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Abstract

This paper describes a representation of the dynamics of human walking action for
the purpose of person identification and classification by gait appearance. Our gait
representation is based on simple features such as moments extracted from video sil-
houettes of human walking motion. We claim that our gait dynamics representation
is rich enough for the task of recognition and classification. The use of our feature
representation is demonstrated in the task of person recognition from video sequences
of orthogonal views of people walking. We demonstrate the accuracy of recognition on
gait video sequences collected over different days and times, and under varying light-
ing environments. In addition, preliminary results are shown on gender classification
using our gait dynamics features. 1

1Research Support: This research is supported in part by DARPA under contract N00014-00-1-0907.
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1 Introduction

Human gait is an identifying feature of a person that is determined by his/her weight,
limb length, and habitual posture. Hence, gait can be used as a biometric measure
to recognize known persons and classify unknown subjects. Gait can be detected and
measured at low resolution, and therefore it can be used in situations where face or
iris information is not available in high enough resolution for recognition. We have
designed a representation for the dynamics of human gait that facilitates the recognition
and classification of people by their gait.

Gait is defined as “a manner of walking” in the Webster Collegiate Dictionary. We
extend our definition of gait to include both the appearance and the dynamics of human
walking motion. In other words, we consider the appearance of the person, the aspect
ratio of the torso, the clothing, the amount of arm swing, and the period and phase of a
walking cycle, etc., all as part of one’s gait. Johansson [7] had shown in the 1970’s that
observers could recognize walking subjects familiar to them by just watching video
sequences of lights affixed to joints of the walker. Hence, in theory, joint angles are
sufficient for recognition of people by their gait. However, recovering joint angles from
a video of walking person is an unsolved problem. In addition, using only joint angles
ignores the appearance traits that are associated with individuals, such as heavy-set
vs. slim, long hair vs. bald, and particular objects that one always wears. For these
reasons, we have included appearance as part of our gait recognition features.

The challenges involved in gait recognition include imperfect foreground segmen-
tation of the walking subject from background scene, change in clothing of the subject,
and variations in the camera viewing angle with respect to the walking subjects. The
gait dynamics features discussed below will tolerate some imperfection in segmenta-
tion and clothing changes, but not drastic style changes. The view-dependent nature of
our gait dynamics feature representation is removed in a separate paper [13].

In the following sections, we summarize some of the previous work on the per-
ception of gait and computational methods to measure gait, introduce our model-based
gait dynamics representation, apply our representation to recognition and classification
tasks, and suggest future work to improve the representation.

2 Previous Work

Several researchers have concluded that gait is indicative of a person’s gender and iden-
tity. Johansson[7] used lights affixed to joints of a human body and showed observers
motion sequences of the lights as a person walks. The observers were able to identify
gender and, in cases where the observer was familiar with the walking subject, the iden-
tity of the walker. Cutting, et. al.[5] studied human perception of gait using moving
light displays similar to that used by Johansson and showed human person identifica-
tion results [4] and gender classification results[8]. They showed that human observers
could identify gender with approximately 70% accuracy using only the visual cues
from moving light displays.

Given the ability of humans to identify persons and classify gender by the gait
of a walking subject, there have been a few computer vision algorithms developed
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for people identification and activity classification. Cutler and Davis [3] used self-
correlation of moving foreground objects to distinguish walking humans from other
moving objects such as cars. Polana and Nelson[12] detected periodicity in optical
flow and used these to recognize activities such as frogs jumping and human walking.
Bobick[1] used a time delayed motion template to classify activities. Little and Boyd[9]
used moment features and periodicity of foreground silhouettes and optical flow to
identify walkers. Nixon, et. al.[10] used principal component analysis of images of a
walking person to identify the walker by gait. Shutler, et. al. [14] used higher order
moments summed over successive images of a walking sequence as features in the task
of identifying persons by their gait.

The work described in this paper is closely related to that of Little and Boyd [9].
However, instead of using moment descriptions and periodicity of the entire silhouette
and optical flow of a walker, we divide the silhouettes into regions and compute statis-
tics on these regions. We also further study the capacity of our features in tasks beyond
person identification, such as gender classification.

3 Gait dynamics representation

The human gait perception studies by Johansson[7], and Cutting et. al [4][8] used
moving light display, where the only visual cues that observers received were lights
affixed to joints of walking humans. These studies give indications that humans can
use the joint angles to recognize action, identify persons, and classify gender. It would
be interesting to build a human gait recognition algorithm based entirely on joint angles
of a dynamic sequence. However, computing joint angles from video sequence is still
a difficult problem, though several attempts have been made on it [2][15][6]. Solely
using joint angles also ignores the appearance of a person, which may give strong
indications of identity and/or gender of the person. For example, the presence of a
pony tail is a good indication of the gender of the subject. Hence, we advocate using
the whole appearance of a walker rather than just joint angles. An appearance based
gait representation is constrained to be view–dependent. In a separate paper[13] we
show that this constraint can be be removed by synthesizing a walking sequence in a
canonical view using the visual hull constructed from multiple cameras.

We consider the canonical view of a walking person to be that which is perpendic-
ular to the direction of walk. We also assume that the silhouette of the walker is seg-
mented from the background using a background subtraction algorithm such as [16].
To make our gait representation insensitive to changes of clothing and distance between
the camera and the walking subject, we ignore the color of the foreground walker and
use only the scale-normalized binary silhouette.

We would like our gait dynamics feature vector to have the following desirable
properties: ability to describe appearance at a level finer than whole body description
without having to segment individual limbs; robustness to noise in video foreground
segmentation; and simplicity of representation.

Our gait dynamics feature vector consists of parameters of smoothed versions of
moment features in image regions containing the walking person. For each silhouette of
a gait video sequence, we find the centroid and divide the silhouette into 7 parts roughly
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(a) (b)

Figure 1: The silhouette of a foreground walking person is divided into 7 regions, and
ellipses are fitted to each region.

corresponding to head/shoulder, arms/torso (front and back), thighs (front/back), and
calves/feet (front/back) (see Figure 1(a)). These regions are by no means meant to
segment the arms and legs precisely. We are interested in a consistent method to divide
the silhouette of a walking person into regions that will facilitate the person recognition
task.

For each of the 7 regions from a silhouette, we fit an ellipse to the portion of fore-
ground object visible in that region (Figure 1(b)). The features we extract from each of
these regions are the centroid, aspect ratio of major and minor axis of the ellipse, and
the orientation of major axis of the ellipse. These moment based features are somewhat
robust to noise in the silhouettes obtained from background subtraction, as long as the
number of noise pixel is small and not consistent over time. The features extracted from
each frame of a walking sequences consists of features from each of the 7 regions.

Given the region features across a gait sequence, one could use Fourier transform
to recover the periodicity of any of the parameters in a region across time and use that
as part of a gait recognition feature. In reality, we found that frequency was not a good
indicator of person identity because our video frame capture rate (15 frames/sec) did
not allow for high enough resolution measure of the period. In addition, the error in
foreground segmentation often makes peak detection difficult after Fourier transform-
ing the time signals. When the peaks can be detected, the inter-person period difference
is up to 1 frame, and the intra-person period difference is up to 2 frame for some pairs
of people, but within one frame for the majority of pairs of subjects. What is discrim-
inating in person idenfication are factors such as the amount of arm and leg swing,
the average orientation of the head (held high vs. looking at the floor) (see Figure 2).
These characteristics can be just as easily represented by the mean and standard de-
viations of region features across time as they are represented by Fourier transforms
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Figure 2: The difference in the amount of arm swing between two individuals.

of the same signals. However, the mean and standard deviation representation has the
additional advantage that they are not seriously affected by the occasional frame skip
that a foreground segmentation algorithm may undergo. Hence, the feature vector we
compute for each gait sequence consists of the mean and standard deviations across
time of each of the parameters for each region. It may be that for different regions of
the silhouette the mean (or the standard deviation) may be better suited for recognition
than the standard deviation (or the mean). We are conducting further study to refine the
representation for each region.

4 Experimental results

We apply our gait dynamics features to the following tasks: identification of persons
and gender classification. We gathered gait data in indoor environments with different
backgrounds, on four separate days spanning two months. Twenty-five subjects, 11
women and 14 men, were asked to walk at their normal speed and stride, back and
forth, twice in front of a video camera that was placed perpendicular to their walking
path. The walking gait sequences going the opposite direction are flipped so that all
sequences are of one walking direction. In all, 210 walking sequences were collected,
between 4 to 22 sequences for each subject, averaging 8.4 sequences per subject. A
minimum of 3 complete walking cycles were captured at 15 frames per second for each
walking sequence. We then use an adaptive background subtraction algorithm [16] to
segment out the walking person as a moving foreground object and scale-normalize it
to fit in a 128x128 pixel binary image. An example of the foreground walking person
is shown in Figure 3. The foreground segmentation is not perfect–the shadow on the
ground and some background are included. However, our gait representation tolerates
this amount of noise in foreground segmentation.

Using the gait dynamics features that we described in the previous section, a feature
vector is computed for each walking sequence and used in person identification and
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Figure 3: A sample sequence of the silhouette of a walking subject after background
subtraction.

gender classification.

4.1 Person Identification

While the gait dynamics features that have been described are not completely inde-
pendent of each other, we use a simplifying assumption that they are independent,
which then allows us to compute distances between feature vectors in Euclidean space.
Assuming that all components in the feature vector are equally important to gait recog-
nition, using the Mahalanobis distance between feature vectors as a measure of the
similarity between two sequences will remove the dominance of parameters with large
variance.

We evaluated our gait recognition performance using the cumulative match score
described by Phillips [11]. Under the closed-universe assumption, all query sequences
contain a walker who has at least one other walking sequence in our collection of
known walking sequences with known person ids. We answer the question, “Is the
correct person id in the top n matches?” The cumulative match score has the ranked
top match on the x-axis and the percentage of correct identification on the y-axis.

Two gait recognition tests were performed. In one, a query walking sequence is
compared against all sequences, regardless of the day of recording. The second test
compares walking sequences taken on one day against sequences taken on other days
only. This is a much more stringent test because sequences taken on different days
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have different lighting conditions, different backgrounds, different clothing.
The cumulative match score for recognition test one, where each sequence is com-

pared to all other sequences regardless of date of recording, is very high: >96% correct
identification at the top match, and 100% correct idenfication at the 6th top match (see
Figure 4). Closer examination of the gait dynamics feature vector distances shows that
the top correct matches are almost always those sequences of the same person taken on
the same day.

1 2 3 4 5 6 7 8 9 10
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005
Cumulative Match Score (matching against all sequences)

Rank (out of 210)

%
 c

or
re

ct
 p

er
so

n 
id

en
tit

y 
in

 to
p 

n 
m

at
ch

Figure 4: Cumulative match score of top 10 matches for comparison of each gait se-
quence against all other walking sequences (209 sequences).

The results of the second person identification test, where gait sequences recorded
on one day are compared against only gait sequences taken on other days, are shown in
Figure 5. Each of these cumulative match score curves represents the comparison be-
tween walking sequences taken on one day (days A, B, C, or D) against sequences taken
on all other days ((B,C,D), (A,C,D), (A,B,D), or (A,B,C), respectively). Only walking
subjects who have gait data collected from different days are used in this recognition
test. The gait recognition performance is higher when comparing data collected on
day A against all other sequences than matching sequences between those recorded on
other days against the rest of the gait data. Closer examinations of the ranked matches
show that the better performance of day A sequences against day B, C, and D sequences
is the result of lack of similarity in the type of clothing that some of the subjects wore
for the day B, C, D gait sequence data. For example, the 7 query sequences with the
worst match scores from day B are all from one subject who wore baggy pants and
whose only other sequences were collected on day D showing him wearing shorts. For
the same reason, recognition results of matching day D gait sequences against all other
sequences suffer because of lack of a similar appearance model in day B for the same
subject.

It is clear that the gait dynamics feature representation is sensitive to drastic cloth-
ing style changes. For subjects that do not change their clothing style very much,

8



0 20 40 60 80 100 120 140 160 180
0.2

0.4

0.6

0.8

1
Cumulative Match Score of day A sequences against day B, C, D sequences

Rank (158 sequences from days B, C and D)

%
 c

or
re

ct
 id

en
tif

ic
at

io
n 

ou
t o

f 3
6 

qu
er

y 
se

qu
en

ce
s

(a) 36 sequences from day A against
158 sequences from other days
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(b) 40 sequences from day B against
170 sequences from other days
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(c) 48 sequences from day C against
142 sequences from other days
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(d) 42 sequences from day C against
160 sequences from other days

Figure 5: Cumulative match score for matching sequences taken on one day against
sequences taken on all other days.

their correct identities are retrieved very quickly based on the ranked feature distance.
Figure 6 shows one example of a subject with her walking sequences taken on three
different days under three different hair styles and two different clothing styles (pants
vs. skirt). These drastic style changes need to be represented as multiple gait appear-
ance models for each person. Because the number of clothing styles are very limited
after they are binarized (for example, pants vs. skirt vs. shorts), there will only be a
small set of gait dynamics/appearance model for each person.

4.2 Gender classification

We trained a linear discriminant classifier to distinguish the gender of walking sub-
jects in gait video sequences. Two types of training sets are used. For one type of
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(a) hair in French twist,
wearing pants

(b) hair down, wearing a
dress

(c) hair in pony tail, wear-
ing pants

Figure 6: Silhouette of one walking subject from video sequences taken on three dif-
ferent days, with three different hair styles and two different types of clothing.

training set, we randomly selected gait dynamics feature vectors of approximately half
of the sequences, without regard to the identity of the walking subject, and tested on
the gait dynamics features of the remaining sequences. The linear discriminant clas-
sifiers trained on these data sets have very high classification performances: all have
less than 10% error rate, with a mean error rate of approximately 6% over multiple
trials at training a classifier. For the second type of training set, we randomly selected
approximately half of our walking subjects, trained the linear discriminant classifier on
all sequences from these walkers, and tested on all sequences of the remaining walking
subjects. The classification results for this type of training set on the linear discriminant
classifier are slightly worse. The classification error rate ranges from 12% to 27%, with
a mean of 17.5%. We attribute this decline in performance to the sparsity of training
data. There are only between 4 to 6 women and 5 to 7 men for each training set, which
is not sufficient to capture the full range of gait appearances of each gender.

5 Discussion and Future Work

Our gait dynamics features are view and appearance based. The view dependent na-
ture of this representation can be resolved by synthesizing a view of the walking in
the canonical view used in this paper. The dependence of out gait dynamics feature
on the appearance of a walking is difficult to remove, unless the joint movements of a
walker can be accurately detected. However, as we argued earlier, the appearance of
a walking subject actually contains information about the identity of the person. To
allow accurate recognition of a person with drastic clothing style change then requires
having multiple representations of the person. We propose that a multi-modal recogni-
tion algorithm is useful for building such a multiple-appearances gait dynamics model.
Recognition modalities such as face recognition can be very useful here because face is

10



less susceptible to appearance change. Recognition results from face can be combined
with gait appearance recognition to establish multiple–appearance gait model.

6 Summary and Conclusions

We have presented a very simple representation of human gait dynamics based on mo-
ments computed from the silhouette of the walking person for the purpose of person
identification and gender classification. Our representation is rich enough to show
promising results in these tasks. This view and appearance dependent model of gait
dynamics can be further extended to accommodate a multiple appearance model of a
person with the use of other recognition modalities.
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