (22)
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Appendix B

The fourth statistical moment at an arbitrary angle �2 is given by:

E(�2) =

NX
i=1

��
y1(i) y2(i)

�� cos(�2)

sin(�2)

��4

=

NX
i=1

�
y1(i) cos(�2) + y2(i) sin(�2)

�4

=

NX
i=1

y
4
1(i) cos4

(�2) + 4y3
1(i)y2(i) cos3

(�2) sin(�2) + 6y2
1(i)y

2
2(i) cos2

(�2) sin2
(�2)

+ 4y1(i)y
3
2(i) cos(�2) sin3

(�2) + y
4
2(i) sin4

(�2)

=

NX
i=1

1
8y

4
1(i)(3 + 4 cos(2�2) + cos(4�2)) + y

3
1(i)y2(i)(sin(2�2) +

1
2 sin(4�2)) +

6
4y

2
1(i)y

2
2(i)(

1
2 �

1
2 cos(4�2))

+ y1(i)y
3
2(i)(sin(2�2)�

1
2 sin(4�2)) +

1
8y

2
1(i)(3 � 4 cos(2�2) + cos(4�2)): (23)

The angle that maximizes the fourth moment can be determined by differentiating this error function:

dE(�2)

d�2
=

NX
i=1

1
8y

4
1(i)(�8 sin(2�2)� 4 sin(4�2)) + y

3
1(i)y2(i)(2 cos(2�2) + 2 cos(4�2)) +

3
2y

2
1(i)y

2
2(i)(2 sin(4�2))

+ y1(i)y
3
2 (i)(2 cos(2�2)� 2 cos(4�2)) +

1
8y

2
1(i)(8 sin(2�2)� 4 sin(4�2)) (24)

Note that this error function cannot be solved analytically, but that the following normalized error function does lend
itself to an analytic solution:

E
0
(�2) =

1
jjy1jj

2 + jjy2jj
2E(�2) (25)

and
dE

0
(�2)

d�2
=

1
jjy1jj

2 + jjy2jj
2
dE(�2)

d�2

=

NX
i=1

1
y1(i)

2 + y2(i)
2

�
(y

4
2(i)� y

4
1(i)) sin(2�2) + (2y1(i)y

3
2(i) + 2y3

1(i)y2(i)) cos(2�2)
�

+
1

y1(i)
2 + y2(i)

2

�
(�

1
2y

4
1(i) �

1
2y

4
2(i) + 3y2

1(i)y
2
2(i)) sin(4�2) + (2y3

1(i)y2(i) � 2y1(i)y
3
2(i)) cos(4�2)

�

=

NX
i=1

1
y1(i)

2 + y2(i)
2

�
(�

1
2y

4
1(i) �

1
2y

4
2(i) + 3y2

1(i)y
2
2(i)) sin(4�2) + (2y3

1(i)y2(i) � 2y1(i)y
3
2(i)) cos(4�2)

�
;(26)

where the 2�2 terms cancel from the earlier maximization (see Appendix A). This error function can now be maximized
by setting equal to zero and solving:

dE
0
(�2)

d�2
= 0

sin(4�2)

cos(4�2)
=

�

PN

i=1
1

y1(i)2+y2(i)2 (2y3
1(i)y2(i) � 2y1(i)y

3
2(i))PN

i=1
1

y1(i)2+y2(i)2 (�
1
2y

4
1(i) �

1
2y

4
2(i) + 3y2

1(i)y
2
2(i))

�2 =
1
4

tan�1

"
�

PN

i=1
1

y1(i)2+y2(i)2 (2y3
1(i)y2(i) � 2y1(i)y

3
2(i))PN

i=1
1

y1(i)2+y2(i)2 (�
1
2y

4
1(i) �

1
2y

4
2(i) + 3y2

1(i)y
2
2(i))

#
: (27)
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And converting into polar coordinates with y1(i) = r(i) cos(�(i)) and y2(i) = r(i) sin(�(i)) yields the maximal solution
as in Equation (14):

�2 =
1
4

tan�1

"PN

i=1 r
2
(i) sin(4�(i))PN

i=1 r
2(i) cos(4�(i))

#
: (28)
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