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Abstract

We describe a new method for motion estimation and 3D reconstruction from stereo image sequences ob-
tained by a stereo rig moving through a rigid world. We show that given two stereo pairs, one can compute
the motion of the stereo rig directly from the image derivatives (spatial and temporal). Correspondences
are not required. One can then use the images from both pairs combined, to compute a dense depth map.
The motion estimates between stereo pairs enable us to combine depth maps from all the pairs in the
sequence to form an extended scene reconstruction. We show results from a real image sequence.

The motion computation is a linear least squares computation using all the pixels in the image. Areas
with little or no contrast are implicitly weighted less, so one does not have to explicitly apply a con�dence
measure.
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1 Introduction

Stereo and motion together form a powerful combination [6, 20] with a variety of applications from ego motion
estimation to extended scene reconstruction. We describe a new method for directly estimating the motion of the
stereo rig thus greatly simplifying the process of combining the information from multiple image pairs. We show that
given two stereo pairs one can compute the motion of the stereo rig directly from the image derivatives (spatial and
temporal). Correspondences are not required.

The core of the method is an application of the 'Tensor Brightness Constraint' [15, 17], which combines geometric
and photometric constraints of three views, to the case where the motion between one pair of views is known. The
'Tensor Brightness Constraint' equations are bilinear in the motion parameters but if one of the motions is known
they result in a set of linear equations for the second motion parameters. There is one equation for each point in
the image and 6 unknowns (the translation and rotation parameters) which results in a highly over-constrained and
very stable computation.

The use of a stereo pair rather than a single image sequence (monocular structure from motion) has further
advantages. The method is stable in the case of collinear motion, in the case of pure rotation and also for planar
objects. There is no scale ambiguity since all motions are relative to the known baseline length [6].

After the motion has been found one can compute a dense depth map using information from the stereo pair and
the motion (see �g. 1d). This can now be viewed as a multi baseline stereo system with all the advantages of such
as system: it reduces aliasing, helps deal with occlusions and it extends the dynamic range of the system as detailed
by [10] and others. Applying an edge detector to the depth map (�g. 1e) highlights possible areas of occlusion. In
a tra�c scene, for example, these are locations where a pedestrian might suddenly appear. The motion estimates
between stereo pairs enable us to combine depth maps from all the pairs in the sequence to form an extended scene
reconstruction.

The typical approach to reconstruction from a moving stereo rig ([11, 20, 19, 3]) has been to �rst compute a
depth map from each pair (or 3D location of features points). One also computes a con�dence measure for each
depth estimate. Then one registers the stereo pair with the current 3D model to compute the motion and �nally one
updates the model (using a Kalman �lter or a batch method).

Directly computing the motion of the stereo rig simpli�es the problem of registering all the depth reconstructions
into one coordinate frame. Our method gives good estimates of the camera motion between frames. There is
no need to explicitly compute con�dence values for the depth estimates since the causes for error are taken into
account implicitly in the equations. By concatenating these motion estimates one can bring all the depth maps into
one coordinate frame. Combining incremental motion in this way will accumulate errors. To get a more accurate
reconstruction one can use the results as a starting point for global reconstruction schemes such as [5, 6].

1.1 Overview of the Camera Motion Estimation

The 'Tensor Brightness Constraint' [15, 17] combines geometric and photometric constraints of three views. It
provides one homogeneous constraint equation for each point in the image where the unknown motion parameters
are an implicit function of the spatial derivatives of Image 1 and the temporal derivatives between Image 1 and
Image 2 and between Image 1 and Image 3. The motion parameters appear as 27 bilinear combinations of the
camera motions. Point correspondences or optical ow are not required.

If one of the motions is known (e.g. motion from Image 1 to Image 2) then the 'Tensor Brightness Constraint'
equation reduces to a non-homogeneous linear equation in the second motion parameters (i.e. the translation and
rotation from image 1 to image 3). Again, one equation for each point in the image.

Let I0i,I
00

i ,I
0

i+1,I
00

i+1 be the images taken by a stereo camera pair at times ti and ti+1 respectively. One can apply
the 'Tensor Brightness Constraint' to the images I0i,I

00

i and I0i+1. Since the camera displacement from I0i to I
00

i is �xed
and known (calibrated) the motion I0i to I0i+1 can be found.

We have not used image I00i+1. Theoretically it is not required since [4] show that there are no constraints among
4 (or more) images that are not simply 2 and 3 image constraints. But other image triplets can be used and the
information combined in a least squares way.

In section (2) we briey develop the 'Tensor Brightness Constraint' and then derive the constraint in the case where
one motion is known. Section (3) describes some of the implementation details. In particular we describe a simple
two step procedure to calibrate the stereo pair. Section (4.2) shows results for an extended scene reconstruction.

2 Mathematical Background

2.1 The Tensor Brightness Constraint

The 'Tensor Brightness Constraint' is developed in [17]. We briey derive it here.
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(a) (b)

(c) (d)

(e)

Figure 1: The three input images (a,b,c). Image (a) and (c) are the �rst stereo pair in the sequence with the cameras
displaced vertically. Image (b) is the image from camera (a) taken at the next time instance. (d) the estimated depth
map.. (e) shows the results of a Canny edge detector on the depth map. This identi�es occluding contours.
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(a)

(b)

(c)

Figure 2: (a,b,c) Show 3D renderings of the scene. Very distant surfaces have been removed. The spheres show the
motion of the stereo rig in the whole sequence. The large sphere is the the location of the camera when this image
was taken. Not in view (b) that the ground plane is correctly found to be at at the the two cork walls are at right
angles to the it.
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2.1.1 The projective case

Let P = (X;Y; 1; �) be a point in the projective space p3 and it's image in three views p = (x; y; 1), p0 = (x0; y0; 1),
p00 = (x00; y00; 1). Using homogeneous coordinates:

p �= [I; 0]P
p0 �= [A; t0]P �= Ap+ �t0

p00 �= [B; t00]P �= Bp+ �t00
(1)

Let S0 and S00 be any lines passing through the image points p0 and p00 respectively. Then p, S0 and S00 are related
through the following equation:

piS00kS
0

j�
jk
i = 0

where �
jk
i is the 3 � 3 � 3 tensor representing a bilinear function of the camera matrices: �

jk
i = t0jbki � t00ka

j
i and

�rst appeared in [13] and [14].
In particular, let:

S0 =

 
Ix
Iy

�x0Ix � y0Iy

!
S00 =

 
Ix
Iy

�x00Ix � y00Iy

!
(2)

Now apply the 'optical ow constraint equation' [7]:

u0Ix + v0Iy + I0t = 0 (3)

where:
u0 = x� x0

v0 = y � y0
(4)

to get:

S0 =

 
Ix
Iy

I0t � xIx � yIy

!
S00 =

 
Ix
Iy

I 00t � xIx � yIy

!
(5)

This results in the Tensor Brightness Constraint:

pis00ks
0

j�
jk
i = 0 (6)

where again �
jk
i = t0jbki � t00ka

j
i . The important thing to note here is that S0 and S00 can both be computed without

correspondences between the images.

2.1.2 The small motion model

Assuming calibrated cameras and small rotation eq. (1) can be written as:

p0 �= [I + [w0]x; t
0]P

p00 �= [I + [w00]x; t
00]P

(7)

where [�]x is the skew symmetric matrix of vector products. Then:

s0> (I + [w0]x) p+ ks0>t0 = 0

s00> (I + [w00]x) p+ ks00>t00 = 0
(8)

and after simplifying:

ks0>t0 + v0>w0 + I0t = 0

ks00>t00 + v00>w00 + I00t = 0
(9)

where v0 = p� s0, v00 = p� s00 and k = 1=z has replaced � from eq. (1).
If we also use the Longuett-Higgins and Prazdny [12] small motion assumptions:

t0z << Z
w0

y
x

f
<< 1

w0

x
y

f
<< 1 (10)

where f is the focal length, and w0

x; w
0

y are the rotations around the X and Y axes. Thus for the �rst motion we get:

ks>t0 + v>w0 + I0t = 0 (11)

which �rst appeared in [8]. And similarly for the second motion:

ks>t00 + v>w00 + I00t = 0 (12)
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Eliminating k = 1=z from equations (11) and (12) we obtain the 15-parameter model-based brightness con-

straint:

I00t s
>t0 � I0ts

>t00 + s>[t0w00>
� t00w0>]v = 0 (13)

where s; v are de�ned below:

s =

 
Ix
Iy

�xIx � yIy

!
v =

 
�Iy � y(xIx + yIy)
Ix + x(xIx + yIy)

xIy � yIx

!
(14)

Notes:

� There is one such equation for each point in the image.

� The equation involves image gradients and image coordinates in image 0 only. It does not require correspon-
dences (x0; y0; x00; y00).

� Since it is based on the 'optical ow constraint equation' it is correct only for in�nitesimal motion.

� In the case of collinear motion (i.e. t0 / t00) the system of equations becomes degenerate.

2.2 Moving Stereo Rig

Let us assume that t00 and w00 are known. We can then rewrite equation (13) in the form:

(I00t +w00>v)s>t0 � (s>t00)v>w0 = I0ts
>t00 (15)

which is linear in the unknown translation and rotation, t0, w0 respectively. If the stereo pair has been recti�ed (i.e.
w00 = 0) then equation (15) can be further simpli�ed to:

I00t s
>t0 � (s>t00)v>w0 = I0ts

>t00: (16)

The above derivation was performed for the case of calibrated cameras but an equivalent derivation is possible using
uncalibrated cameras for the projective case.

3 Implementation Details

3.1 Calibration

We assume the internal parameters of the �rst camera are known. These can be found using methods described in
[18]. For true Euclidean reconstruction an accurate estimate of the focal length is required but the whole process
degrades gracefully when only approximate values are provided.

Calibration of the stereo pair is performed in two stages. First we take an image of a distant scene (the plane
at in�nity) and �nd the homography between Image 2 and Image 1 using the method described in [9]. Since the
rotation angle is small we can assume an a�ne model rather than a full planar projective transformation. This stage
takes into account both the rotation between the two cameras and also the variation in internal camera parameters.
We can now use this mapping (projective or a�ne) to preprocess all the images coming from camera 2.

The second stage is to �nd the translation between the two cameras. We move the whole stereo rig in pure
translation. We then use equation (13) which gives accurate results under the assumption of pure translation [17] to
compute both the translation of the rig and the displacement between the two cameras.

3.1.1 Lens Distortion

Since we us are using a wide FOV lens there is noticeable lens distortion. This does not a�ect the stability of
the method but the accuracy of the motion estimates is reduced and the 3D reconstruction su�ers non-projective
distortion. Flat surfaces and straight line appear slightly curved. A variety of methods to compute lens distortion
appear in the literature (see [16]).

3.2 Computing Depth

To compute the depth at every point we use equations (11). Information is combined from both image pairs and
over a local region by minimizing:

minarg
K

X
x;y2R

X
j

�(x; y)jsT tjjp
�
ksT tj + vTwj + I

j
t

�2
(17)

� The windowing function �(x; y) allows one to increase the weight of the closer points.

� The jST tjjp term reduces the weight of points which have a small gradient or where the gradient is perpendicular
to that camera motion since these cases are highly a�ected by noise. We used p = 1.

� During the iteration process we used a region R of 7� 7.

� After the last iteration, we reduced the region R to 1� 1 but added a very weak global smoothness term and
performed multi-grid membrane interpolation. This stabilizes regions where there is no image gradient.
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3.3 Coarse to �ne processing and iterative re�nement

In order to deal with image motions larger than 1 pixel we use a Gaussian pyramid for coarse to �ne processing [1, 2].
For a 640� 480 image we used a 5 level pyramid.

The linear solution can be thought of as a single iteration of Newton's method applied to the problem. At each
level of the pyramid we iterate as follows:

1. Calculate motion (using equation 15).

2. Compute depth (using equation 17).

3. Using the depth and motion, warp images 2 and 3 towards image 1.

4. Compute new time derivatives I0t and I00t .

5. Compute a new motion and depth estimate.

One cannot simply compute the incremental model from the previous iteration because as the iterations proceed
the system of equations of the incremental model will become badly conditioned. We followed the procedure in [17].
At the �nest level (640� 480) we performed 2 iterations and we recursively doubled the number of iterations at the
coarser levels. We can a�ord to do this because the number of computations per iteration at each levels drops by a
factor of 4.

After we have computed the structure and motion at the �nest level we keep the motion constant and repeat the
depth computation down the whole pyramid. This �xes a few 'holes' particularly near the borders of the image.

4 Experiments

4.1 Experimental details

A single camera was mounted on a 3 degree of freedom motion stage (horizontal and vertical translation and rotation
around the vertical axis). A stereo pair of images was captured by translating the camera vertically by 8:4mm
between images. This in e�ect means that the �rst stage of calibration (sec 3) is not required and that none of the
measurement error can be attributed to di�erent internal geometric or photometric parameters between the cameras.
Initial experiments (not reported here) have been performed using two cameras mounted vertically one above the
other. These show qualitatively similar results to those presented but quantitative results are not available.

The camera was a high resolution BW CCD camera with an 4:8mm lens giving a corner to corner viewing angle
of 100o. The images were captured at 640� 480 resolution.

4.2 Extended Scene Reconstruction

For the 'y through' sequence (�g. 1) the camera was mounted on a extension bar which positioned the camera's
Center of Projection (COP) 400mm from the axis of rotation (see �gure 3). Thus a rotation of 1:5o produces a
translation of 10:5mm. The camera was mounted facing 20o down from the horizontal and 10o inwards. The focus
of expansion (FOE) is therefore inside the image towards the top right.

The extension bar perpendicular to the translation stage will be denoted an angle of � = 0o. The bar was moved
in 1:5o decrements from a starting position of � = 45o to a position of � = 0o. The camera was then translated
in 10mm increments through a distance of 120mm and then rotated again 1:5o decrements to � = �12o. At each
camera location vertical stage motion provided a stereo pair.

The camera motion and depth map was computed for each motion in the sequence. The motion estimates are
plotted in �gure 4. Figures (1), (6) and (7) show four example reconstructions made at four points along the path.
Areas which were very close or very far (60 � baseline) from the camera are masked out and not rendered and so
are points where the (inverse) depth map has a large gradient since these are points where depth reconstruction is
inaccurate. Figure (1e) shows the results of a Canny edge detector applied to the (inverse) depth image highlighting
potential occluding contours.

Figure (8) shows the four reconstructions aligned using the estimated camera motions. The scene has more
information than can be seen from any one camera.

5 Discussion and Future Work

We have presented a new method for recovering motion and structure from stereo image sequences. The method
gives good motion estimates with errors less than 5% but this is not a zero mean error and there is a clear bias even
when the focus of expansion (FOE) is inside the �eld of view (FOV). The bias increases when the translation has a
large component parallel to the image plane. This system provides 'where' information but because of the wide �eld
of view and �nite resolution of the camera it does not provide accurate 3D models of the objects in the scene ('what'
information).

While we have shown that this method can give good motion estimates these are only incremental motion estimates.
A full system could incorporate this method as a better estimation stage inside a Kalman �lter or batch global
estimation framework. We have also not dealt with the issue of how to represent the �nal 3D reconstruction. At this
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(a) (b)

(c) (d)

Figure 5: (a) The 14th image in the sequence. (b) The depth map. (c) The mask. We do not render surfaces that
are far from the camera or where the surface is facing the camera with a sharp angle. (d) rendering of the surfaces.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) The 28th image in the sequence. (b) The depth map. (c) The mask. We do not render surfaces that
are far from the camera or where the surface is facing the camera with a sharp angle. (d), (e),(f) rendering of the
surfaces.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: (a) The 49th image in the sequence. (b) The depth map. (c) The mask. (d), (e),(f) 3D renderings of the
surfaces. In this view a bit of the translation stage can be seen (top left quadrant).
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Figure 8: Euclidean reconstruction of the extended scene created by aligning four separate reconstructions into one
coordinate system using the recovered camera motion. The small spheres show the camera path. The large spheres
show the camera positions of the four Euclidean reconstructions.
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point we draw multiple 21
2
D surfaces. Better methods are described in [5]. The idea of using multiview geometric

constraints to merge 3D reconstruction from a stereo sequence pair can also be applied in systems using feature
correspondences.
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