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Abstract

Recent developments in microfabrication and nanotechnology will enable the

inexpensive manufacturing of massive numbers of tiny computing elements with

sensors and actuators. New programming paradigms are required for obtaining

organized and coherent behavior from the cooperation of large numbers of un-

reliable processing elements that are interconnected in unknown, irregular, and

possibly time-varying ways. Amorphous computing is the study of developing

and programming such ultrascale computing environments. This paper presents

an approach to programming an amorphous computer by spontaneously orga-

nizing an unstructured collection of processing elements into cooperative groups

and hierarchies.

This paper introduces a structure called an AC Hierarchy, which logically

organizes processors into groups at di�erent levels of granularity. The AC hier-

archy simpli�es programming of an amorphous computer through new language

abstractions, facilitates the design of e�cient and robust algorithms, and simpli-

�es the analysis of their performance. Several example applications are presented

that greatly bene�t from the AC hierarchy. This paper introduces three algo-

rithms for constructing multiple levels of the hierarchy from an unstructured

collection of processors.
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1 Introduction

Amorphous computing is the study of developing and programming ultrascale computing

environments [1]. Recent developments in microfabrication and nanotechnology will enable

the inexpensive manufacturing of vast numbers of tiny computing elements with integrated

sensors and microactuators. These sensor-rich processing elements will be distributed and

embedded in structures to create intelligent and responsive environments, such as bridges

with load sensing capabilities or smart surfaces that monitor the weather. In such ul-

trascale environments, the elements are unreliable, interconnected in unknown, irregular,

and possibly time-varying ways, and are constrained to interact locally. New programming

paradigms are required for obtaining organized, fault-tolerant, and coherent behavior in

such environments.

Biological systems indicate that hierarchies are a useful method for controlling vast

numbers of processing elements, for example cells. Cells specialize for di�erent functions

that together perform a uni�ed task within a tissue. Tissues themselves specialize and

cooperate within an organ. Finally, organs collaborate to form complex systems, such as

the digestive system. At each level the group can be viewed as single entity accomplishing

a particular task.

This paper presents an approach to programming an amorphous computer by sponta-

neously organizing the unstructured collection of processing elements into a hierarchy of

cooperative groups, called an AC hierarchy. The AC Hierarchy logically organizes the pro-

cessors into groups at di�erent levels of granularity. Each group can operate as a single

entity where the group members collaborate on speci�c tasks. The AC hierarchy provides

bounds on the communication latency within a group, for e�cient member collaboration,

and bounds on communication between groups at the same level. It also provides physical

bounds on the size of a group and the proximity of logically close groups. These properties

make the AC hierarchy a suitable programming abstraction for implementing a variety of

applications, like naming and routing, factoring and mergesort, and distributed sensory

control.

As demonstrated by these applications, the AC hierarchy provides a useful programming

abstraction for aggregated computation and communication. It simpli�es programming by

providing high-level abstractions for partitioning a problem into tasks and multiple levels of

tasks, while hiding the details of how a group accomplishes the task. The hierarchies can be

used to design e�cient resource allocation and to specialize regions within the amorphous

computer for di�erent computational or sensory tasks. Elements can be aggregated to

increase computational power or increase robustness, which is particularly important in

such an unreliable environment. The AC hierarchy bounds provide important timing and

locality guarantees which simplify the design and analysis of algorithms using the hierarchy.

This paper also presents three algorithms for constructing AC hierarchies. The algo-

rithms are suited to the amorphous computing environment and are self-assembling, scal-

able, fault-tolerant, have low message overhead and rely only on local interactions. The �rst

two algorithms, overlapping-clubs and tight-clubs, construct the �rst level of the hierarchy

on the unstructured processors and take advantage of the local broadcast. In addition to AC
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hierarchy properties, overlapping clubs provide geometric bounds and tight clubs provide

groups with high fault tolerance. The third algorithm, tree-regions, can be applied recur-

sively to create higher levels of the hierarchy. It uses spanning trees to generate maximal

groups and uses the internal tree structures for group coordination.

The remainder of this paper proceeds as follows: Section 2 describes the important

characteristics of an amorphous computer. Section 3 introduces AC hierarchies, provides

three example applications and discusses the bene�ts of using an AC hierarchy paradigm

for programming an amorphous computer. Section 4 describes the implementation of an

AC hierarchy using the three algorithms mentioned above and presents an analysis of their

properties. Section 5 presents related work. Finally, section 6 o�ers conclusions and points

to future work in developing new construction algorithms and a language interface for the

hierarchies.

2 Amorphous Computing Properties

The unique features of an amorphous computer, like the potential for embedded appli-

cations, inexpensive fabrication, fault-tolerance and scalability, arise from the following

underlying assumptions.

� Individual processors are identical and mass produced. This allows us to manufacture

vast quantities of processors cost e�ectively. Each processor has a random number

generator to distinguish itself from others.

� Processors possess no a-priori knowledge of their location, orientation, or neighbors'

identities. Given the sheer number of elements, providing processors such information

is extremely expensive. Individual processors must discover their layout and position

information.

� Processors operate asynchronously although they have similar clock speeds. An amor-

phous computer does not assume that the processors are synchronized because it may

be di�cult or ine�cient to guarantee synchronization in certain physical environments.

� Processors are distributed densely and randomly. The random distribution is uniform.

� Processors are unreliable. In order to manufacture large quantities cheaply we can-

not a�ord to build and test individual processors. Furthermore the sheer number of

processors inevitably results in failures. Fault tolerance is achieved via redundancy

rather than relying on hardware perfection.

� Processors communicate only locally and do not a have precision interconnect. Given

the vast numbers of processors, it is not cost e�ective to connect processors using

wires. Rather the processors communicate with physically nearby neighbors through

a local broadcast mechanism, although the speci�c mechanism is dependent on the

substrate. The communication radius is assumed to be much smaller than the total

area occupied by the amorphous computer.
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       If A and B broadcast a message
at the same time, C will detect a collision= communication radius

C
BAr

r

Figure 1: Communications Model

This paper assumes the following additional constraints regarding the physical charac-

teristics of an amorphous computer.

1. The amorphous computer exists on a planar 2D surface. This assumption is made to

simplify the analysis. The algorithms presented also work in a 3D space.

2. The communications model assumes that all processors have a circular broadcast of

approximately the same �xed radius and share a single channel. As a result, collisions

may occur when two processors with overlapping broadcast areas send messages si-

multaneously. The receiver can detect a collision, although the sender can not detect

a collision. This is illustrated in �gure 1.

3 Hierarchies as an Organizational Principle

This paper presents an approach to programming an amorphous computer by organizing the

unstructured collection of processing elements into an AC hierarchy. This section presents

the de�nition of an AC hierarchy and discusses several logical and physical properties that

can be derived from the de�nition. Three motivating applications are discussed - naming and

routing, mergesort and distributed vibration control. As demonstrated by these examples,

the hierarchical abstraction simpli�es programming an amorphous computer and facilitates

the analysis of amorphous computing algorithms.

3.1 Amorphous Computing Hierarchy

An AC Hierarchy is an ordered sequence of levels. A level is a collection of groups and an

associated means of inter-group communication. In a graph representation, Gn, of a level

n, a group is a node and an edge represents communications between adjacent groups. A

group at level n is a connected component of the level n� 1 graph, Gn�1, with a speci�ed

constant diameter bound, Dn. Groups at level n are considered adjacent if any of their

members were adjacent in Gn�1. Formally, let un denote a group at level n, then
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Level 0 Group (processor)

Level 1 Group

Level 2 Group

Level 0 Edge

Level 1 Edge

Level 1 Graph

Level 2 Graph

Level 2 Edge

Figure 2: An AC Hierarchy

Every u0 is a processor.

A level 0 edge (u0,v0) exists i� processors u0 and v0 are within each other's local

broadcast region.

Group un is a connected set of level n � 1 groups with a diameter bounded by Dn

level n� 1 edges, all internal to un. Groups need not be disjoint.

A level n edge (un; vn) exists i� there exists an edge (xn�1; yn�1) such that xn�1 2 un
and yn 2 vn. Edge (un; vn) must be constructed by using only level n� 1 nodes that

are members of un or vn.

A level n is said to have coverage if every level n � 1 group is a member of at least

one level n group. If level n has coverage and Gn�1 is a connected, then Gn will also be

connected. This connectivity property is useful for many applications, such as distributing

global information. An AC hierarchy where every level has coverage is said to be complete.

Figure 2 illustrates an example of an AC hierarchy.

An important property of an AC hierarchy is the Bounded Edge Property which states

that the number of processor hops required to traverse an edge at any level has an upper

bound. This follows directly from the diameter bound on groups and the constraint on

edges to use only nodes that are members of the groups. At level 0 the maximum number

of processor hops on an edge is clearly 1. The bound at level n is denoted by Bn, where

Bn =
Q

n

i=0(2Di + 1) (see proof in Box 3).

The physical nature of the amorphous computer combines with the Bounded Edge prop-

erty to produce some interesting results:

� The physical distance associated with any level n edge is bounded by a

constant Pn: The physical distance associated with an edge between two groups is

the maximum distance from any processor member of one group to any processor

belonging to the other group. A processor's broadcast range is �xed, so Pn = Bn � r.
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Bounded Edge Property

Let E(Gn) be the set of all level n� 1 edges in the graph Gn.

Let j(un; vn)j represent the maximum number of processor hops that may be required to

traverse the edge (un; vn). More precisely, j(un; vn)j denotes the maximum over the lengths

of the shortest paths between all pairs of processors in un and vn, measured in G0 restricted

to the processors in un [ vn. Clearly j(u0; v0)j is 1.

For any level n, en denotes the longest edge (in terms of processor hops) between groups at

that level.

en = max
e2E(Gn)

jej: (1)

Let �(un) denote the diameter of a group un measured in processor level hops. In other

words �(un) is the maximum number of processor level hops required for any two processors

within un to communicate.

Then, for an arbitrary edge (un; vn) in Gn,

j(un; vn)j � �(un) + �(vn) + en�1

� Dnen�1 +Dnen�1 + en�1

= (2Dn + 1)en�1

So,

en � (2Dn + 1)en�1

= (2Dn + 1)(2Dn�1 + 1) : : : (2D1 + 1)e0

= (2Dn + 1)(2Dn�1 + 1) : : : (2D1 + 1)

since at level 0 the longest edge is 1 processor hop.

Therefore, an edge at level n is at most Bn processor hops long, where

Bn =
nY

i=0

(2Di + 1)

Figure 3: Bounded Edge Property
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� The area occupied by any level n group is bounded by a constant An: As a

result of the bounded diameter Dn of a group and the bound Pn on edge distances,

the group cannot cover an area larger than a circle with a radius Dn � Pn�1.

� The number of processors in any level n group is bounded: Since proces-

sors occupy space and are assumed not to overlap on a plane, this property follows

immediately from the previous one.

3.2 Example Applications

Ultimately, an AC hierarchy is really an abstraction of an amorphous computer that sim-

pli�es high level programming. It provides logical relationships between the processors

that facilitate implementing algorithms already designed for other architectures. The phys-

ical properties emphasize the connection between the geometry of the distribution of the

processors and programming abstractions induced by the AC hierarchy.

These properties make it possible to easily and e�ciently implement several applications

on an Amorphous Computer. In addition, hiererachies form a natural way of decomposing

many problems. This section presents three motivating examples of applications using an

AC hierarchy.

Naming and Routing:

The hierarchical organization provides a natural addressing scheme for both groups and

processors. This approach is analogous to the post o�ce naming paradigm, where the region

in which the entities exist is partitioned into a hierarchy of localities - homes, towns, states,

countries. These entities are addressed by a list of containing region names in the post o�ce

hierarchy. Similarly, a globally unique identi�er for a group can be constructed from the

sequence of its nesting groups' identi�ers starting from the top level. This organization can

be used to generate both a global naming scheme as well as a relative one. In this context,

edges reect physical distances between the named entities. When comparing two names,

the length of the matching pre�xes between them indicates the physical distance between

the processors they represent.

Certain routing schemes, such as area routing [11], use organizations with properties

similar to the AC Hierarchy properties. Area routing uses a hierarchy of areas, where

the name of a processor is the sequence fAn; : : : ; A1g of areas at di�erent granularities to

which it belongs. The groups in the hierarchy correspond to these areas. Edges between

groups are similar to edges between areas. Routing between two processors consists of two

phases. In the �rst phase of routing, a group routes messages to a designated sibling, and

this sibling delivers the message at the next higher level. This continues until the message

reaches a group common to both the source and destination. In the second phase, the

message is routed \down" the hierarchy to the destination in a manner analogous to the

�rst phase. The bene�t provided by the AC hierarchy is the simplicity of the implementation

of area routing on an amorphous computer. The �xed communication bounds at each level

guarantee that the routing tables that are stored at each group are not too large.
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Divide and Conquer:

For a divide and conquer algorithm such as mergesort, the hiererachy provides a simple

and e�cient framework for distributing the problem (i.e. allocating processing resources)

and combining answers. Groups in the hiererachy can be treated as computational units, so

that mergesort can be invoked on a group. A group can partition the sorting task amongst

its members and merged the results. Below is pseudo-code for mergesort expressed in terms

of a method on a group. In this implementation, the array of integers to be sorted is stored

in the group's state.

// inherited state:

// Members = list of members

group MergeSortGroup {

// state

IntegerArray my_ints

// methods

void sort () {

if (expected_compute_time(my_ints) < time_to_distribute_problem_to_members)

quicksort()

else

for all members in this.Members, in parallel

{

member.set_my_ints(sublist)

member.sort()

}

merge_member_lists() // set my_ints to the merge of members my_ints

}

}

The programmer can use the abstraction without worrying about the intimate details

of implementation of coordinated group behavior. A language abstraction built on top of

the hiererachy enables one to readily de�ne and invoke operations on groups of processors.

The implementation of coherent group behavior can be accomplished via a group leader

that coordinates and distributes the subtasks to member groups. Through this leader, the

group can maintain state. The bounds on communications and groups sizes allow e�cient

implementations of coordinated group behavior.

The number of subgroups and the resources of each one determines how the group

partitions its task. In order to program an e�cient algorithm, the programmer needs an

estimate of the cost of operations and intra-group communications. In this example, a

group compares the cost of distributing the subtasks based on the cost of the edges to the

cost of computing it in-place in order to determine whether additional recursion is required.

A more sophisticated sorting routine may vary the branching factor and the sublist sizes

based on detailed knowledge of its members.
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Figure 4: Information Flow for Controlling a Beam

Factorization and primality testing are two examples of divide and conquer algorithms

that can be mapped to the hierarchy in a similar way. The cost of building the hierarchy

can be amortized over several executions of such algorithms. In general, divide and conquer

algorithms with balanced trees can be implemented e�ciently in a straightforward manner.

Sensory Input Collection and Distributed Control:

Distributed control of physical structures is a prime motivation for the development of an

amorphous computer. When equipped with sensors and actuators, the myriad amorphous

computing elements have an immense potential for distributed sensory control. Proces-

sors accumulate sensory input and use actuators to control the property of interest. The

distributed control problem, where control decisions are based on only a subset of all the

sensory information, is not well understood.

Hall, Crawley, How and Ward show in [6, 8] that an e�ective approach to controlling

a sti� material (e.g. maintaining a particular shape) in a distributed manner is to build a

hierarchical controller. They describe a two level hierarchical control system. The lower level

controllers control localised regions of the material and report summarised \sensor readings"

to the higher level (there are also variants where the lower level controllers will collaborate

with immediate neighbours before reporting a summarised reading to the higher level). The

higher level controller in turn uses a set of interpolation functions to estimate the shape of

the entire beam from the summarised readings, and then makes actuation decisions based

solely on that shape estimate. The key insight in their approach is that higher spatial

(ie. modal) frequencies in sti� materials have localised extent, and so can be controlled

e�ectively using only information from localised sensors. Low spatial frequencies have much

larger (non-localised) extent and so controlling them e�ectively requires sensor information

from the entire surface. Roughly speaking, the lower level controllers are responsible for

controlling the higher frequency disturbances while the upper level controller responds to

the lower frequencies.

Figure 4 illustrates the ow of sensory input up the hierarchy and actuation commands

down the hierarchy for controlling a 1-dimensional beam. The sensors report their displace-

ment and velocity hd; vi to the lower level of the hierarchy. Each lower level node computes

a new value h �d; �vi, based on its sensors' readings, the interpolation functions, the beam

properties (such as mass, sti�ness) and the control law. The lower level controllers then

8



send the summarised readings, h �d; �vi, to the higher level of the hierarchy. The higher level,

in turn, computes a global actuation vector, �A, and sends to each lower level node, its

corresponding subvector �Ai:::j . Each lower level controller computes a separate response A

for each of its actuators based on the lower level control law. The signal sent to the kth

actuator is Ak + �Ai+k, which is the addition of the global and local actuation commands.

Below is pseudo-code for controlling lower and higher level groups.

group Lower_Level { // state ProcessorArray sensors // an array of

level 0 members that have sensors ProcessorArray actuators // an

array of level 0 members that have actuators Vector Dbar, Vbar, A

IntegerArray D, V

// methods

void compute_Dbar_and_Vbar() {

for all sensors i, in parallel

D[i] = sensors[i].displacement()

V[i] = sensors[i].velocity()

Dbar,Vbar,A = control_law(D, V, beam_properties, interpolation_function)

for all actuators i, in parallel

actuator[i].apply(A[i]) // apply low level actuation command

}

void affect_actuator(Vector Abar) {

for all actuators i, in parallel

actuator[i].apply(Abar[i]) // apply high level actuation command

}

}

group Higher_Level {

// state

Vector Abar

// methods

void start() { // code entry point

for all Lower_Level members i, in parallel

member.compute_Dbar_and_Vbar()

// read Dbar,Vbar from members and compute response

compute_Abar(beam_properties, interpolation_function)

for all Lower_Level members i, in parallel

member.affect_actuator(Abar[i])

pause(constant) // compute at regular intervals

start()

}

}

An AC Hierarchy can be used to implement such a hierarchical controller, although there
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are additional considerations. Ordinarily, the �rst step in setting up a hierarchical controller

is to choose ng, the number of summarised sensor readings, h �d; �vi, that will be passed to the

higher level controller. Small values of ng will increase the (undesired) coupling between

the high and low level controllers, while values that are too large will make the actuation

computation prohibitive. (The number of required arithmetic operations is proportional

to ng
2.) In an AC Hierarchy, the worst-case computation speed of a group is inversely

proportional to its spatial extent1. Since it is critical to keep the computation time of

each controller low, the choice of ng also places an upper bound on the spatial extent over

which the amorphous hierarchical controller has authority. As a result multiple high level

controllers may be required to control the entire area of the processors.

Once an AC Hierarchy has been constructed, two levels, h and l, are chosen for the

groups that will simulate the higher and lower level controllers. The constraints governing

those choices are that the number of level l groups in each level h group must be at least ng
and that each group must be able to compute its actuation responses faster than the critical

response time for the controller it is simulating. The critical response time for a controller

is inversely proportional to the highest spatial frequency over which it has authority and

also depends on the physical properties of the beam material. The highest spatial frequency

that a level l group can e�ectively control depends on the number of its sensors and their

placement, while that of a level h group is determined by ng. Each level h group will

independently try to control its region with a hierarchical controller.

At this stage the controller is setup and ready to be exercised. Each level l group collects

its sensor readings, and computes both the local response and the aggregated reading. The

aggregate is routed to its containing level h group, while the local responses are routed to its

actuators. When the level h groups receive all the aggregates from their level l subgroups,

they compute the global response, and route to each level l subgroup the corresponding

segment of the response. Upon arrival of a segment, a level l group routes its components

to the corresponding actuator. The success of the two-phased actuation (as opposed to

computing the sum of responses and applying it once) depends heavily on the light coupling

of the two levels' controllers. Some approaches to reducing the coupling between the lower

and higher level controllers are discussed in [6]. Increasing the number of levels in the

hierarchical controller without sacri�cing its e�ectiveness is a non-trivial task. One of the

crucial obstacles would be the decoupling of the controllers at the di�erent levels. Other

multilevel approaches to distributed control are either not as e�ective as that of Hall et

al. or tend to require non-local sensor readings, thereby making them unsuitable for an

amorphous computer.

3.3 General Bene�ts

The examples mentioned above illustrate several important bene�ts provided by the AC

Hierarchy. Speci�cally, the AC Hierarchy

1Computation on a group, say at level n, may rely on communication among its level n � 1 member

groups. So if message latencies within the group are large because of widely separated members, then the

computation latency of the group is also potentially large.

10



Simpli�es programming of an amorphous computer

Groups as computational units: In the sorting example, although the actual computa-

tions (e.g. comparisons of list elements) are performed by the individual processors, the

sorting program never has to address them directly. The group metaphor provides a useful

programming abstraction for decomposing tasks without concern for the actual details of

how the group coordinates to act as a unit.

In order to support this abstraction, groups must have a means of coordinating behavior

and for passing messages between the groups. The coordinated group behavior can be

implemented by choosing a group leader or by consensus. Inter-group communication can

be easily implemented recursively in terms of lower level group communications.

Partitioning tasks across levels: In the sensory and actuation example, the �rst level

implements a localized algorithm for estimating new actuation values, while the second

level runs a global algorithm that attempts to stabilize the overall actuation levels. The

abstraction allows the programmer to easily express di�erent algorithms for di�erent levels

of the hierarchy.

Facilitates analysis of algorithms

Because the logical organization reects physical proximities of the processors, the per-

formance of algorithms expressed in terms of the AC hierarchy can be readily analyzed.

The bounds on group diameters provide estimates on the time taken to coordinate a group

activity. The maximum distance associated with edges at a speci�c level provides an es-

timates on communications costs between groups. These two factors help determine the

expected performance of algorithms.

Increases E�ciency and Robustness

Hierarchies are a commonly used structure to increase the e�ciency of a particular

task. For example, routing schemes often use hierarchies to minimize storage requirements

of routing tables. In the sensory example, control is based on detailed local information

and more coarse knowledge of distant data in order to improve response times.

Aggregating processors to act as a unit can increase the reliability of the unit above

that of a single processor. Robustness is often achieved through replication of tasks (e.g.

mergesort) or data (e.g. routing tables) amongst groups.

4 Construction of an AC Hierarchy

This section presents two algorithms for constructing the �rst level of an amorphous comput-

ing hierarchy, and a third algorithm that constructs higher levels of the hierarchy. These

algorithms satisfy several requirements that ensure their applicability to an amorphous

computing environment. First, they are both e�cient and scalable, e.g. they can quickly
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DO
Leader Election: Processors compete for leadership. A symmetry-breaking

mechanism is used to determine the winner.

Recruiting: New leaders recruit their neighbors. Processors that are re-

cruited by a leader become members of the leader's group and stop competing

for leadership.

UNTIL
Termination: All processors are either leaders or group members. Individual

processors must be able to detect termination.

DO [optional]
Redistribution: Processors transfer from larger groups to smaller groups.

This phase attempts to reduce the disparity in sizes between groups at the

same level.

Figure 5: Parallel Group Formation

organize trillions of processors. Second, the construction of the hierarchy is spontaneous,

and uses identical processors with no a-priori knowledge about the environment, e.g. no

global ids. Third, the communication primitives required rely only on broadcasts between

neighboring processors. Finally, these algorithms are tolerant of message loss. The algo-

rithms presented in this section also include settable parameters (e.g. for diameter bound),

and guarantee coverage. In addition, the algorithms attempt to minimize communication

interference and produce robust groups that can tolerate member failures.

The algorithms introduced in this section follow a basic structure for parallel formation,

illustrated in Figure 5. All processors vie for leadership, and once elected, they recruit

members. The algorithm terminates when all processors are either leaders or members of

groups. The remainder of this section �rst introduces the overlapping clubs and tight clubs

algorithms for constructing the �rst level of the hierarchy (Section 4.1), and then introduces

the tree regions algorithm for establishing higher levels (Section 4.2).

The code presented in this section executes on an individual processor. A system level

thread listens for incoming messages and places them on a bounded queue. A single user

thread executes the program, sends messages, and retrieves incoming messages from the

queue. Messages are either broadcast or peer-to-peer. In both cases, the source identi�er is

included in the message. With peer-to-peer communications, the message is pre�xed with

a destination identi�er.

12



4.1 Establishing the First Level

The combination of a dense population of processing elements and a broadcast mecha-

nism for communications creates an ine�cient environment for a point-to-point messaging

mechanism. Unless processor behavior is coordinated, the potential for communications

interference between neighboring processors is large. An important goal of the �rst level of

the hierarchy is to reduce the interference problems between neighboring processors.

The algorithms for constructing the �rst level groups presented in this section do not

depend on point-to-point communications between the processors. Rather, the algorithms

only use the substrate's local broadcast mechanism for message passing. Once the algo-

rithms form the �rst level processor groups, an e�cient point-to-point message protocol

between the groups can be established, where group behavior is coordinated in order to

reduce communications interference between processors.

In addition, the algorithms do not require globally unique identi�ers. Rather, each

processor chooses an id that is locally unique within a two hop radius. This can easily be

accomplished using a random number generator and a simple correction scheme that relies

only on local communication.

A club is a group of processors at the �rst level of the group hierarchy. The rest

of the section introduces two algorithms, overlapping-clubs (Section 4.1.1) and tight-clubs

(Section 4.1.2) for constructing cooperative groups at the �rst level.

4.1.1 Overlapping Clubs

The �rst algorithm produces clubs that are allowed to share processors, i.e. a processor

may belong to more than one club, and there is an intra-group communication latency bound

of 2 processor hops. Leader election uses random numbers selected from some statically

determined range R. All processors start out as potential leaders. Each processor chooses

a random number once and uses this as a \delay" after which it can become a leader.

When a processor becomes a leader, it broadcasts that fact, which causes all processors

within \earshot" to stop vying for leadership. These processors become members of the

leader's club. Figure 6 describes the details of the algorithm, and Figures 7 and 8 illustrate

the progression of the algorithm. The idle period is a �xed number less than R, hence

termination is guaranteed after time R. Each processor chooses R based on the number of

its neighbors. Termination implies that all processors belong to a group and hence coverage

is guaranteed.

Clearly, the extent of each club formed is determined by the area covered by the in-

trinsic broadcast mechanism of each processor. Since the followers cannot become leaders

themselves, each club should contain exactly one leader. This guarantees a minimum sep-

aration of a broadcast radius between leaders and therefore reduces the overlap between

neighboring clubs. In Figure 8, no leader is within the broadcast radius of another leader.
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integer R ; range for choosing random numbers

integer T ; number of trials (variant 2)

boolean leader, follower = false

procedure MAIN()

1 OVERLAPPING CLUBS

procedure OVERLAPPING CLUBS ()

1 r := random(1,R)

2 while (not follower and not leader)

3 if (r > 0)

4 decrement r by 1

5 if (not empty(msg queue))

6 if (pop(msg queue) = \recruit")

7 follower := true

8 else

9 leader := true

10 broadcast(\recruit")

11 if (follower)

12 listen for other leaders until timeout

Figure 6: Algorithm for Overlapping Clubs

A leadership conict occurs when two or more processors less than a broadcast radius

apart declare leadership at the same time. This violates the minimum separation between

clubs. The conict results from either the inherent asynchronicity of the processors or

because two processors choose the same random number. If occasional violations of the

minimum separation can be tolerated, then R can be chosen to minimize the probability

of conicts. In that case, the time required for the algorithm is simply R. If minimum

separation between leaders is required, it can be achieved by running multiple rounds of the

algorithm. After time R, leaders can detect conicts by conferring with their neighbors. If

there is a conict, the conicting leaders and their members run another round of overlap-

ping clubs. The algorithm is similar to the maximal independent set algorithm described

in [9] and has similar expected time complexity of O(log n), where n is the total number of

processors. However, overlapping clubs is well suited for a broadcast environment because

of its low message overhead and low synchronization requirements.

Overlapping clubs produces valid groups even in if message loss occurs. If a processor

hears a collision, then it can assume that at least two of its neighbors declared leadership,

and therefore it stops competing for leadership. During leadership conict resolution, it

determines who the leaders are. If a processor is not aware of the a message loss, then it

may continue to vie for leadership, and possibly conict with one of its neighbors. Again,

this situation will get resolved.
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Figure 7: This �gure shows leaders forming clubs.

The circles circles indicate the area within \earshot"

of the leader (at the center of the circle). All pro-

cessors within this area are recruited as members of

the leader's club.

Figure 8: This shows a close-up of the �nal clubs

formed. Processors with a darker shade of gray

belong to more than one club because they are in

the overlapping region of several leaders broadcast

range.

Features and Properties: The clubs produced satisfy the level one requirements of an

AC hierarchy. The intra-group communication bound is at most two hops. Each club leader

can communicate with all its members in one hop. An edge requires at most three hops

to deliver messages between the leaders. An e�cient implementation of an edge is to use

only the processors in the overlap region to relay messages between the clubs. Such an edge

requires at only two message hops between the leaders. Leaders chosen during the group

formation phase can act as coordinators for the group activities. They are a good candidate

for coordinating behavior because they can communicate directly with all members of the

club. However, if the leader fails, the club may become disfunctional because members may

no longer be able to communicate with each other. If a leader fails but the club remains

connected, a new leader can be elected. If the club is disconnected, then members elect

leaders to form new clubs. The likelihood of a club disconnecting decreases as the number

of club members increases.

In addition to the AC hierarchy properties, the overlapping clubs have several unique

characteristics:

� Bounded Degree: There is a constant upper bound of 37 on the degree (i.e. number

of neighbors) of each club. The bound is derived from the densest packing of circular

broadcast regions in a plane, with a minimum separation of a radius between their

centers.

� Total Number of Clubs: There is a statically determined upper bound on the total

number of clubs. This number can be derived from the maximal packing of circles in

a plane and the area of the plane.
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Figure 9: Result of the �rst phase of the tight club
algorithm.

Figure 10: Result of the second stage of the tight

club algorithm.

The proofs for these properties are given in the appendix. As a result of these unique

properties, there is a means for measuring the interference between clubs and determining

a robust message protocol for the edges between clubs. In addition, there is an estimate of

the size and complexity of the level one graph. This aids in the analysis of algorithms built

on top of overlapping clubs.

4.1.2 Tight Clubs

A second algorithm, tight-clubs, addresses issues of fault-tolerance by constructing clubs

that are more tightly coupled. The clubs formed by overlapping-clubs have a single point

of failure, namely the leader. The leaders act as the loci of communications because they

can communicate directly with all member of the group. If the leader fails, the members of

the club could potentially become disconnected internally, and the club would no longer be

able to function as a unit. Also, even if the members are still connected, there may not be

a single member that can communicate directly to all other members. Thus, the leader is

not easily replaceable in the event of faults.

The tight-clubs algorithm produces groups of processors where all members of the group

can communicate with each other directly. In addition, each element is required to be a

member of exactly one group. The tighter coupling between the group members eliminates

the dependency and associated bottlenecks of having one group leader for intra-group com-

munications. Any member can be the leader and the failure of individual members does

not a�ect the connectivity within the club.

Phase I - Construction of Tight Clubs: The �rst phase uses a greedy algorithm

to construct tight-clubs. Processors use their locally unique ids to determine leadership.
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procedure MAIN()

1 CHECK-IDS

procedure CHECK-IDS()

1 if (my id < lowest id in active) ; active Initially set to all neighbors

2 leader := true

3 RECRUIT()

4 else

5 LISTEN-FOR-MSGS()

procedure RECRUIT()

1 while (potential not-empty)

2 low id := lowest id in potential

3 send(\recruit") to low id

4 wait for msg from low id

5 recruit nbrs = pop(msg queue) ; msg is false if low id is already recruited

; otherwise it is the list of low id's neighbors

6 if (recruit nbrs 6= false) ; ensure that all club members can communicate directly

7 potential := potential \ recruit nbrs ; potential initially set to all neighbors

8 broadcast(\inactive", my id)

9 DONE()

procedure LISTEN-FOR-MSGS()

1 wait for msg

2 if (msg = \recruit")

3 broadcast(\inactive")

4 send(neighbor list) to msg source id

5 DONE()

6 else if (msg = \inactive")

7 active := active - msg source id

8 CHECK-IDS()

procedure DONE()

1 while (active not-empty)

2 wait for msg

3 if (msg = \recruit")

4 send(false) to msg source id

5 else if (msg = \inactive")

6 active := active - msg source id

Figure 11: Tight Club Algorithm
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Processors whose ids are local minima declare leadership and greedily recruit neighboring

processors. Figure 11 illustrates the steps involved in the �rst phase of the tight club

algorithm. Initially, all processors are active. Each processor then checks whether it has

the lowest processor id among its active neighbors. If so, the processor becomes a leader

and attempts to recruit its active neighbors in the order of increasing id values. The leader

recruits a processor only if it can directly communicate with all current members of the

tight club. When a processor is recruited to a club, it becomes inactive and noti�es all its

neighbors of this fact. Active non-leader processors listen to messages and wait either to be

recruited or until they are the smallest id among their active neighbors. In the latter case,

they begin a new club themselves. Figures 9 shows the tight clubs formed as a result of the

�rst phase.

Termination is guaranteed because at each step a local minimum exists, which implies

that at least one processor is removed at every step. Hence coverage is also guaranteed.

The worst case running time is O(d), where d is the diameter of the amorphous computer

in terms of processor-to-processor message broadcast hops.

Unlike overlapping clubs, the tight-club algorithm is deterministic because it does not

rely on choosing random values. On the other hand, the algorithm is scalable because it

does not require global identi�ers. The algorithm depends only on the local uniqueness of

randomly chosen processor id. The message overhead is small because processors keep track

of their neighbors' state in order to determine when they have become local minima. The

algorithm relies on acknowledgments to account for message loss of point-to-point recruiting

messages. In the case where a processor is waiting for a single neighbor to become inactive,

it can occasionally poll the neighbor to verify that progress is taking place.

Phase II - Redistribution of Processors: As can be seen from Figure 9, the �rst

phase of the tight-club algorithm produces many clubs that are small and may even contain

only a single member. The goal of the second phase of the algorithm is to increase robustness

by increasing the number of members in small clubs whenever possible. The second phase

redistributes processors from larger clubs to smaller clubs to reduce the disparity in club

sizes. At the end of the second phase, a locally optimal distribution of members is achieved.

Locally optimal implies that the size di�erence between any pair of neighboring clubs is no

more than one if there are members that can be transferred.

Features and Properties: Tight clubs provide all the properties required for hier-

archies. Each processor can communicate directly with each other processor in its club.

Because of the tight coupling, there are many ways to e�ciently coordinate the group be-

havior. For example, within a group, di�erent members can be coordinators for di�erent

activities, or the group can operate by consensus. Any processor can assume the role of a

leader, and consensus protocols are simple to implement. In the case of failures, small clubs

can attempt to recruit members in a manner similar to the re-distribution phase to increase

their robustness. The edge bound between any two members of di�erent groups is at most

three hops.
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4.2 Establishing Higher Levels of the Hierarchy

This section introduces tree regions, an algorithm for constructing groups of processors at

di�erent levels of granularity. The algorithm takes advantage of the coordinated group

behavior and inter-group communication capabilities that are provided by the immediately

lower level to construct processor groupings. The groups formed by this algorithm also

conform to the requirements of an AC Hierarchy, and therefore can be applied recursively

to create multiple levels.

Tree regions generalize techniques from overlapping clubs and tight clubs to form higher

levels of the hierarchy. The leader election is implemented using the countdown mechanism.

The main di�erence between tree regions and the previous algorithms is in the recruiting

phase. The algorithm includes a parameter h that determines the diameter bound of the

groups formed. When constructing level n, a newly elected leader not only recruits its

immediate level n�1 neighbor groups but also recruits neighboring groups up to a distance

h away. The distance is measured by level n � 1 group hops. The mechanism used for

recruiting neighbors resembles growing a spanning tree.

The construction of level n groups proceeds as follows. Each level n� 1 group chooses a

random number from the range 1 to R and begins to count down. If it reaches zero without

being interrupted, the group becomes a tree root. It then seeds a tree of �xed height h by

recruiting its neighbors as children. If a group receives a recruiting message before counting

down to zero, it becomes a child of the sender. The child group then tries to recruit its

immediate neighbors as its children, unless it is at a depth h from the root. This guarantees

that the trees are of bounded height h. Eventually all groups are either recruited to a tree

or have seeded a tree. Figure 12 presents the procedures used by this algorithm for seeding

the tree and recruiting neighbors.

Figures 13 shows the algorithm running on top of overlapping clubs. In this case, the

leaders of the clubs coordinate the club's decision to seed or join a tree. Club members route

messages between leaders of neighboring clubs. The lines connecting club leaders represent

the spanning trees, of bounded height 2, formed by the algorithm. Figure 14 shows the �nal

set of regions and their corresponding trees.

The algorithm can be modi�ed to allow either overlapping or non-overlapping groups.

Thus, the overlapping clubs algorithm is a special case of tree based region growing where

h = 1 and groups are allowed to overlap.

Due to asynchronicity, a several hop message may reach a destination before a single

hop message. Therefore branches do not necessarily grow at the same pace. If a group

chooses the �rst recruiter as its parent, it may not be at the lowest possible depth from

the root. The algorithm allows a member to change both its depth and tree a�liation if

it hears a recruiting message that will reduce its tree depth. The member propagates its

new deoth and new tree a�liation to its children. This improves the distribution of group

sizes. The algorithm uses acknowledgements and exponential backo� to deal with message

loss and collisions.
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integer R ; range for choosing random numbers

integer T ; expected time to create a region/tree

integer MAX H ; maximum height a tree can grow to

integer current h = inf

boolean competing = true

procedure MAIN()

1 r = random(R) * T

2 ELECTION LOOP()

procedure ELECTION LOOP()

1 if (not empty(msg queue))

2 msg = pop(msg queue)

3 if (msg = \recruit")

4 RECRUITED(msg)

5 else if (competing)

6 decrement r

7 if (r = 0)

8 SEED TREE()

9 else ELECTION LOOP()

procedure RECRUITED(msg)

1 if ((msg.h < current h) && (msg.h < MAX H))

2 broadcast (\recruit", (h+1)) ; recruit neighbors for depth h+1

3 current h = msg.h

4 competing = false

5 DONE()

SEED TREE()

1 root := true

2 broadcast (\recruit", 1) ; recruit neighbors for depth 1

3 DONE()

DONE()

1 wait for time out

Figure 12: Algorithm for a Tree based Hierarchy
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Figure 13: Early stage of trees sprouting on top of

overlapping clubs. The tree depth is at most two.
Figure 14: Final level 2 groups formed

In order to ensure proper spacing between trees it is important to prevent trees from

sprouting too close in time and allow trees su�cient time to grow. Let T be an estimate

of the time taken to grow a tree of height h, i.e. an estimate of the time rquired for a

message to travel distance h away. Each group chooses a random number from the range R

and then multiplies it by T . This causes trees to sprout roughly at intervals of time T and

therefore reduce competition. The range R is chosen in a manner similar to overlapping

clubs so as to reduce the probability that a node within distance h of a tree root is also a

root. Hence R is based on the neighborhood size of h hops away. The algorithm is scalable

because it only depends on density and not the total number of processors. Termination is

guaranteed after time R � T , because all nodes will have either been recruited to a tree or

declared themselves tree leaders. Hence coverage is also guaranteed.

Features and Properties: The tree provides an important structure for control, syn-

chronization and gathering/scattering of information within the group. It can be used for

coordinating group behavior. The tree height is restricted to h, therefore the diameter of

the group is bounded by 2h lower level edges. An edge between two groups has a communi-

cation latency from any member of one to any member of the other of at most 4h+1 lower

level hops. Both bounds are subject to node failures. In the case of a fault the tree can

be reorganised to use other lower level edges between members. The likelihood of a group

being completely disconnected by faults is very unlikely.

One unique feature of the groups generated by the tree regions is that there is a bound

of O(Pn�1 �h
2) on the number of processors in the group, where Pn�1 is the upper bound on

the physical distance associated with a lower level edge. This is because the tree grows in a

physical plane and the maximum area it can occupy is the circle of radius Pn�1 � h centered

at the root. Hence, the number of processors in a group grows quadratically in the height

of the tree, as opposed to exponentially.
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5 Related Work

The leader election mechanisms used by the clubs and tree-regions algorithms, are simi-

lar to other parallel algorithms for Maximal Independent Set (MIS) problem described by

Luby[9], and applied to asynchronous networks in [10, 2]. In this case however, the prop-

erties of coverage and low message overhead are more important than obtaining a maximal

independent set. Many synchronous and asynchronous algorithms for generating spanning

trees are described in [10]. [3] presents an algorithm that produces tree based clusters by

using global ids.

Many di�erent papers have suggested aggregation and hierarchies of aggregates as a

possible mechanism for programming and hiding complexity. Swarm [7] presents a hierarchy

based language for simulation environments. Concurrent Aggregates [5, 4] also presents a

language based on aggregates being treated as objects which is to be used to program a

parallel machine. The main di�erence is the spatial nature of the amorphous computer and

the direct mapping between the hierarchy language and the distribution of tasks. The AC

hierarchy preserves locality and allows applications that depend on spatial locality.

6 Conclusion and Future Work

Amorphous computing is a new �eld of study that attempts to identify the principles and

languages for obtaining coherent behavior from the cooperation of massive numbers of

unreliable processor elements connected in unknown and irregular ways. AC hierarchies

provide an important mechanism for structuring an amorphous computer and enabling

aggregated computation and communication. The AC hierarchy provides a good abstraction

for hiding complexity and communication bounds and locality properties for designing and

analyzing e�cient and robust algorithms.

Work is underway to develop a prototype of an amorphous computer. This will allow

us to demonstrate the feasability of the algorithms on actual hardware. The prototype will

incorporate appropriate sensors and actuators to demonstrate sensory applications.

This paper presents only the �rst steps towards programming an amorphous computer.

Additional algorithms will be investigated for generating di�erent hierarchies that achieve

the same goals. We are working on developing the language on top of the AC hierarchy

and supporting group coordination and edge communication primitives, independant of the

algorithm used to construct the groups. The language will be used to map other sensory

applications to the AC hierarchy. Finally, we are simultaneously exploring other mechanisms

used by biological systems to achieve coherent behavior from vast numbers of cooperating

components.
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Appendix A: Physical Properties of Overlapping Clubs

The physical properties of the overlapping clubs presented here depend on the model of

communication - a circular broadcast of �xed radius r in a plane. Many of these geometric

properties can be derived for broadcasts of other shapes as well.
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Figure 15: Hexagonal Packing of Neighboring Leaders

Constant Upper Bound on Degree of Clubs: The overlapping club algorithm guar-

antees that no two leaders are closer than the communication radius r to each other. Ac-

cording to the de�nition of neighbors in the AC Hierarchy, two clubs are neighbors if any

of their members can communicate directly. If two leaders A and B are further than 3r

apart, then all members of A are further than r from all members of B. Hence, A and B

cannot be neighbors. All neighboring leaders of a club A must lie within the circle of radius

3r centered at the leader of A.

The maximum number of neighbors that a club can have is the maximum number of

leaders that can �t within the circle of radius 3r. Restated as a packing problem, the

maximum degree is the maximum number of points that can �t within a circle of radius 3r

such that no two points are closer than r to each other. We know that hexagonal packing

of unit distance r provides the densest packing of these points in a 2D plane. Figure 15

illustrates that at most 37 such points �t within the circle. Therefore, the upper bound on

the degree of any overlapping club is 36.

Statically Determined Upper Bound on Total Number of Clubs: The total num-

ber of clubs in an amorphous computer on a 2D plane can also be expressed as a packing

problem. The upper bound on the total number of clubs is the maximum number of leaders

that can be packed into the plane of a given area such that no two leaders are closer than

r. We know that hexagonal packing with unit distance r is the densest packing of these

points. Then, one can compute the total number of clubs by overlaying a hexagonal grid

on the 2D surface area and counting the number of points on the hexagonal grid.
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